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ABSTRACT

This paper presents a unification of interface automata and
modal specifications, two radically dissimilar models for in-
terface theories. Interface automata is a game-based model,
which allows to make assumptions on the environment and
propose an optimistic view for composition : two compo-
nents can be composed if there is an environment where they
can work together . Modal specification is a language theo-
retic account of a fragment of the modal mu-calculus logic
that is more complete but which does not allow to distin-
guish between the environment and the component. Partial
unifications of these two frameworks have been explored re-
cently. A first attempt by Larsen et al. considers modal in-
terfaces, an extension of modal specifications that deals with
compatibility issues in the composition operator. However,
this composition operator is incorrect. A second attempt by
Raclet et al. gives a different perspective, and emphasises
on conjunction and residuation of modal specifications, in-
cluding when interfaces have dissimilar alphabets, but disre-
gards interface compatibility. The present paper contributes
a thorougher unification of the two theories by correcting the
modal interface composition operator presented in the paper
by Larsen et al., drawing a complete picture of the modal
interface algebra, and pushing even further the comparison
between interface automata, modal automata and modal in-
terfaces.
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1. INTRODUCTION

Nowadays, systems are tremendously big and complex, re-
sulting from the assembling of several components. These
many components are in general designed by teams, work-
ing independently but with a common agreement on what
the interface of each component should be. As a conse-
quence, mathematical foundations that allow to reason at
the abstract level of interfaces is a very active research area.
According to our understanding of industrial needs, an inter-
face theory is at least subject to the following requirements:

1. Satisfaction and satisfiability are decidable. Interfaces
should be seen as specifications whose models are its
possible implementations. It should thus be decidable
whether an interface admits an implementation and
whether a given component implements a given inter-
face.

2. Refinement entails substituability. Refinement allows
one to replace, in any context, an interface by a more
detailed version of it. Refinement should entail substi-
tuability of interface implementations, meaning that
every implementation satisfying a refinement also sat-
isfies the larger interface. For the sake of controlling
design complexity, it is desirable to be able to decide
whether there exists an implementation satisfying two
different interfaces. This is called shared refinement .

3. Encompassing interfaces with dissimilar alphabets. Com-
plex systems are built by combining subsystems pos-
sessing dissimilar alphabets for referencing ports and
variables. It is thus important to properly handle those
different alphabets when combining interfaces.

4. Composition supports independent design. The inter-
face theory should also provide a combination opera-
tor on interfaces, reflecting the standard composition
of implementations by, e.g. parallel product. This op-
eration must be associative and commutative to guar-
antee independence in the development. Depending on
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the model, a notion of compatibility for composition
may also be considered, i.e., there can be cases where
two systems cannot be composed.

5. Interfaces are closed under conjunction. It is the cur-
rent practice that early requirements capture relies
on Doors Databases, or even Excel files containing
possibly many textual requirements. Under the cur-
rent practice, little formal support exists to handle
them. Moving ahead can be envisioned by formalizing
the notation used for individual requirements. This
can be, e.g., achieved by relying on so-called semi-
formal languages [7], whose sentences are translatable
into predefined behavioral patterns according to sev-
eral viewpoints. Alternatively, graphical scenario lan-
guages could be considered [10, 21]. Composing view-
points within a given subsystem calls for the support
of the concept of conjunction of interfaces in order to
combine requirements and check their satisfiability.

6. Interface quotient supports incremental design and com-
ponent reuse. Last but not least, a quotienting oper-
ation, dual to composition is crucial to perform incre-
mental design. Consider a desired global specification
and the specification of a preexisting component; the
quotient specification describes the part of the global
specification that remains to be implemented.

Building good interface theories has been the subject of
intensive studies (see e.g., [20, 14, 5, 17, 19, 12, 15]). In
this paper we will concentrate on two models: (1) interface
automata [14] and (2) modal specifications [22]. Interface au-
tomata is a game semantics based variation of input/output
automata which deals with open systems, their refinement
and composition, and put the emphasis on interface compat-
ibility. Modal specifications is a language theoretic account
of a fragment of the modal mu-calculus logic [18] which ad-
mits a richer composition algebra with product, conjunction,
and residuation operators.

In interface automata [14], an interface is represented by
an input/output automaton [26], i.e., an automaton whose
transitions are labeled with input or output actions. The se-
mantics of such an automaton is given by a two-player game:
an Input player represents the environment, and an Output
player represents the component itself. Interface automata
do not encompass any notion of model, because one cannot
distinguish between interfaces and implementations. Alter-
natively, properties of interfaces are described in game-based
logics, e.g., ATL [1], with a high-cost complexity.

Refinement between interface automata corresponds to
the alternating refinement relation between games [2], i.e.,
an interface refines another one if its environment is more
permissive whereas its component is more restrictive. Shared
refinement is defined in an ad-hoc manner [16] for a par-
ticular class of interfaces [8]. Contrary to most interfaces
theories, the game-based interpretation offers an optimistic
treatment of composition: two interfaces can be composed
if there exists at least one environment (i.e., one strategy
for the Input player) in which they can interact together in
a safe way (i.e., whatever the strategy of the Output player
is). This is referred as compatibility of interfaces.

Modal specifications [22] correspond to deterministic modal
automata, i.e., automata whose transitions are typed with
may and must modalities. A modal specification thus repre-

sents a set of models; informally, a must transition is avail-
able in every component that implements the modal speci-
fication, while a may transition needs not be. The compo-
nents that implement modal specifications are prefix-closed
languages, or equivalently deterministic automata.

