The sat problem of mu-calculus over Petri Nets

Feuillade Guillaume

INRIA, France, guillaume.feuillade@irisa.fr

SUPERVISOR Pinchinat Sophie
KeEYywoRDS: Synthesis, Petri nets, concurrency, control, mu-calculus

Abstract

We study the decidability of the synthesis of unlabeled Petri Net from logical
specifications. We discuss Petri Net synthesis methods and results. We present
a proof for the undecidability of the synthesis problem for a sentence of the mu-
calculus.

1 Introduction

In the area of automatic system validation, many formal languages to express properties
and many formal representations of systems have been proposed. Given both a language
of specifications £ and a class of models M, the automatic validation can be performed in
two ways : a posteriori and a priori. This introduces two theoretical problems.

The first one is: given a model M in the class M and a property ¢ expressed within
L, “does M verifies the property ¢ ?”. This problem corresponds to the model-checking
problem of L over M and is noted Model-Checking(L, M).

The second one is: given a property ¢ expressed within £, “is there a model M in the class
M such that M verifies ¢ ?”. This problem corresponds to the sat problem of L over M
and is noted Sat(L, M).

The model-checking problem is related to system verification : given a system or its ab-
straction and a set of required properties, it permits to validate or invalidate the system.
The sat problem addresses two goals : the first one is the synthesis of a system or its ab-
straction from required properties, the second one is the synthesis of a controller to ensure
that the combination of a given system and the controller follows some required properties.
We consider these two problems with a particular logic, the mu-calculus, and recall results
about model-checking and sat over finite regular processes. Since finite regular processes
have flaws, we consider Petri Nets as class of models, and show that the synthesis problem
in its generality is undecidable, but is decidable for specific restrictions over the specifica-
tions or over the models.



2 Mu-calculus

The mu-calculus of [7], or Hennessy-Milner logic with fix-points, is a popular logic for
expressing temporal properties of reactive systems. The mu-calculus, or L, is not a state-
based logic, as opposed to M SO for example, and expresses properties over the execution
tree for its branching-time version, or over execution words for its linear-time version. One
consequence is an underlying equivalence of models : bisimulation. Basically, two sys-
tems are equivalents w.r.t. bisimulation if and only if they have the same execution tree.
Mu-calculus sentences does not distinguish two systems that are bisimilar. If M; and M,
are two models equivalents w.r.t. bisimulation, and ¢ is a mu-calculus sentence then M,
satisfies ¢ if and only if M, satisfies ¢.

The theory of L, is related to alternating tree automata with parity acceptance [1, 2].
In fact, each mu-calculus sentence is equivalent to an alternating tree automaton and recip-
rocally. For each sentence ¢ of the mu-calculus, there exists an alternating tree automaton
A, such that the models in M that satisfies ¢ are exactly the models accepted by the
automaton Ay ; and for each alternating tree automaton A, there exists a sentence ¢ of
the mu-calculus such that the models accepted by the automaton A are exactly the models
that satisfies ¢.
Methods to solve Model-Checking(L,, M) and Sat(L,, M), for some classes of mod-
els M, rely on tree automatons and elements from games theory. In particular, when
M is the set of finite regular processes R (or equivalently finite Kripke structures), a fi-
nite two-players parity game can be built according to [2] from the specification to solve
Model-Checking(L,, R) and Sat(L,,R). The first step for solving both problems for a
sentence ¢ of L, is to transform the alternating tree automaton into a non-deterministic
tree automaton with parity acceptation according to the simulation theorem [1].
An instance of Sat(L,, R) is a sentence ¢ of L,. From the non-deterministic tree automa-
ton obtained from ¢, a finite two players parity game for this instance of the sat(L,, R)
problem can be built, which is determined [5] ; this means that either player 0 or player 1
has a winning strategy. In order to compute a solution for this instance of Sat(L,, R), one
must found a winning strategy for player 0 and build, when possible, a model according
to the strategy found. Fortunately, when the class of models is R, there is two crucial
properties that enable such a construction. The first one is : when player 0 has a winning
strategy, then player 0 has a positional winning strategy. The second one is : when player
0 has a positional winning strategy, the construction of a finite regular process according
to this strategy is effective. With these two properties, Sat(L,,R) is decidable, and the
construction of a model satisfying a given sentence ¢ of L, is effective.
Similarly, an instance of Model-Checking(L,, M) is a sentence ¢ of L, and a model
M within the class R. From the non-deterministic tree automaton obtained from ¢ and
the finite regular process M, a finite two player parity game can be built. This game is
determined and M satisfies ¢ if and only if player 0 has a winning strategy in this game.
Thus solving an instance of Model-Checking(L,,, M) is equivalent to the research of a
winning strategy for player 0. If there is one, the answer is “yes”, else player 1 has a win-



