HABILITATION A DIRIGER DES RECHERCHES

présentée devant

L'Université de Rennes 1
Spécialité : informatique

par

Benoit Caillaud

Analyse, contrdle et synthése des systemes concurrents
Analysis, control and synthesis of concurrent systems

Contents

1 Introduction 5
1.1 Introduction. 5
1.2 Modular design of embedded systems with interface thearies 7

1.2.1 Introduction 7
1.2.2 Aquickreviewof industryneeds. 7
1.2.3 Anatomy of aninterfacetheory. 8
1.2.4 Avariety ofinterface theories 11
1.3 Analysis and design of heterogeneous systems 11
1.4 Synthesis and control of concurrentsystems. 12
1.5 organizationofthedocument. L 13

| Interface Theories for System Design 15

2 Modal interfaces 17
2.1 Introduction. 18
2.2 Modal specifications. 20

221 TheFramework 20
2.2.2 Multiple Alphabets. 21
2.2.3 Implementation and refinement. 22
2.2.4 Operations on modal specifications. 24
2.3 Interface Automata. 26
2.4 Onmodallnterfaces. e 28
241 Profiles. 28
2.4.2 The framework of modal interfaces 29
2.4.3 Operationson modal interfaces. 29
2.4.4 On compatibility for modal interfaces. 30
2.5 Conclusionand futurework. L 35

3

Constraint Markov Chains 37
3.1 Introduction. e 37
3.2 Constraint Markov Chains. 39
3.3 Consistency, Refinementand Conjunction 42
3.31 Consistency e e 42
3.3.2 Refinement 43
3.3.3 Conjunction 44
3.4 Compositional Reasoning. e 44
3.5 DeterministicCMCS 46
3.6 Constraints and Decidability 48
3.7 Related Work and ConcludingRemarks. 49
Heterogeneous Systems 51
Asynchronous Implementation of Synchronous Specifications 53
4.1 Introduction. 55
4.1.1 Informal discussion oftheissues 56
4.1.2 Previouswork 57
4.1.3 Contribution 58
414 Outline e 59
42 Themodel 59
4.2.1 \Variablesandlabels. L L 59
422 TraCesS o e 60
4.2.3 Generalized concurrent transition systems. 61
4.2.4 1/O causality. Channelsandclocks 62
4.2.5 Synchronoustransitionsystems. 63
4.2.6 Synchronous and asynchronous composition. 64
4.2.7 Product states and producttraces. 65
4.2.8 Projection operators. Traces ofa GALS system. 66
4.3 Modelling and correctness of GALS implementations. 67
43.1 Examples. 67
4.3.2 Formal correctness criterion.o 70
4.3.3 Modelingissues. 71
4.4 Correctdesynchronizationcriteria. 72
4.4.1 Microstep weak endochrony. 72
4.4.2 Comparison with macrostep Weak Endochrony. 77
443 Comparisonwithrelatedmodels 78
444 Correctnessresults. Lo 80
4.5 Conclusion. Futurework 83

451 Futurework 83
5 The Non-Standard Semantics of Hybrid Systems 85
5.1 Introduction. e 86
5.2 Non-standardanalysis. 89
5.2.1 Construction of non-standarddomains. 90
5.2.2 Non-standardrealsandintegers. 91
5.2.3 Integrals and differential equations L. 91
5.2.4 Semantic domain for hybridsystems 94
5.3 The SimpleHybrid Formalism. 94
5.4 Non-standard semantics 97
541 ThesemantiCsS. i v i i 97
5.4.2 Backtotheexamples. 98
5.5 Constructive semantics 99
5.6 Off-the-shelfcompilers 102
5.7 Hittingballsexample. e 103
5.8 Experimentalresults. e 104
581 UsingSimulink. 104
5.8.2 Using the Sundials-based Prototype 107
59 Relatedwork. 109
5.10 Conclusion e 110
[l Synthesis and Control of Concurrent Systems 115
6 Distributing finite automata through Petri net synthesis 117
6.1 Introduction. 118
6.2 The Petri Net Synthesis Problem. 120
6.2.1 RegIONS. 121
6.2.2 Representation Theorem. 125
6.3 A Polynomial Time Synthesis Algorithm. 127
6.3.1 ComputingTensions i 128
6.3.2 Solving the SeparationProblems 130
6.4 Adding Distribution Constraints. 133
6.4.1 Re-examining states separation., 135
6.4.2 Re-examining event/state separation. 136
6.5 From Distributable Nets to Distributed Automata. 136
6.5.1 Simple Distribution Scheme, 136
6.5.2 Optimized Distribution Scheme 139
6.6 Case Studies in Distributing Reactive Automata 142

6.6.1 Mutual Exclusion 143

6.6.2 A Simplified INRES Protocol. 145
6.7 ConcClusion e e 148
Concurrent secrets 153
7.1 Introduction. 153
7.2 Secrets, concurrent secrets, and the control problem 155
7.3 Maximal permissive control enforcing concurrentopacity. 156

7.3.1 A case where the closure ordinalfofe, S) is transfinite. 157

7.3.2 Acasewher8upK(L,S)isnotregular 158
7.4 Controlenablingand-trees L 158
7.5 Concurrent secrets with regular opacitycontrol. 164
7.6 conclusion e 168

Chapter 1

Introduction

Résumé : Mes travaux de recherche ont pour principal objet la réalisation pas dethodes
effectives des systémes réactifs et répartis, en partant de spécificadidrait niveau, partielles
et hétérogénes. Je me suis attaché a concenvoir des méthodes, atdbrales et des outils per-
mettant la conception ou la synthése de logiciel réactif a partir de la comlunaie plusieurs
spécifications, décrivant le comportement attendu du systéme, sesoeuppoints de vues : fonc-
tionnel (synchronisation, conflit, communication), controle (sOretéigatadilite, vivacité), archi-
tecturaux (placement, partitionnemnt, ségrégation), quantitatifs (tempémmse, colt de com-
munication, disponibilité, fiabilit€). Mes travaux de recherche se déclgmon trois axes détaillés
dans les parties suivantes : (I) conception par contrats, théorie desacts modales (chapit®

et stochastiques (chapitr@ ; (I) systémes hétérogenes, réalisations partiellement asynchirone
de spécifications synchrones (chapiilieet modélisation hybride en utilisant des nombres réels
non-standards (chapitrB) ; (Ill) synthése et contrble des systemes concurrents et comamisic
(chapitres6 et 7).

1.1 Introduction

My research interests cover the realization by algorithmic methods of reaatd) distributed
systems from partial and heterogeneous specifications. | have coadritauthe design of meth-
ods, algorithms and tools capable of synthesizing reactive softwareoineror several incomplete
descriptions of the system’s expected behavior, regarding functionsfigironization, conflicts,
communication), control (safety, reachability, liveness), deploymatititeccture (mapping, par-
titioning, segregation), or even quantitative performances (response donemunication cost,
throughput).

These techniques are better understood on fundamental models, sudomsta, Petri nets,
event structures, their timed or stochastic extensions. The results obtairiedse basic models

5

are then adapted to those realistic but complex models commonly used to desigtdechiand
telecommunication systems.
My scientific objectives can be summarized as follows:

A focus on a precise type of applications:The design of real-time embedded software to be de-
ployed over dedicated distributed architectures. Engineers in this fietdifaximportant
challenges. The first one is related to system specification. Behavesatiptions should
be adaptable and composable. Specifications are expressed asmeqtsren the system
to be designed. These requirements fall into four categories: (i) fumtt{sgnchroniza-
tion, conflict, communication), (ii) control (safety, reachability, livenegé§) architectural
(mapping, segregation) and (iv) quantitative (response time, communicatsdnthrough-
put, etc). The second challenge is the deployment of the design on a dedrdnghitecture.
Domain-specific software environments, knownnaisldlewareor real-time operating sys-
temsor communication layersare now part of the usual software design process in industry.
They provide a specialized and platform-independent distributed emvéotto higher-level
software components. Deployment of software components and seshicekl be done in
a safe and efficient manner.

A specific methodology: The development of methods and tools which assist engineers since the
very first design steps of reactive distributed software. The main diffiezithe adequacy
of the proposed methods with standard design methods based on compamdmmdel
engineering, which most often rely on heterogeneous formalisms andeeuurect-by-
construction component assembly.

A set of scientific and technological foundations:Those models and methods encompassing (i)
the distributed nature of the systems being considered, (ii) true concyrae the system
openness to a non-deterministic or even stochastic environment, and (itijmea

My contributions consist in methods, algorithms and tools producing distribatedive soft-
ware from partial heterogeneous specifications of the system to beesyzgd (functionality, con-
trol, architecture, quantitative performances). This means that séetesbgeneous specifications
(for instance, sequence diagrams and state machines) can be combatgzkd (are the specifica-
tions consistent?) and mapped to lower-level specifications (for instemmanunicating automata,
or Petri nets).

The scientific approach of my research work begins with a rigorous mgdafiproblems and
the development of sound theoretical foundations. This not only allowsoteeghe correctness
(functionality and control) of the proposed transformations or analysighis can also guarantee
the optimality of the quantitative performances of the systems produced witm&tiiods (com-
munication cost, response time).

Synthesis and verification methods are best studied within fundamental medefsas au-
tomata, Petri nets, event structures, synchronous transition systeers, rébults can be adapted
to more realistic but complex formalisms, such as those developed in the reahodei-based
design(for instance the SysML based HRC formalism designed during the SPEED&ean

project [L76, 68]). My research work is divided in three tracks reviewed below: laiszftheories
supporting modular methods in embedded system design; Analysis and désigierogeneous
systems; Synthesis and control of concurrent systems.

1.2 Modular design of embedded systems with interface theories

1.2.1 Introduction

The design of reusable components calls for rich specification formalisitts,wiich the
interactions of a component with its environment combines expectations witArgaas on its
environment. These are captured eitheraBgume/guarantee contrag3, 31], or by automata-
theoretic formalisms such as interface automd@. [In a recent work 149, 148 150, 157, we
have shown that both approaches can be unified in the realm of the mmitdde algebra. In this
context, we have investigated questions related to the composition and raftreegstem-level
and component-level requirements captured either as assume/guararitaets or modal speci-
fications. This has helped up to characterize the generic propertiesitiméeace theory should
have in order to support modular design methods, including top-down @twhi>up approaches
and arbitrary combinations of the two, as it is often the case in industridiqeac

1.2.2 A quick review of industry needs

In software engineer’s literature, the tepontractrefers to the set of specifications that de-
scribe what a system should guarantee under some assumption. Neyw@&ay perform system
design and integration by importing/reusing entire subsystems providediigneent suppliers. It
is crucial that the subsystems are desighed according to some rules; higtidights the impor-
tance of providing good notions of contracts. According to our undedgtg of industrial needs,
gained during the SPEEDS European projé& [L76], the following list of requirements applies
to the notions otontractandinterfacein the context of Embedded Systems.

Contracts as legal bindings

Complex embedded and reactive systems are generally developed umdérlayered OEM-
supplier chain. Hence, a contract-based methodology should offeisimo for formalizing the
technical part of contractual relations. This should be achieved lydiiring, for a considered
subsystem: 1/ its context of usassumptions and 2/ what is expected from the subsysteumsf-
antee}.

Making assumptions and guarantees explicit enables design in isolatioadlitdtes maturity
assessment of the system under development. Contracts as legal bisdilsgsrelevant — with a
milder understanding of the term “legal” — for the development of diffeseiisystems or different
aspects of the system, by different teams of the same company.

Component based development of complex systems

Complexity can be addressed by decomposing systems into components raopdifkrent
aspects. The consequences of this can be articulated as follows.

1. When developed under a contract-based methodology, subsystarosiponents should
be designable in isolation, by including the needed information regardirgiigp@guture
contexts of use. Subsystems or components should be substitutable to ¢odicapons.
Moreover, their integration should raise no problem.

2. Large systems are concurrently developed for their diffemspectsor viewpointsby dif-
ferent teams using different frameworks and tools. Examples of symt@sinclude the
functional aspect, the safety or reliability aspect, the timing aspect (whiamisat in both
time-triggered and event-driven multi-tasking models of computation and comatiamy;
and memory and power aspects. Each of these aspects requires $@en#ivorks and tools
for their analysis and design. Yet, they are not totally independent therranteract. The
issue of dealing with multiple aspects or multiple viewpoints is thus essential. This implies
that several contracts are associated with a same system, sub-systemponent, namely
at least one per viewpoint. These contracts are to be interpreted in actvguwvay.

3. The need for supporting conjunctive contracts also follows from theent practice in
which early requirement capture relies on Doors or even Excel foratmite many indi-
vidual requirements. These requirements typically consist of English taxi;fermal lan-
guages 48] whose sentences are translatable into predefined behavioral patiemsen
graphical scenario languages3[110.

Design processes and systems architectures

It is highly desirable that designing by contracts has the mildest possibletimp#te design
flow and on the possible choices regarding specification and systeliteatales — each OEM
has its own design flow that is part of its competitive advantage. Contraetilbdesign should
support top-down and bottom-up navigation between mixed architectusehefystems or com-
ponents described either as sets of contracts or as implementations. Gitgcaures must be rich
enough to support virtual prototyping with design space exploration. Bdsigontracts should
also comply with established formalisms or notations used in different steps dégign flow. Dif-
ferent industrial sectors advocate different system architectunesgample is AUTOSAR in the
automotive industry or the proprietary IMA (integrated modular avionicshigectures proposed
independently by the two main aircraft manufacturers.

1.2.3 Anatomy of an interface theory

Because of the requirements detailed above, an interface theory is comopdigtisfy several
generic algebraic properties. First of all, an interface theory deals Wjdtts of two sortsinter-
facesthat are used to capture system-/component-wide requiremenisiplanentationswhich

are actual realizations, or models of them, that satisfy the requirementsezhptuan interface. In
most of existing worksransition systemfs], formal languages and their weighted, timed or prob-
abilistic extensions are used to define implementations. However, for the tinge erconsider
implementations as abstract objects and review the expected algebraidipsopkinterfaces. We
assume that we are givensatisfactionrelation relating implementations to interfaces. Imple-
mentations are denoted By, NV, .. ., while interfaces are denoted 6y, D, The satisfaction
relation is denoted bj= and writeM = C whenever implementatiof/ satisfies interface’.

The satisfaction relation subsumes a refinement preorder relation oragaerfInterface’
refines interface) if and only if the set of implementations 6éf is included in the set of imple-
mentations ofD:

C<Diff YM, M}=C = MED

Refinement is the corner-stone of all interface theories found in the literg8 30, 31, 138
122, 121], including the two theories presented in chapasnd3 and their corresponding original
publications 50, 152, 153 57]. However, refinement is a semantic relation that turns out to be
undecidable or untractable, in a few instances of interface theoriese &teeven cases where the
decidability of the refinement relation is unknown. For all these reasongyitbe necessary to
give up completeness (the implicatioviM/, M = C = M = D) = C < D), at the benefit
of decidability and computational complexity. An alternative approach is tacemterfaces to a
sub-class where refinement is not only decidable but can be chedtted reasonable computa-
tional complexity. In our work on modal interfaces and constraint Madt@ins, we have resorted
to this this second approach and assumed interfaces to be deterministic.