Satisfiability of modal specifications is decidable. Refine-
ment between modal specifications coincides with models
inclusion. Since components can be seen as specifications
where all transitions are typed must (all possible imple-
mentation choices have been made), satisfaction is also ex-
pressed via alternating simulation. Conjunction is effectively
computed via a product-like construction. Combination of
modal specifications, handling synchronization products à
la Arnold and Nivat [3], and the dual quotient combinators
can be efficiently handled in this setting [28, 29].

Interface automata and modal specifications are incompa-
rable models as must, may and input,output have orthogonal
meanings. Both models have advantages and disadvantages:

• Interface automata is a model that allows to make as-
sumptions on the environment, which is mainly useful
to derive a rich notion for composition. Unfortunately,
the model is incomplete as conjunction, and quotient
are not defined for this game-based model.

• Modal specification is a rich language algebra model on
which most of requirements for a good interface the-
ory can be considered. Unfortunately, may and must
modalities are not sufficient to derive a rich notion for
composition including compatibility.

It is thus worth considering unification of the frameworks
of interface automata and modal specifications. A first at-
tempt was made by Larsen et al. [23, 27] who considered
modal interfaces that are modal specifications whose actions
are also typed in input or output attributes. Larsen et al.
have proposed a product-like construction allowing to ad-
dress compatibility of modal interfaces. Nevertheless con-
trary to what is claimed by the authors, this composition
operator in [23, 27] is not monotone with respect to the re-
finement of modal specifications. This fails to ensure that
two compatible interfaces may be implemented separately.

The present paper adds a new stone to the cathedral of
results on interface theories by (1) correcting the modal in-
terface composition operator presented in [23, 27], (2) draw-
ing a complete picture of the modal interface algebra , and
(3) pushing even further the comparison between interface
automata, modal automata and modal specifications and
modal interfaces.

The rest of the paper is organized as follows. In Sections
2 and 3 we recap the theory for modal specifications and in-
terface automata, respectively. In Section 4, we present the
complete theory for modal interfaces and correct the error in
[23, 27]. Finally, in Section 5, we draw our conclusion and
discuss future extensions for the model of modal interfaces.

2. MODAL SPECIFICATIONS

This section overviews existing results for modal specifi-
cations. We start by introducing the framework, then we
discuss the extension to several alphabets and study the no-
tions of refinement and implementation. Finally, we present
results on combining modal specifications.
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2.1 The Framework

Following our previous work [30], we will define modal
specifications in term of languages, knowing that they can
also be interpreted as deterministic automata whose transi-
tions are typed with may and must modalities. We propose
the following definition.

Definition 1. A modal specification is a tuple S = (A,
must ,may), where A is a finite alphabet and:

must ,may : A∗ �→ 2A

are partial functions satisfying the following consistency con-
dition:

must(u) ⊆ may(u). (1)

The fact that a ∈ may(u) means that action a is allowed
after the trace u whereas a ∈ must(u) indicates that a is re-
quired after u. By negation, a �∈ may(u) means that a is dis-
allowed after u. The latter is often written a ∈ mustnot(u).
The condition (1) naturally imposes that every required ac-
tion is also allowed. We shall sometimes write AS ,mayS ,
and mustS to refer to the entities involved in the definition
of S .
When composing specifications, discrepancies between the
modal informations carried out by the specifications may
appear. We then consider pseudo-modal specifications, de-
noted pS; they are triples satisfying Definition 1 with the ex-
ception of (1). For pS a pseudo-modal specification, a word
u ∈ A∗ is called consistently specified in pS if it satisfies (1)
and inconsistent otherwise; modal specifications correspond
exactly to the subclass of consistent pseudo-modal specifi-
cations, that is pseudo-specifications such that every u ∈ A∗

is consistently specified.
A similar approach has been developed in [25] for a non-
modal process algebraic framework in which a dedicated
predicate is used to model inconsistent processes.
For pS = (A,must ,may) a pseudo-modal specification, the
support of pS is the least prefix-closed language LpS such
that: (i) ε ∈ LpS , where ε denotes the empty word; and (ii)
u ∈ LpS and a ∈ may(u) imply u.a ∈ LpS .

2.2 Multiple Alphabets

Large systems are composed of many subsystems possess-
ing their own alphabets for ports and variables. The way
those different alphabets are handled when combining sub-
systems requires some care.

We start with a series of definitions on languages. Let A
and C be two alphabets such that A ⊆ C. For v ∈ C∗, the
projection of v on A (denoted prA(v)) is the word over A
obtained from v by erasing all symbols that do not belong
to A. Let L be a language over A, the extension of L to C
is the language L↑C = {v ∈ C∗ | prA(v) ∈ L}.

Definition 2. The shuffle product L1 × L2 of two lan-
guages L1 ⊆ A∗

1 and L2 ⊆ A∗
2 is given by

L1 × L2 = (L1)↑A ∩ (L2)↑A , where A = A1 ∪ A2.

In modal automata, one has to consider two alphabet ex-
tensions: the weak and the strong extension. We shall see
that the extension in use will depend on the operation that
is performed on modal specification [30].

Definition 3 (weak and strong extensions). Let
pS = (A,mustpS ,maypS) be a pseudo-modal specification and
let C ⊇ A.

1. The weak extension of pS to C is the pseudo-modal
specification pS⇑C = (C,must , may) such that ∀v ∈
C∗: j

must(v) = mustpS (prA(v))
may(v) = maypS (prA(v)) ∪ (C − A).

