
Automatica 47 (2011) 2364–2372
Contents lists available at SciVerse ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Mind the gap: Expanding communication options in decentralized
discrete-event control✩

Laurie Ricker a,1, Benoît Caillaud b

a Department of Mathematics and Computer Science, Mount Allison University, Sackville, NB, Canada
b INRIA/IRISA, Rennes, France

a r t i c l e i n f o

Article history:
Received 21 June 2010
Received in revised form
9 January 2011
Accepted 6 May 2011
Available online 15 September 2011

Keywords:
Discrete-event systems
Communication protocols
Decentralized control

a b s t r a c t

Frameworks that incorporate communication into decentralized supervisory control theory address
the following problem: find locations in the evolution of the plant behavior where supervisors send
information so that a supervisor that was unable to make the correct control decision prior to receiving
external information, is now capable of making the correct control decision. Existing solutions to this
problem identify an earliest and a latest placement where the communication protocol leads to the
synthesis of a correct control solution. In addition to the first and last communication opportunities,
there may be a selection of intermediate possibilities where communication would also produce the
correct control solution. We present a computable procedure to identify a broader range of suitable
communication locations.

Crown Copyright© 2011 Published by Elsevier Ltd. All rights reserved.
1. Introduction

The role of communication (with no delay) in decentralized
discrete-event control problems has been explored under a variety
of communication protocols. The basic idea of this class of
problems is that in the absence of communication, the control
objective cannot be met (i.e., the controlled system behavior does
not stay within a specified behavior). The goal is to synthesize a
communication protocol that the decentralized controllers follow
– in addition to observing the behavior of an uncontrolled system
– which results in controllers sending information about system
behavior to other controllers and/or receiving similar information
from other controllers. The communicated information combined
with their own partial observations of system behavior, provide
the recipients of the communication with enough information to
definitively make the correct control decisions, thereby meeting
the control objective.

Communication is introduced into a decentralized supervi-
sory control problem when the system requiring control does
not satisfy co-observability, a condition that determines whether

✩ The material in this paper was presented at the 46th IEEE Conference on
Decision and Control (CDC), December 12–14, 2007, New Orleans, Louisiana, USA.
This paper was recommended for publication in revised form by Associate Editor
Jan Komenda under the direction of Editor Ian R. Petersen.

E-mail addresses: lricker@mta.ca (L. Ricker), benoit.caillaud@irisa.fr
(B. Caillaud).
1 Tel.: +1 5063642541; fax: +1 5063642583.

0005-1098/$ – see front matter Crown Copyright© 2011 Published by Elsevier Ltd. Al
doi:10.1016/j.automatica.2011.08.040
or not the collection of control decisions for a set of decentral-
ized supervisors allows all the correct control decisions to be
taken (Rudie & Wonham, 1992). The design of a communication
protocol for decentralized control problems requires the construc-
tion of a non-empty set of communications that will admit a cor-
rect control solution (van Schuppen, 2004). We are interested in
bridging the gap between the ‘‘communicate as late as possible’’
strategy of Barrett and Lafortune (2000), where communication
to resolve violations of co-observability occurs only along prefixes
of behaviors that lead outside of the specification, and the ‘‘com-
municate as early as possible’’ strategy of Ricker (1999), where
communication occurs along prefixes of any of the behaviors in-
volved in a violation of co-observability, not just those that result
in undesired behavior.

The ‘‘communicate as late as possible’’ protocol features senders
and/or receivers that initiate communication only along behaviors
that lead outside of the specification. The algorithm to find the
protocol begins by considering the ‘‘last’’ potential communication
location as the state where all entering transitions are part of
behaviors in the specification (and at least one transition is
observed by either the sender or receiver), but there is at least
one exiting transition that leaves the specification and is involved
in a violation of co-observability. If communication at this state
does not result in the correct control decision being taken, the
algorithm continues by backtracking along the prefix of this
undesired behavior to find a state where communication will lead
to a correct control decision. Such a state can always be found
because communication can be initiated by either a sender or a
receiver. Thus the communication policy allows the receiver to

l rights reserved.

http://dx.doi.org/10.1016/j.automatica.2011.08.040
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:lricker@mta.ca
mailto:benoit.caillaud@irisa.fr
http://dx.doi.org/10.1016/j.automatica.2011.08.040

L. Ricker, B. Caillaud / Automatica 47 (2011) 2364–2372 2365
request information from a sender, which is not the strategy used
in Ricker (1999), where only senders initiate communication.

The ‘‘communicate as early as possible’’ protocol requires the
identification of behaviors that violate co-observability followed
by calculating (w.r.t observable events) their longest common
prefix. The rationale for using the longest common prefix as
a means of pinpointing a useful communication location is
straightforward. A sender in this protocol is a controller whose
partial view of the behaviors involved in a violation of co-
observability holds information thatwill aid the receiver inmaking
the correct control decision (w.r.t this particular violation of co-
observability). The reception of information about a behavior that
both sender and receiver observe (or, conversely, events that
neither observes) may not introduce enough new information to
facilitate a correct control decision on the part of the receiver. We
can find a communication location by disregarding all centrally-
observable commonprefixes as potential communication locations
and choose the first observable event – not seen by the
receiver – following the longest common prefix, as the earliest
communication location.

There exist a number of additional studies on communication
and decentralized supervisory control. The literature ranges from
the introduction of novel information structures in which to study
communication (Mannani & Gohari, 2008) to the examination of
strategies for acyclic systems that reduce a given set of communi-
cations to one that is optimal (Wang, Lafortune, & Lin, 2008). More
recently, Hiraishi (2009) has confirmed the computational com-
plexity of the problem, but he, too, assumes that the set of commu-
nications is given as part of the problem formulation. In contrast,
our work focuses on the construction of sets of communications
that will allow decentralized communicating controllers to reach
the control objective.

We propose a new computable strategy for identifying a com-
munication language, where communication options lie between
the first and last communication opportunities (inclusive). An ear-
lier version of this work first appeared as Ricker and Caillaud
(2007).

2. Background

2.1. Supervisory control

Supervisory control, as formulated by Ramadge and Wonham
(1987), assumes that both the system requiring control, called the
plant, and the desired behavior, often called the legal behavior, are
described by formal languages over a given alphabet, denoted by
Σ . The analysis in this paper is restricted to regular languages, a
class of languages that can be described by finite automata. The
goal of the control problem is to synthesize a supervisor of the
plant such that, based on its observations of the plant behavior,
the supervisor permits the occurrence of only the legal behavior (or
possibly some subset of legal behavior) by issuing either an enable
or disable command for different behaviors. The synthesis of the
resulting control policy (determining which behaviors to enable or
to disable) is further complicated by the fact that there are some
behaviors that a supervisor cannot disable.

