
Mind the Gap: Expanding Communication Options in Decentralized

Discrete-Event Control

S.L. Ricker and B. Caillaud

Abstract— Frameworks that incorporate communication into
decentralized supervisory control theory address the following
problem: find locations in the evolution of the plant behavior
where some supervisors send information so that a supervisor
that was unable to make the correct control decision prior to
receiving external information, is now capable of making the
correct control decision. Proposed solutions to this problem
identify an earliest and a latest placement where such commu-
nication results in the synthesis of a correct control solution.

In addition to a first and last communication opportunity,
there may be a selection of intermediate possibilities where
communication would produce the correct control solution. We
present a computable procedure to identify a broader range of
suitable communication locations.

I. INTRODUCTION

The role of communication (with no delay) in decen-

tralized discrete-event control problems has been explored

under a variety of communication protocols. The basic idea

of this class of problems is that a designated communi-

cating supervisor follows a communication protocol and

provides information to the supervisor taking a specific

control decision, providing the latter supervisor with enough

information to definitively make the correct control decision.

The design of a communication protocol for decentralized

control problems requires the construction of a non-empty

set of communications that will admit a correct control

solution [14], [10], [2]. We are interested in bridging the

gap between the “communicate as late as possible”1 strategy

of [2] and the “communicate as early as possible”2 strategy

in our earlier work [10]. A communication sublanguage of

the plant language is the set of sequences that precede the

occurrence of a communication event, whether that event be

a special communication event or the last observed event for

the communicating supervisor or a set of the communicating

supervisor’s local state estimates.

Communication is introduced into a decentralized super-

visory control problem when the language requiring con-

trol does not satisfy co-observability [12], a condition that

determines whether or not the set of control decisions for

the collection of decentralized supervisors will allow all the

correct control decisions. One of the challenges in developing

decentralized communication protocols lies in the isolation

of sequences that violate co-observability. The basic idea for

This work was supported by NSERC.
L. Ricker is with the Department of Mathematics and Com-

puter Science, Mount Allison University, Sackville, NB, Canada
lricker@mta.ca. B. Caillaud is with IRISA-INRIA, Rennes, France.
Benoit.Caillaud@irisa.fr

1Communication occurs only along an illegal sequence.
2Communication occurs either along an illegal or legal sequence.

designing a communication protocol is to augment (with des-

ignated communicated information) the content of sequences

that were previously not co-observable, so that after commu-

nication occurs, the sequences are co-observable. We propose

a new computable strategy for identifying communication

sublanguages, where communication options lie between the

first and last communication opportunities (inclusive).

II. BACKGROUND

A. Supervisory Control

Supervisory control, as formulated in [8], [9], assumes

that both the system requiring control, called the plant,

and the desired behavior, often called the legal behavior,

are described by formal languages over a given alphabet,

denoted by Σ. The analysis in this paper is restricted to

regular languages, a class of languages that can be described

by finite automata. The goal of the control problem is to

synthesize a supervisor of the plant such that, based on its

observations of the plant behavior, the supervisor permits

the occurrence of only the legal behavior (or possibly some

subset of legal behavior) by issuing either an enable or

disable command for different behaviors. The synthesis of

the resulting control policy (determining which behaviors to

enable or to disable) is further complicated by the fact that

there are some behaviors that a supervisor cannot disable.

Decentralized supervisory control problems [5], [12] in-

volve the synthesis of n supervisors (for n ≥ 2), each of

whom has only a partial view of the plant. That is, some of

the behavior in the plant is unobservable to each supervisor.

We use I to represent the set of n decentralized supervisors

{1, . . . , n}. The ability to synthesize a control policy relies

on the existence of at least one supervisor that can make the

correct control decision to keep the plant performing within

the legal behavior. The remainder of this section will focus on

the notation for synthesizing decentralized control strategies.

For any strings s, t ∈ Σ∗, where Σ∗ is the Kleene closure

of Σ, we say that t is a prefix of s, denoted t � s, if ∃w ∈ Σ∗

such that s=tw. When t � s, we also define s ⋋ t = w.

L ⊆ Σ∗, the prefix-closure of L is a language, denoted by

L, consisting of all prefixes of strings of L: L := {t ∈
Σ∗ | t � s}. Because every string is a prefix of itself, L ⊆ L.