ning strategy and the answer is “no”. Hence the model-checking of L, over finite regular
processes is effective.

3 Labeled and unlabeled Petri Nets

While regular processes are purely sequential, there exists others class of models which
are concurrent. We focus on Petri Nets and subclasses of Petri Nets [8] ; they were first
introduced by Carl Adam Petri and are concurrent systems based on the notion of places,
transitions, and resources. Let X be an alphabet.

A labeled Petri Net is given a labeling function ranging from the places of the net to
elements of X. We define the execution tree of a labeled Petri Net as the unfolding of its
marking graph. Since two transitions may have the same image for the labeling function,
labeled Petri Nets are non-deterministic systems. From a finite regular process, an un-
labeled Petri Net can be built which is bisimilar to the regular process : the places are
the states of the process while the transitions are the arcs of the process, and the labeling
function associates each arc label to the corresponding transition of the net ; finally the
place corresponding to the initial state of the process is given one unique resource. Thus
the class of unlabeled Petri Net is a superclass of R.

An unlabeled Petri Net is a net whose transitions are the elements of ¥ (or labeled
injectively over ). Unlabeled Petri Nets are deterministic systems. The execution tree
is defined as the unfolding of the marking graph of the net. It is possible to built a
distributed implementation of an unlabeled Petri Net exploiting concurrence. As a class
of model, unlabeled petri nets, noted UPN, is neither a subclass of R nor a superclass of
R.

4 Petri Net Synthesis

It has been shown in [3] that it is possible to determine if there is a net in YPN whose
language is equal to a given prefix closed regular language, and to build it. When this net
does not exist, it is possible to build the net with minimal language, in the sense of the set
inclusion, whose language contains the given prefix-closed regular language. Furthermore,
Petri Net synthesis is effective for more complex structures [4] : automatic graphs and
automatic specifications.

The first consequence is that from a finite regular system, it is possible to determine
if there is an unlabeled Petri Net bisimilar to the regular system, and to synthesize it.
Thus, it is possible to solve an instance of Sat(L,,R) to obtain a regular process, and to
synthesize from this process, when possible, a net in YPN which is a solution of the same
problem over the class UPN of models. However, since R is not a subset of UPN, the



synthesis is not always effective ; moreover, the sequential system may not be a proper
choice for this two step synthesis of net. That is to say that between all the finite states
regular models satisfying the mu-calculus sentence, the chosen one has no guarantees of
being the proper intermediate model for an PN -synthesis.

5 Sat problem of L, for UPN

We show that Sat(L,,UPN) is undecidable, as is Model-Checking(L,,,UPN’). The
model checking problem for Petri nets is known to be undecidable since 1994 [6], but the
relationship between sat and model-checking problems has not been established yet. Both
problems are related to the halt problem for Minsky machines : the Petri Nets provide the
counters behaviors while branching time logic provide regular reachability and zero test on
the counters.

For the model checking problem, the undecidability proof relies on simulating a Minsky
machine with a Petri Net and a sentence of the mu-calculus which one is satisfied if and
only if the Minsky machine eventually halts.