Decentralized supervisory control problems (Rudie &Wonham,
1992) involve the synthesis of n supervisors (for n ≥ 2), each
of which has only a partial view of the plant. That is, some of
the behavior in the plant is unobservable to each supervisor. Let
I = {1, . . . , n} be the set of n decentralized supervisors. The ability
to synthesize a control policy relies on the existence of at least
one supervisor that can make the correct control decision to keep
the plant performing within the legal behavior, a property called
co-observability (Rudie & Wonham, 1992). The remainder of this
section will focus on the notation for synthesizing decentralized
control strategies.
Fig. 1. A joint plant ML and legal automaton MK . The collection of all edges is ML ,
whereas the collection of solid edges isMK .

For any strings s, t ∈ Σ∗, where Σ∗ is the set of finite words
on an alphabet Σ , we say that t is a prefix of s, denoted t ≼ s, if
∃w ∈ Σ∗ such that s = tw. When t ≼ s, the left quotient of t
with s is denoted as t h s = w. If L ⊆ Σ∗, the prefix-closure of L
is the language, denoted by L, consisting of all prefixes of strings
of L:L := {t ∈ Σ∗

| t ≼ s ∈ L}. Because every string is a prefix of
itself, L ⊆ L. A language is said to be prefix-closed if L = L. As we are
interested in all of the possible behaviors of the plant, we assume
that the plant language is prefix-closed.

The partial view that a decentralized supervisor i has of the
plant is described by the set of observable events, denoted by
Σo,i ⊂ Σ , for i ∈ I . The set of all observable events is Σo =

∪i∈I Σo,i. To describe a supervisor’s view of the system behavior,
we use the natural projection Pi :Σ∗

→ Σ∗

o,i, for i ∈ I . This operator
removes events σ from a string t that are not found in Σo,i: Pi(ε)
= ε, where, throughout this paper, we use ε to denote the empty
string; Pi(σ) = ε if σ ∈ Σ − Σo,i, Pi(σ) = σ if σ ∈ Σo,i, and
Pi(tσ) = Pi(t)Pi(σ), t ∈ Σ∗, σ ∈ Σ . Thus, if the plant generates
sequence t, then Pi(t) indicates the sequence of events observed
by the decentralized supervisor i. The inverse projection of Pi is the
mapping from Σ∗

o,i to 2Σ∗

: P−1
i (t) = {s | Pi(s) = t}.

To establish supervision on the plant, we partition the set
of events Σ into disjoint sets Σc , controllable events, and Σuc ,
uncontrollable events. Controllable events are those events whose
occurrence is preventable (i.e., may be disabled). Uncontrollable
events are those events that cannot be prevented from occurring
and are deemed permanently enabled. The set of controllable
events is further divided into (not necessarily disjoint) subsets of
events, which are controlled by supervisor i:Σc,i ⊆ Σc (for i ∈ I),
where Σc = ∪i∈I Σc,i. We abuse our notation for I slightly and
define the set of supervisors for which σ is controllable by Ic(σ) =

{i ∈ I | σ ∈ Σc,i}. Finally, we denote the cardinality of any set S
by |S|.

Formally, a deterministic automaton M is a tuple: M =

(Q , q0, Σ, δ, F), where Q is its set of states; q0 ∈ Q is the initial
state; Σ is the finite alphabet; δ is a transition function, a partial
function δ :Σ × Q → Q ; F ⊆ Q is a set of final states.M is said to
be finite whenever Q is finite. For σ0, . . . , σk−1 ∈ Σ , a word w =

σ0, . . . , σk−1 ∈ Σ∗ is accepted by M iff there exists q1, . . . , qk,
where qk ∈ F such that qj+1 = δ(σj, qj) for all j = 0, . . . , k−1. The
language generated byM , denoted by L(M), is the set of all words
accepted by M . The automaton representing the plant is denoted
by ML, whereas the automaton representing the legal behavior
is denoted by MK . An example of a plant and associated legal
behavior, where I = {1, 2}, is shown in Fig. 1. For this example,
Σ = {a, b, c, σ } and let Σo,1 = {a, b, σ }, Σo,2 = {b, c, σ } and
Σc,1 = {a, b, σ }, Σc,2 = {c}. Therefore I(a) = I(b) = Ic(σ) = {1}
and I(c) = {2}. Further, Q = {0, 1, 2, 3, 4, 5, 6}, while FL = Q and
FK = Q − {6}.

A prefix-closed language K ⊆ L is co-observablewith respect to
L and Pi, for i ∈ I , if for all t ∈ K and for all σ ∈ Σ ,

(tσ ∉ K) and (tσ ∈ L) ⇒ ∃i ∈ Ic(σ) such that

P−1
i [Pi(t)]σ ∩ K = ∅. (1)

Itmust be the case that based only on its partial view of a sequence,
a decentralized supervisor can make the correct control decision.

2366 L. Ricker, B. Caillaud / Automatica 47 (2011) 2364–2372
The equivalent condition in the case of a single (centralized)
supervisor is called observability. The observations of a centralized
supervisor are captured by a projection operator P :Σ∗

→ Σ∗
o .

A prefix-closed language K is said to be observable with respect
to L, P , and Σc if for all t ∈ K and for all σ ∈ Σc , (tσ ∉

K) and (tσ ∈ L) ⇒ P−1
[P(t)]σ ∩K = ∅. For purposes of designing

a decentralized communication protocol,K must be observable but
must not be co-observable. In the absence of a centralized control
solution, no amount of communication will allow decentralized
supervisors to meet the control objective.

In Fig. 1, let K = L(MK) and L = L(ML). It is the case that K
is observable, since all illegal sequences can be distinguished from
all legal sequences. But K is not co-observable since it is possible
to find sequences, such as t = accacb, where tσ ∈ L − K , and
for all i ∈ Ic(σ) = {1} it is the case that caab σ ∈ P−1

1 [P1(t)]σ ∩

K ≠ ∅.

2.2. Labels

We want a means of characterizing the synchronization
between event occurrences in the plant and the observation of
these event occurrences by decentralized supervisors. To facilitate
this, we make use of synchronization vectors (Arnold, 1994), which
we refer to here as labels. For purposes of adapting labels for
use in decentralized supervisory control problems, we begin by
introducing an augmented set of supervisors I0 = {0} ∪ I , where 0
represents an agent that tracks all plant behavior. We also define
an augmented alphabet Σε

= {ε} ∪ Σ .

Definition 1. A label ℓ : I0 −→ Σε is amapping fromeach supervi-
sor to either an event from Σ or ε:ℓ = ⟨ℓ(0), ℓ(1), . . . , ℓ(i), . . . , ℓ
(n)⟩. The empty label is ⟨ε, . . . , ε⟩, i.e., for all i ∈ I0, ℓ(i) = ε. The
support of a label, denoted by ‖ℓ‖, is {i | ℓ(i) ≠ ε}.

We will be interested in several properties of labels.