2. The strong extension of pS to C is the pseudo-modal
specification pS↑C = (C,must ,may) such that ∀v ∈
C∗: j

must(v) = mustpS (prA(v)) ∪ (C − A)
may(v) = maypS (prA(v)) ∪ (C − A).

It is easy to show that L(S⇑C ) = L(S↑C ) = (LS)↑C .

2.3 Implementation and refinement

In this section, we study the concepts of implementation,
refinement and consistency . We start with implementation,
also called model .

Definition 4 (implementation). Let pS = (A,must ,
may) be a pseudo-modal specification.

1. Equal Alphabets: A prefix-closed language I ⊆ A∗

is an implementation of pS , denoted by I |= pS, if
∀u ∈ I, must(u) ⊆ Iu ⊆ may(u), where Iu = {a ∈
A | u.a ∈ I}.

2. Extended Alphabets: For C ⊇ A, a prefix-closed
language I ⊆ C∗ is a weak implementation of pS,
written I |=w

pS, iff I |= pS⇑C holds; it is a strong
implementation of pS, written I |=s

pS, iff I |= pS↑C

holds.

Modal specifications are equivalent to the fragment of the
μ-calculus called the conjunctive ν-calculus [18]. Hence, a
model for a modal specification is a model for the formula
represented by the specification.

Satisfaction can be related to consistently specified words:

Lemma 1. If I |= pS, then I ⊆ LpS holds and every word
of I is consistently specified in pS. Similarly, if I |=w

pS or
I |=s

pS, then I ⊆ (LpS)↑C holds and for every word v ∈ C∗

of I, prA(v) is consistently specified in pS.

We now switch to the case of modal refinement which ex-
tends in a natural manner the classical notion of bisimulation
on automata. We first consider the case where specifications
are defined over the same alphabet:

Definition 5. Let pS1 = (A,must1, may1) and pS2 =
(A,must2,may2) be two pseudo-modal specifications then pS1

refines pS2, denoted pS1 ≤ pS2, iff for all u ∈ LpS1 :

may1(u) ⊆ may2(u)
must1(u) ⊇ must2(u).

It can be shown that refinement is a preorder relation which
implies the inclusion of supports. As a consequence, any
two modal specifications S1 and S2 such that S1 ≤ S2 ≤
S1 have equal supports L = LS1 = LS2 and moreover, for
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all u ∈ L, may1(u) = may2(u) and must1(u) = must2(u).
Thus equivalent modal specifications differ only outside of
their support; a unique representant S = (A,must ,may) of
equivalence classes of modal specifications can be defined by
assuming that for all u �∈ LS , must(u) = ∅ and may(u) =
A. Under this assumption, modal refinement is a partial
order relation on modal specifications. In the following, only
modal specifications in this canonical form are considered.

Definition 6. Let pS1 = (A1,must1,may1) and pS2 =
(A2,must2,may2) be two pseudo-modal specifications with
A1 ⊇ A2 then pS1 weakly refines pS2 (which is denoted
pS1 ≤w

pS2), iff pS1 ≤ pS2⇑A1 , and it strongly refines pS2,
written pS1 ≤s

pS2, iff pS1 ≤ pS2↑A1 .

A pseudo-modal specification can be reduced into a modal
specification with preservation of its semantic:

Theorem 2 (consistency). Either a pseudo-modal spe-
cification pS has no model, or there exists a modal specifi-
cation ρ(pS) having the same alphabet of actions such that
ρ(pS) possesses the same set of weak and strong implemen-
tations:

I |=w
pS ⇔ I |=w ρ(pS)

I |=s
pS ⇔ I |=s ρ(pS)

We shall call ρ(pS) the reduction of pS. The detailed con-
struction of ρ(pS) can be found in [30]. We let ⊥ be a par-
ticular modal specification that admits no model and let L⊥
be the empty set.

We conclude the section with the following theorem that
relates refinement and implementation.

Theorem 3 (implementation and refinement).

1. Weak and strong implementation and refinement are
related as follows: |=s ⊆ |=w and ≤s ⊆ ≤w.

2. Weak and strong modal refinement are both sound and
complete w.r.t. weak and strong thorough refinement,
respectively:

S2 ≤w S1 ⇔ {I | I |=w S2} ⊆ {I | I |=w S1}
S2 ≤s S1 ⇔ {I | I |=s S2} ⊆ {I | I |=s S1} .

As already noticed, modal specifications are equivalent to
deterministic modal automata. When allowing for nonde-
terminism, the theorem above does not hold as modal re-
finement is no more complete [24].

2.4 Operations on modal specifications

Consider two modal specifications S1 = (A1,must1, may1)
and S2 = (A2,must2,may2), we now define their conjunc-
tion, parallel product and quotient . We proceed in two steps:
we first define these operations when A1 = A2; the case of
different alphabets is then handled by performing a prelim-
inary step of alphabet equalization.

In [30], we argued that alphabet equalization must be
different depending on the considered operation. Such an
extension must be neutral, meaning that it should not con-
strain what other interfaces may want to require regarding
these extra actions.

Conjunction.
When A1 = A2, the conjunction S1 ∧ S2 = ρ(S1&S2)

where S1&S2 is defined by:

mayS1&S2
(u) = may1(u) ∩ may2(u)

mustS1&S2(u) = must1(u) ∪ must2(u).
(2)

Observe that it is not guaranteed that S1&S2 satisfies (1).
Hence, we use theorem 2 and apply the reduction operation
ρ in order to obtain a modal specification.