A language is said to be prefix-closed if L = L. We assume

that the plant language is prefix-closed.

The partial view that a decentralized supervisor i has

of the plant is described by the set of observable events,

denoted Σi,o ⊂ Σ for i ∈ I . To describe a supervisor’s

view of the system behavior, we use the canonical projection

Pi : Σ∗ → Σ∗
i,o, for i ∈ I . This operator effectively

Proceedings of the
46th IEEE Conference on Decision and Control
New Orleans, LA, USA, Dec. 12-14, 2007

FrC04.4

1-4244-1498-9/07/$25.00 ©2007 IEEE. 5924

1 0 2

3 5

4 6

a

cc

a
b b

σ σ

Fig. 1. A joint plant ML and legal automaton MK . The collection of all
edges is ML, whereas the collection of solid edges is MK .

“erases” those events σ from a string t that are not found

in Σi,o: Pi(ε) = ε, where ε denotes the empty string;

Pi(σ) = ε if σ ∈ Σ \ Σi,o; Pi(σ) = σ if σ ∈ Σi,o;

and Pi(tσ) = Pi(t)Pi(σ), t ∈ Σ∗, σ ∈ Σ. Thus if the

plant generates sequence t, then Pi(t) indicates the sequence

of events observed by the decentralized supervisor i. The

inverse projection of Pi is the mapping from Σ∗
i,o to 2Σ∗

:

P−1
i (t) = {u | Pi(u) = t}.
To establish supervision on the plant, we partition the set

of events Σ into the disjoint sets Σc, controllable events,

and Σuc, uncontrollable events. Controllable events are those

events whose occurrence is preventable (i.e., may be dis-

abled). Uncontrollable events are those events which cannot

be prevented and are deemed permanently enabled. The set of

controllable events is further partitioned into (not necessarily

disjoint) subsets of events that are controlled by supervisor

i: Σi,c ⊆ Σc (for i ∈ I), where Σc = ∪n
i=1Σi,c. We denote

the set of supervisors for which σ ∈ Σi,c by Iσ . Finally, we

denote the cardinality of Iσ by |Iσ|.
Formally, a deterministic finite automaton is a tuple:

M = (Q, Σ, δ, q0, F),

where M is the name of the automaton; Q is its set of states;

Σ is the finite alphabet; δ is a transition function, a partial

function δ : Σ × Q → Q; q0 ∈ Q is the initial state; and

F ⊆ Q is a set of final states. Let the language generated

by M be denoted by L(M). The automaton representing the

plant is denoted by ML, whereas the automaton representing

the legal behavior is denoted by MK . An example of a plant

and associated legal behavior, where I = {1, 2}, is shown in

figure 1. For this example, Σ = {a, b, c, σ} and let Σ1,o =
{a, b, σ}, Σ2,o = {b, c, σ} and Σ1,c = {a, b, σ}, Σ2,c = {c}.

Therefore Ia = Ib = Iσ = {1} and Ic = {2}.

Decentralized supervisors can be synthesized if the corre-

sponding DES is co-observable [12].

A prefix-closed language K is co-observable with respect

to L and Pi, for i = 1, . . . , n, if for all t ∈ K and for all

σ ∈ Σ,

(tσ 6∈ K) ∧ (tσ ∈ L) ⇒ ∃i ∈ Iσ

such that P−1
i [Pi(t)]σ ∩ K = ∅ (1)

It must be the case that based only on its partial view of

a sequence, a decentralized supervisor can make the correct

control decision.

The equivalent condition in the case of a single (central-

ized) supervisor is called observability. The observations of a

centralized supervisor are captured by a projection operator

P : Σ∗ → Σ∗
o. A prefix-closed language K is said to be

observable with respect to L, P, and Σc if for all t ∈ K and

for all σ ∈ Σc,

(tσ 6∈ K) ∧ (tσ ∈ L) ⇒ P−1[P (t)] ∩ K 6= ∅ (2)

For purposes of designing a decentralized communication

protocol, K must be observable but must not be co-

observable.

In figure 1, let K = L(MK) and L = L(ML). It is the

case that K is observable, since all illegal sequences can

be distinguished from all legal sequences. But K is not co-

observable since it is possible to find sequences, such as

t = accacab, where tσ ∈ L \ K , and for I = {1, 2} it

is the case that P−1
1 [P1(t)]σ ∩ K = {caacabσ} 6= ∅ and

P−1
2 [P2(t)]σ ∩ K = {accaacabσ} 6= ∅.