Definition 2. Two labels ℓ1, ℓ2 are compatible, denoted as ℓ1 ↑ ℓ2,
iff ∀i ∈ I0, ℓ1(i) = ε or ℓ2(i) = ε or ℓ1(i) = ℓ2(i).

Suppose that Σε
= {a, b, ε}, I0 = {0, 1, 2, 3} and we have three

labels such that ℓ1 = ⟨a, a, ε, a⟩, ℓ2 = ⟨ε, ε, b, ε⟩, and ℓ3 =

⟨b, b, ε, b⟩. Then ℓ1 ↑ ℓ2 and ℓ2 ↑ ℓ3 but ℓ1 is not compatible
with ℓ3, denoted as ℓ1 ↑̸ ℓ3, because for i = 0, 1, 3 it is the case
that ℓ1(i) ≠ ε, ℓ3(i) ≠ ε and ℓ1(i) ≠ ℓ3(i).

Definition 3. Two labels, ℓ1 and ℓ2 are independent, denoted as
ℓ1|ℓ2, iff ∀i ∈ I0 ℓ1(i) = ε or ℓ2(i) = ε.

If we use the labels defined above, then ℓ1|ℓ2 and ℓ2|ℓ3 but ℓ1 and
ℓ3 are not independent, denoted as ℓ1 ̸ | ℓ3, because for i = 0, 1, 3
neither ℓ1(i) nor ℓ3(i) is equal to ε. But if we also have ℓ4 =

⟨ε, b, a, ε⟩ and ℓ5 = ⟨ε, b, ε, ε⟩, then ℓ4 ↑ ℓ5 but ℓ4 ̸ | ℓ5.
It is possible to define a partial order relation on labels: ℓ1 ≤ ℓ2

iff ∀i ∈ I0, ℓ1(i) ≠ ε ⇒ ℓ1(i) = ℓ2(i). It is straightforward to check
that ≤ is a partial order relation:

• transitive: ℓ1 ≤ ℓ2 ≤ ℓ3 ⇒ ℓ1 ≤ ℓ3;
• reflexive: ℓ1 ≤ ℓ1;
• antisymmetric: ℓ1 ≤ ℓ2 ≤ ℓ1 ⇒ ℓ1 = ℓ2.

This partial order relation subsumes a greatest lower bound ∧

and a partial least upper bound ∨. The greatest lower bound is
computed as follows:

∀i ∈ I0, (ℓ1 ∧ ℓ2)(i) =

ℓ1(i), if ℓ1(i) = ℓ2(i);
ε, otherwise.

Let ℓ1 = ⟨a, a, a, ε⟩ and ℓ2 = ⟨ε, b, a, ε⟩. Then ℓ1 ∧ ℓ2 =

⟨ε, ε, a, ε⟩.
The least upper bound of two compatible labels, denoted by
ℓ1 ∨ ℓ2, is computed as follows:

∀i ∈ I0, (ℓ1 ∨ ℓ2)(i) =

ℓ1(i), if ℓ1(i) ≠ ε;
ℓ2(i), if ℓ2(i) ≠ ε;
ε, otherwise.

Suppose that ℓ1 = ⟨b, ε, ε, b⟩ and ℓ2 = ⟨ε, a, ε, b⟩. Since ℓ1 ↑ ℓ2,
then ℓ1 ∨ ℓ2 is defined and is equal to ⟨b, a, ε, b⟩.

Although this algebra on labels is not a Boolean algebra, a
residual operation of the least upper bound can be defined. Let
ℓ1 ≤ ℓ2, then ℓ2 \ ℓ1 is the least label such that ℓ1 ∨ (ℓ2 \ ℓ1) = ℓ2.
The computation of ℓ2 \ ℓ1 is straightforward:

∀i ∈ I0, ℓ2 \ ℓ1(i) =

ℓ2(i), if ℓ1(i) = ε;
ε, otherwise.

Suppose that ℓ1 = ⟨ε, a, a, ε⟩ and ℓ2 = ⟨ε, a, a, a⟩. Then ℓ2 \ ℓ1 =

⟨ε, ε, ε, a⟩.
In Section 4.1, we define a set of labels for the decentralized

control and communication problem.

2.3. Transducers

A rational transducer is a tuple J = (Q , q0, Σ1, . . . , Σm, E, F),
where Q is the state set; q0 ∈ Q is the initial state; Σi, for i =

1, . . . ,m, are alphabets; E ⊆ Q × Σ∗

1 × · · · × Σ∗
m × Q is the

transition relation; F ⊆ Q is a set of final states, which will be of
use in the sequel. Note that Q need not be finite, nor does E need
to be deterministic. A sequence of transitions from state q1 to state
q′

k (i.e., (q1, σ11, . . . , σ1m, q′

1) . . . (qk, σk1, . . . , σkm, q′

k)) is a path if
and only if q′

j = qj+1, for j = 1, . . . , k − 1. We denote such a path

by q1
s1,...,sm

� q′

k, where si = σi1 . . . σik, for i = 1, . . . ,m.
Two particular cases of interest are (i) one-dimensional trans-

ducers, which correspond to automata, and (ii) two-dimensional
transducers, which define functions or binary relations overwords.
In the case of transducers of dimension two,Σ1 is referred to as the
input alphabet andΣ2 is the output alphabet (typically denoted by
Γ). It is customary to denote transition labels, consisting of an in-
put letter σ ∈ Σ1 and an output letter γ ∈ Γ , as σ/γ .

3. Decentralized control and communication

In the standard formulation of a decentralized discrete-event
control problem, when co-observability is satisfied, supervisors
make control decisions based only on their partial view of plant
behavior. For each control decision that must be taken, there
is at least one supervisor that has enough information from its
own observations to make the correct control decision. When
co-observability is violated, there is some set of behaviors for
which none of the relevant supervisors can make the correct
control decision. That is, there is some legal behavior u, followed
by a controllable event σ which exits the legal behavior and all
supervisors that control σ cannot distinguish u from some other
behavior (or set of behaviors), say v, that remains within the legal
behavior when followed by σ . For the remainder of the paper, we
use the notation uσ to refer to a representative illegal sequence, vσ
as a legal sequence, and assume that for all i ∈ Ic(σ), Pi(u) = Pi(v).

When supervisors cannot distinguish behaviors and make the
correct control decision, then we can introduce communication
into the problem formulation and identify where additional
information could lead to correct control solutions.When a system
satisfies observability, then there must be at least one observable
event that allows a centralized supervisor to distinguish uσ from
vσ (i.e., P(u) ≠ P(v)). A sequence that leads to this location will
be included in the communication language. After the occurrence
of such a sequence, the new information introduced by the sender

L. Ricker, B. Caillaud / Automatica 47 (2011) 2364–2372 2367
Table 1
Potential sequences in the communication language for supervisor 2 when u =

accacaaccb and v = accaacab.

u′
≼ u P(u′) ⊓ P(v) (P(u′)⊓P(v))hP(u′)

1. accacaaccb acca caaccb
2. accacaacc acca caacc
3. accacaac acca caac
4. accacaa acca caa
5. accaca acca ca
6. accac acca c
7. acca acca ε

8. acc acc ε

9. ac ac ε

10. a a ε

11. ε ε ε

allows a formerly-confused supervisor (the receiver) to ultimately
make the correct control decision about σ .