For the general case where A1 �= A2, the definition above
is applied after an equalization step: S1∧S2 = S1⇑A ∧S2⇑A ,
with A = A1 ∪ A2.

Theorem 4.

I |=w S1 ∧ S2 ⇔ I |=w S1 and I |=w S2.

The conjunction between S1 and S2 is exactly their great-
est lower bound for the weak refinement relation: S1 ∧ S2

is the greatest specification that weakly refines both S1 and
S2.

A current practice in the design of a component is to give
several specifications, each of them describing a particular
requirement. The conjunction of these specifications, en-
ables to check the consistency of these requirements, by de-
ciding satisfiability.

Parallel product.
When A1 = A2, the parallel product S = S1⊗S2 is defined

by:

mayS(u) = may1(u) ∩ may2(u)
mustS(u) = must1(u) ∩ must2(u).

(3)

The product of two modal specifications always satisfy
the consistency condition. Hence, no reduction is needed.
For the general case where A1 �= A2, the definition above is
applied after an equalization step: S1 ⊗ S2 = S1↑A ⊗ S2↑A .

In an interface theory, it is desirable to be able to develop
components in isolation and then to compose them as ex-
pected. This is ensured by the product operation as stated
with the following theorem.

Theorem 5.

1. If S ′
1 ≤s S1 and S ′

2 ≤s S2, then S ′
1 ⊗ S ′

2 ≤s S1 ⊗ S2.

2. If I1 |=s S1 and I2 |=s S2, then I1 × I2 |=s S1 ⊗ S2.

3. Regarding supports: LS1⊗S2 = LS1 × LS2 .

Strong refinement has to be used when enlarging the al-
phabet, as the product is not monotonic with respect to the
weak refinement [30].

Residuation/quotient.
The operation of residuation, also called quotient, is the

adjoint of product. Intuitively, the quotient enables to de-
scribe a part of a global specification assuming another part
is already realized by some component. If A1 = A2, then
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the pseudo-quotient pS = S1 � S2 is defined by:

a ∈ maypS(u) ∩ mustpS(u) if a ∈ must1(u)
and a ∈ must2(u)

a ∈ mustpS(u) \ maypS(u) if a ∈ must1(u)
and a �∈ must2(u)

a ∈ maypS(u) \ mustpS(u) if a ∈ may1(u)
and a �∈ must1(u)

a ∈ maypS(u) \ mustpS(u) if a �∈ may1(u)
and a �∈ may2(u)

a �∈ maypS(u) ∪ mustpS(u) if a �∈ may1(u)
and a ∈ may2(u).

Due to the second rule, S1 � S2 may have inconsistently
specified words. As a consequence, a reduction operation
may be needed and the quotient of S1 by S2 is S1/S2 =
ρ(S1 � S2).
For the general case of two different alphabets, the defini-
tion above is applied after an alphabet equalization step:
S1 / S2 = S1⇑A / S2↑A .

We have the following theorems:

Theorem 6. Let S, S1 and S2 be modal specifications
such that AS2 ⊇ AS ⊇ AS1 . We have

S2 ≤s S/S1 ⇔ S1 ⊗ S2 ≤s S .

Theorem 7. Let S, S1 be modal specifications and I2 a
prefix-closed language such that AI2 ⊇ AS ⊇ AS1 , we have

I2 |=s S/S1 ⇔ [∀I1 : I1 |=s S1 ⇒ I1 × I2 |=s S ].

3. INTERFACE AUTOMATA

In [14], de Alfaro and Henzinger introduced interface au-
tomata, that are automata whose transitions are typed with
input and output actions rather than with modalities. In
this section, we briefly overview the theory of interface au-
tomata and refer the reader to [14, 11] for more details.

Definition 7. An interface automaton is a tuple P =
(X, x0, A,→), where X is the set of states, x0 ∈ X is the
initial state, A is the alphabet of actions, and →⊆ X×A×X
is the transition relation.

We decompose A = A? � A!, where A? is the set of inputs
and A! is the set of outputs. In the rest of the paper, we shall
often use a? to emphasize that a ∈ A? and a! for a ∈ A!. Ob-
serve that if we consider deterministic interface automata,
then we can propose a language-based definition similar to
the one we gave for modal specifications.

The semantic of an interface automaton is given by a two-
player game between: an input player that represents the
environment (the moves are the input actions), and an out-
put player that represents the component itself (the moves
are the output actions). Input and output moves are in
essence orthogonal to modalities. Interface automata are
operational models, they do not encompass any notion of
model, and thus neither satisfiability nor consistency, be-
cause one cannot distinguish between interfaces and com-
ponents implementations. Alternatively, properties of inter-
faces are described in game-based logics, e.g., ATL [1], with
a high-cost complexity. Refinement between interface au-
tomata corresponds to the alternating refinement relation

between games [2], i.e., an interface refines another one if
its environment is more permissive whereas its component
is more restrictive. There is no notion of component reuse
and shared refinement is defined in an ad-hoc manner [16].

The main advantage of the game-based approach appears
in the definition of composition and compatibility between
interface automata. Following [11], two interface automata
are composable if they have disjoint sets of output actions
compose by synchronizing on shared actions and interleave
asynchronously all other actions.

Definition 8 (Product of interface automata).