Methodological requirements call for supporting conjunctions of intesacSome theories
provide a conjunction operator for this purpose, but some theoriestdinterface automata and
general modal transition systems, for instance). In our work, the cotijuroperator is instrumen-
tal to the theories we have proposed, whether they are assume/guaanitaets, modal interfaces
or constraint Markov chains. This operator satisfies the propertiesogi@al conjunction opera-
tors:

VM,M =CAD <= MECandM =D

To reflect the hierarchical decomposition of the system into sub-systethamponents, im-
plementations on one hand, and interfaces on the other hand, must bpesiwith commutative
and associativetructural compositioroperators that we denote by and ®, respectively. The
parallel compositioroperatorx applies to implementations and often represents a partially syn-
chronized product of transition systems, or the set theoretic intersedttamm dormal languages.
Remark that concerning the probabilistic framework presented in chiZgiarallel composition is
defined thanks to a very strong assumption of stochastic independegres wé consider thear-
allel compositionas an abstract commutative and associative internal composition opérator.
counter-part of parallel composition at the level of interfaces is theymtooperators. Product

10

C ® D is the least interface capturing all possible pairwise parallel compositiongptémenta-
tions of the two interface€’ and D:

C®D = min{X|VM,N, M |=CandN = D impliesM x N = X}

In essence, produt€ ® D is the strongest interface capturing all possible parallel composi-
tions of implementations of’ and D. Hence, the product operator allows for independent im-
plementability, meaning that, given a decomposition® Cy < D, interfaces”; andCs can be
realized independently. Given afy; = C; and anyM, = Cy, M1 x My = D.

Assume/guarantee contract reasoning, component reuse and intakedesign methods call
for a third composition operator. Indeed, an assume/guarantee cofrae} captures all im-
plementations that satist# under the assumption thait holds. If A andG are logical proposi-
tional formulae, then the contract should be interpreted as the logical impticatie- G. This
explains why in the language theoretic assume/guarantee contracts @evéoghe SPEEDS
project B0, 31], a contract is identified to its maximal implementatidfy 4 oy = G U —A. In
the case of modal interfaces, contradt G) should be understood as the residual (or quotient)
modal interfac§ G @ A)/A. This can be generalized by assuming that interface theories admit a
residuation operatof with the following property:

C/D =max{X|D® X <C}

Thanks to this operator, one can Kill two birds with one stone. Indeeidu@sn can be ap-
plied in the context of component reuse. Assume an existing dédigs to be reused in order
to realize interface”’. For complexity reasons, but also perhaps in order to protect intellectual
property,M is only known through its more abstract interfd@eln essence)/ is an arbitrary im-
plementation such that/ = D. The designer has to complete his design with an implementation
N that acts as an adapter bf so thatM x N = C. SinceM is not revealed to the designer, his
only resort is to reduce the design problem to the constructiom\dBach thatV = C/D.

In a similar way residuation is instrumental to incremental design methods wisststean-
level interfaceC) is realized by a set of component-level interfaées. .. D,,, resulting from a
sequence of design steps:

C; = Co/Dy
Cy = C1/Dy

Cnfl = Cn72/Dn71
Dn = Cn—l

This completes the abstract definition of an interface theory: Satisfactifanement, product,
conjunction and residuation are the five main constituents of an interfacg.tiiéere are however
many possible instances of interface theories.

11

1.2.4 A variety of interface theories

We have explored four of interface theories, namely language theosstion@/guarantee con-
tracts R8], probabilistic assume/guarantee contra@s, B1], modal interfaces 151, 152, 153
(presented in Chapt@) and constraint Markov chainST] (presented in Chapt&).

Inspired by the methodological requirements and the contract-based ngpfiehmalism de-
veloped in the realm of the SPEEDS European project (2006—2010pakel interface theory
unifies R. Alur’'s and Th. Henzinger's Interface Automat&][and of J.-B. Raclet’'s Modal Speci-
fications [L50, 152. This chapter is based on a paper to appear in Fundamenta Informdtiche [

An implementation of the modal interface algebra is currently being develdjexinterSMV
tool extends the syntax of the NuSMV model-checker and is based on 8gr(fddaBDD) rep-
resentations of the set of realizations of a modal interface. InterSMV sitowerify (check for
the consistency, satisfaction or refinement) compositions of modal-intsrfa@ssume/guarantee
contracts

Constraint Markov chains are an attempt to transpose the principles dhageheories to the
stochastic setting of discrete time Markov chains. This is achieved by coingjdegeneraliza-
tion of Markov Chains, where probability distributions are not given bigesion, but rather, as
solutions of a set of constraints.

Remark that the latter theory is not a proper interface theory, as the exdstémesiduals is
an open problem. Indeed, it is not possible to mimic the construction of résidsed in modal
interfaces and the construction of constraint Markov chain residuatsse forlorn hope.

Publications related to this track57], [153, [83], [81],[157, [15Q, [29], [117, [31], [56],
[80], [151], [82], [24]

1.3 Analysis and design of heterogeneous systems

This track contributes to the extension along two orthogonal dimensions wEthestablished
synchronous programming paradigm. Research in this track has bded fethe challenge
embedded system designers have to face in order to reduce design Tostsse of a single
paradigm from system level engineering, downto the deployment of amdtaver a distributed
asynchronous architecture.

Synchronous programming has proved to be an appropriate paradighefdesign and im-
plementation of control and signal processing hardware/softwaretfiaraad range of applications
including plant supervision, transport vehicle control, automated ptmaugystems and consumer
electronics. Howether, It suffers from a very significant shortcomifige compilation of syn-
chronous programs into distributed software leads to slow and inefficieh¢ringmtations. The
root cause of this inefficiency comes from the need to recreate symgchaib the expense of a
high communication burden. However, synchrony is nothing more thanstreation that helps
engineers to write correct programs and understand how their prodrainase. Relaxing syn-
chrony is often a necessary step towards efficient distributed implemeistaGbapted presents

12

a theory where both synchronous systems, and particular asyncisrepstems (so-called weak-
synchronous systems) can be expressed, combined, analyzedafiortreed. Using the properties
of weak-endochrony and weak-isochrony, we have charactesidedidable class of synchronous
systems that can be desynchronized safely, without any need for addlitmmmunication. This
work generalizes lattency insensitive circu9[165 and embraces a larger class of systems, with
improved asynchrony and less costly communication.

Synchronous programming can be applied earlier at system level degign,a model of the
system needs to be build and analyzed. Hybrid modeling plays an importardtrthis stage
of design. Control systems have to be analyzed in the context of a consirmechanical/elec-
trical/hydraulic environment. In this context, synchrony is implied by the lawghgkics. This
explains why hybrid modelers such as Simuftrde Scicos §8] are based on this paradigm. Unfor-
tunately, some of them suffer from a lack of formal semantics and desipage to cope with the
extreme sensitivity of simulation tools to the correct parametrization of the eliffied equation
solvers. However, our focus is on another important aspect of hglygtem’s semantics: Syn-
chrony and causality between discrete events. Indeed, industry sdaiodés such as Simulink
or Modelica do not handle event simultaneity very well. This leads to simulatitfacs which
prediction and analysis actually require an in-depth knowledge of thachgbmpiler internals.
A constructive semantics for hybrid systems, proceeding by sucedgséinitesimal time steps, is
presented in Chaptér It is based on non-standard analysis, where infinitely many non-sthnda
real numbers are infinitely close to any given real number. This worktithedirst attempt to use
non-standard analysis in the context of timed or hybrid systei®® K0] or to analyze causality
and synchrony in reactive systen®5]. However, it is the first time a non-standard semantics is
used to address hybrid language design and compilation issues.

Publications related to this tracH30], [147], [143, [23], [19], [20], [14Q, [74], [14], [17],

(18], [21], 168, [147, [22]

1.4 Synthesis and control of concurrent systems

We have explored various techniques to synthesize optimal networksvohanicating au-
tomata. One of them is based on linear-algebraic Petri-net synthesis atggrithplemented in
the SYNET tool [9]. Based on this journal article, Chap®@details how distributed protocols can
be synthesized using Petri-net synthesis. The key idea is to decompasathesis problem in
two steps: Given the specification of a protocol as a finite automaton, (Desize a distributable
net, that is a Petri net where places and transitions are mapped to locdtiartistributed ar-
chitecture, and (ii) derive a set of communicating automata from the distributath While the
second step is automatic and straightforward, the first step is in esseoicgater assisted design
task, where the distributed Petri-net synthesis algorithm helps the desigregine the protocol
specification into a graph isomorphic to the marking graph of a distributabl@hetexistence and

1. http://ww. mat hwor ks. coni product s/ si mul i nk/

http://www.mathworks.com/products/simulink/

13

the automated computation of such a refinement is largely an open proble/fSe&em6.6.2for
a discussion of the issue.

We have explored the application of control-synthesis techniques in thextaf information
system security. We have considered the problem of optimal control segbiet information (a
language of system trajectories) are concealed within a system untlal plaservation from a set
of agents (potential attackers), meaning that no agent can gain knendédgt these secrets]].

A system capable of concealing secret informations is said to be opamqeityohas been in-
troduced by Mazaré and coauthors 88 47], where they consider the verification of opacity
properties. We have followed a different path, by considering theresfioent of concurrent opac-
ity properties as a supervisory control problem, where the issue is to ¢eprgsuoptimal control
enforcing a set of opacity properties on a systémg[11]. This is detailed in Chapter. This
chapter is based on our JDEDS papel] |

Publications related to this track55], [109, [11], [9], [50], [51], [159, [160Q, [8], [15], [54],
(52, [7], [53], [49]

1.5 organization of the document

The document is composed of three independent parts:l Barinterface theories, Pditon
heterogeneous system modeling, and Rardn supervisory control. Most chapters are indepen-
dent and self-contained. Only Chapteis not fully self-contained and is best understood after
reading Chapte.

14

Part |

Interface Theories for System Design

15

Chapter 2

Modal interfaces

Résumé :Les méthodes d’ingénierie des systemes employées dans l'industcienont ces der-
niéres années des évolutions sensibles, notament en adaptant dagueside conception par
composants issues de l'ingénierie du logiciel. Ces méthodes offrere: gt une plus grande
flexibilité du processus de conception, et permettent d’autre partatastés de conception paral-
leles. Les concepteurs sont alors amenés a modéliser, en courackption, les hypothéses faites
sur I'environnement d’un composant et par la suite, a vérifier le biethéade ces hypotheses. Il est
donc primordial de pouvoir modéliser non seulement les propriétépodementales du systéemes
a réaliser, mais aussi les hypothéses sous lesquelles ces proprigt@&nsacées. Ceci permet de
repousser ultérieurement la réalisation des composants, pour peenugttr analyse de la compo-
sition de ces composants, reposant uniquement sur la manipulatiosttiabons de composants,
appelées interfaces.

Les concepteurs sont donc amenés a manipuler deux sortes d'dbjelss réalisations (de
composants) et (ii) leurs interfaces. Réalisations et interfaces sontgglaraine relation de satis-
faction, qui définit quelles sont les réalisations correctes d’une interfaaceelation de satisfaction
permet de définir une relation de préordre sur les interfaces, dite relaoaffinement. La néces-
sité de pouvoir composer les modeles de conception implique que les iatedaiwent pouvoir
étre combinées selon plusieurs opérateurs de composition : la conjortg®mterfaces est re-
quise pour pouvoir combiner les différents points de vues d’un mémeosamt. La composition
paralléle et la définition des architectures requiert que les interfaces @uisitre composées a
I'aide d’'une operation de produit. Enfin, une opération de résiduatiomn ideerfaces est requise
pour pouvoir (i) définir des contrats hypothéses/garanties et (ii) recawles méthodes de concep-
tion incrémentale, ou il s'agit de réduire par étapes succéssives ugme de conception en une
suite de problemes de moindre difficulté.

Il existe de nombreuses instances de théories d’interfaces. L'untrel@le est présentée dans
ce chapitre, les interfaces modales, qui généralisent a la fois les spéoifisanodales, les contrats
hypothése/garantie et les automates d’interfaces. Ce chapitre abomediére approfondie les
propriétés algébriques générales des théories d’interfaces , cellantdefmces modales, les rela-

17

18

tions avec d’autres formalismes apparentés (contrats et automatesrthires) et les implications
qguant a leur utilisation comme outil support d’'une méthode de conceptiongénierie des sys-
temes.

2.1

Introduction

Nowadays, systems are tremendously big and complex, resulting fromsialaleng of sev-
eral components. These many components are in general designednsy vearking indepen-
dently but with a common agreement on what the interface of each compsimauit be. As a
consequence, mathematical foundations that allow to reason at the alestehof interfaces is a
very active research area. According to our understanding of tridluseeds, an interface theory
is at least subject to the following requirements:

1.

Satisfaction and satisfiability are decidabldnterfaces should be seen as specifications
whose models are its possible implementations. It should thus be decidableswhagrth
interface admits an implementation and whether a given component implemenénargiv
terface.

. Refinement entails substituabilitiRefinement allows one to replace, in any context, an in-

terface by a more detailed version of it. Refinement should entail substituafiiitierface
implementations, meaning that every implementation satisfying a refinement aldiesatis
the larger interface. For the sake of controlling design complexity, it isalgsito be able

to decide whether there exists an implementation satisfying two different ioéstfa his is
calledshared refinement

. Encompassing interfaces with dissimilar alphabé&smplex systems are built by combin-

ing subsystems possessing dissimilar alphabets for referencing posaréatdes. It is thus
important to properly handle those different alphabets when combinindaogs.

. Composition supports independent desifhe interface theory should also provide a com-

bination operator on interfaces, reflecting the standard composition of impiatiogis by,
e.g. parallel product. This operation must be associative and commutative tarnge@
independence in the development. Depending on the model, a notion of caifitpdtb
composition may also be considered, i.e., there can be cases where twossgatenot be
composed.

. Interfaces are closed under conjunctiolt.is the current practice that early requirements

capture relies on Doors Databases, or even Excel files containintplyassiny textual re-
guirements. Under the current practice, little formal support exists tol@dmeim. Moving
ahead can be envisioned by formalizing the notation used for individgairesments. This
can be, e.g., achieved by relying on so-called semi-formal langudggsyhose sentences
are translatable into predefined behavioral patterns according t@besvpoints. Alterna-
tively, graphical scenario languages could be considefgdi[L(. Composing viewpoints

19

within a given subsystem calls for the support of the concepbojunctionof interfaces in
order to combine requirements and check their satisfiability.