To determine potential candidates for sequences along u to be
included in the communication language, we identify all u′

≼ u
that have a non-empty left quotient with the longest common
prefix of u′ and v, denoted here by P(u′) ⊓ P(v). (Equivalently, to
find potential sequences along v for the communication language,
we examine prefixes of v w.r.t u.)

Useful information is only imparted to the receiver when the
sender communicates information about system behavior that the
receiver does not know about with certainty. In this case, we insist
that a sequence in the communication language for the sender ends
with an event that is observed by the sender but not by the receiver.
For a sequence s ∈ Σ∗ and σ1, . . . , σk ∈ Σ such that s = σ1 . . . σk,
define η :Σ∗

→ Σ such that η(s) = σk.

Definition 4. Given u, v ∈ L and σ ∈ Σc such that for all i ∈ Ic(σ)

Pi(u) = Pi(v) and uσ ∈ L − K while vσ ∈ K . The communication
language for sender i w.r.t receiver j ∈ I along uσ is defined as
follows:

Ci,j(u, v) = {u′
≼ u | (P(u′) ⊓ P(v)) h P(u′) ≠ ε and

η(u′) ∈ Σo,i − Σo,j}.

We can analogously describe the communication language along
vσ , denoted by Ci,j(v, u).

In Table 1, we consider the potential sequences along u for
the communication language when u = accacaaccb and v =

accaacab, and we use the controllable and observable event sets
from the example in Fig. 1. Thus we are seeking a communication
language for supervisor 2, as it is supervisor 1 for which u and v

represent a violation of co-observability w.r.t σ .
After discarding sequences u′ because they either end with an

inappropriate event (e.g., sequences 1, 4, 5) or have an empty
left quotient with the longest common prefix w.r.t v (e.g., se-
quences 7–11), the communication language for supervisor 2 along
u is C2,1(u, v) = {accacaacc, accacaac, accac}. The communi-
cation language for supervisor 2 along v can also be calculated:
C2,1(v, u) = {accaac}.

The final output from the procedures presented in this paper is
the communication language for each violation of co-observability
w.r.t σ in the plant language. Further refinement may be required,
if incorporating all communication opportunities results in too
much redundancy (e.g., only one element of Ci,j(u, v) ∪ Ci,j(v, u)
may be necessary to resolve the violation of co-observability). The
next section provides construction details for the structureswe use
to generate the communication language for all violations of co-
observability w.r.t σ in the system.
4. The construction of a communication language for decen-
tralized control

We require three new structures to construct our communica-
tion language and present their construction in detail below.

(i) A finite structure Uσ , such that L(Uσ) is a language on the
alphabet of labels, that encodes all sequences uσ and vσ that
violate co-observability w.r.t σ .

(ii) A finite structure JA that, given a sequence s as input, will
output prefixes s′ of s, i.e., s′ ≼ s, such that s′ ends with
an event observable to the sender and not observable to the
receiver (who makes the control decision about σ).

(iii) A structure JB that, given two sequences s and t as input, will
accept s iff the left quotient of P(s) with the longest common
observable prefix (i.e., longest centralized observation) of s
and t is non-empty: (P(s) ⊓ P(t)) h P(s) ≠ ε.

We also use an existing structure, a single-state transducer P
that implements the projection operator P . Because we need to
calculate projections for two different sequences in parallel, we
make a copy of P and denote it by P ′.

4.1. A finite automaton to detect violations of co-observability
The automaton introduced here, Uσ , encodes all legal and

illegal sequences that end in event σ and that violate (1),
i.e., co-observability. This is not to be confused with the non-
deterministic automaton described in Rudie and Willems (1995),
which generates the complete sublanguage of L that is not
co-observable. In particular, the non-deterministic structure in
Rudie and Willems (1995), when defined for 2 supervisors,
is used to simultaneously track sequences in P−1

1 (P1(L(MK))),
P−1
2 (P2(L(MK))), L(MK) and L(ML). In the language of the

automaton we define below, when defined for 2 supervisors,
sequences in L(ML−K) and one copy of L(MK) for each supervisor
are tracked simultaneously.

The alphabet for Uσ is constructed from the labels introduced
in Section 2.2. Labels are generated from a given finite set of atoms,
denoted by A. The set of atoms is defined as the union of the
following two label sets.

The first atom auoi,e : I0 → (Σ − Σo,i) ∪ {ε} represents transition
labels for events unobservable to supervisor i, for i ∈ I0. This
corresponds to the idea that supervisor i guesses about the
occurrence of event e in the plant that it does not directly observe.
Formally, for i, j ∈ I0 and e ∈ Σ − Σo,i, where for i = 0, we
interpret Σo,i to be Σo: auoi,e(j) = e when i = j, otherwise it is
equal to ε. For example, in Fig. 1, since c ∈ Σ − Σo,1, we have
auo1,c = ⟨ε, c, ε⟩, meaning that supervisor 1 has no idea if c occurred
in the plant (auo1,c(0) = ε), but it guesses that c could have occurred
(auo1,c(1) = c) and it makes no assumptions about the observations
of the other supervisors (auo1,c(2) = ε).

The second atom aoe : I0 → Σo ∪ {ε} corresponds to the oc-
currence of event e in the plant and the synchronized observation
of e by all supervisors i for which e ∈ Σo,i. Formally, aoe(i) = e
if i = 0 or if i ≠ 0 and e ∈ Σo,i; otherwise it is ε. For example, in
Fig. 1, since c ∈ Σo,2, we have aoc = ⟨c, ε, c⟩, meaning that event c
occurred in the plant (aoc(0) = c), supervisor 1 did not observe the
occurrence of c (aoc(1) = ε,) and supervisor 2 observed the occur-
rence of c (aoc(2) = c).

The set of atoms constructed from the events in the alphabet
for the example shown in Fig. 1: A = {⟨ε, c, ε⟩, ⟨ε, ε, a⟩, ⟨a, a, ε⟩,
⟨b, b, b⟩, ⟨σ , σ , σ ⟩, ⟨c, ε, c⟩}.

Let Aε
= ⟨ε, . . . , ε⟩ ∪ A. The alphabet of Uσ , denoted by A, is

the least set such that Aε
⊆ A and for all a, a′

∈ A, a ↑ a′
⇒

a ∨ a′
∈ A. For the set of atoms noted above: A = Aε

∪ {⟨c, c, c⟩,
⟨ε, c, a⟩, ⟨a, a, a⟩}.