B. Labels

Synchronization between the plant and the decentralized

supervisors is defined via synchronization vectors [1], here

referred to as labels.

We begin by introducing an augmented set of supervisors

I0 = I ∪ {0}, where 0 represents the plant. A label ℓ :
I0 −→ Σ∪ {ε} is a mapping from each supervisor to either

an event from Σ or ε. The support of a label, denoted by

||ℓ||, is {i | ℓ(i) 6= ε}.

It is possible to define a partial order relation on labels:

ℓ1 ≤ ℓ2 iff ∀i ∈ I0, ℓ1(i) 6= ε ⇒ ℓ1(i) = ℓ2(i). This

partial order relation subsumes a greatest lower bound ∧ and

a partial least upper bound ∨. The greatest lower bound is

computed as follows:

∀i ∈ I0, (ℓ1 ∧ ℓ2)(i) =

{
ℓ1(i), if ℓ1(i) = ℓ2(i);
ε, otherwise.

The least upper bound, ℓ1 ∨ ℓ2, is defined whenever ℓ1 and

ℓ2 are compatible. Two labels ℓ1, ℓ2 are compatible, denoted

ℓ1 ↑ ℓ2, iff ∀i ∈ I0, ℓ1(i) = ε or ℓ2(i) = ε or ℓ1(i) = ℓ2(i).
The least upper bound is computed as follows:

∀i ∈ I0, (ℓ1 ∨ ℓ2)(i) =

ℓ1(i), if ℓ1(i) 6= ε;

ℓ2(i), if ℓ2(i) 6= ε;

ε, otherwise.

Two labels, ℓ1 and ℓ2 are independent, denoted ℓ1|ℓ2, iff

∀i ∈ I0 ℓ1(i) = ε or ℓ2(i) = ε.

Let ℓ1 ≤ ℓ2, then ℓ2\ℓ1 is the least label such that ℓ1 ∨
(ℓ2\ℓ1) = ℓ2. The computation of ℓ2\ℓ1 is straightforward:

∀i ∈ I0, ℓ2\ℓ1(i) =

{
ℓ2(i), if ℓ1(i) = ε;
ε, otherwise.

Labels are generated from a given finite set of atoms,

denoted A, using the least upper bound operation, whenever

the operation is defined. For our purposes, atoms define

elementary synchronizations between the plant and the de-

centralized supervisors. It will also be useful to compute the

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrC04.4

5925

closure of A under least upper bound: closure(A) is the

least set containing the empty label, (ε, . . . , ε) and such that

∀a ∈ A, ∀ℓ ∈ closure(A), a ↑ ℓ ⇒ a ∨ ℓ ∈ closure(A).
In section III, we define a set of atoms for the decentralized

control and communication problem.

III. A COMMUNICATION PROTOCOL FOR

DECENTRALIZED CONTROL

The overall system architecture is shown in figure 2. Our

primary interest is the construction of the communication

protocol φij , all the places where supervisor i sends infor-

mation to supervisor j. The final output from the procedures

presented in this paper consists of all the sequences in the

plant language that could be followed by a communication

event, thereby allowing the decentralized supervisors to

correctly solve the control problem. Note that we make no

assumptions as to the format of a communication event.

For example, a communication event could be a recently

observed event, state estimates, or a new symbol entirely.

The positioning of the communication event simply reserves

a place where useful information may be sent and received.

ML

t ∈ L

{φ1j | j ∈ I}

{φij | i, j ∈ I}

{φnj | j ∈ I}

Communication Channel

S1

Si

Sn

partial obs of t + received com

partial obs of t + received com

partial obs of t + received com

cdn ∈ {enable,disable}

cdi ∈ {enable,disable}

cd1 ∈ {enable,disable}

Fig. 2. Decentralized architecture for communication and control, where
decentralized supervisors Si (for i ∈ I) make control decisions to either en-

able or disable σ after observing sequence t and receiving communication
from other supervisors.

For the remainder of the paper, we use the notation uσ
to refer a representative illegal sequence, vσ as a legal

sequence, and assume that for all i ∈ Iσ , Pi(u) = Pi(v).
When a system satisfies observability, then there must be

at least one observable event that allows a centralized super-

visor to distinguish uσ from vσ (i.e., P (u) 6= P (v)). When

communication between decentralized supervisors occurs at

such a place, the new information allows a formerly-confused

supervisor to make the correct control decision about σ.