6. Interface quotient supports incremental design and component.réast but not least, a
quotienting operation, dual to composition is crucial to perform incremeetsid. Con-
sider a desired global specification and the specification of a preexigimganent; the
quotient specification describes the part of the global specificationgheins to be imple-
mented.

Building good interface theories has been the subject of intensive stiséies.g., 100, 78,
41,90, 94, 76, 79)). In this chapter we will concentrate on two models: ifitgrface automatf/ 8]
and (2)modal specificationgl19. Interface automata is a game semantics based variation of
input/output automata which deals with open systems, their refinement and siiotpaand put
the emphasis on interface compatibility. Modal specifications is a languagesticesmccount of
a fragment of the modal mu-calculus log82] which admits a richer composition algebra with
product, conjunction, and residuation operators.

In interface automata/B], an interface is represented by an input/output automadtsdd,[i.e.,
an automaton whose transitions are labeled wifut or outputactions. The semantics of such
an automaton is given by a two-player game:l#out player represents the environment, and an
Outputplayer represents the component itself. Interface automata do not eas®mpy notion
of model, because one cannot distinguish between interfaces and impléorentalternatively,
properties of interfaces are described in game-based lagigsATL [1], with a high-cost com-
plexity.

Refinement between interface automata corresponds to the alternatimgneiinrelation be-
tween gamed’), i.e, an interface refines another one if its environment is more permissivease
its component is more restrictive. Shared refinement is defined in ancatidnaner 5] for a par-
ticular class of interface$p]. Contrary to most interfaces theories, the game-based interpretation
offers anoptimistictreatment of composition: two interfaces can be composed if there exists at
least one environment (i.e., one strategy for the Input player) in whighcte interact together in
a safe way (i.e., whatever the strategy of the Output player is). This isedfas compatibility of
interfaces.

Modal specifications[19 correspond taleterministic modal automatae., automata whose
transitions are typed witmayandmustmodalities. A modal specification thus represents a set of
models; informally, a must transition is available in every component that implertrentaodal
specification, while a may transition needs not be. The components that implemoéal specifi-
cations are prefix-closed languages, or equivalently deterministic automata

Satisfiability of modal specifications is decidable. Refinement between moekfisations
coincides with models inclusion. Since components can be seen as spedcificeliere all tran-
sitions are typed must (all possible implementation choices have been mad#jctan is also
expressed via alternating simulation. Conjunction is effectively computed piaduct-like con-
struction. Combination of modal specifications, handling synchronizatmsiuetsa la Arnold and

20

Nivat [6], and the dual quotient combinators can be efficiently handled in this settifgy149.

Interface automata and modal specifications are incomparable modelgsasnay and in-
putoutputhave orthogonal meanings. Both models have advantages and disgéganta

— Interface automata is a model that allows to make assumptions on the envitpwinieh is
mainly useful to derive a rich notion for composition. Unfortunately, the rhisdecomplete
as conjunction, and quotient are not defined for this game-based model.

— Modal specification is a rich language algebra model on which most afreszgents for a
good interface theory can be considered. Unfortunatehy and mustmodalities are not
sufficient to derive a rich notion for composition including compatibility.

It is thus worth considering unification of the frameworks of interface mate. and modal
specifications. A first attempt was made by Larsen etldR[138 who considerednodal in-
terfacesthat are modal specifications whose actions are also typagirt or output attributes.
Larsen et al. have proposed a product-like construction allowing teasdompatibility of modal
interfaces. Nevertheless contrary to what is claimed by the authors, thisosition operator in
[122 139 is not monotone with respect to the refinement of modal specifications. fditisto
ensure that twaompatibleinterfaces may be implemented separately.

The present chapter adds a new stone to the cathedral of results dacetdreories by (1)
correcting the modal interface composition operator presentedih 138, (2) drawing a com-
plete picture of the modal interface algebra , and (3) pushing even fieomparison between
interface automata, modal automata and modal specifications and modatiederfa

The rest of the chapter is organized as follows. In SectitbRand2.3we recap the theory for
modal specifications and interface automata, respectively. In Sexdpwe present the complete
theory for modal interfaces and correct the error 27, 13§. Finally, in Section2.5, we draw
our conclusion and discuss future extensions for the model of moddbicdst:

2.2 Modal specifications

This section overviews existing results for modal specifications. We stdrttimducing the
framework, then we discuss the extension to several alphabets andistutiytions of refinement
and implementation. Finally, we present results on combining modal specifigation

2.2.1 The Framework

Following our previous work]50, we will define modal specifications in term of languages,
knowing that they can also be interpreted as deterministic automata whosddnsnare typed
with mayandmustmodalities. We propose the following definition.

Definition 2.2.1 A modal specificatiots a tupleS = (A,
must, may), whereA is a finite alphabet and:

must, may : A* — 24

21

are partial functions satisfying the followirgpnsistencyondition:
must(u) < may(u). (2.1)

The fact that: € may(u) means that actiomis allowed after the trace whereas. € must(u)
indicates that is required after.. By negationa ¢ may(u) means that is disallowed aftet.
The latter is often writterw € mustnot(u). The condition 2.1) naturally imposes that every
required action is also allowed. We shall sometimes wilite may s, andmusts to refer to the
entities involved in the definition a§.

When composing specifications, discrepancies between the modal infanmesioied out by
the specifications may appear. We then congideudo-modal specificatiordenoteds; they are
triples satisfying Definitior2.2.1with the exception ofZ.1). For’S a pseudo-modal specification,
awordu € A* is calledconsistently specifieith £S if it satisfies @.1) andinconsistenbtherwise;
modal specifications correspond exactly to the subclassmdistenpseudo-modal specifications,
that is pseudo-specifications such that every A* is consistently specified.

A similar approach has been developedliif] for a non-modalprocess algebraic framework
in which a dedicated predicate is used to model inconsistent processes.

ForfS = (A, must, may) a pseudo-modal specification, teepportof £S is the leasprefix-
closedlanguageCrs such that:(i) e € L»s, wheree denotes the empty word; atil) v € Lzs and
a € may(u) imply u.a € Lss.

2.2.2 Multiple Alphabets

Large systems are composed of many subsystems possessing their catretdfor ports and
variables. The way those different alphabets are handled when coglsinbsystems requires
some care.

We start with a series of definitions on languages. Keand C be two alphabets such that
A C C. Forv € C*, theprojectionof v on A (denotedpr,(v)) is the word overA obtained from
v by erasing all symbols that do not belong4o Let £ be a language ovet, theextensiorof £
to C is the languag€’'L = {v € C* | pry(v) € L}.

Definition 2.2.2 Theshuffle productC; x £, of two language€’; C Aj andLy C A3 is given by
L1 X Ly = A(ﬁl) N A(ﬁg), whered = A; U As.

In modal automata, one has to consider two alphabet extensions: the nedkeastrong

extension. We shall see that the extension in use will depend on the opédhatios performed on

modal specificationl[5Q.

Definition 2.2.3 (weak and strong extensions) et
IS = (A, mustss, mayys) be a pseudo-modal specification anddep A.

22

1. Theweak extensiomf S to C' is the pseudo-modal specificatitfy,c = (C, must, may)
such thatvv € C*:

{must(v) = mustes (pry(v))
may(v) = mays (pra(v)) U (C — A).

2. Thestrong extensionf %S to C is the pseudo-modal specificatio®S = (C, must, may)
such thatvv € C*:

{ must(v) = mustes (pry(v)) U (C — A)
moy(v) = mays (pra(v)) U (C — A).

Itis easy to show thal 5) = L(ps) = C(Ls).

2.2.3 Implementation and refinement

In this section, we study the conceptsimplementationrefinementindconsistencyWe start
with implementation, also calletiodel

Definition 2.2.4 (implementation) LetS = (A, must,
may) be a pseudo-modal specification.

1. Equal Alphabets: A prefix-closed languagé C A* is animplementatiorof S , denoted
byZ =18, if Vu € Z, must(u) C Z,, € may(u), whereZ, = {a € A| u.a € Z}.

2. Extended Alphabets:For C O A, a prefix-closed languadgeé C C* is aweak implementa-
tion of &S, writtenZ |=,, &S, iff 7 |= ’S4¢ holds; it is astrong implementationf %S, written
A):s ES,iff T ‘: pSTC holds.

Modal specifications are equivalent to the fragment of ghealculus called the conjunctive-
calculus P2]. Hence, a model for a modal specification is a model for the formula septed by
the specification.

Satisfaction can be related to consistently specified words:

Lemma2.2.5If Z = £S, thenZ C Lxs holds and every word df is consistently specified 5.
Similarly, ifZ |=,, ?S or Z =5 %S, thenZ C C(Lxs) holds and for every word € C* of Z, pr, (v)
is consistently specified fi$.

We now switch to the case of modal refinement which extends in a naturabmideclassical
notion of bisimulation on automata. We first consider the case where spegifcare defined
over the same alphabet:

23

Definition 2.2.6 Let’S| = (A, must1, may,) and?Sy = (A, musta, may,) be two pseudo-modal
specifications thefS; refines’S,, denotedS; < FSs, iff for all u € Lrs,:

mayy(u) S mayy(u)
musti(u) 2O muste(u).

It can be shown that refinement is a preorder relation which implies the ionlassupports. As a
consequence, any two modal specificatiSpgendSs such thatS; < S, < S have equal supports

L = Ls, = Ls, and moreover, for allk € £, may,(u) = may,(u) andmausti(u) = musta(u).
Thus equivalent modal specifications differ only outside of their supounique representant

S = (A, must, may) of equivalence classes of modal specifications can be defined by agsumin
that for allu & Ls, must(u) = 0 andmay(u) = A. Under this assumption, modal refinement is
apartial order relationon modal specifications. In the following, only modal specifications in this
canonicalform are considered.

Definition 2.2.7 Let*S; = (A1, must;, may;) and¥Ss = (Ag, musty, may,) be two pseudo-
modal specifications witd; O A, then?S, weakly refinegsS, (which is denotedlS, <,, ¥S,), iff
FS1 <ES244,, and itstrongly refinedSs, writtentS; <, £Ss, iff KS1 < FSo4 4, .

A pseudo-modal specification can be reduced into a modal specificatiompregkrvation of
its semantic:

Theorem 2.2.8 (consistencyEither a pseudo-modal specificati&®ihas no model, or there exists
a modal specificatiop(%S) having the same alphabet of actions such {{&f) possesses the same
set of weak and strong implementations:

IkwtS & Ikwp(S)
IS & Ik phS)
We shall callp(*S) the reduction ofS. The detailed construction @f(*S) can be found in
[150. We let L be a particular modal specification that admits no model and |ebe the empty
set.

We conclude the section with the following theorem that relates refinemeritrgodeimenta-
tion.

Theorem 2.2.9 (implementation and refinement)

1. Weak and strong implementation and refinement are related as follewsC |, and
<s € <w.

2. Weak and strong modal refinement are both sound and completewsak.and strong thor-
ough refinement, respectively:
82 ngl = {I’I):wSQ}Q{I|I):w81}
82 §sSl = {I’I):SSQ}Q{I|I)2581}.

24

As already noticed, modal specifications are equivalent to deterministid ensidanata. When
allowing for nondeterminism, the theorem above does not hold as modamedint is no more
complete 121].

2.2.4 Operations on modal specifications

Consider two modal specificatiods = (Aj, musti, may,) andSs = (Asg, musty, mays),
we now define theiconjunction parallel productand quotient We proceed in two steps: we
first define these operations wheln = As; the case of different alphabets is then handled by
performing a preliminary step of alphabet equalization.

In [150], we argued that alphabet equalization must be different dependititgeaconsidered
operation. Such an extension mustrmutral meaning that it should not constrain what other
interfaces may want to require regarding these extra actions.

Conjunction WhenA; = A,, theconjunctionS; A So = p(S1&S2) whereS; &S, is defined
by:

mays, gs,(w) = mayy(u) N mays(u) 2.2)
musts, s, (W) = musti(u) U musta(u). '

Observe that it is not guaranteed tlta&:S» satisfies 2.1). Hence, we use theore2.8and
apply the reduction operatignin order to obtain a modal specification.

For the general case wherg # A,, the definition above is applied after an equalization step:
S NSy = SlﬂA /\SQTTA, with A = A; U A,.

Theorem 2.2.10
A ':w SINSy & T):w S andZ ':w Ss.

The conjunction betweef; andS; is exactly theirgreatest lower bounébr the weak refine-
ment relation:S; A S, is the greatest specification that weakly refines &thndSs.

A current practice in the design of a component is to give several spamfis, each of them
describing a particular requirement. The conjunction of these specifisagoables to check the
consistency of these requirements, by deciding satisfiability.

Parallel product WhenA; = A, theparallel productS = S; ® Ss is defined by:

mays() = may,() N mayy(u) 03
musts(u) = musty(u) N musta(u). '

The product of two modal specifications always satisfy the consistemugitton. Hence, no
reduction is needed. For the general case whigre~ A,, the definition above is applied after an
equalization stepS; ® Sy = AS; ® ASs.

25

In an interface theory, it is desirable to be able to develop components itioscdad then to
compose them as expected. This is ensured by the product operatiarealsvgth the following
theorem.

Theorem 2.2.11

1. If S <; S andS)) <; So, thenS] @ S, <; &1 @ So.

2. 7y =5 S;andZy =5 So, thenZ; x 7y =5 S§1 @ So.

3. Regarding supportsts, gs, = Ls, X Ls,.

Strong refinement has to be used when enlarging the alphabet, as thetpsatbt monotonic
with respect to the weak refinemedtj.

Residuation/quotient The operation ofesiduation also calledjuotient is the adjoint of prod-
uct. Intuitively, the quotient enables to describe a part of a global spatbifin assuming another
part is already realized by some componentd{f= A, then thepseudequotient’S = S; // Sa

is defined by:

a € mayps(u) N mustss(u) it a € must(u

a € mustes(u) \ mayys(u) if a € musti(u

a € mayys(u) \ mustss(u) if a & may,(u

(u)
()
(u)
()
a € mayps(u) \ mustss(u) if a € maylgui
(u)
()
(u)

a & mayps(u) U mustes(u) if a & may;(u
and a € may,(u).

Due to the second rul&; / S» may have inconsistently specified words. As a consequence, a
reduction operation may be needed and the quotie&t by S, is S1/S2 = p(S1 /J S2).
For the general case of two different alphabets, the definition aboveplged after an alphabet
equalization stepS; / Sy = Siga / ASo.

We have the following theorems:

Theorem 2.2.12 LetS, S; and S, be modal specifications such thdg, 2 As O As,. We have
82 Ss S/Sl <:)>Sl ®82 Ss S.