2368 L. Ricker, B. Caillaud / Automatica 47 (2011) 2364–2372
Fig. 2. Automaton Uσ forML andMK in Fig. 1. The initial state is identified by its underlined state name.
To construct the remaining components of Uσ , we begin with
our prefix-closed regular languages L and K , such that K ⊆ L.
It can be assumed, w.l.o.g. that ML and MK have identical transi-
tion relations and state structures.2 Hence ML and MK may dif-
fer only in their final state sets: ML = (Q , q0, Σ, δ, FL), MK =

(Q , q0, Σ, δ, FK). We define a third language (and its correspond-
ing automaton representation) that accepts only illegal sequences:
B = L − K and MB = (Q , q0, Σ, δ, FB), where FB = FL − FK .

Our goal is to construct an automatonwhosemarked sequences
encode those sequences that violate co-observability w.r.t event
σ ∈ Σc . So we must further refine B and K . Let Bσ = {s ∈ K |

sσ ∈ B} be the language of sequences that leave K via the event σ .
The corresponding automaton is MBσ = (Q , q0, Σ, δ, FBσ), where
FBσ = {q ∈ FK | δ(q, σ) ∈ FB}. Let Kσ = {s ∈ K | sσ ∈

K} be the language of sequences in K that remain in K after the
occurrence of the event σ . The corresponding automaton isMKσ =

(Q , q0, Σ, δ, FKσ), where FKσ = {q ∈ FK | δ(q, σ) ∈ FK }.
To facilitate the synchronization required for the partially-

observed events inK , we augmentMBσ ,MKσ andMK with self-loops
labeled ε at each state (e.g., for all q ∈ Q), thereby updating the
alphabets of each automaton from Σ to Σε .

We build Uσ to identify pairs of sequences that violate co-
observability, by composing MBσ with |Ic(σ)| copies of the MKσ

automaton and n − |Ic(σ)| copies of MK . The state set of Uσ is
simply the reachable part of the Cartesian product of the states
of the component automata. The composition can be defined in
two steps: (1) the Cartesian product of the transition relations;

2 If ML and MK do not share the same state structure, we can transform them by
taking the Cartesian product of their respective state sets.
and (2) the restriction of the resulting transition relation to those
transitions with labels in A.

Now we can construct automaton Uσ as follows: Uσ =

(X, (q0)n+1, A, δUσ , FUσ), where X ⊆ (Q)n+1; FUσ ⊆ FBσ ×

(FKσ)|Ic (σ)|
× (FK)n−|Ic (σ)| is the set of reachable final states, and

the transition function is defined according to: δUσ (x, ℓ) = x′ iff
ℓ ∈ A and ∀i ∈ I0, δ(x(i), ℓ(i)) = x′(i). Every marked sequence in
L(Uσ) (i.e., one leading to a state in FUσ) can be decomposed into a
sequence in L \ K and |Ic(σ)| sequences in K , thereby indicating
a violation of co-observability. Note that the state structure of
Uσ and its transition function do not depend on the value of σ .
Thus, we need only calculate Uσ once and adjust the marking
w.r.t the various values for σ that lead to other violations of co-
observability.

For L and K depicted in Fig. 1, we assume identical state
structures and transition relations for MBσ , MKσ and MK , namely
Q = {0, 1, 2, 3, 4, 5, 6}, and δ includes selfloops of ε at each state
in Q ; however, the final state sets are FBσ = {5}, FKσ = {3} and
FK = Q − {6}. The resulting Uσ , shown in Fig. 2, has 28 states (2 of
which are marked) and 84 transitions.

It will be useful to refer to sequences of label components. Let
w = ℓ0 . . . ℓk ∈ L(Uσ). Then w(i) = ℓ0(i) . . . ℓk(i) is the sequence
formed by the ith components of the labels inw, where i ∈ I0. Sup-
pose that w = ⟨a, a,ε⟩⟨ε, ε, a⟩⟨c,ε, c⟩⟨c,ε, c⟩⟨ε, ε, a⟩⟨ε, ε, a⟩⟨b,
b, b⟩. Then w(0) = aεccεεb, w(1) = aεεεεεb and w(2) =

εaccaab.

4.2. A non-deterministic finite transducer to find particular prefixes
of a sequence

Given a sequence s, we would like to be able to find all
of its prefixes that end with an event possessing particular

L. Ricker, B. Caillaud / Automatica 47 (2011) 2364–2372 2369
Fig. 3. Transducer JA outputs specific prefixes of an input sequence.

characteristics. In the context of generating sequences for the
communication language, we want s to end with an event
observable to the sender, supervisor i, but not observable to
the receiver, supervisor j. We use a non-deterministic finite
transducer, JA = ({0, 1}, 0, Σε, Σε, E, {1}), which is shown in
Fig. 3.

For purposes of building communication protocols, the input
to JA will be u′

≼ u (resp. v′
≼ v) where u (resp. v) is derived

from marked sequences w ∈ L(Uσ): we consider u = w(0) and
v = w(j), choosing one of the j ∈ Ic(σ) for which v forms a
violation of co-observability with u. Recall that by construction, a
sequence is marked in L(Uσ) iff w(0)σ ∈ L(MB) and ∀j ∈ Ic(σ),
w(j)σ ∈ K violate co-observability.

Let w be a marked sequence in L(Uσ) from Fig. 2: w =

⟨a, a, ε⟩⟨c, ε, c⟩⟨ε, ε, a⟩⟨c, ε, c⟩⟨ε, ε, a⟩⟨ε, ε, a⟩⟨b, b, b⟩. Then we
have u = w(0) = acεcεεb and v = w(1) = aεεεεεεb. We input
u to JA for i = 2 and j = 1. The valid outputs are acc and ac. When
the input is v, then the only valid output is ε.

4.3. An infinite transducer to find the left quotient of a sequence s with
the longest common prefix of s and t

The next step in generating sequences for the communication
language involves a transducer that accepts those sequences s such
that (P(s) ⊓ P(t)) h P(s) ≠ ε. To accomplish this, we construct an
infinite deterministic transducer, which takes a pair of sequences
as input and outputs their longest common prefix w.r.t P .

We form a transducer JB with an input alphabet of Σε
× Σε ,

an output alphabet Γ = ∅, a state set Q = {{Left, Right} × Σ+
} ∪

{⊤, ⊥}, where the initial state is ⊤ and the final state is ⊥. The set
of transition rules is defined in Table 2.

In the context of generating sequences along u that could be
included in the communication language, we consider input pairs
as comprising (i) a valid prefix of u = w(0) (as determined by JA)
and (ii) v = w(j), for w ∈ L(Uσ) and j ∈ Ic(σ). Equivalently, for
sequences along v, we consider pairs comprised of a valid prefix of
v and u.