We use the observability of K to identify all prefixes of

u or v where they do differ with respect to a centralized

observation. We can identify places where u and v differ by

computing the longest common observable prefix, denoted

here by P (u)⊓P (v). In particular, we can define this set of

prefixes or communication sequences along uσ:

u′ � u such that P (u′) ⋋ (P (u′) ⊓ P (v)) 6= ε.

Similarly, we can describe a similar set of communication

sequences along the legal sequence vσ:

v′ � v such that P (v′) ⋋ (P (v′) ⊓ P (u)) 6= ε.

For example, suppose that u = acaccaacccaaccaaccb and

v = acaccaacaaccaab and we use the controllable and ob-

servable event sets from the example in figure 1. If we choose

u′ = acaccaaccc and want to know if u′ is a communication

sequence, we calculate P (acaccaaccc) ⋋ (P (acaccaaccc)⊓
P (acaccaacaaccaab)) = acaccaaccc⋋ acaccaac = cc 6= ε.

The complete set of communication sequences along u is

{acaccaacccaaccaacc, acaccaacccaaccaac,

acaccaacccaacc, acaccaacccaac,

acaccaaccc, acaccaacc}.

We also calculate the set of communication sequences

along v: {acaccaacaac, acaccaacaacc}.
We describe the components that are required to construct

our communication protocol.

1) A finite structure Uσ , such that L(Uσ) is a language

on the alphabet of labels, that encodes all sequences

uσ and vσ that violate co-observability.

2) A structure that, given two sequences s and t as input,

will output their longest common observable prefix,

P (s) ⊓ P (t).
3) A finite structure that, given a sequence s as input,

will output prefixes s′ of s, i.e., s′ � s, such that s′

ends with an event observable to the communicating

supervisor and not observable to the supervisor making

the control decision about σ.

A. A finite automaton to detect violations of co-observability

The automaton described here encodes all legal and illegal

sequences that end in event σ and that violate (1), i.e.,

co-observability. This is not to be confused with the non-

deterministic automaton described in [11], which generates

the complete sublanguage of L that is not co-observable.

We begin with our regular languages L and K . It can be

assumed, w.l.o.g. that ML and MK have identical transition

relations and state structures. Hence ML and MK may

differ only in their final state sets: ML = (Q, q0, Σ, δ, FL),
MK = (Q, q0, Σ, δ, FK). We define a third language (and its

corresponding automaton representation) that accepts only

illegal sequences: B = L \ K and MB = (Q, q0, Σ, δ, FB),
where FB = FL \ FK .

Our goal is to isolate sequences that violate co-

observability wrt event σ ∈ Σc. So we must further refine K
and B. Let Bσ = {s | sσ ∈ B} be the language of sequences

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrC04.4

5926

1 0 2

5

a

cc

a b

1 0 2

3

a

cc

ab

1 0 2

3

a

cc

ab

Fig. 3. The automata MBσ
, MGσ

, and MHσ
for ML and MK in figure 1. Final states are denoted by double circles. Selfloops of ε at each state are

omitted for readability.

that are illegal and end with σ. The corresponding automaton

is MBσ
= (Q, q0, Σ, δ, FBσ

), where FBσ
= {q | δ(q, σ) ∈

FB}. Similarly, we define a language of legal sequences that

end with σ, along with its automaton representation: Gσ =
{s | sσ ∈ K} and MGσ

= (Q, q0, Σ, δ, FGσ
), where FGσ

=
{q | δ(q, σ) ∈ FK}. Finally, we want the prefix closure of

Gσ , which we denote by Hσ . Its automaton representation

is MHσ
= (Q, q0, Σ, δ, FHσ

), where FHσ
is the least set

containing FGσ
such that ∀q, ∀α, δ(q, α) ∈ FGσ

⇒ q ∈ FGσ
.

To facilitate the synchronization required for the partially-

observed events in K , we will augment MBσ
, MGσ

and MHσ

by adding the empty string ε to Σ and adding ε self-loops

of at each state (e.g., for all q ∈ Q). The three automata,

defined for the plant in figure 1, are shown in figure 3: MBσ

(illegal sequences that end in σ), MGσ
(legal sequences that

end in σ), and MHσ
(prefixes of all legal sequences that end

in σ).