Theorem 2.2.13Let S, S; be modal specifications arifl, a prefix-closed language such that
Az, O As O As,, we have

I):s 8/81 ~ [VIl 1 ’:s S1 =11 x I):s S]

26

2.3 Interface Automata

In [78], de Alfaro and Henzinger introducéuterface automatathat are automata whose tran-
sitions are typed withnput and output actions rather than with modalities. In this section, we
briefly overview the theory of interface automata and refer the read@Bt@] for more details.

Definition 2.3.1 An interface automatois a tuple? = (X,xzo, A, —), whereX is the set of
states zg € X is theinitial state A is the alphabet ofactions,and -C X x A x X is the
transition relation.

We decomposdl = A? W A!l, whereA? is the set of inputs and! is the set of outputs. In the rest
of the chapter, we shall often us@ to emphasize that € A7 anda! for a € A!. Observe that
if we consider deterministic interface automata, then we can propose a tprbaaed definition
similar to the one we gave for modal specifications.

The semantic of an interface automaton is given by a two-player game betaveéeput player
that represents the environment (the moves are the input actions), aadpaiplayer that repre-
sents the component itself (the moves are the output actions). Input gonud moves are in essence
orthogonal to modalities. Interface automata are operational models, theyt @mcompass any
notion of model, and thus neither satisfiability nor consistency, becauseamm®t distinguish
between interfaces and components implementations. Alternatively, prepeftisterfaces are
described in game-based logiesg, ATL [1], with a high-cost complexity. Refinement between
interface automata corresponds to the alternating refinement relation bejae®s 2], i.e., an
interface refines another one if its environment is more permissive whigsegomponent is more
restrictive. There is no notion of component reuse and shared refinésngefined in an ad-hoc
manner 85)].

The main advantage of the game-based approach appears in the definttionpmsition and
compatibility between interface automata. Followingf], two interface automata are compos-
able if they have disjoint sets of output actions compose by synchroninirshared actions and
interleave asynchronously all other actions.

Definition 2.3.2 (Product of interface automata) Let P; = (X1, x01, A1, —1) and Py = (Xo,
xo2, A2, —2) be two interface automata. The product betw@emand?P; is an interface automaton
P1 x Py = (X, x0, A, —), Where
- X =Xy x Xq;
— To = To1 X T02,
- A=A1UAy, andA? = (A17 U A27) \ ((A17 N AQ‘) U (A27 N Al')>, andA! = AU Ay,
— — is defined as follows:
— For each actiom € A such thate ¢ A; N As, there exists a transitiofizy, y1) LN
(z2,y0) iff there existgz;) %+, (x2) andy; =y Of (y1) —, (y2) andz; = z-.
— For each actiom € A;7 N Ay?, there exists a transitiofz, y1) LI (22, y2) iff there

a?

exists(z1) “—?>1 (x2) and(y1) —, (y2).

27

!

— Foreacha € (A17 N Ay!) U (A2? N Ayl), there exists a transitiofi, 1) X5 (x2,10)
iff there existgz;) —, (z2) and(y1) =, (y2).

Since interface automata are not necessarily input-enalgledich allows to make assump-
tions on the environment), in the prodd@t x P» of two interface automat®; and?Ps, there may
beillegal stateswhere one of the automata may produce an output action that is also in the input
alphabet of the other automaton, but is not accepted at this state. In mogstig models for
interface theories that are based on an input output setting, the intevfacéd be declared to be
incompatible This is a pessimistic approach that can be avoided by exploiting the game-bas
semantic. Indeed, the game semantic allows to propose an optimistic approach:

“Two interfaces can be composed and are compatible if there is at leashoinen-
ment where they can work together (i.e., where they can avoid the illegad)state

Deciding whether there exists an environment where the two interfacesar&rtogether is
equivalent to checking whether the environment in the product of thdaoes has a strategy to
always avoid illegal states. The set of states from which the environnasna Istrategy to avoid
the illegal states whatever the component does can be recursively canagtitdlows.

Let Illegal(P1, P2) is the subset of pairs;, z2) € X; x X, such that there exists

either an actiom € A;!' N A7 with r] —,
but not =, —,

or an actiom € As!N A7 with Tg —>,
butnot z; —,

wherex -4+ means that %> y for some statey. If illegal states exist in the produ@; x P,
there may still exist refinements of it that possess no illegal states. Suftheament specifies how
the use of the resulting product should be restricted in order to guartateidegal states cannot
be reached. As proved i@, such a largest refinement is obtained by backward pruging 7-
as follows. Fory” C X, the set of states dP; x Ps, let pre,(Y') be the subsef C X of states:
such that —%- for somey € Y anda! € A! (an output action of the product). Lete)(Y) =Y
and, fork > 0, pre{““(Y) = pre!(pref(Y)) and letpre; (V) = U, pref(Y).

The desired pruning consists in:

— Removingpre; (Illegal(P1, P2)) from X, and

— Removing transitions to statesgine; (Illegal(P1,P2)), and

— Removing unreachable states.

The result of applying the pruning 1, x P> is denoted by

Py || Po,

1. Recall that a system is input-enabled if it can react to any input actianyimament.

28

and is called theompositionof the two interface automatdg?; and P, are calledcompatibleif
applying the pruning leaves the initial statS].

We recall the two following theorems fronY§| that show that interface automata support
independent design and substituability.

Theorem 2.3.3 (f8]) The composition operation is associative and commutative.

Theorem 2.3.4 (J8]) Let Py, P,, andPs be three interface automata. H, refinesP; and the
set of shared action®, || P3 of is included in the set of shared actionsif || Ps, thenPs || Ps
refinespP; || Ps.

Remark 2.3.5 The operations between interface automata that have been defined so riat d
require an explicit treatment of dissimilar alphabets as it is the case for gpgifications.

2.4 On modal Interfaces

We now present the full theory fonodal interfacesModal interfaces is an extension of modal
specifications where actions are also typed viiut and output This addition allows to pro-
pose notions of composition and compatibility for modal specifications in the gpiititterface
automata.

The first account on compatibility for modal interfaces was proposet’ig [L3§. In this sec-
tion, we propose a full interface theory for modal interfaces, which aeducomposition, product,
conjunction, and component reuse via quotient. Moreover, we showhhabmposition operator
proposed in122, 139 is incorrect and we propose a correction.

We shall start our theory with the definition pfofileswhich are used to type actions of modal
specifications withinput andoutput

2.4.1 Profiles

For an alphabet of actiond, aprofile is a functionr : A — {71}, labeling actions with the
symbols? (for inputg or ! (for output3. We write “a?” to express that#(a) =?”, and similarly
for the other case. We denote Hy the set ofu € A such thatr(a) =7 and similarly forA!. We
shall sometimes write by abuse of languages (A?, A!).

We now discuss operations on profiles. We consider a profite (4,7, A;!) defined overd,
and a profilers = (A2?, Ay!) defined overA,.

Product between profiles The composition between, andm,, which is defined iffA;!N Ay! =
0, is ther = (A7, A!) such that

Al = (A4 U A

W1®W2:{A? — (417 U Ap2)\ Al

29

Refinement between profiles Profile o refinesw; (denotedr, < m) iff A, O Ay and both
profiles coincide oM;: Va € Ay, ma(a) = m1(a).

Conjunction between profiles The conjunction between; andm, (denotedr; A 73) is the
greatest lower bound of the profiles, whenever it exists. More pigcike conjunction of profiles
71 andm is defined iff both profiles coincide on their common alphabetc A; N Ay, 71(a) =
m2(a). Whenever defined, the conjunctienA 5 coincides withr; for every letter ind; and with
o for every letter inAs,.

Quotient between profiles Thequotientr; / 72 is defined as the adjoint of, if it exists, namely
m1 /7 = max{m | 7 ® my < 71 }. More preciselyyr; / w2 is defined if and only ifA; O A5 and
A;! D Ayl and is then equal to the profile= (A7, A!) such that

[A = A\ Ay
UAEER NV A7\ Ay?.

2.4.2 The framework of modal interfaces

We now formally introduce modal interfaces that are modal specificatiors&vhotions are
also labeled withinput and output attributes. We will consider the language representation in
the spirit of [L49 150, while Larsen et al. followed the automata-based representation (the two
representations are equivalent).

Definition 2.4.1 (Modal Interface) A modal interfaces a pairC = (S,), whereS is a modal
specification on the alphabets andr : As — {?,!} is aprofile.

A model for a modal interface is a tupl&, 7’), whereZ is a prefix-closed language andlis a
profile forZ. We say thatZ, 7’) strongly implement&S, 7), written (Z, 7') =5 (S, 7),if Z =5 S
and7n’ < 7, and similarly forweak implementationNVe say thatS,, m2) <, (S1,m) if So <s S1
andmy < w1, with corresponding definition for weak refinemeqy,. The compositionof two
models is the pair that results from the shuffle produaif their prefix-closed languages and of
the product of their profiles.

2.4.3 Operations on modal interfaces

Operations on modal specifications directly extend to operations on modéaas. We have
the following definition.

Definition 2.4.2 Consider two modal interfaces = (S,
m1) andCsy = (S2,m2), and letx € {A, ®, /}. If m1 x w2 is defined, then

Cl *CQ = (Sl *82,71'1 *7‘(2).

30

All the nice properties of modal specifications directly extend to modal irdesta

Theorem 2.4.3 Theorems 1 to 6 extend to modal interfaces.

2.4.4 On compatibility for modal interfaces

In this section, we take advantage of profiles to define a notion of compositibrcompati-
bility issue for modal interfaces. We shall recap the solution propose?i) {38, then we shall
show a counter example to Theorem 101&7% and then propose our correction. We first recap the
translation from interface automata to modal interfaces, which will help to makinthbetween
modalities and input or output actions.

From interface automata to modal interfaces

We recap the translation from interface automata to modal automata that maprbpesed
in [122). In this section, we extend this translation to modal specification, the laegergnsion
corresponding to modal automata.

We consider an interface automatbn= (X, 2o, A, —). We assumé to be deterministic and
we let Lp denote the (prefix-closed) language defined®byrhe alphabet ofp is As,, = A and
modalities are defined for all € A%:

a? € musts, (u) if w.a?e Lp
al € maygs, (u) \ musts,(u) if w.al€Llp
a? € mayg, (u) \ musts,(u) if uwelp
andu.a? & Lp (2.4)
al & mays,, (u) if welp
andu.a! € Lp
a € mayg, (u) \ musts,(u) if u¢gLp.

Theorem 1 of L 27 shows that, with the above correspondence, alternating simulation fdiaiceer
automata and modal refinement for modal interfaces coincide. Regargipgrss, we have:

Ls, =Lpy{u.a?v|ue Lp,ua? € Lp,ve Ap}. (2.5)

It is worth making some comments about this translation, given by form2lda2 ®). Regard-
ing formula @.5), the supporting languagés,, allows the environment to violate the constraints
set on it by the interface automatéh When this happens—formally, the environment exits the
alternating simulation relation—the component considers that the assumptoterswirich it was
supposed to perform are violated, so it allows itself breaching its own pesnaisd can perform
anything afterward. One could also see the violation of assumptions aseptiex. ThenLs,
states no particular exception handling since everything is possible. ipga@kception handling
then amounts to refining this modal interface.

31

Formula @.4) refines @.5 by specifying obligations. Case 1 expresses that the component
mustaccept from the environment any input within the assumptions. Case 2 teslitat the
component behaves according to best effort regarding its own owgtitss. Finally, cases 3 and
4 express that the violation of its obligations by the environment are seenexee@ption, and that
exception handling is unspecified and not mandatory.

The composition by Larsen et al. and the bug in Theorem 10 ofl[22]

We now consider the notion of compatibility for two Modal Interfacgs= (S;,71) and
Cy = (82, m) with S; defined overd; andS; defined overd,. We assume that; andCy do
not share common output actions (which is the composability requirement simitze tme for
interface automata). We first compute the product betwgemdC, following Definition2.4.3
We then defindllegal(C;,C2) to be the subset of wordsbelonging to the support ¢f; @ Cs,
such that there exists
either an actiom € A;! N Ay7
with a € may; (u1) \ musta(ug)
or anactiorn € Ax! N A7
with a € mays(ug) \ must; (uy),

(2.6)

whereu; = pry, (u) and similarlyus = pry,(u). Getting rid of illegal runs is performed as
follows. ForU a set of words of Modal Interfad® let pre,(U) be the set

pre(U) = {v € L | Ja! € may(v),v.al € U}

Let pre(U) = U, and, fork > 0, pref T (U) = pre,(pref(U)). Finally, let pre;(U) =
Uy pret (U).

The composition of two modal interfaces is obtained from their product moveng states
in pref(U), following the approach outlined for interface automata. Two modal intesface
compatible if the pruning with the illegal words do not remove the empty word.cbhgposition
betweerC; andCs is denoted’; || Co.

Theorem 10in122 13§ says that

“(Independent Implementability). For any two composable modal intesfaceCs
and two implementation&;, 1) and (Zy, m2). If (Z1,7m1) < C; and(Zz, m2) < Ca,
then it holds thatZ,, 1) x (Zg,m2) < Cy || Co2.”

The following example shows that Theordfin [122, 13§ is wrong.

Example 2.4.4 Figure 2.1 depicts two Modal InterfaceS; andCsy; may \ must actions are de-
picted using dashed arrows whereas solid arrows corresponds:itg actions. Z; and Z, are
implementations af; andCs, respectively. Alphabets are indicated for each modal interface. Par-
allel composition according tol27] is named|C; || C2],. Wordc?.a! is illegal since in the state
reached after this rug; may offerb! wherea<’, may (in fact will) not accept it. However?.a! is

in the product of the two implementations.

32

T o T s R W
Cy : {al, b} C1®Cs: {al,bl, c?}
9D-.?7...>D..(.7'?..:>D B
Cs : {a?,b?,c?} [C1]| Ca)o : {al,bl,c?}
c?
!
—0—=—0 —D g7
T; : {al,bl} [C1 || Co]1 = {al,b!, c?}
c? a? c? a!
00— —O0——0——7=0
Iy : {a?,b?,c?} Iy X Iy : {a!,bl, c?}

Figure 2.1: Counterexample regarding compatibility. Grey-shaded st&tés lae removed.

The correction

Call exceptiorany word inL¢, gc, from which the environment has no strategy to prevent the
occurrence of an illegal word, meaning that an illegal word can be olat&iom the exception by
following only output actions.