Let us examine sequence 6 from Table 1, which can be derived
from the following marked sequence in L(Uσ) in Fig. 2: w =

⟨a, a, ε⟩ ⟨c, ε, c⟩⟨ε, c, ε⟩ ⟨ε, ε, a⟩⟨c, ε, c⟩⟨ε, c, ε⟩⟨a, a, ε⟩⟨ε, ε, a⟩⟨c,
ε, c⟩⟨a, a, ε⟩⟨ε, c, ε⟩⟨a, a, ε⟩ ⟨ε, ε, a⟩ ⟨c, ε, c⟩ ⟨ε, ε, a⟩⟨c, ε, c⟩⟨b, b,
b⟩. The first input sequence for JB is the prefix of w(0) that
corresponds to sequence 6: acεεcεaεc. The second input se-
quence is w(1). Note that it is necessary to pad the end of
the shorter of the two input sequences with εs to ensure that
they are of the same length. In this example, the first input
sequence has eight additional εs added to its end. Then we
have the following path in JB that accepts the first input se-
quence by applying, in order, rules 3, 1, 6, 18, 1, 6, 3, 18, 1,

10:⊤
(a,a)
→ ⊤

(c,ε)
→ (Left, c)

(ε,c)
→ ⊤

(ε,ε)
→ ⊤

(c,ε)
→ (Left, c)

(ε,c)
→ ⊤

(a,a)
→ ⊤

(ε,ε)
→

⊤
(c,ε)
→ (Left, c)

(ε,a)
→ ⊥. Once the final state is reached, rule 5 is re-

peatedly applied until the end of the inputs are processed. Thus,
the accepted sequence is in the communication language.
Table 2
The set of transition rules for transducer JB where e, f , g ∈ Σ , Σ+

= Σ∗
− {ε}

and q ∈ Q .

1. ⊤
(e,ε)
→ (Left, e)

2. ⊤
(ε,e)
→ (Right, e)

3. ⊤
(e,e)
→ ⊤

4. ⊤
(e,f)
→ ⊥, (e ≠ f)

5. ⊥
(x,y)
→ ⊥, x, y ∈ Σε

6. (Left, f)
(ε,f)
→ ⊤

7. (Left, z)
(e,ε)
→ (Left, ze) z ∈ Σ+

8. (Left, fz)
(e,f)
→ (Left, ze) z ∈ Σ∗

9. (Left, fz)
(ε,f)
→ (Left, z) z ∈ Σ+

10. (Left, fz)
(ε,g)
→ ⊥ (f ≠ g), z ∈ Σ∗

11. (Left, fz)
(e,g)
→ ⊥ (f ≠ g), z ∈ Σ∗

12. (Right, e)
(e,ε)
→ ⊤

13. (Right, z)
(ε,f)
→ (Right, zf) z ∈ Σ+

14. (Right, ez)
(e,f)
→ (Right, zf) z ∈ Σ∗

15. (Right, ez)
(e,ε)
→ (Right, z) z ∈ Σ+

16. (Right, ez)
(g,ε)
→ ⊥ (e ≠ g), z ∈ Σ∗

17. (Right, ez)
(g,f)
→ ⊥ (e ≠ g), z ∈ Σ∗

18. q
(ε,ε)
→ q

Fig. 4. Building a communication protocol w.r.t u. We denote by C[W] a
synchronized product of all the components displayed in the diagram, where W
is a place holder that corresponds to an automaton that generates a language over
an alphabet of labels.

5. Mind the gap

5.1. An infinite mind-the-gap automaton

A graphical interpretation of the interaction of the three
componentswe define for building a communication protocolw.r.t
u ∈ L−K is provided in Fig. 4. The systemweworkwith, denotedby
C[W], corresponds to the synchronized product of the components
W , JA, P , P ′ and JB in the following way. We take the Cartesian
product of the transition relation restricted to transitions such that
the outputw(0) ofW is equal to the input ofJA, the output ofJA is
equal to the input toP , the outputw(j) ofW is equal to the input to
P ′, and the output fromP is equal to the first input toJB , whereas
the output from P ′ is equal to the second input to JB . Note that W
is a place holder for any automaton that generates a language over
the alphabet of labels. For our infinite mind-the-gap automaton,
we use Uσ for W .

By construction, marked sequences in the language of Uσ

represent violations of co-observability. Let w be a marked
sequence in L(Uσ). Thus w(0)σ ∈ L − K and for all j ∈ Ic(σ),
w(j)σ ∈ K and Pj(w(0)) = Pj(w(j)). We have u = w(0) and
v = w(j). It is supervisor i that will be the sender of information
about this particular violation of co-observability. We then want
to identify relevant prefixes of u (i.e., ones that end in events that
are observable to the sender and not to the receiver). Recall that

2370 L. Ricker, B. Caillaud / Automatica 47 (2011) 2364–2372
Fig. 5. An automaton that when transformed into Uσ generates sequences that
produce an infinite number of states in JB .

the transducers P and P ′ implement the projection operator P ,
where we denote the result of P(t) by t̃ . Finally, a prefix u′ is
in the communication language if the left quotient of P(u′) with
P(u′) ⊓ P(v) is non-empty, as calculated by JB . A similar diagram
can be constructed for a communication language w.r.t v ∈ K .
The complete communication language (for supervisor 2) for the
example in Fig. 1 consists of the sequences w(2) that reach any of
the eight states in Uσ with an outgoing transition of ⟨c, c, c⟩.

The difficulty with the output from Uσ is that the input to
transducer JB is not synchronized. That is, when JB is processing
pairs of letters, JB has to perform the matching of the two
sequences. It is possible that JB will require unbounded memory
to store all the observations seen prior to the matching of two
events. For example, suppose that we expand ML (and MK) in
Fig. 1 so that we introduce a new initial state 0′ and add two
new transitions δ(0′, c) = 0′ and δ(0′, b) = 0, as shown in
Fig. 5. Let the two sequences for which we want to find the
longest common prefix be crbcb and cr

′

bab. Recall that these two
sequences are extracted from some word w in L(Uσ), where w(0)
projects to the former sequence and w(1) projects to the latter, by
discarding occurrences of ε. Since supervisor 1 does not observe
c, the encoding of cr

′

bab as w(1) can be chosen to start with
cr

′

εr . The resulting effect is that an arbitrarily large set of states
of the form (Right, cr

′′

), with r ′′
≤ r ′, can be reached. Hence the

set of reachable states is infinite. This is clearly not desirable for
the effective synthesis of a communication protocol, and we must
somehow restrict Uσ so that it generates a relation that will reach
only finitely many states of JB .

5.2. A finite mind-the-gap automaton

Because co-observability is a language-theoretic property, we
now study language-theoretic properties of Uσ . It will be useful
to prove certain properties of Uσ so that we can perform the
appropriate transformation on the input to JB . In particular, we
are interested in the step property of step transition systems (Stark,
1989) and their relationship to Mazurkiewicz trace languages
(Mazurkiewicz, 1977) and, more precisely, generalized trace
languages (Hoogers, Kleijn, & Thiagarajan, 1995).