We build an automaton, denoted Uσ, to identify pairs of

sequences that violate co-observability, by composing MBσ
,

|Iσ| copies of the MGσ
automaton (one for each i ∈ Iσ) and

(n − |Iσ |) copies of the MHσ
automaton (one for each j 6∈

Iσ). The state set of Uσ is simply the Cartesian product of

the states of the component automata. The transition labels,

though, are defined by synchronization labels, as discussed

in section II-B. The composition can be defined in two steps:

(1) the Cartesian product of the transition relations; and (2)

the restriction of the resulting transition relation to those

transitions with labels in closure(A).
The set of atoms, A, which we use to calculate the

transition labels for Uσ , is defined as the union of the

following two label sets.

The first atom represents transition labels for unobservable

events in Σ for each supervisor: auo
i,e : I0 → (Σ \Σi,o)∪{ε}

where for i ∈ I , j ∈ I0 and e ∈ Σ \ Σi,o

auo
i,e(j) =

{
ε, when j 6= i;

e, when j = i.

For example, event c is unobservable to supervisor 1 and we

have auo
1,c = (ε, c, ε), that is: auo

1,c(0) = ε, auo
1,c(1) = c, and

auo
1,c(2) = ε.

The second atom represents transition labels for observ-

able events in the Σ: ao
e : I0 → Σo ∪ {ε} where

ao
e(i) =

e, if i = 0;

e, if i 6= 0 and e ∈ Σi,o;

ε, otherwise.

For example, event c is observable by supervisor 2 and we

have ao
c = (c, ε, c), that is: ao

c(0) = c, ao
c(1) = ε, and

ao
c(2) = c.

Therefore, A =
⋃

i∈I({a
uo
i,e}e∈Σ\Σi,o

) ∪ {ao
e}e∈Σ.

The set of atoms for Uσ constructed from the three

automata in fig. 3: A = {(ε, c, ε), (ε, ε, a), (a, a, ε), (b, b, b),
(c, ε, c)}.

The alphabet of Uσ is the closure of A. For notational

convenience, we will denote closure(A) by E. For the

set of atoms noted above: E = {(ε, ε, ε), (ε, c, ε), (ε, ε, a),
(a, a, ε), (b, b, b), (c, ε, c),(c, c, c), (ε, c, a), (a, a, a)}.

Now we can construct automaton Uσ as follows:

Uσ = (QUσ , (q0)
n+1, E, δUσ , FUσ

),

where QUσ ⊆ QBσ
× (QGσ

)|Iσ | × (QHσ
)n−|Iσ|; FUσ

⊆
FBσ

× (FGσ
)|Iσ | × (FHσ

)n−|Iσ |; and the transition function

is defined according to: δUσ(q, ℓ) = q′ iff ℓ ∈ E and ∀i ∈ I0,
δ(q(i), ℓ(i)) = q′(i).

B. A non-deterministic finite transducer to find particular

prefixes of a sequence

Given a sequence s, we would like to be able to find

all of its prefixes that end with an event observable to

communicating supervisor j, but not observable to supervisor

i, the recipient of the communication. A non-deterministic

automaton, called a finite transducer, X , to find prefixes s′

of a sequence s such that s′ = s′′γ, where γ ∈ Σj,o \Σi,o, is

shown in figure 4. A transducer is an automaton M with the

addition of an output alphabet Γ and an updated transition

function. Here we define Γ to be Σε := Σ ∪ {ε}.

0

∀σ ∈ Σ

σ/σ

1

∀σ ∈ Σj,o \ Σi,o

σ/σ

σ/ε

∀σ ∈ Σ

Fig. 4. A nondeterministic finite transducer to generate specific prefixes
of a sequence.

C. An infinite transducer to find the longest common prefix

of two sequences

We must first calculate P (u′) ⊓ P (v). We can do this by

constructing an infinite deterministic transducer.