Definition 2.4.5 (compatibility) Theexception languagef modal interfaceg; and(Cs is the lan-
guageke, | ¢, = prey(lllegal(Cy1,Cq)). Modal interfaces’; andC, are said to becompatibleif
and only if the empty wordis not inE¢, | ¢, -

Definition 2.4.6 (parallel composition) Given two modal interfaceS; andC,, the relaxationof
C; ® C, is obtained by applying the following pseudo-algorithntta® Cs:
for all vin Le¢,gc, do
for all ain A do
if v 9{ Ecl | Ca andv.a €]Ecl | Ca then
for all win A* do
must(v.a.w) = ()
may(v.a.w) = A
end for
end if
end for
end for

If C; andC, are compatible, the relaxation ¢ ® C, is called theparallel compositiorof C; and

33

Co, denoted by; || C2. Wheneve€; andC, are incompatible, the parallel compositich || Cz is
defined as the inconsistent modal specification

If the environment performs ar? to which the fif ... then ...” statement applies, then illegal words
may exist for certain pair§Z;, Z,) of strong implementations af; andC.. If this occurs, then
C1 || Co relaxes all constraints on the future of the corresponding runs — Notkifagbidden,
nothing is mandatory: the system has reached a “universal” state. Traifefsathe pruning rule
combined with alternating simulation, in the context of interface automata.

Example 2.4.7 We now show that our relaxation allows to correct the counter exampledsiate
Figure 2.1 We observe that our relaxation procedure yiel@s || Cz]1, with A = {a!,b!, 7},
which hasZ; x Z, as an implementation.

Associativity of the parallel composition operator is one of the key requingsraf an inter-
face framework, since it enables independent design of sub-systémtike in [122, 138, where
associativity is only mentioned, we can now state the following theorem:

Theorem 2.4.8 The parallel composition operator is commutative and associative.

Thanks to the interplay between modalities and profiles, knowledge aboepténs is pre-
served by parallel composition. This is the very reason why it is assazidiieed, the last?
action in exception runs of the froma? comes with a may modality. In this way, it is distinguished
from normal inputs which come with a must modality. When taking the parallel ceitigo with
another modal interface with a profile such thats also an input, the resulting modality is a may.
In this way, knowledge of the occurrence of an exception is preseWéeénever this input action
a? is composed with an output, this results in an illegal run, meaning that an exception will be
triggered earlier.

As for interface automata (Theorem 4 irg]), strong refinement preserves compatibility, as-
suming that the refined modal interface does not introduce new shdrexsac

Lemma 2.4.9 Given any three modal interfac€s, i = 1...3, such thaCy <, C; and A; N A3 D
Ay N As:

— Pry,ua,(lllegal(Co,C3)) is included inlllegal (Cy, C3);

— pra,ua, (Ec, | ¢,) isincluded inEe, | ¢, .

Proof: Consider an illegal word: € Illegal(Cs,C3) for C2 ® C3. This means that there exists
an actiona € A, N As such that (i) eithera is an output ofC, and an input ofCs, such that
a € mayy(pra,(u)) anda & mustz(pra,(u)), or (ii) a is an input ofCz and an output of3, such
thata & musta(pry,(u)) anda € mays(pry,(u)).

By Definition2.2.7, u is also inL 49 43¢, 9c,- BY Definition2.2.3 v’ = pry, 4, (u) belongs
to Le¢,wcs-

34

Since it is assumed thad; N A3 C A; N As, actiona belongs toA; N As. By Defini-
tion 2.2.6 eithera is an output of’; and an input o3, such thata € may, (pry, (v')) anda ¢
must3(pra,(u')), or (i) a is an input ofC; and an output ofs, such thaia ¢ must;(pry, (v'))
anda € mayz(pra,(u’)). Meaning thatu' € Illegal(Cy,C3), which proves the first part of the
lemma.

Next, recall thatA,! U As! is included inA,! U A3!. Hence, the projection of the back-
ward closurepry 4, (prey ({llegal(Ca, C3))) is included in the backward closure of the projection
pre; (pra,ua, (Illegal(Ca,Cs))), which is in turn included irpre; (1ilegal(C1,Cs)), thanks to the
previous part of the Lemma. [

Corollary 2.4.10 (compatibility preservation) Given any three modal interfaceés, i = 1...3,
such thaCy <; C; andA; N A3 O Ay N As. C; compatible withCs implies thatC, andCs are also
compatible.

Proof: This is an immediate consequence of Len®aQ Assume’, and C3 incompatible,
meaning that € E¢, || ¢,- By Lemma&.4.9 € = pry,4,(€) € E¢, || ¢,- HenceC; andCs are also
incompatible. |

Contrary to interface automata for whi€h || Cs is a refinement of; ® Cs [78)], relaxation of
modal interfaces amounts to compute an abstraction of the product:

Lemma 2.4.11 Given two modal interfaces, andCs:

Ci1®Cy<(|| Co

Proof: Two cases are possible:
— ifu € Leyee, \Ee, | ¢yt muste,oc, (u) = muste, | ¢, (v) andmaye, gc, (u) = maye, | ¢, (u);
— ifu € B¢, | ¢, thenu € L, | ¢, andmuste, | ¢, (u) = 0 andmaye, | ¢, (u) = A
Thus,mustc, gc, (u) 2 muste, | ¢, (v) andmaye, ec, (u) € maye, | ¢, (). [

Theorem 10 stated irlp2, 138 now holds for the parallel composition operator.

Theorem 2.4.12 (independent implementability)For any two modal interface§;, C2 and two
implementationsZ;, 1), (Z2, m2) such that(Z;, 1) s Ci1 and (Ze,m2) s Co, it holds that
(Z1,m1) x (T2, m2) s C1 || Ca.

Proof: If (Z1,m) s C1 and (Ze,) s Ca, then, by Theorer@.4.3 (Z;,m1) x (Za,m2) s
C1 ® C3. By the previous lemma and by the generalization of Thedreém Theorem2.4.3
(Z1,m1) X (Z2,m2) s C1 || Ca. n

35

2.5 Conclusion and future work

This chapter presentsraodal interfaceframework, a unification of interface automata and
modal specifications. It is a complete theory with a powerful composition edgdlat includes
operations such as conjunction (for requirements composition) and aéisidyfor component
reuse but also assume/guarantee contract based reasbhifjg However, the core contribution
of the chapter is a parallel composition operator that reflects a rich notmongbatibility between
components, actually correcting that parallel composition propose@ith 139.

There are several possible directions for future research. A feptwgould be to implement
all the concepts and operations presented in the chapter and evaluasuitiag tool on concrete
case studies. Extensions of modal specifications can be investigated, stdies are described as
valuations of a set of variables just as it has been the case for inteddtmmata 3, 76].

Another promising direction would be a timed extension of modal interfacg39nde Alfaro
et al. proposedimed interface automatthat extends timed automata just as interface automata
extend finite-word automata. The semantics of a timed interface automaton mshyivee timed
game [/'7, 44], which allows to capture themed dimensiomn composition. Up to now, compo-
sition is the only operation that has been defined on timed interface autom§&], I€hatain et
al. have proposed a notion of refinement for timed games. However mgnaitparallel compo-
sition with respect to this refinement relation has not been investigated yj&8]Jrtimed modal
specificationsare proposed. As modal specifications, timed modal specifications adniit@orit
position algebra with product, conjunction and residuation operatorss, Bhatural direction for
future research would be to unify timed interface automata and timed moddiicgeans. This
would imply a translation from timed interface automata to timed modal specifications.

Finally, we believe it is worth studying the logical expressiveness of timed hspdaification-
s/interfaces, as it has been the case for modal specificafidhs [

36

Chapter 3

Constraint Markov Chains

Résumé :En suivant les mémes lignes directrices que le chagitde présent chapitre a pour
objectif de proposer une théorie d’interfaces stochastiques, les chdnbtarkov a contraintes
(CMC) . Une CMC est essentiellement une chaine de Markov a tempstdisat les probabilités
de transition ne sont ni fixées ni données par extension, mais au gensant solutions d'un en-
semble de contraintes exprimées par des formules du premier ordrpriéiiees sur les réels. Une
CMC définit donc un ensemble éventuellement infini de réalisationsadié®s de chaines de Mar-
kov. Ce chapitre s'attache a montrer que les CMC forment une théorieedate, a I'exception
de 'opération de residuation dont I'existence est‘a ce jour une questivante.

3.1 Introduction

In this chapter we introdudgonstraint Markov ChainfCMCs) as a foundational specification
formalism for component-based development of probabilistic systems. rlicydar, we provide
constructs on CMCs supporting refinement, consistency checking, lagocaell as structural
composition of specifications — all indispensable ingredients for a compaditiesign methodol-
0gy.

Over the years several process algebraic frameworks have begospd for describing and
analysing probabilistic systems based on Markov Chains and MarkovibeEigcesses, e.dL(3
3, 127. Also, a variety of probabilistic logics have been proposed for exgimggproperties of such
systems, e.g. PCTI9B]. Both approaches support refinement between specifications usiags/a
notions of probabilistic (bi)simulation (e.g91, 113) and logical entailment (e.g1pZ). Whereas
the process algebraic approach favors structural composition (gajlebaomposition), the logi-
cal approach favors logical combinations (e.g. logical conjunctionithilieof the two approaches
supports both structural and logical composition.

For functional analysis the notion of Modal Transition Systems (MTSY] provides a use-

37

38

H <190 H > 160

[01/2 @z }L'@H“% W <90 : ! H <190
W>60@ H > 160

[1/8,1 1/6,1 = 2
[1/8,1] @W<90 [1/6,1] @W>60 W= o0 2 2 W= 60

(a) IMCs Sy andS> (b) CMC 51 A Ss

Figure 3.1: IMCs: non-closure under conjunction

ful specification formalism supporting refinement as well as logical angtsiral composition
and with recent applications to Interface Theori&®84 150. Generalizing the notion of Modal
Transition Systems to the non-functional analysis of probabilistic system$oprimalism of In-
terval Markov Chains (IMCs) was introduced ih1[3 with notions of satisfaction and refinement
generalizing probabilistic bisimulation. Informally, an IMC extends the notioMafkov Chains
by having transitions labelled bintervals (open or closed) of allowed probabilities rather than
individual probabilities.

In more recent work, IMCs have been subject to further study: a ere@let sound) refine-
ment for IMCs is introducedd1], and model checking procedures for PCTL for such systems are
considered64, 91, 65]. In a very recent workI12] a composition operation has been studied for
IMCs augmented with may and must transitions very much in the spirit1s [

However, the expressive power of IMCs is inadequate to supportlbgital and structural
composition. To see this, consider two IMGH,andSs, in Figure3.1specifying different proba-
bility constraints related to the height (H) and weight (W) of a given rangenson. Attempting
to express the conjunctia$i A Sy as an IMC by simple intersection of bounds givgs< 1/2,
1/6 <29 <1/2,1/8 < zgand1/6 < z,. However, this naive construction is too coarse and does
not adequately capture conjunction: whereas zo, 23, z4) = (1/2,1/6,1/8,5/24) is a solution
to the above constraints the resulting overall probability of reaching a sii#séysig H> 160, i.e.
z1 + z9 = 2/3, clearly violates the upper bounid?2 specified inS;. What is needed is the ability
to express dependencies between the probabitities, 23, z4 besides that of being a probability
distribution, i.e.z; + 22 + 23 + 24 = 1. Obviously, the correct conjunctive combination is ex-
pressed by the three constrainis+ 2o < 1/2,1/8 < z3 4 24,1/6 < 23 + z4, exceeding the
expressive power of IMCs. Similarly, simple examples demonstrate that BviCalso not closed
under parallel composition.

Constraint Markov Chains (CMCs) are a further extension of Markbgi®s allowing arbi-
trary constraints on the next-state probabilities from any state. Whereas tioestraints suffice
for closure under conjunction, polynomial constraints are, as we smllrecessary for closure
under parallel composition. We define notions of satisfaction and (wedikiement for CMCs
conservatively extending similar notions for IMCs. In particular, as a maardm, we prove that
for deterministic CMCs the notion of weak refinement is complete with respect to¢tusion of
implementation-sets. In addition, we provide a construction, which for ang€ Giveturns a deter-

39

ministic CMCp(.S) containingS with respect to weak refinement. Finally, we show that refinement
between CMCs with polynomial constraints can be decided in essentially skppaential time.

3.2 Constraint Markov Chains

Let A, B be sets of propositions witd C B. Therestriction of 7" C B to A is given by
Tproj 4 (=) TN A. If T C 25, thenTproj 4 (=) {Wproj 4 (|) W € T}. ForV C A define the
extension o to B asT1P= {W C B | Wproj 4 (=) T}, so the set of sets whose restriction
to A is T. Lift it to sets of sets as follows: if’ C 24 thenT15= {W C B | Wproj 4 (€) T}
Let M € [0, 1]™** be a matrix and: € [0, 1]'** be a vector. We writé/;; for the cell inith row
andjth column ofM, M), for thepth row of M, andx; for theith element ofc. Finally, M is a
correspondence matriff 0 < Z?:l Ay <1foralll <i<n.

Definition 3.2.1 AMarkov Chain (MC in shortjs atuple({1,...,n},o, M, A, V), where{1, ...,
n} is a set of states containing the initial stateA is a set of atomic proposition¥; : {1,...,n} —
24 is a state valuation, and/ € [0, 1]"*" is a probability transition matrix:3 7, M;; = 1 for
1 < <n.

We now introduceConstraint Markov ChaingCMCs in short), a finite representation for a pos-
sibly infinite set of MCs. Roughly speaking, CMCs generalize MCs in thateausof specifying

a concrete transition matrix, they only constrain probability values in the matoxsiGaints are
modeled using aharacteristic functionwhich for a given source state and a distribution of prob-
abilities of leaving the state evaluates to 1 iff the distribution is permitted by the sjaticfi.
Similarly, instead of a concrete valuation function for each stategrestraint on valuationss
used. Here, a valuation is permitted iff it is contained in the set of admissiblatiais of the
specification.

Definition 3.2.2 A Constraint Markov Chaiis atupleS = ({1,...,k},0,¢, A, V), where{1, ...,
k} is a set of states containing the initial stateA is a set of atomic proposition¥;: {1, ..., k} —
22* is a set of admissible state valuations. and{1,...,k} — [0,1]* — {0,1} is a constraint
functionsuch that if¢(j)(x) = 1 then thex vector is a probability distribution0 < z; < 1 and

Zle xTr; = 1.

An Interval Markov Chain(IMC in short) [113 is a CMC whose constraint functions are repre-
sented by intervals, so for all < i < k there exist constants;, 5; such thatp(j)(z) = 1 iff

r; € [ov, Bi].

Example 3.2.3 Two parties, a customer and a vendor, are discussing a design of ya fieaian
optical telecommunication network. The relay is designed to amplify an optiaeldiggnsmitted
over a long distance over an optic fiber. The relay should have seweraés of operation, modeled

40

by four dynamically changing properties and specified by atomic propositipb, ¢, ande (see
Figure 3.29).