Definition 5 (Adapted From Stark (1989)). Given a deterministic
transition system M = (Q , q0, A, δ), where Q is the state set, A is
an alphabet of labels, and δ:Q × A → Q is the transition function.
Transition system M satisfies the step property if it ensures
that transitions with non-atomic labels can be decomposed into
arbitrary sequences of decompositions of the label. Formally,

(Axiom 1) ∀q1, q2 ∈ Q , ∀ℓ, ℓ′
∈ A, δ(q1, ℓ) = q2 and

ℓ′
≤ ℓ ⇒ ∃q3 such that δ(q1, ℓ′) = q3 and δ(q3, ℓ \ ℓ′) = q2.

Independent transitions originating from the same state may be
merged:

(Axiom 2) ∀q1, q2, q3 ∈ Q , ∀ℓ1, ℓ2 ∈ A, δ(q1, ℓ1) = q2
and δ(q2, ℓ2) = q3 and ℓ1|ℓ2 ⇒ δ(q1, ℓ1 ∨ ℓ2) = q3.

Fig. 6 illustrates the step property.
Fig. 6. The step property of deterministic transition systems: (a) Axiom 1 of
Definition 5; (b) Axiom 2 of Definition 5.

Fig. 7. Automaton N for the example from Fig. 1. Key: Ě = ⟨a, a, a⟩, ⟨b, b, b⟩, ⟨c, c,
c⟩, ⟨σ , σ , σ ⟩; Ď = ⟨b, b, b⟩, ⟨c, c, c⟩, ⟨σ , σ , σ ⟩; t = ⟨a, a, a⟩, ⟨b, b, b⟩, ⟨σ , σ , σ ⟩;
and ⋆ = ⟨b, b, b⟩, ⟨σ , σ , σ ⟩.

The language of a transition system with the step property is
a generalized trace language (Hoogers et al., 1995), generalizing
Mazurkiewicz trace languages (Mazurkiewicz, 1977), and is
defined as follows.

Recall that a congruence ∼ is an equivalence relation such that
for all ℓ, ℓ′, ℓ′′, if ℓ′

∼ ℓ′′ then ℓℓ′
∼ ℓℓ′′. Let ∼ be the least

congruence on A∗ such that: ∀ℓ, ℓ′
∈ A, ℓ|ℓ′

⇒ ℓℓ′
∼ ℓ′ℓ and

ℓ ≤ ℓ′
⇒ ℓ′

∼ ℓ · (ℓ′
\ ℓ). Let ≃ be the least congruence on A∗

such that ∀ℓ, ℓ′
∈ A, ℓ | ℓ′

⇒ ℓℓ′
≃ ℓ′ℓ.

Definition 6 (Adapted from Mazurkiewicz (1977) and Hoogers et al.
(1995)). D ⊆ A∗ is a trace language iff it is closed under ≃. D ⊆ A∗

is a generalized trace language iff it is closed under∼:∀w ∈ D, ∀z ∈

A∗ w ∼ z ⇒ z ∈ D.

It is straightforward to check thatUσ has the step property and that
its language is a generalized trace language, with relation | as the
independence relation.

Proposition 1. Uσ is a step transition system.
Proof. Since Uσ is the product of sequential components, Axiom
1 of Definition 5 holds since every non-atomic transitions can be
decomposed as in Fig. 7(a).

Note that two transitions in Uσ of the form (q1, ℓ1, q2) and
(q2, ℓ2, q3) such that ℓ1|ℓ2 alter disjoint components of the state
vector. Hence, there is a third transition (q1, ℓ1 ∨ ℓ2, q3), thus
satisfying Axiom 2 of Definition 5. �

It is the case that the language of a step transition system is a
Mazurkiewicz trace language, whenever labels are decomposed
into arbitrary sequences of atoms. Then we can compute a normal
form called Cartier–Foata Normal Form (CFNF) as presented in
Cartier and Foata (1969).

L. Ricker, B. Caillaud / Automatica 47 (2011) 2364–2372 2371
Definition 7. A word w = ℓ1 . . . ℓk ∈ A∗, where A is the alphabet
of labels, is in Cartier–Foata Normal Form iff ∀i = 1, . . . , k −

1, ∀ℓ′
∈ A, ℓ′
 ℓi+1 or ℓi ̸ | ℓ′.

Intuitively, words in CFNF correspond to greedy behaviors of the
system, where no label belonging to step ℓi+1 can be moved into
step ℓi.

When the language of Uσ is in CFNF, the effect is to have
performed a pruning of transitions in Uσ so that any sequence of
the prunedUσ will be in CFNF. Note that this pruning depends only
on the elements in the alphabet of labels, and not on the state of
the plant. We will show why this leads to a bound on the memory
required to compute JB .

Since L(Uσ) is a generalized trace language, we can restrict Uσ

so that its language is in CFNF. This effectively breaks cycles in Uσ

that could cause divergence of the size of reachable states of JB

and leaves only states that require a boundedmemory. This implies
that only finitely many states of JB remain reachable when Uσ is
in CFNF.

To compute the CFNF of Uσ we need to compute one further
automaton,N , based only on labels, that recognizeswords in CFNF:
N = (Q N , qN0 , A, δN , FN), where Q N

= 2I0 ; qN0 = I0; A is the
alphabet of labels; FN

= Q N ; the transition function δN
⊆ Q N

×

A × Q N is defined as follows. A transition δN(q, ℓ) = q′ iff ∀ℓ′
∈ A,

ℓ′
≤ ℓ ⇒ (‖ℓ′

‖ ∩ q ≠ ∅) and q′
= ‖ℓ‖. Fig. 7 contains N for the

example in Fig. 1.
We denote the CFNF of Uσ , the product of Uσ and N , byUσ .

Theorem 1. C[Uσ] has finitely many reachable states.

Proof. States of C[Uσ] are tuples of the form (q, qA, qB), where
q is a state of Uσ , qA

∈ {0, 1} is a state of JA and qB is a state
of JB . W.l.o.g. we can omit the single-state transducers P and
P ′. For the sake of clarity, we will consider only labels of Uσ and
disregard the components of transition labels of C[Uσ] that do not
correspond to Uσ . Recall that in Uσ events that are observable by
the receiver (supervisor j) are synchronized with the occurrence of
these events in the plant. Thus, these events are encoded by a label
ℓ where ℓ(0) = ℓ(j) ≠ ε. This means that states of C[Uσ] of the
form (q, 0, (µ, z)), where µ ∈ {Left, Right} and z ∈ Σ∗ contains
observable events to the receiver (supervisor j), are not reachable
in C[Uσ].