We will form a transducer T with an input alphabet

of Σε × Σε, an output alphabet of Σε, a state set Q =
{{Left, Right}×Σ+}∪{⊤,⊥}, where the initial state is ⊤
and the sink state is ⊥. The set of transition rules is defined

as follows: for e, f ∈ Σ, s ∈ Σ∗

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrC04.4

5927

1. ⊤
(e,ε)/ε
−→ (Left, e)

2. ⊤
(ε,e)/ε
−→ (Right, e)

3. ⊤
(e,e)/e
−→ ⊤

4. ⊤
(e,f)/ε
−→ ⊥, (e 6= f)

5. ⊥
(−,−)/ε
−→ ⊥, where ‘-’ represents any letter in Σε

6. (Left, f)
(ε,f)/f
−→ ⊤

7. (Right, e)
(e,ε)/e
−→ ⊤

8. (Left, s)
(e,ε)/ε
−→ (Left, se)

9. (Left, fs)
(e,f)/f
−→ (Left, se)

10. (Left, fs)
(ε,f)/f
−→ (Left, s), (s 6= ε)

11. (Left, fs)
(ε,g)/ε
−→ ⊥, (f 6= g)

12. (Left, fs)
(e,g)/ε
−→ ⊥

13. (Right, s)
(ε,f)/ε
−→ (Right, sf), (s 6= ε)

14. (Right, es)
(e,f)/e
−→ (Right, sf)

15. (Right, es)
(e,ε)/e
−→ (Right, s), (s 6= ε)

16. (Right, es)
(g,ε)/ε
−→ ⊥, (g 6= e)

17. (Right, es)
(g,f)/ε
−→ ⊥

18. q
(ε,ε)/ε
−→ q, q ∈ Q

Suppose that we have input sequences u = accb and v =
aεεb, as taken from the sequence (a, a, ε) (c, ε, c) (ε, ε, a)
(c, ε, c) (ε, ε, a) (ε, ε, a) (b, b, b) in L(Uσ), where we ignore

the contributions of the sequence observed by supervisor 2

and, for the sake of simplicity, omit (ε, ε) pairs from the

illegal sequence u and the sequence observed by supervisor

1. Then we have the following path that defines the largest

common prefix, a, of these two sequences (by applying, in

order, rules 3,1,9,12): ⊤
(a,a)/a
−→ ⊤

(c,ε)/ε
−→ (Left, c)

(c,ε)/ε
−→

(Left, cc)
(b,b)/ε
−→ ⊥

D. An infinite mind-the-gap automaton

Figure 5 provides a graphical interpretation of the in-

teraction of the three components we define for building

a communication protocol. The language of Uσ defines

sequences of labels, where each label has n+1 components.

What we are actually interested in are pairs of sequences

whose canonical projections, Pi, are equal. By construction,

for a given path in Uσ , the sequence of 0th elements of the

labels defines u. Similarly, we can isolate v by examining

the sequence of the ith elements, where i ∈ {1..|Iσ|}.

The difficulty with the output from Uσ is that the input

to transducer T is not synchronized. That is, when T is

processing pairs of letters, T has to perform the matching

of the two sequences. It is possible that T will require

unbounded memory to store all the observations seen prior

to the matching of two events. For example, suppose that

we expand ML (and MK) in figure 1 so that we introduce a

new initial state 0′ and add two new transitions δ(0′, c) = 0′

and δ(0′, b) = 0. The resulting effect is an infinite number of

states. This is clearly not desirable for the effective synthesis

of a communication protocol, and we must somehow restrict

Uσ

u u′
0
1
... vi
...
n

X

T
P (u′) ⊓ P (v)

Fig. 5. Building a communication protocol wrt u. The output from T , when
subtracted from u

′, the output of X, is a possible communication sequence
(along u) that would allow sequences u and v to be distinguished. A similar
diagram, with v as input to X and u and v′ as input to T can be constructed
for a communication protocol wrt v.

Uσ so that it generates a relation that will reach only finitely

many states of T .

IV. A FINITE MIND-THE-GAP AUTOMATON

It will be useful to prove certain properties of Uσ so

that we can perform the appropriate transformation on the

input to T . In particular, we are interested in the step

property of step transition systems [13] and their relationship

to Mazurkiewicz trace languages [7] and, more precisely,

generalized trace languages [6].

q1 q2

q3

ℓ

ℓ
′

ℓ\ℓ ′

ℓ ′ ≤ ℓ ⇒

q1 q2 q3
ℓ1 ℓ2

ℓ1 ∨ ℓ2

ℓ1|ℓ2 ⇒

Fig. 6. The step property of deterministic transition systems.