The customer presents CM$; (Figure 3.2b) specifying the admissible behavior of the relay
from their point of view. States are labeled with formulas characterizing detaloations. For
instance,” (a + b+ ¢ > 2) A (e = 0)” at state2 of S; representd/;(2) = {{a, b}, {b, c}, {a,c},
{a,b,c}}, wherea, b, ¢, ande range over Booleans. State 1 specifies a standby mode, where no
signal is emitted and only marginal power is consumed. State 2 is the higér powde, offering a
high signal/noise ratio, and hence a high bitrate and low error rate, at thpeerze of a high power
consumption. State 3 is the low power mode, with a low power consumptiohittate and high
error rate. The customer prescribes that the probability of the high pomagle (state 2) is higher
than0.7.

The vendor replies with CMG, (Figure 3.2¢9, which represents possible relays that they can
build. Because of thermal limitations, the low power mode has a probabilityehigpan0.2.

A statewu of S is reachablefrom a state if there exists a probability distribution, or a vector
z € [0, 1]¥, with a nonzero probability,,, which satisfiess(i)(x). A CMC S is deterministiciff
for every state, states reachable frofrhave pairwise disjoint admissible valuations:

Definition 3.2.4 Let S = ({1,...,k},0,0, A, V) be a CMC.S is deterministiciff for all states
i,u,v € {1,...,k}, if there existse € [0, 1]¥ such that(¢(i)(x) A (z, # 0)) andy € [0, 1]¥ such
that (¢(i)(y)(Ay, # 0)), then we have that (u) NV (v) = 0.

In our example botty; and.S, are deterministic specifications. In particular st&esd3, reach-
able from1 in both CMCs, have disjoint constraints on valuations (see FigiBe

We relate CMC specifications to MCs implementing them, by extending the definitisat-of
isfaction presented inlfL3 to observe the valuations constraints and the full-fledged constraint
functions. Crucially, like 113, we abstract from syntactic structure of transitions—a single tran-
sition in the implementation MC can contribute to satisfaction of more than one transitiba
specification, by distributing its probability mass against several transit®insilarly many MC
transitions can contribute to satisfaction of just one specification transitiois. rédistribution of
probability mass is described by correspondence matrices. Considetltwarig example:

Example 3.2.5 We illustrate the concept of correspondence matrix between Specifiéat{given

in Figure. 3.2b and ImplementatiorP, (given in Figure3.29. The CMCS; has three outgoing
transitions from state 1 but, due to constraint functiorljrthe transition labeled witl; cannot

be taken (the constraint implieg = 0). The probability mass going from state 1 to states 2 and 3
in P, corresponds to the probability allowed 8 from its statel to its state2; The redistribution

is done with the help of the matrix given in Figure3.2h Theith column inA describes how big
fraction of each transition probability (for transitions leaving 1) is associatdith wrobability x;

in Sz. Observe that the constraint functien (1)(0,0.8,0.2) = ¢1(1)((0,0.7,0.1,0.2) x A) is
satisfied.

41

a ber< 10—9 The bit error rate is less than 1 per billion bits transmitted.
br > 10Gbits/s | The bit rate is higher than 10 Gbits/s.

c P < 10W Power consumption is less than 10 W.

e Standby The relay is not transmitting.

(a) Atomic propositions in the optic relay specifications

(a+b+c>2)A(e=0)

(a+b+c<1)A(e=0)

p1(1)(z) = (x1 =0) A(z2 2 0.7) A (22 + 23 = 1) d2(D)(y) =(y1 =0) A(ys > 0.2) A (y2 +ys = 1)
(b) CMC S, the customer specification of the optic re- (c) The manufacturer specificatiosh, of the optic relay
lay

[(a+b+c<1)V
(a=0)A(b=c=1))]

$3(1,1)(2) = [(V4, 21,5 =0) A (22,2 + 22,3 > 0.7) Ale=0)
A (22,2 4 22,3 + 23,2 + 23,3 = 1)] ¢4(1)(z) = (x1 = 0) A (2 > 0.7)
A[(Vi, 25,1 = 0) A (22,3 + 23,3 > 0.2)] A(z3 > 0.2) A (2 + 23 = 1)
(f) ConjunctionSs of S; andS». Constraints on propo- (g) CMC S, generalizingSs, s0S3 =< Sy

sitions, pairwise conjunctions (intersections) of con-
straints ofS; andSs, are left out to avoid clutter

0 0
0 0 O 0 1
01 0 = _
A A=|0 v 1—v
0 1 0 0 0 1
0 0 1 0 0 1
(h) Correspondence for initial states Bf and.S (i) Weak refinement for initial states ¢ and.S4

Figure 3.2: Examples

42

Definition 3.2.6 Let P = ({1,...,n},op, M, Ap,Vp) be a MC andS = ({1,...,k},0s, ¢,
Ag,Vs) be a CMC withA;, € A,. ThenR C {1,...,n} x {1,...,k} is a satisfaction rela-
tion between states @t and S iff whenevep R u then (1)Vp(p)proj 4, (€) Vs(u), and (2) there
exists a correspondence matex € [0,1]"** such that (a) for alll < p’ < n with M, # 0,
Sk Ay =1; (b) ¢(u) (M, x A) holds and (c) ifA,, # 0 thenp’ R /.

We write P = S iff there exists a satisfaction relation relating andog, and callP animple-
mentationof S. The set of all implementations ¢f is given by[S] = {P | P = S}. Rows of

A that correspond to reachable stateg’ailways sum up to 1. This is to guarantee that the entire
probability mass of implementation transitions is allocated. For unreachable statésave the
corresponding rows itk unconstrainedP may have a richer alphabet th&nin order to facilitate
abstract modeling: this way an implementation can maintain local information usingesnal
variable.

Remark 3.2.7 Our semantics for CMCs follows the Markov Decision process (MDP in short)
semantics tradition 164, 65]. In the literature, the MDP semantic is opposed to the Uncertain
Markov Chain (UMC in short) semantics where the probability distribution fearoh state is fixed

a priori.

3.3 Consistency, Refinement and Conjunction

We now study the notions of consistency, refinement, and conjunctiondiest@int Markov
Chains.

3.3.1 Consistency

A CMC S is consistentif it admits at least one implementation. We now discuss how to de-
cide consistency. A state of S is valuation consisteniff V' (u) # (J; it is constraint consistent
iff there exists a probability distribution vectar € [0, 1]*** such thatp(u)(x) = 1. It is easy
to see that ileach stateof S is both valuation and constraint consistent tt¥eis also consistent.
However, inconsistency of a state does not imply inconsistency of thdispgon. The operations
presented later in this chapter may introduce inconsistent states, leavimgtioquf a resulting
CMC is consistent. In order to decide whetlters inconsistent, local inconsistencies are propa-
gated throughout the entire state-space usipigiaing operators that removes inconsistent states
from S. The result3(S) is a new CMC, which may still contain some inconsistent states. The
operator is applied iteratively, until a fixpoint is reached. If the resultiMOC3*(.S) contains at
least one state the$iis consistent. Als®' has the same models a5(.5).

We defines formally. LetS = ({1,...,k},0,¢,A, V). If ois locally inconsistent then let
B(S) = 0. If S does not contain inconsistent states thél) = S. Else proceed in two steps.
First fork’ < k define a function : {1,...,k} — {L,1,..., £}, which will remove inconsistent

43

states. All locally inconsistent states are mapped.toFor all1 < i < k takev(i) = L iff
[(V(i) = 0) v (Vx € [0,1]%, ¢(i)(z) = 0)]. All remaining states are mapped injectively into
{1,...,K'}: v(i) # L=Vj #14, v(j) #v(i). Thenlets(S) = ({1,...,k'},v(0), ¢, A, V'},
whereV'(i) = V(v~1(i)) and for all1 < j < k' the constrain®’(j)(y1, . .., yx) iS: 321, ..., Tp
S.t.

vig)=L=ux,= 0} and [V1 <1<k, y = :c,,q(l)] and [qﬁ(u_l(j))(xl,)]

The constraint makes the locally inconsistent states unreachable, and thednopped as a state.

Theorem 3.3.1LetS = ({1,...,k},0,¢,A,V)} be a CMC and3*(S) = lim,_,~ 8"(S) be the
fixpoint of 5. For any MCP, we have (1P =S < P = 5(S) and (2)[S] = [8*(9)].

3.3.2 Refinement

Refinemenis a concept that allows to “compare” two specifications. Roughly speaikiisg
refinesS,, then any model of; should also be a model &k. In [113, Jonsson and Larsen have
proposed a notion of strong refinement between IMCs. This definitiomésten CMCs in the
following way.

Definition 3.3.2 Let S| = <{1, e]{}1}, o1, 91, Al, V1> andS; = <{1, Ceey k‘Q}, 09, P2, AQ, V2> be
CMCs withAs C A;. TherelationR C {1,...,k1} x {1,...,ks} is astrong refinement relation
between states df; and S; iff wheneverv R u then (1) Vi (v)proj 4, (C) Va(u) and (2) there

exists a correspondence matex € [0, 1]%1**2 such that for all probability distribution vectors
x € [0,1]2*1 if ¢y (v)(x) holds then (@)r; # 0 = 22?2:1 A;j = 1; (b) ¢2(u)(z x A) holds and

(c) if Ay # 0thendv' Ru/. We say tha; strongly refinesSs iff o1 R 0o.

It is easy to see that strong refinement implies implementation set inclusion. velowiee
converse is not true. The strong refinement imposes a “fixed-in-adVarntness matrix regardless
of the probability distribution satisfying the constraint function. We prooseak refinemerthat
is complete for deterministic CMCs. Our definition generalizes the one prdpo$@l] for IMCs.

Definition 3.3.3 LetS; = <{1, RN kl}, 01, ¢1, A1, V1> and.S; = <{1, RN kQ}, 02, a2, Ao, V2> be
two CMCs, withA; C A;. ThenR C {1,...,k1} x {1,..., ka} is aweak refinement relatioiff
whenever R u then (1)V1(v)proj 4, (C) V2(u) and (2) for any probability distribution vector
x € [0,1]"*% such thatp, (v)(x), there exists a matriA € [0, 1]¥1**2 such that (a) for allS;
statesl < i < ky, z; # 0= Y52, Ay = 1; (b) ¢o(u) (2 x A) and (€) Ay # 0 = v/ Ru'. We
say that CMCS; (weakly) refinesss, written S; < 5o, iff 01 R 0s.

It is easy to see that the weak refinement implies implementation set inclusioningibe con-
verse is more involved. We postpone it to Sectoh

44

Example 3.3.4 Figure 3.2i illustrates a family of correspondence matrices parameterized by
witnessing the weak refinement between initial state$;and S, (defined in Figure 3.2). The
actual matrix used in proving the weak refinement depends on the lphbpaistribution vector
z that satisfies the constraint functiosy of state(1,1). Takey = 02‘% if 200 < 0.7 and

v = 08;% otherwise. It is easy to see thawif((1,1))(z) holds, thenp,(1)(z x A) holds.

3.3.3 Conjunction

Conjunctionis a useful operation combining requirements of several specifications.

Definition 3.3.5 Let S| = <{1, e kl},ol, ¢1,A1, V1> andS; = <{1, e kz}, 09, P2, AQ, V2> be
two CMCs. The conjunction df; and Ss, written S; A Ss, is the CMCS = ({1,...,k1} x
{1,..., ka}, (01,02), 0, A, V) with A = Ay U As, V((u,v)) = Vi (u)t? NVa(v)4, and

ko ko k1 k1
A((u,) (@11, 1,2, T215 - Ty k) = S1W O w1y, Y Try A2 (0) D its Y Tiks)-
j=1 j=1 i=1 i=1

Conjunction is an operation that conserves determinism and may introduresistent states (see
Example3.3 below) and thus a use of conjunction should normally be followed by appthieg
pruning operato3. As we already said in the introduction, the result of conjoining two IMCs is
not an IMC in general, but a CMC whose constraint functions are linear.

Example 3.3.6 Figure 3.2fdepicts a CMCS3 expressing the conjunction of IMGS and S, (see
Figures3.2b-3.29. The constraint, 3+23 3>0.2 in state(1, 1) cannot be expressed as an interval.

Finally, the following theorem shows the conjunction of two specificationscod@s with their
greatest lower bound with respect to the weak refinement (also clibgdd refinemeht

Theorem 3.3.7 Let Sy, Sy and S5 be three CMCs. We hayéS; A S2) < S1) A ((S1AS2) = S9)
and(Sg =< Sl) AN (Sg = 52) = 53 < (Sl A SQ)

3.4 Compositional Reasoning

Let us now turn to studying composition of CMCs. We start by discussingdystems and
specifications can be composed in a non-synchronizing way, then weéuot@ notion of synchro-
nization. The non-synchronizingdependentomposition is largely just a product of two MCs (or
CMCs). We begin with composition of MCs.

Definition 3.4.1 Let .S, = <{1, .. ,nl}, o1, M/, Ay, V1> and S, = <{1, RN ng}, 02, M”, Ao, ‘/2>
be two MCs and supposé; N A, = (). The parallel composition o, and P, is the MCP; ||
Py = <{1, S ,’I’Ll} X {1, C ,ng}, (01, 02), M, AU AQ, V> where: M e [0, 1](n1><n2)><(n1><n2) is
such thaW(qu)(nS) = MI/JT’ - M"; and V((p, q)) =W (p) U VQ(q).

gqs’

45

We now define independent parallel composition between CMCs.

Definition 3.4.2 Let S} = ({1,...,k1},01,¢1,A1, V1) and Se = ({1,...,ka}, 02, P2, A2, V2)
be CMCs withA; N A, = (). The parallel composition of; and S, is the CMCS; || Sy =
<{1, e kl}X{l, RN k‘g}, (01, 02), ¢, AJUAs, V>, Whereé(u,v)(zl,l, 21,25+ 221y s Z’ﬂ,kz) =
dz1, .., Xk, Y1, -5 Uke € [0,1] such thatv(i, j) € {1,...,k1} x {1,...,k2} we havez; ; =
xi - yj and oy (u)(zr, ..., x5) = d2(0) (Y1, - .., Uk,) = 1; Finally, V((u,v)) = {Q1UQ2 | Q1 €
Vl(u)vQQ S VQ(U)}

Composition preserves determinism. It is worth mentioning that IMCs are negatlonder com-
position. Consider IMCsS and S’ given in Figure3.3aand their compositiors || S’ given in
Figure3.3h Assume first thab' || S” is an IMC. As a variable;; is the product of two variables
z; andy;, if S || S"is an IMC, then one can show that the interval fgris obtained by computing
the products of the bounds of the intervals over whiglandy; range. Hence, we can show that
z11 € [0,1/2], 212 € [0,1/3], 221 € [1/6,1], 290 € [0,2/3]. Let[a,b] be the interval for the con-
straintz;, it is easy to see that there exists implementatibref S; andl; of Sy such thatl; || I
satisfies the constraigy; = a (resp. z;; = b). However, while each bound of each interval can
be satisfied independently, some points in the polytope defined by the intendathe constraint
> zij = 1 cannot be reached. As an example, consiglee= 0, z12 = 1/3, 291 = 1/3, 220 = 1/3.