The sat problem can be prooved undecidable a similar way.

Theorem 1 the problem Sat(L,,UPN) is undecidable

For this problem, the undecidability proof is a reduction of the problem of the research
of an initial configuration for the Minsky machine to halt for, which is undecidable. The
mu-calculus sentence provides reachability, according to the machine’s structure, zero test
; moreover this sentence is designed to force the structure of the family of Petri Nets which
marking graph satisfies the sentence. This avoids trivial solutions and ensures that if there
is a Net which marking graph satisfies the sentence then there is another one, which mark-
ing graph satisfies the sentence too, and providing the expected counter behavior. The
structure of solutions is forced by modifying the zero-test formula, using a greatest fix
point ensuring that the test is performed only by a place behaving like the counter of a
Minsky machine. This way, the sat problem associated with this sentence has a solution
(a Petri Net) if and only if there exists an initial configuration for the Minsky machine to
halt for ; thus this proves that the sat problem on Petri Nets is undecidable. Note that
this result require the use of the first level of alternation of the mu-calculus.

In contrast with this undecidability result, synthesis of unlabeled 1-safe Petri nets is
effective for the mu-calculus and even for MSO [9]. This result relies on the fact that the
possible structures and markings of unlabeled 1-safe Petri nets are finite.

However, we show that the problems called marking-synthesis problem and consisting in
finding an initial marking for a given net structure in order to satisfy a given mu-calculus
sentence are also undecidable when these too conditions are satisfied :



1. 1 level of fix-point alternation is permitted,

2. the class of models (subclass of UPN), is larger or equal to marked graphs.

6 Conclusion and perspectives

We showed that the sat problem over YPN is undecidable for the whole mu-calculus. The
next issue is to find a fragment of the mu-calculus for which the synthesis is effective.
We defined a syntactic restriction of the mu-calculus : the conjunctive-nu-calculus, noted
L,. The conjunctive-nu-calculus is obtained from the mu-calculus by removing the follow-
ing operators : not, or, the least fix-point. We then define a subclass of tree automata,
called modal automata, having the same relation with the conjunctive-nu-calculus than
alternating tree automata with mu-calculus. These specifications differ from automatic
specifications in the sense that states of the system have to be guessed in order to syn-
thesize a net from UPN, while all the states of an automatic specification are reachable.
The problem sat(L,,UPN’) has been solved for some structural restrictions on modal au-
tomata, mainly about the cycles in the automaton (or equivalently the fix-points in the
formula) : for example, the variable of a fix-point should occur only once in the associated
sub-formula. However the problem remains open in its generality. We expect to extend
these structural restriction and to characterize it syntactically in L,. The further step
would be to express the solutions in term of strategies in the associated parity game, and
to study the properties of these strategies.

References

[1] A. Arnold and D. Niwinski. Rudiments of mu-calculus. North-Holland, 2001.

[2] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers with
partial observation. to appear in Theoretical Computer Science, 2003.

[3] E. Badouel and P. Darondeau. Theory of regions. In Lectures on Petri Nets I: Basic
Models, volume 1491 of Lecture Notes in Computer Science, pages 529-586. Springer,
1999.

[4] E. Badouel and P. Darondeau. The petri net synthesis problem for automatic graphs.
Technical Report 4661, INRIA Rennes, December 2002.

[5] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. Proceed-
ings 32nd Annual IEEE Symp. on Foundations of Computer Science, pages 368-377,
1991.



[6] J. Esparza. On the decidabilty of model checking for several mu-calculi and petri
nets. In S. Tison, editor, Proceedings of Trees in Algebra and Programming - CAAP
94, 19th International Colloquium 1994, number 787 in Lecture Notes in Computer
Science, pages 115-129, 1994.

[7] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,
27:333-354, 1983.

[8] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541-574, April 1989.

[9] K. Sunesen. Reasoning about reactive systems, 1998.