Definition 1: (Adapted from [13]) A deterministic transi-

tion system (Q, q0, δ) satisfies the step property if it ensures

that transitions with non-atomic labels can be decomposed

into arbitrary sequences of decompositions of the label.

Formally, ∀q1, q2 ∈ Q, ∀ℓ, ℓ
′

∈ E,

δ(q1, ℓ) = q2 and ℓ
′

≤ ℓ ⇒ ∃q3

such that δ(q1, ℓ
′

) = q3 and δ(q3, ℓ\ℓ
′

) = q2.

Independent transitions originating from the same state may

be merged: ∀q1, q2, q3 ∈ Q, ∀ℓ1, ℓ2 ∈ E,

δ(q1, ℓ1) = q2 and δ(q2, ℓ2) = q3 and

ℓ1|ℓ2 ⇒ δ(q1, ℓ1 ∨ ℓ2) = q3. �

Figure 6 illustrates the step property.

The language of a transition system with the step

property is a generalized trace language [6], generalizing

Mazurkiewicz trace languages [7], and defined as follows.

Let ∼ be the least congruence on E∗ such that: ∀a, b ∈
E∗ a|b ⇒ ab ∼ ba and a ≤ b ⇒ b ∼ a · (b\a). Let ≃ be the

least congruence on E∗ such that ∀a, b ∈ E, a | b ⇒ ab ≃ ba.

Definition 2: (Adapted from [7], [6]) L ⊆ E∗ is a trace

language iff it is closed under ≃. L ⊆ E∗ is a generalized

trace language iff it is closed under ∼: ∀u ∈ L, ∀v ∈ E∗

u ∼ v ⇒ v ∈ L. �

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrC04.4

5928

It is straightforward to check that Uσ has the step property

and its language is a generalized trace language, with relation

| as the independence relation.

It is the case that the language of a step transition

system is a Mazurkiewicz trace language, whenever labels

are decomposed into arbitrary sequences of atoms, for which

we can compute a normal form called Cartier-Foata Normal

Form (CFNF) [3].

Definition 3: A word u = ℓ1 . . . ℓn ∈ A is in CFNF iff

∀i = 1 . . . n − 1, ∀ℓ
′

∈ A, ℓ
′

 ℓi+1 or not(ℓi | ℓ
′

). �

Intuitively, words in CFNF correspond to greedy behaviors

of the system, where no label belonging to step ℓi+1 can be

moved into step ℓi.

When the language of Uσ is in CFNF, the effect is to

have performed a pruning of transitions in Uσ so that any

sequence of the pruned Uσ will be in CFNF. Note that this

pruning depends only on the elements in the synchronized

alphabet, and not on the state of the plant. We will show

why this leads to a bound on the memory for T .

Since L(Uσ) is a generalized trace language, we can

restrict Uσ so that its language is in CFNF. This effectively

breaks cycles in Uσ that could cause divergence of the size

of reachable states of T and leaves only states that require a

bounded memory. This implies that only finitely many states

of T remain reachable when Uσ is restricted, as defined

above.

To compute the CFNF of Uσ we need to compute

one further automaton, N , based only on labels: N =
(QN , qN

0 , E, δN), where QN = 2I0 ; qN
0 = I0; and the

transition function δ ⊆ QN×E×QN is defined as follows. A

transition δN (q, ℓ) = q′ iff ∀ℓ′ ∈ A, ℓ′ ≤ ℓ ⇒ (||ℓ′||∩q 6= ∅)

and q′ = ||ℓ||.
The product of Uσ and N is the restriction of Uσ , denoted

by Ûσ.

Theorem 1: Ûσ × T has finitely many reachable states.

Proof: Recall that in Uσ observable events are syn-

chronized. Therefore, states of the form (q, µ, u), where

µ ∈ {Left, Right} and u contains observable events for

the communicating supervisor, are not reachable in Ûσ × T .

Assume that there exists an infinite path λ in Ûσ × T
causing divergence of state size. Ûσ is finite state, therefore

there exists a state q in Ûσ that is visited infinitely often by

λ. Thus λ can be decomposed as λ = δγλ
′

such that

(q0,⊤)
δ

→∗ (q, µ, u0)
γ

→∗ (q, µ, u1)

where |u0| < |u1| and µ ∈ {Left, Right} and cycle γ can

be iterated to form an ultimately periodic path δγω in Ûσ×T
that also causes divergence of state sizes. This means that

(q0,⊤)
δ

→∗ (q, µ, u0)
γ

→∗ (q, µ, u1)
γ

→∗ (q, µ, u2) . . .

where |u0| < |u1| < . . . < |un|, µ ∈ {Left, Right} and

∀i ≥ 0, ui is unobservable.