It is clearly inside the polytope, but one cannot find an implementdtiohsS || S’ satisfying the
constraints given by the parallel composition. Indeed, having= 0 implies thatr; = 0 and thus
thatzlg =0.

so the weak refinement is a precongruence with respect to parallgdasition. Consequently, for
any MCsP; and P, we have that’; =51 A P =S, impliesP | P, = S1 || Ss.

Theorem 3.4.31f S}, S}, S1, S are CMCs therS] <51 A S, < Sy impliesS] || S5 < Sy Sa,

As alphabets of composed CMCs have to be disjoint, the composition doegnubirenize
the components on state valuations like it is typically done for other (norapiligtic) models.
However, synchronization can be introduced by conjoining the composiitbra synchronizer
a single-state CMC whose constraint function relates the atomic propositiadhe composed
CMCs.

Example 3.4.4 The CMCS || S’ of Figure 3.3bis synchronized with the synchroniZgmc given
in Figure 3.3c Sync removes frond' || S’ all the valuations that do not satisfy = d) A (b = —c).
The resulting CMC is given in Figurg.3d Observe that an inconsistency appears in State).
This is because there is no implementations of the two CMCs that can sgizehiothe prescribed
way. In general inconsistencies like this one can be uncovered byiagphe pruning operator,
which would return an empty specification. So synchronizers enableveiscof incompatibilities
between component specifications in the same way as it is known foraieabpistic specification
models.

46

melo1/2 (0 O wen/a

,) 1w diob.ap
{{a}{mb}}Q ®{{c}} ! O

meu/a.u\ s g \yze[o.Q/s] (ot el Q=@ tedbcdebad) Oe=ant=0

ey @ Q) tan

(a) Two CMCsS andS’ (b)S | s (c) SynchronizeBync

@ ttabd)
-G (e
€ tab.an

(@) (S || §) A Syne

Sync

(.2) {{@}b. dHa.bdn}

212

222

Figure 3.3: Synchronization

The following theorem states that synchronization is associative withaegpeomposition.

Theorem 3.4.5 Let S, So andS3 be three CMCs with pairwise disjoint sets of propositiehs Ao
and As. LetSync,,4 be a synchronizer ovet; U A, U A3 and letSync,, be the same synchronizer
with its set of propositions restricted té; U A. The following holdg[((S1 || S2) A Syncys) ||
Ss] ASyncypz] = [(S1] S2 || S3) A Sias].

3.5 Deterministic CMCs

Clearly, if all implementations of a specificatioh are also implementations of a specification
S,, then a designer can consider the former to be a proper strengthertimg lafter. Indeed$;
specifies implementations that break no assumptions that can be made abontemaptens of
Sy. Thus implementation set inclusiaa desirable refinement for specifications. Unfortunately,
it is not directly computable. However, as we have already said, the vedimement soundly
approximates it. Had that approximation been complete, we would have ativeffdecision
procedure for implementation set inclusion. Indeed this is the case for amtanpsubclass of
specifications: the one of deterministic CMCs. We introduce the definitiddirajle Valuation
Normal Form which plays an important role in both the determinization algorithm and in theé proo
of completeness.

Definition 3.5.1 A CMC is in aSingle Valuation Normal Forri all its admissible valuation sets
are singleton (V' ()| = 1 for eachl <i < k).

It turns out that every consistent CMC (except those that have maneoti@admissible val-
uation in the initial state) can be transformed into the normal form preserviimgplementation
set.

a7

We now present a determinization algorithm that can be applied to any €MGose initial
state is a single valuation set. This algorithm relies on normalizing the specifi¢aignand
otherwise applies an algorithm which resembles determinization of automatarediie of the
algorithm is a new CMC whose set of implementations includes the ote dthis weakening
character of determinization resembles the known determinization algorithmmeofital transition
systems16].

Definition 3.5.2 LetS = ({1,...,k},0,¢, A, V) be a consistent CMC in the single valuation nor-
mal form. Letn < kandh : {1,...,k} — {1,...,m} be a surjection such that (¥}, ..., k} =
uve{lwm}h—l(v) and (2) foralll < i # j < k, if there existsl < v < kandz,y € [0,1]*
such that(¢(u)(x) A z; # 0) and (¢(u)(y) Ay; # 0), then(h(i) = h(j) < V(i) = V(j));
otherwiseh(i) # h(j). A deterministic CMC fofS is the CMCp(S) = ({1,...,m},0, ¢, A, V')
whereo’ = h(0), V1 <i <k, V'(h(i)) = V (i), and for eachl < i < m,

& () (Y1 Ym) = 21, ..., T, \/ (V1<j<m,y = Z:rv) A o(u)(xe, ..., zx)].

ueh=1(i) veh=1(j)
Theorem 3.5.3 Let S be a CMC insingle valuation normal forpwe haveS < p(.S).
As weak refinement implies inclusion, a direct consequence of The®#Bis that[.S] C [p(5)].
We now state the main theorem of the section.

Theorem 3.5.4Let S; = <{1, ey]{51}, 01, gf)l, Al, Vi> and Sy = <{1, ceey k‘z}, 02, 02, AQ, Vé>
be two consistent single valuation normal form deterministic CMCs withC A;. We have
[[Sl]] - [[82]] = Sl = SQ.

Proof: We present here a sketch of the proof. We construct the refinenatibneby relating
all pairs of states of; andS, for which implementation inclusion holds. L& C {1,...,k;} X
{1,..., ka} such thaw R v iff for all MC I and statey of I, p = v = p = u. As we consider
pruned CMCs, there exist implementations for all states. Then the usual,calbvglex and long
in this case, coinductive proof technique is applied, showing that this neletimdeed a weak
refinement relation.

The crucial point of the argument lies in proving the closure property —that.if an.S; state
u advances possibly t@’ then indeed the corresponding statef S, can also advance tg and
the (v/,v') pair is inR. In other words that implementation inclusion of predecessors implies the
implementation inclusion of successors. This is proven in an ad absurdwment, roughly as
follows. Assume that there would exist an implementafioof «" which is not an implementation
of v’. Then one can construct an implementatiérof « which evolves ag’. This implementation
would not implement’ but it could implement some other state$3f This case will be ruled out

48

by requiring determinism and a normal form$f. Then the only way foi” to evolve is to satisfy

v" which contradicts the assumption tHais not an implementation af . a O
Observe that since any consistent CMC with a single valuation in initial statbecaormalized,
Theorem3.5.4holds even ifS; and.S, are not in single valuation normal form. We conclude that
weak refinement and the implementation set inclusion coincide on the clagewhaestic CMCs
with at most single valuation in the initial state.

3.6 Constraints and Decidability

In the definition of CMCs, no particular type of constraints is implied, and ngteen be
said, for instance on the decidability of refinement. For first order caingsrover reals all our
operators and relations are computaldlé(J. Several more tractable classes of constraints can
be considered: interval, linear or polynomial constraints. Interval tcaings are of the form
¢(i)(z) = N\; @ij < xj < Bjj. Linear constraints are of the forg(i)(z) = = x C; < b
where(C; is a matrix andh; a row vector. Polynomial constraints are first order formulas of the
form ¢(i)(z) = 3y, \; sign(P;(z,y)) = oi; with P; being polynomials of arbitrary degrees
ando;; € {—1,0,+1}. These classes have increasing expressiveness, and yet alhatlistin-
guishes them is their closure properties with respect to the independatiepand conjunction
composition operators. Indeed, only the class of polynomial constrainkssisccunder indepen-
dent parallel composition, as polynomial equations of the foym- x;y; = 0 are introduced
in the resulting constraints. Concerning the conjunction operator, only tharlamnd polynomial
classes are closed under this composition operator, as the resultingasuastire of the form
(i, 7)(x) = ¢1(i)(x x My) A ¢2(7)(z x Mz) which in general are not interval constraints.

We now consider the refinement checking problem between CMCs with qmoisah con-
straints: GivenS; and.S,, two CMCs with polynomial constraints and less thastates and
polynomials of degred, decide whethes; refinesSs. It reduces to checking the validity 6f(n?)
instances of the following first order formuléz, ¢1 (i) (x) = JA, g2 () (@ X A)AN; (5 Airjr =
DA Ny (I"Rj"V Ayyr = 0) where constrainf\;, >, Ay = 1 relates to axiom 2.a of defini-
tion 3.3.3 under the assumption that an unreachable dummy universal state isdrise¥te De-
ciding the validity of such formulas can be done by quantifier elimination. Thedrical algebraic
decomposition algorithmdf], implemented in several symbolic computation tools (for instance,
Maple [178) performs this quantifier elimination in time double exponential in the number of
variables, even when the number of quantifier alternations is congt@nt\[Vith this algorithm,

refinement can be decided in tim}s(n222"2). However, considering constraintscontain only
existential quantifiers, quantifier alternation is exactly one in our casethemd are quantifier
elimination algorithms that have a worst case complexity single exponential otilg mumber of
variables, although they are double exponential in the number of quaatiemations14]. Using
this algorithm, refinement can be decided in tig:2s"" d"").

Deciding whether a CMC is deterministic is of particular importance since refimein@aot

49

complete in the class of non-deterministic CMCs and that determinization is amcilstrin
general. Determinism of a CMC with polynomial constraints can also be detidé@de single
exponential in the size of the CMC. However, this problem becomes polyharen restricting
constraints to be linear inequalities. Consider a CM@ith linear constraintg(i)(z) = = x C; <
b;. Recall that CMCS is deterministic if and only if for all state’s j such that < 7, V(i)NV (j) #
0 implies for allk, {z|z x C < by Ax; =0} =0 or{yly x Cp, < by Ay; =0} = (. This can be
decided in polynomial time using Fourrier-Motzkin eliminatidréf.

3.7 Related Work and Concluding Remarks

We have presented Constraint Markov Chains—a new model for exgireg a possibly infi-
nite family of Markov Chains. Unlike the previous attempt4 3 91], our model is closed under
many design operations, including composition and conjunction. We havedthése operations
as well as several classical compositional reasoning propertiesjrghtivat, among others, the
CMC specification theory is equipped with a complete refinement relation éterministic spec-
ifications), which naturally interacts with parallel composition, synchroninaitd conjunction.

Two recent contributions9[l, 112 are strongly related to these results. Fecher et [
propose a definition of weak refinement for Interval Markov Chains ihaoarser than the re-
finement defined in13 (see also Definitior8.3.2here). They also give a model checking pro-
cedure for PCTL 7] and Interval Markov Chains. Our definition of weak refinement coiesid
with theirs for Interval Markov Chains, which are a subclass of CMGgy Vecently Katoen and
coauthors 117 have extended Fecher’s work boteractiveMarkov Chains, a convenient model
for performance evaluatioripl, 104]. Their abstraction uses the continuous time version of In-
terval Markov Chains 14 augmented with may and must transitions, very much in the spirit
of [119 148. Parallel composition is defined and studied for this abstraction, howewgunction
has been studied neither ia1] nor in [117].

In future, it would be of interest to design, implement and evaluate efficigurithms for
procedures outlined in this chapter. We would also like to define a quotiktiorefor CMCs,
presumably building on results presentedi(|. The quotienting operation is of particular im-
portance for component reuse. One could also investigate applicabilityr @pproach in model
checking procedures, in the same style as Fecher and coauthorskavaterval Markov Chains
for model checking PCTLY1]. Finally the model presented ii12 can probably be extended
from intervals to more general constraints.

50

Part |l

Heterogeneous Systems

51

Chapter 4

Asynchronous Implementation of
Synchronous Specifications

Résumé : La prise en compte de la concurrence, de la communication et des dkpeas
causales en général est une question centrale pour la conceptionyd#sngs embarqués en
réseaux.

Le paradigme de la programmation synchrone est maintenant recommme I'un des stan-
dards industriels du domaine. On le retrouve a plusieurs niveaux de et conception des
systéemes embarqués de la conception systéme a la programmatiortéieesyse contrdle. Le
déploiement efficace de programmes synchrones sur des arcteteofparties est cependant un
probleme difficile mais essentiel pour la programmation a au niveau darchgectures pour des
applications de controle. Cette problématique se retrouve dans de nosgsrapplications, pour
les quelles le processus de conception tient compte du caractére répalttirchitecture. Cet
ainsi que pour les systemes de commandes de vol mis en ceuvre stiohssfarbus récents, les
regles de conception assurent la répartition et donc la désynchronisdis programmes syn-
chrones, sans adjonction de protocoles complexes. A I'autre extrém#gattre des architectures
VLSI constituent aussi un domaine d’application intéressant pour lgraramation synchrone.
La prééminance des architectures ditegtwork on chipsntroduit un fort degé d’asynchronie dans
les circuits.

Dans ces deux cas, |l semble particulierement utile de savoir transfoumerogramme
synchrone en un réseau asynchrone d'ilots synchrones. Ce saatcldtecturedocalement syn-
chrones, globalement asynchror(€ALS). C’est une question délicate, et a défaut de pouvoir
générer automatiquement les schémas de communication et desosysation, il semble par-
ticulierement utile de pouvoir prouver qu’'un réseau synchrone dgrarames synchrones peut
étre déployé sur une architecture asynchrone, sans adjonction adreyrisation, mais tout en
préservant la sémantique du réseau de programmes.

Il faut bien se représenter, que le probléeme de déployer un réseatir®ne sur une architec-

53

54

ture asynchrone est uniquement un probléme d’optimisation, puisqliieaune solution triviale,
mais totalement inefficace, tant en terme de communication, que d’utilisd¢i®messources de
calcul. Le véritable probléme est plutét une question de synthése diégmscde synchronisation
qui optimise une fonction de codt tenant compte de la communication etaliépame du systeme
GALS résultant.

Nous n’avons pas regardé cette question a proprement parler. Blowss cherché a carac-
tériser I'espace des solutions, le probléme d’optimisation relevant pletteéchniques heuristiques
pour des problemes d’optimisation combinatoire.

Nous avons regardé le probléme suivant: étant donné un réseawdemprmes synchrones,
décider si son déploiement sur une architecture répartie admet leseméomportements que
le réseau synchrone. Ce probleme est indécidable, méme quand@garmpmes synchrones se
réduisent a des automates finis.