Let P1 = (X1, x01, A1,→1) and P2 = (X2, x02, A2,→2) be
two interface automata. The product between P1 and P2 is
an interface automaton P1 × P2 = (X, x0, A,→), where

• X = X0 × X1;

• x0 = x01 × x02;

• A = A1 ∪ A2, and A? = (A1? ∪ A2?) \ ((A1? ∩ A2!) ∪
(A2? ∩ A1!)), and A! = A1! ∪ A2!;

• → is defined as follows:

– For each action a ∈ A such that a �∈ A1∩A2, there
exists a transition (x1, y1)

a−→ (x2, y2) iff there

exists (x1)
a−→1 (x2) and y1 = y2 or (y1)

a−→2 (y2)
and x1 = x2.

– For each action a ∈ A1? ∩ A2?, there exists a

transition (x1, y1)
a?−→ (x2, y2) iff there exists

(x1)
a?−→1 (x2) and (y1)

a?−→2 (y2).

– For each a ∈ (A1? ∩ A2!) ∪ (A2? ∩ A1!), there

exists a transition (x1, y1)
a!−→ (x2, y2) iff there

exists (x1)
a−→1 (x2) and (y1)

a−→2 (y2).

Since interface automata are not necessarily input-enabled1

(which allows to make assumptions on the environment), in
the product P1 × P2 of two interface automata P1 and P2,
there may be illegal states where one of the automata may
produce an output action that is also in the input alphabet
of the other automaton, but is not accepted at this state. In
most of existing models for interface theories that are based
on an input output setting, the interfaces would be declared
to be incompatible. This is a pessimistic approach that can
be avoided by exploiting the game-based semantic. Indeed,
the game semantic allows to propose an optimistic approach:

“Two interfaces can be composed and are com-
patible if there is at least one environment where
they can work together (i.e., where they can avoid
the illegal states).”

Deciding whether there exists an environment where the
two interfaces can work together is equivalent to checking
whether the environment in the product of the interfaces has
a strategy to always avoid illegal states. The set of states
from which the environment has a strategy to avoid the ille-
gal states whatever the component does can be recursively
computed as follows.

1Recall that a system is input-enabled if it can react to any
input action in any moment.
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Let Illegal(P1,P2) is the subset of pairs (x1, x2) ∈ X1×X2

such that there exists

either an action a ∈ A1! ∩ A2? with x1
a!−→1

but not x2
a?−→2

or an action a ∈ A2! ∩ A1? with x2
a!−→2

but not x1
a?−→1

where x
a−→ means that x

a−→ y for some state y. If il-
legal states exist in the product P1 × P2, there may still
exist refinements of it that possess no illegal states. Such
a refinement specifies how the use of the resulting product
should be restricted in order to guarantee that illegal states
cannot be reached. As proved in [14], such a largest refine-
ment is obtained by backward pruning P1 × P2 as follows.
For Y ⊆ X, the set of states of P1 × P2, let pre !(Y ) be

the subset Z ⊆ X of states z such that z
a!−→ y for some

y ∈ Y and a! ∈ A! (an output action of the product). Let
pre0

! (Y ) = Y and, for k ≥ 0, prek+1
! (Y ) = pre !

`
prek

! (Y )
´

and let pre∗
! (Y ) =

S
k prek

! (Y ).

The desired pruning consists in:

• Removing pre∗
! (Illegal(P1,P2)) from X, and

• Removing transitions to states in pre∗
! (Illegal(P1,P2)),

and

• Removing unreachable states.

The result of applying the pruning to P1 ×P2 is denoted
by

P1 ‖P2,

and is called the composition of the two interface automata.
P1 and P2 are called compatible if applying the pruning
leaves the initial state [14].

We recall the two following theorems from [14] that show
that interface automata support independent design and
substituability.

Theorem 8 ([14]). The composition operation is asso-
ciative and commutative.

Theorem 9 ([14]). Let P1, P2, and P3 be three inter-
face automata. If P2 refines P1 and the set of shared actions
P2 ‖P3 of is included in the set of shared actions of P1 ‖P3,
then P2 ‖P3 refines P1 ‖P3.

Remark 1. The operations between interface automata
that have been defined so far do not require an explicit treat-
ment of dissimilar alphabets as it is the case for modal spec-
ifications.

4. ON MODAL INTERFACES

We now present the full theory for modal interfaces. Modal
interfaces is an extension of modal specifications where ac-
tions are also typed with input and output. This addition
allows to propose notions of composition and compatibility
for modal specifications in the spirit of interface automata.

The first account on compatibility for modal interfaces
was proposed in [23, 27]. In this section, we propose a full

interface theory for modal interfaces, which includes compo-
sition, product, conjunction, and component reuse via quo-
tient. Moreover, we show that the composition operator
proposed in [23, 27] is incorrect and we propose a correc-
tion.

We shall start our theory with the definition of profiles
which are used to type actions of modal specifications with
input and output:

4.1 Profiles

For an alphabet of actions A, a profile is a function π :
A �→ {?, !}, labeling actions with the symbols ? (for inputs)
or ! (for outputs). We write “a?” to express that “π(a) =?”,
and similarly for the other case. We denote by A? the set
of a ∈ A such that π(a) =? and similarly for A!. We shall
sometimes write by abuse of language, π = (A?, A!).

We now discuss operations on profiles. We consider a pro-
file π1 = (A1?, A1!) defined over A1 and a profile π2 =
(A2?, A2!) defined over A2.

Product between profiles. The composition between π1

and π2, which is defined iff A1!∩A2! = ∅, is the π = (A?, A!)
such that

π1 ⊗ π2 :

j
A! = (A1! ∪ A2!)
A? = (A1? ∪ A2?) \ A!

Refinement between profiles. Profile π2 refines π1 (de-
noted π2 ≤ π1) iff A2 ⊇ A1 and both profiles coincide on
A1: ∀a ∈ A1, π2(a) = π1(a).