Assume that there exists an infinite path λ in C[Uσ] that causes
a divergence of the state size (e.g., the length of z in qB).Uσ is finite
state; therefore, there exists a state q inUσ that is visited infinitely
often by λ. Thus λ can be factored as λ = βρλ′ (for finite words β

andρ) such that (q0, 0, ⊤)
β
�(q, 0, (µ, z0))

ρ
�(q, 0, (µ, z1)),where

z0, z1 ∈ Σ∗, |z0| < |z1|, and µ ∈ {Left, Right}. In particular,
word ρ defines a cycle in Uσ , as it returns Uσ to q. This cy-
cle can be iterated to form an ultimately periodic word βρω

that also causes a divergence of the state sizes in C[Uσ]. Thus

(q0, 0, ⊤)
β
�(q, 0, (µ, z0))

ρ
�(q, 0, (µ, z1))

ρ
�

(q, 0, (µ, z2)) . . . , where |z0| < |z1| < |z2| < · · ·, µ ∈

{Left, Right} and ∀k ≥ 0, zk is unobservable to the receiver.
By symmetry and w.l.o.g., assume that µ = Left . Given a word

ρ = ℓ0ℓ1 · · · generated by C[Uσ], recall that ρ(k) = ℓ0(k)ℓ1(k) . . .
returns the kth component of each label in ρ. Inequality |z0| < |z1|
implies that in ρ, the plant (component 0) produces more events
than the receiver (supervisor j) believes have occurred:

|ρ(0)| > |ρ(j)|. (2)

W.l.o.g. assume that |z0| > |ρ(0)|. This implies that ρ may not
contain any observable events w.r.t the receiver (supervisor j).
Thus, ρ(j) and ρ(0) are unobservable to the receiver. Inequality (2)
implies that the last label of ρ commutes with one atom of the first
label of ρ. Thus ρ ·ρ is not in CFNF. This contradicts the assumption
that every path inUσ is in CFNF. Hence no ultimately periodic path
ofUσ causes state size divergence. Therefore, there exists a bound
on the size of states reachable inC[Uσ] andC[Uσ]has finitelymany
reachable states. �

6. Conclusion

We have defined the mathematical formulas required to cal-
culate a finite state machine that defines a more comprehensive
communication language for a specific class of decentralized
discrete-event control problems (e.g., control with synchronous
communication). In its current form, the corresponding computa-
tional complexity of our procedure is daunting; however, we are
investigating efficient implementations of the mathematical for-
mulas presented here for the construction of our communication
language.

There have been several studies of communication with
bounded andunbounded delay (e.g., Hiraishi (2009) and references
therein); however, this literature assumes that every observation
is broadcast by the observing supervisor. Regardless of the
communication language, there is no guarantee that a solution
exists in the presence of unbounded delay. We can use C[Uσ]

to identify an appropriate communication sublanguage where
the control objective is met under restricted conditions of either
known finite delay or delay with a known upper bound, but this
remains as future work.

Whilewe can now calculatemore than just the ‘‘first’’ and ‘‘last’’
possible places to communicate in the plant language, we offer
no suggestions for which communication sublanguages will form
more desirable communication protocols. At the conclusion of our
procedures, we have, for all violations of co-observability for (u, v)
w.r.t σ , a communication language that contains all sequences
such that each identified communication allows the receiver to
distinguish uσ from vσ . At this point it is up to the designer of the
communication protocol to choose a communication sublanguage
based on properties of interest. These properties could include
some notion of optimality (either quantitative or qualitative);
however this discussion extends beyond the scope of the paper.

References

Arnold, A. (1994). Finite transition systems. Prentice–Hall.
Barrett, G., & Lafortune, S. (2000). Decentralized supervisory control with

communicating controllers. IEEE Transactions on Automatic Control, 45(9),
1620–1638.

Cartier, P., & Foata, D. (1969). Problèmes combinatoires de permutations et
réarrangements. Lecture Notes in Mathematics, 85.

Hiraishi, K. (2009). On solvability of a decentralized supervisory control problem
with communication. IEEE Transactions on Automatic Control, 54(3), 468–480.

Hoogers, P.W., Kleijn, H. C.M., & Thiagarajan, P. S. (1995). A trace semantics for petri
nets. Information and Computation, 117, 98–114.

Mannani, A., & Gohari, P. (2008). Decentralized supervisory control of discrete-
event systems over comunication networks. IEEE Trans. Autom. Control, 53(2),
547–559.

Mazurkiewicz, A. Concurrent program schemes and their interpretation. Technical
report, Aarhus University DAIMI PB-78, 1977.

Ramadge, P. J., & Wonham, W. M. (1987). Supervisory control of a class of discrete
event processes. SIAM Journal on Control and Optimization, 25(1), 206–230.

Ricker, S.L. Knowledge and communication in decentralized discrete-event control.
Ph.D. thesis, Queen’s University, 1999.

Ricker, S.L., & Caillaud, B. Mind the gap: expanding communication options in
decentralized discrete-event control. In Proc. 46th IEEE Conf. Decision Contr.,
pp. 5924–5929, 2007.

Rudie, K., & Willems, J. C. (1995). The computational complexity of decentralized
discrete-event control problems. IEEE Trans. Autom. Control, 40(7), 1313–1319.

Rudie, K., & Wonham, W. M. (1992). Think globally, act locally: decentralized
supervisory control. IEEE Trans. Autom. Control, 37(11), 1692–1708.

Stark, E. W. (1989). Concurrent transition systems. Theoretical Computer Science,
64(3), 221–269.

van Schuppen, J. H. (2004). Decentralized control with communication between
controllers. In Unsolved problems in mathematical systems and control theory
(pp. 144–150). Princeton University Press.

Wang, W., Lafortune, S., & Lin, F. (2008). Minimization of communication of event
occurrences in acyclic discrete event systems. IEEE Trans. Autom. Control, 53(9),
2197–2202.

2372 L. Ricker, B. Caillaud / Automatica 47 (2011) 2364–2372
Laurie Ricker received her Ph.D. in 2000 from Queen’s
University (Canada). She was an ERCIM postdoctoral fel-
low in 1999–2000. Since 2001, she has been at Mount
Allison University, where she is an Associate Professor
in the Department of Mathematics & Computer Science.
She holds adjunct appointments at Concordia University
(Department of Electrical & Computer Engineering) and
McMaster University (Department of Computing and Soft-
ware). Her research interests include distributed systems
and the control of decentralized discrete-event systems.
Benoît Caillaud is a researcher at INRIA and head of
the S4 embedded systems analysis team at INRIA-Rennes.
He has published over 40 papers in refereed journals or
conferences. His areas of interest include distributed and
embedded systems design and hybrid systems modeling.

	Mind the gap: Expanding communication options in decentralized discrete-event control
	Introduction
	Background
	Supervisory control
	Labels
	Transducers

	Decentralized control and communication
	The construction of a communication language for decentralized control
	A finite automaton to detect violations of co-observability
	A non-deterministic finite transducer to find particular prefixes of a sequence
	An infinite transducer to find the left quotient of a sequence s with the longest common prefix of s and t

	Mind the gap
	An infinite mind-the-gap automaton
	A finite mind-the-gap automaton

	Conclusion
	References