By symmetry and wlog, assume that µ = Left. Define

a projection πi that returns the ith component of γ. The

inequality |u0| < |u1| implies that

|π0(γ)| > |π1(γ)|. (3)

Wlog assume that |u0| > |π0(γ)|. This implies that γ may

not contain any observable events wrt the communicating

supervisor. Thus, π1(γ) and π0(γ) are unobservable wrt the

communicating supervisor. Inequality (3) implies that the last

vector of γ commutes with one atom of the first vector of γ.

Thus γ·γ is not in CFNF. This contradicts the assumption that

every path in Ûσ is in CFNF. Hence no ultimately periodic

path of Ûσ causes state size divergence. Therefore, there

exists a bound on the size of states reachable in Ûσ × T
and Ûσ × T has finitely many reachable states.

V. FUTURE WORK

It is clear that the communication sublanguage generated

by communicating early or late is regular. While we can now

calculate more than just the “first” and “last” possible places

to communicate in the plant language, we should not expect

that, in general, when considering intermediate possibilities

for communication that we can find a procedure that will

always find a regular communication sublanguage of the

plant. That is, it is possible to find non-regular sublanguages

of a regular language (e.g., anbn ⊂ {a, b}∗). We are currently

investigating strategies for constructing regular communica-

tion languages, that include more than just the “first” and

“last” place to communicate. Additionally, in an effort to

address computational complexity issues, we are pursuing

more efficient implementations of the mathematical formulas

presented here for the construction of our communication

protocol.

REFERENCES

[1] Arnold A.: Finite transition systems. Prentice-Hall, 1994
[2] Barrett, G. and Lafortune, S.: Decentralized Supervisory Control with

Communicating Controllers. IEEE Trans. on Automat. Contr. 45 (9)
(2000) 1620–1638

[3] Cartier, P. and Foata, D.: Problèmes combinatoires de permutations et
réarrangements. Springer-Verlag, 1969 (Lecture Notes in Math., 85).

[4] Cassandras, C. and Lafortune, S. Introduction to Discrete Event Systems
Kluwer (1999)

[5] Cieslak, R., Desclaux, C. and Fawaz, A.S. and Varaiya, P.: Supervisory
control of discrete-event processes with partial observations. IEEE
Trans. Automat. Contr. 33(3) (1988) 249–260

[6] Hoogers, P.W., Kleijn, H.C.M. and Thragaragan, P.S.: A Trace Seman-
tics for Petri Nets, Information and Computation 117 (1995) 98–114

[7] Mazurkiewicz, A. Concurrent program schemes and their interpreta-
tions. Aarhus University Publication (DAIMI PB-78, 1977)

[8] Ramadge, P.J. and Wonham, W.M.: Supervisory control of a class of
discrete event processes. SIAM J. Contr. Optim. 25(1) (1987) 206–230

[9] Ramadge, P.J. and Wonham, W.M.: The control of discrete-event
systems. Proc. IEEE 77(1) (1989) 81–98

[10] Ricker, S.L. and Rudie, K.: Incorporating communication and knowl-
edge into decentralized discrete-event systems. Proc. IEEE Conf. De-
cision Contr. (1999) 1326–1332

[11] Rudie, K. and Willems, J.C.: The Computational Complexity of
Decentralized Discrete-Event Control Problems. IEEE Trans. Automat.
Contr. 40(7) (1995) 1313–1319

[12] Rudie, K. and Wonham, W.M.: Think Globally, Act Locally: De-
centralized Supervisory Control. IEEE Trans. Automat. Contr. 37(11)
(1992) 1692–1708

[13] Stark, E.W.: Concurrent Transition Systems. Theoretical Computer
Science 64(3) (1989) 221–269

[14] Wong, K.C. and van Schuppen, J.H.: Decentralized Supervisory
Control of Discrete-Event Systems with Communication Proc. Int.
Workshop on Discrete Event Systems (1996) 284–289

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrC04.4

5929