Conjunction between profiles. The conjunction between
π1 and π2 (denoted π1 ∧ π2) is the greatest lower bound of
the profiles, whenever it exists. More precisely, the conjunc-
tion of profiles π1 and π2 is defined iff both profiles coincide
on their common alphabet: ∀a ∈ A1 ∩ A2, π1(a) = π2(a).
Whenever defined, the conjunction π1 ∧ π2 coincides with
π1 for every letter in A1 and with π2 for every letter in A2.

Quotient between profiles. The quotient π1 / π2 is defined
as the adjoint of ⊗, if it exists, namely π1 / π2 = max{π |
π ⊗ π2 ≤ π1}. More precisely, π1 / π2 is defined if and only
if A1 ⊇ A2 and A1! ⊇ A2!, and is then equal to the profile
π = (A?, A!) such that

π1 / π2 :

j
A! = A1! \ A2!
A? = A1? \ A2?.

4.2 The framework of modal interfaces

We now formally introduce modal interfaces that are modal
specification whose actions are also labeled with input and
output attributes. We will consider the language represen-
tation in the spirit of [28, 30], while Larsen et al. followed
the automata-based representation (the two representations
are equivalent).

Definition 9 (Modal Interface). A modal interface
is a pair C = (S , π), where S is a modal specification on the
alphabet AS and π : AS → {?, !} is a profile.
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A model for a modal interface is a tuple (I, π′), where I is a
prefix-closed language and π′ is a profile for I. We say that
(I, π′) strongly implements (S , π), written (I, π′) |=s (S , π),
if I |=s S and π′ ≤ π, and similarly for weak implementation.
We say that (S2, π2) ≤s (S1, π1) if S2 ≤s S1 and π2 ≤ π1,
with corresponding definition for weak refinement ≤w. The
composition of two models is the pair that results from the
shuffle product × of their prefix-closed languages and of the
product of their profiles.

4.3 Operations on modal interfaces

Operations on modal specifications directly extend to op-
erations on modal interfaces. We have the following defini-
tion.

Definition 10. Consider two modal interfaces C1 = (S1,
π1) and C2 = (S2, π2), and let � ∈ {∧,⊗, /}. If π1 � π2 is
defined, then

C1 � C2 = (S1 � S2, π1 � π2).

All the nice properties of modal specifications directly ex-
tend to modal interfaces.

Theorem 10. Theorems 1 to 6 extend to modal inter-
faces.

4.4 On compatibility for modal interfaces

In this section, we take advantage of profiles to define a
notion of composition with compatibility issue for modal in-
terfaces. We shall recap the solution proposed in [23, 27],
then we shall show a counter example to Theorem 10 in [23]
and then propose our correction. We first recap the trans-
lation from interface automata to modal interfaces, which
will help to make the link between modalities and input or
output actions.

4.4.1 From interface automata to modal interfaces

We recap the translation from interface automata to modal
automata that has been proposed in [23]. In this section, we
extend this translation to modal specification, the language-
extension corresponding to modal automata.

We consider an interface automaton P = (X, x0, A,→).
We assume P to be deterministic and we let LP denote the
(prefix-closed) language defined by P . The alphabet of SP
is ASP = A and modalities are defined for all u ∈ A∗

P :

a? ∈ mustSP (u) if u.a? ∈ LP
a! ∈ maySP (u) \ mustSP (u) if u.a! ∈ LP
a? ∈ maySP (u) \ mustSP (u) if u ∈ LP

and u.a? �∈ LP
a! �∈ maySP (u) if u ∈ LP

and u.a! �∈ LP
a ∈ maySP (u) \ mustSP (u) if u �∈ LP .

(4)

Theorem 1 of [23] shows that, with the above correspon-
dence, alternating simulation for interface automata and
modal refinement for modal interfaces coincide. Regarding
supports, we have:

LSP = LP � {u.a?.v | u ∈ LP , u.a? �∈ LP , v ∈ A∗
P} . (5)

It is worth making some comments about this translation,
given by formulas (4,5). Regarding formula (5), the sup-
porting language LSP allows the environment to violate the
constraints set on it by the interface automaton P . When
this happens—formally, the environment exits the alternat-
ing simulation relation—the component considers that the
assumptions under which it was supposed to perform are vi-
olated, so it allows itself breaching its own promises and can
perform anything afterward. One could also see the viola-
tion of assumptions as an exception. Then, LSP states no
particular exception handling since everything is possible.
Specifying exception handling then amounts to refining this
modal interface.

Formula (4) refines (5) by specifying obligations. Case
1 expresses that the component must accept from the envi-
ronment any input within the assumptions. Case 2 indicates
that the component behaves according to best effort regard-
ing its own outputs actions. Finally, cases 3 and 4 express
that the violation of its obligations by the environment are
seen as an exception, and that exception handling is unspec-
ified and not mandatory.

4.4.2 The composition by Larsen et al. and the bug
in Theorem 10 of [23]

We now consider the notion of compatibility for two Modal
Interfaces C1 = (S1, π1) and C2 = (S2, π2) with S1 defined
over A1 and S2 defined over A2. We assume that C1 and
C2 do not share common output actions (which is the com-
posability requirement similar to the one for interface au-
tomata). We first compute the product between C1 and C2

following Definition 4.3.
We then define Illegal(C1, C2) to be the subset of words u

belonging to the support of C1 ⊗ C2, such that there exists

either an action a ∈ A1! ∩ A2?
with a ∈ may1(u1) \ must2(u2)

or an action a ∈ A2! ∩ A1?
with a ∈ may2(u2) \ must1(u1),

(6)

where u1 = prA1
(u) and similarly u2 = prA2

(u). Getting
rid of illegal runs is performed as follows. For U a set of
words of Modal Interface C, let pre !(U) be the set

pre !(U) = {v ∈ LC | ∃a! ∈ may(v), v.a! ∈ U}
Let pre0

! (U) = U , and, for k ≥ 0, prek+1
! (U) = pre !

`
prek

! (U)
´
.

Finally, let pre∗
! (U) =

S
k prek

! (U).
The composition of two modal interfaces is obtained from

their product by removing states in pre∗
! (U), following the

approach outlined for interface automata. Two modal inter-
faces are compatible if the pruning with the illegal words do
not remove the empty word. The composition between C1

and C2 is denoted C1 ‖ C2.
Theorem 10 in [23, 27] says that

“(Independent Implementability). For any two
composable modal interfaces C1, C2 and two im-
plementations (I1, π1) and (I2, π2). If (I1, π1) ≤
C1 and (I2, π2) ≤ C2, then it holds that (I1, π1)×
(I2, π2) ≤ C1 ‖ C2.”

The following example shows that Theorem 10 in [23, 27]
is wrong.
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a!c?

a!

c? a?

I1 : {a!, b!}

I2 : {a?, b?, c?}

c? a!

I1 × I2 : {a!, b!, c?}

[C1 ‖ C2]0 : {a!, b!, c?}

c?

C1 ⊗ C2 : {a!, b!, c?}

a!a! b!

C1 : {a!, b!}

c? a?

C2 : {a?, b?, c?}

[C1 ‖ C2]1 : {a!, b!, c?}
A

c?

c? a!

Figure 1: Counterexample regarding compatibility.
Grey-shaded states are to be removed.

Example 1. Figure 1 depicts two Modal Interfaces C1

and C2; may \ must actions are depicted using dashed ar-
rows whereas solid arrows corresponds to must actions. I1

and I2 are implementations of C1 and C2, respectively. Al-
phabets are indicated for each modal interface. Parallel com-
position according to [23] is named [C1 ‖ C2]0. Word c?.a! is
illegal since in the state reached after this run C1 may offer
b! whereas C2 may (in fact will) not accept it. However, c?.a!
is in the product of the two implementations.

4.4.3 The correction

Call exception any word in LC1⊗C2 from which the en-
vironment has no strategy to prevent the occurrence of an
illegal word, meaning that an illegal word can be obtained
from the exception by following only output actions.

Definition 11 (compatibility). The exception lang-
uage of modal interfaces C1 and C2 is the language EC1 ‖ C2 =
pre∗

! (Illegal(C1, C2)). Modal interfaces C1 and C2 are said
to be compatible if and only if the empty word ε is not in
EC1 ‖ C2 .

Definition 12 (parallel composition). Given two
modal interfaces C1 and C2, the relaxation of C1 ⊗ C2 is ob-
tained by applying the following pseudo-algorithm to C1⊗C2:

for all v in LC1⊗C2 do
for all a in A do

if v �∈ EC1 ‖ C2 and v.a ∈ EC1 ‖ C2 then
for all w in A∗ do

must(v.a.w) := ∅
may(v.a.w) := A

end for
end if

end for
end for

If C1 and C2 are compatible, the relaxation of C1⊗C2 is called
the parallel composition of C1 and C2, denoted by C1 ‖ C2.
Whenever C1 and C2 are incompatible, the parallel composi-
tion C1 ‖ C2 is defined as the inconsistent modal specification
⊥.

If the environment performs an a? to which the “if ... then
...” statement applies, then illegal words may exist for cer-
tain pairs (I1, I2) of strong implementations of C1 and C2. If
this occurs, then C1 ‖ C2 relaxes all constraints on the future
of the corresponding runs — Nothing is forbidden, nothing
is mandatory: the system has reached a “universal” state.
This parallels the pruning rule combined with alternating
simulation, in the context of interface automata.

Example 2. We now show that our relaxation allows to
correct the counter example stated in Figure 1. We ob-
serve that our relaxation procedure yields [C1 ‖ C2]1, with A =
{a!, b!, c?}, which has I1 × I2 as an implementation.

Associativity of the parallel composition operator is one
of the key requirements of an interface framework, since it
enables independent design of sub-systems. Unlike in [23,
27], where associativity is only mentioned, we can now state
the following theorem:

Theorem 11. The parallel composition operator is com-
mutative and associative.

Thanks to the interplay between modalities and profiles,
knowledge about exceptions is preserved by parallel compo-
sition. This is the very reason why it is associative. Indeed,
the last a? action in exception runs of the from v.a? comes
with a may modality. In this way, it is distinguished from
normal inputs which come with a must modality. When tak-
ing the parallel composition with another modal interface
with a profile such that a? is also an input, the resulting
modality is a may. In this way, knowledge of the occurrence
of an exception is preserved. Whenever this input action a?
is composed with an output a!, this results in an illegal run,
meaning that an exception will be triggered earlier.

As for interface automata (Theorem 4 in [14]), strong re-
finement preserves compatibility, assuming that the refined
modal interface does not introduce new shared actions.

Lemma 12. Given any three modal interfaces Ci, i = 1...3,
such that C2 ≤s C1 and A1 ∩ A3 ⊇ A2 ∩ A3:

• prA1∪A3
(Illegal(C2, C3)) is included in Illegal(C1, C3);

• prA1∪A3

`EC2 ‖ C3

´
is included in EC1 ‖ C3 .

Proof: Consider an illegal word u ∈ Illegal(C2, C3) for
C2 ⊗C3. This means that there exists an action a ∈ A2 ∩A3

such that (i) either a is an output of C2 and an input of
C3, such that a ∈ may2(prA2

(u)) and a �∈ must3(prA3
(u)),

or (ii) a is an input of C2 and an output of C3, such that
a �∈ must2(prA2

(u)) and a ∈ may3(prA3
(u)).

By Definition 6, u is also in LC1⊗C3↑A2∪A3 . By Defini-

tion 3, u′ = prA1∪A3
(u) belongs to LC1⊗C3 .

Since it is assumed that A2 ∩ A3 ⊆ A1 ∩ A3, action a
belongs to A1 ∩A3. By Definition 5, either a is an output of
C1 and an input of C3, such that a ∈ may1(prA1

(u′)) and a �∈
must3(prA3

(u′)), or (ii) a is an input of C1 and an output of

C3, such that a �∈ must1(prA1
(u′)) and a ∈ may3(prA3

(u′)).
Meaning that u′ ∈ Illegal(C1, C3), which proves the first part
of the Lemma.

Next, recall that A1!∪A3! is included in A2!∪A3!. Hence,
the set prA1∪A3

(pre∗
! (Illegal(C2, C3))) is included in the set

pre∗
!

`
prA1∪A3

(Illegal(C2, C3))
´
, which is in turn included in

pre∗
! (Illegal(C1, C3)), thanks to the previous part of the Lemma.

�
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Corollary 13 (compatibility preservation). Given
any three modal interfaces Ci, i = 1...3, such that C2 ≤s C1

and A1 ∩ A3 ⊇ A2 ∩ A3. C1 compatible with C3 implies that
C2 and C3 are also compatible.

Proof: This is an immediate consequence of Lemma 12.
Assume C2 and C3 incompatible, meaning that ε ∈ EC2 ‖ C3 .
By Lemma 12, ε = prA1∪A3

(ε) ∈ EC1 ‖ C3 . Hence C1 and C3

are also incompatible. �

Contrary to interface automata for which C1 ‖ C2 is a re-
finement of C1⊗C2 [14], relaxation of modal interfaces amounts
to compute an abstraction of the product:

Lemma 14. Given two modal interfaces C1 and C2:

C1 ⊗ C2 ≤ C1 ‖ C2

Proof: Two cases are possible:

• if u ∈ LC1⊗C2\EC1 ‖ C2 : mustC1⊗C2(u) = mustC1 ‖ C2(u)
and mayC1⊗C2(u) = mayC1 ‖ C2(u);

• if u ∈ EC1 ‖ C2 then u ∈ LC1 ‖ C2 and mustC1 ‖ C2(u) = ∅
and mayC1 ‖ C2(u) = A.

Thus, mustC1⊗C2(u) ⊇ mustC1 ‖ C2(u) and mayC1⊗C2(u) ⊆
mayC1 ‖ C2(u). �

Theorem 10 stated in [23, 27] now holds for the parallel
composition operator.

Theorem 15 (independent implementability). For
any two modal interfaces C1, C2 and two implementations
(I1, π1), (I2, π2) such that (I1, π1) |=s C1 and (I2, π2) |=s

C2, it holds that (I1, π1) × (I2, π2) |=s C1 ‖ C2.

Proof: If (I1, π1) |=s C1 and (I2, π2) |=s C2, then, by The-
orem 10, (I1, π1) × (I2, π2) |=s C1 ⊗ C2.
By the previous lemma and by the generalization of Theo-
rem 1 in Theorem 10: (I1, π1) × (I2, π2) |=s C1 ‖ C2. �

5. CONCLUSION AND FUTURE WORK

This paper presents a modal interface framework, a unifi-
cation of interface automata and modal specifications. It is
a complete theory with a powerful composition algebra that
includes operations such as conjunction (for requirements
composition) and residuation (for component reuse but also
assume/guarantee contract based reasoning [30]). However,
the core contribution of the paper is a parallel composition
operator that reflects a rich notion of compatibility between
components, actually correcting that parallel composition
proposed in [23, 27].

There are several possible directions for future research.
A first step would be to implement all the concepts and op-
erations presented in the paper and evaluate the resulting
tool on concrete case studies. Extensions of modal specifi-
cations can be investigated, where states are described as
valuations of a set of variables just as it has been the case
for interface automata [8, 12].

Another promising direction would be a timed extension of
modal interfaces. In [15], de Alfaro et al. proposed timed in-
terface automata that extends timed automata just as inter-
face automata extend finite-word automata. The semantics

of a timed interface automaton is given by a timed game [13,
6], which allows to capture the timed dimension in composi-
tion. Up to now, composition is the only operation that has
been defined on timed interface automata. In [9], Chatain
et al. have proposed a notion of refinement for timed games.
However monotony of parallel composition with respect to
this refinement relation has not been investigated yet. In [4],
timed modal specifications are proposed. As modal specifica-
tions, timed modal specifications admit a rich composition
algebra with product, conjunction and residuation opera-
tors. Thus, a natural direction for future research would be
to unify timed interface automata and timed modal specifi-
cations. This would imply a translation from timed interface
automata to timed modal specifications.

Finally, we believe it is worth studying the logical expres-
siveness of timed modal specifications/interfaces, as it has
been the case for modal specifications [18].
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