Nous avons donc considéré des conditions suffisantes au déploieonexat. Plutdt que de
se ramener, par la force brute, a un probleme de vérification sur la csitipn asynchrone des
programmes synchrones, approche non modulaire qui aboutit eérgka un systéeme infini, nous
avons recherché des méthodes modulaires ne reposant pas suifizatién globale, mais plutét
sur une approche modulaire, reposant sur la vérification de relationaites entre programmes
synchrones, pour lesquelles un passage a I'échelle peut étre escomp

Les conditions suffisantes que nous avons proprosé sont en faitjanction de deux pro-
priétés distinctes. La premiére, diteigsbchronie est locale a un programme synchrone, et est une
propriété de déterminisme d’'un programme, quand on désynchrsessentrées. La seconde, dite
d’endochroniest une propriété portant sur un réseau de programmes et reflétearte compat-
ibilité entre programmes synchrones. Ces deux propriétés ont étégFep avec deux variantes,
I'une forte, fondée sur une sémantique macro-pas des programmelsrsges (dans laquelle une
réaction est décrite par une seule transition), I'autre, plus faible, repos@ine sémantique micro-
pas (dans laquelle une réaction est représentée par une suite d'diibecstae variables, terminée
par une transition spéciale, marquant le passage a la réaction suivante).

Ces travaux ont été initiés en 1999 a I'occasion d’une collaboration alteerfBenveniste?1,
23). Elle s’est ensuite poursuivie en collaboration avec Dumitru Potop-Bartwcalors postdoc a
Rennes T4, 143 147]. Dumitru Potop-Butucaru, depuis devenu chercheur a I'INRIA adRen-
court dans léquipe Aoste, a poursuivi ces travaux, en les orientastlagecherche de méthode
heuristiques pour la desynchronisation correcte de réseaux degmges synchrone$45, 144.
Cette méme problématique a été reprise dans les travaux de thése de Jujiédddtorat effec-
tué dans I'équipe Espresso a Rennes), mais avec application au ladgagg®grammation Sig-
nal [139.

55

4.1 Introduction

Dealing with concurrency, time and causality in the design of electronic systassecome
increasingly difficult as the complexity of the designs grew.

Thesynchronous programming mod8B, 26, 144 has had major successes at the specification
level because it provides a simpler way to employ the power of concyrieffenctional specifica-
tion. Provided that a few high-level constraints ensure compliance withytt@hsony hypothesis,
the designer can forget about timing and communication issues and cateenirfunctionality.
The synchronous model features deterministic concurrency and simpigosdion mechanisms
facilitating the incremental development of large systems. Also, synchsamodels are usually
easier to analyze/verify/optimize compared to asynchronous countemgféetsbecause the state-
transition representations are smaller.

Synchronous languages likesEEREL, LUSTRE, and SGNAL, the quasi-synchronousrsre-
CHARTSmModeling methodology, and design environments likel INK / STATEFLOW all benefit
from the simplicity of thesynchronous hypothesis

1. Cycle-based execution model. Behaviors are sequencesaionsindexed by aglobal
logical clock

2. Within each reaction, the behavior is non-divergent and causal asdhth status of every
signal is defined prior to being used in computations.

Note that condition 2 empowers the conceptual abstraction that computatoemmunications
are infinitely fast (“zero-time”) and take place at discrete points in time, wittdum@tion. It
also allows universally-recognized mathematical models like the Mealy madchmkthe digital
circuits to be used as semantic foundations.

Eventhough the synchronous assumption simplifies system specificatiore@ainchtion, the
problem of deriving a correct physical implementation from it does renizéh [In particular,
difficulties arise when the target implementation architecture has a distributiae tizat does not
match the synchronous assumption because of large variance in compataticommunication
speeds and because of the difficulty of maintaining a global notion of time isTimisreasingly the
case in complex microprocessors and Systems-on-a-Chip (SoC), mmafiy important classes
of embedded applications in avionics, industrial plants, and the automotivstigd

For instance, many industrial embedded applications consist of multiplegsingeslements,
operating at different rates, distributed over an extended area,ceimegtcted via communication
buses. To use a synchronous approach in the development of uiddatpns, one solution is to
replace the asynchronous buses with communication infrastructureothptycwith a notion of
global synchronization. This is examplified by the family of Timed-Triggerech#iectures intro-
duced and promoted by H. Kopetl[d. However, such a fully synchronous implementation must
be conservative, forcing the global clock to run as slow as the slowegbuatation/communication
process. The overhead implied by time-triggered architectures andreyiocts implementations
is often large enough to convince designers to use asynchronous sslutio

56

s e - . -0~ 5 S . °o~o | 3
o o o |0 K7} o
c c c S S c
2 LI > 1. -~ @ = 2 2 IS) = 2
< < = o Q =
5} o o < < 5}
S, -8 = 1 - = S — & S
% [J [J L % % [J [] %
synchronous asynchronous
Synchrony GALS

Figure 4.1: From synchrony to GALS. Bullets represent informativeeslmessages). Vertical
gray boxes represent reactions. Horizontal ones represergtasyious signals.

Gathering advantages of both the synchronous and asynchronuoselpes, Globally Asyn-
chronous Locally Synchronous (GALS) architectures are emergiag aschitecture of choice for
implementing complex specifications in both hardware and software. In a Gp&t8m, locally-
clocked synchronous components are connected through asyoakm@mmunication lines. Thus,
unlike for a purely asynchronous design, the existing synchronois ¢aa be used for most of
the development process, while the implementation can exploit the more effin@mnA&irained/re-
quired asynchronous communication schemes.

We further pursue in this chapter our quest for correct-by-construcleployment of syn-
chronous specifications over GALS architectures.

4.1.1 Informal discussion of the issues

In the synchronous paradigri®8, 26, 144, an execution of the program, also call&ece,
is a sequence of reactions, each reaction assigning a unique valus)(gtatach variable of the
program. Not all variables need to be involved in each reaction. Howtngis taken into account
by extending the domain of values of all variables with an extra symbwgthich denotes absence.
Thus, absence can be tested and used to exercise control.

No global clock exists in thasynchronous paradigmmeaning that no notion of reaction exists,
and that absencel(has no meaning and cannot be sensed. Only the sequences of vainds o
vidual channels can be observed, so thaasynchronous observatia@i the execution of a system
is a function assigning to each communication channel the sequence ofittadsnessages/val-
ues. Asynchronously observing a synchronous execution con$isgmoving the L events and
the synchronization boundaries of the reactions to obtain an asynetsrobservation.

In many cases, applications designed in a synchronous frameworkilwbe implemented
for use in an asynchronous environment Two problems arise: First, the synchronous applica-
tions must be fitted with wrappers that read the asynchronous inputs lagdiuse them into reac-
tions before giving them to the program and triggering the program ctbeks¢heduling operation
inserts the missing. values). As the synchronous paradigm is often used in the developinent o

57

safety-critical systems, input reading and the system itself must be detdroiarsat least pre-
dictable. Itis therefore essential to consider classes of synchrepeusications that facilitate the
development of efficient wrappers which make input reading determinisile wot restricting the
behavior of the system.

Second, the implementation must preserve the semantics of the synchrpecifscation,
meaning that the set of asynchronous observations of the specificat&tnbmidentical to the
set of observations of the implementation. Preservation of semantics is intpoeause the
advantages of synchrony lie with specification and verification. We woelektbre like each im-
plementation trace to be covered by the verification of the synchronoud.mdule problem is of
particular importance when the synchronous specification must be implenueseated distributed
architecture (an operation callddsynchronization In such cases, input reading and computation
must be coordinated between distributed sites, and doing this without alcamefysis can be very
inefficient (in terms of speed, consumption, communication, etc.) or simplyractor

This chapter addresses the problem of desynchronizing a moduleteyrous specification by
replacing the communication lines between modules with asynchrono@sHIfstead of a single,
global wrapper, we shall have one wrapper per system componepigtased in fig. 4.1 The
exact problem we address is thatabfaracterizing large classes of synchronous components for
which small, simple wrappetsproduce deterministic, efficient, and semantics-preserving GALS
implementations These classes of systems can then be considered as the implementatiegn spac
and the remaining problem is that of making given synchronous systemmlielthese classes (by
adding supplementary signaling). Naturally, a larger implementation spaeesduostter solutions
that use less synchronization.

4.1.2 Previous work

Previous approaches to implementing modular synchronous specificatien&ALS archi-
tectures are respectively basedlatency-insensitive systepmn Kahn process networks (KPN)
and onendochronous and isochronous systems

In the latency-insensitive systern$ Carloniet al. [59], each synchronous component reads
every input and writes every output at each reaction. The communicatutocpls effectively
simulate a single-clock system, which is inefficient, but simplifies the implementation.

In aKahn process networfd 29, requiring that each component has a deterministic input/out-
put behavior implies the determinism of the global system (and thus any &r&pa good one).
Often used, due to its robustness, in the development of embedded sytter{®N-based ap-
proach has been adapted by Caspal. for the desynchronization of functional dataflow syn-
chronous specification$]]. Giving the approach its strength, the determinism is also its main
drawback, as non-determinism is often useful in the specification arigsanaf concurrent sys-
tems. We also mention here the approach of Taggial. [167], which is based on a bounded
version of the Kahn principle.

1. Forinstance, wrappers that trigger a transition as soon as the riepdet available.

58

The approach based emdo/isochronous systeras been proposed by Benvenistal. [23]
in order to support the analysis of partial specifications (which can belaterministic, or incom-
plete), to exploit execution modes, and to cover truly concurrent and ntodtk-ecnplementations.
Informally speaking, a synchronous component is endochronous tibgresence and absence of
each variable can be inferred incrementally during each reaction froouthent state and from the
values of already present values. An endochronous componenskray to read its inputs, mean-
ing that no wrapper is needed. Unfortunately, endochronous comfsooan exhibit no internal
concurrency, which makes endochrony non-compositional (thugrimemtal system development
is impossible). Isochrony is a semantics-preservation criterion overgfaggichronous systems.
The work of Singh and Theobald @eneralized latency-insensitive systdiss can be seen as
implementing endochrony in hardware.

Essential improvement is brought by the work by Patbpl. [143 on weak endochrony and
weak isochrony. Weak endochrony extends endochrony by allowiegations within a compo-
nent to run independently when no synchronization is necessary. Gtlmns compositional,
allowing incremental development of large systems. Being formulated in aaasaf frame-
work, this approach is also less constrained than the KPN-based omgngllton-determinism in
the less abstract causal model. The non-causal framework is also thdigalantage, because it
hides implementation properties, like the presence of synchronization or acucation deadlocks
(which are important in practice).

The distribution of synchronous or strongly synchronized specificaii@s been studied in
many other settings. We only mention here the Time-Triggered Architectuiéspeftz [L19, the
ocr ep tool of Giraultet al. [61], the AAA methodology of Soreld7], and the desynchronization
approach of Cortadellet al. [42)].

From a more theoretical point of view, our work is closely related to resaltdad to the
confluence of asynchronous system modélsd. In this sense, our work is closely related to
results concerning the design of delay-insensitil/é3 132, 71], speed-independeni]q, and
burst-mode 179 circuits (we will come back with a comparison in secti¢d.3.

4.1.3 Contribution

This chapter brings an important improvement over previous work, by @ltpws toreason
about concurrency and efficient synchronization in a causal, dperal synchronous framework
that takes into account the composition through read/write mechanishhge approach inher-
its the advantages of the weak endochrony-based approach: It dlewspresentation of non-
deterministic specifications, takes into account execution and communicaticgsnat covers
concurrent and multi-clock implementations. At the same time, it allows us to réasomnified
model about semantics-preservation and the absence of deadlodkssginehronization and com-

2. The termcausal/causalityovers here the execution order of the various operations that maksymphronous
reaction. The formalism presented in this chapter has the means cdeaping this order. Other formalisms, including
those of 3, 143, do not.

59

munication (which are both essential correctness properties of any imgktioeh As we shall
seethe level of detail is essential in this analysis, as it reveals the strong tiesitistbetween the
two correctness properties, and simplifies the correctness analysis

Our main contribution is the definition of a new model for the representatiosyofciironous
implementations of synchronous specifications. The model covers clasgi@mentations, where
a notion of global synchronization is preserved by means of signalimigglabally asynchronous,
locally synchronous (GALS) implementations where the global clock is rechoVée use this
model to derive criteria ensuring the correct deployment of syna@usspecifications over GALS
architectures

4.1.4 Outline

The remainder of the chapter is organized as follows: Sedtddefines the formal framework
used throughout the chapter, and secdoBigives intuitive examples and explains why the new
structures are adapted to modeling and reasoning about the correaft@SisS implementations
of synchronous specifications. Secti@gng defines criteria ensuring correct desynchronization. A
short conclusion is given in secti@hnb.

4.2 The model

This section defines our model of asynchronous implementation of a eyrais specification.
We structured its presentation into several parts. The subsedtipris4.2.2 and4.2.3introduce
rather standard notations for transition systems (labels, traces, cemictremsition systems, and
composition by synchronized product). Subsecticgh4is the first to define communication chan-
nels, clocks, and the I/O transition systems which form our basic implementatidel n®ection
4.2.5defines the synchronous transition systems — which are I/O transition sysatisfging the
synchronous hypothesis. In sectib2.6we explain how transition systems are synchronously and
asynchronously composed using FIFO models. Recall that intuitive exarapegiven later, in
sectiord.3.

4.2.1 Variables and labels

Our components and systems interact with each other and with their envirbtimrearghvari-
ables Thedomainof a variablev is denoted wittD,,. GivenV afinite set of variables, Ebelover
V is a partial valuation of its variables. Formally, the set of all labels & Ly =[],y Dy,
whereD- = D, U {1}, andL ¢ D, is a special symbol denoting tlesenceof a value. The
supportof a labell € Ly is supp(l) = {v € V | l[(v) # L}. We denote withLy the label of
empty support oveV. For simplicity, we shall usually write out a label as the set of its non-absent
variable valuations. For instance,v = 0, u = 1 >y denotes the label ovéf with support{u, v}
and which assigns 0 to and 1 tou. When confusion is not possible, the $étof variables can

60

be omitted from the notation. Also, when confusion is not possible and wktnesave space (for
instance in large system representations) we shall drop<the-* delimiters.

If I € Ly andV’ is another set of variables, then theageof | throughV’ is the label
I |y€ Ly that equalg overV NV’ and equalsL on V' \ V.

The labeld; € Ly,,i = 1,2, arenon-contradictory denoted; < Iy, if forall v € Vi N'V;
such that;(v) # L,7 = 1,2 we havel; (v) = l2(v). In this case, we define their:

— union: [Uls € Ly,uy,, of supportsupp(l;)Usupp(l2) and which equal oversupp(l;),i =

1,2.
— intersection:l; Ml € Ly,uy,, Of supportsupp(l;) N supp(lz) and which equal$; on its
support.
The union and intersection operators are associative and commutaties. tiéhlabel$, , is € Ly
are non-contradictory, we also define theiiferencel; \ lo € Ly by 1 \ lo(u) = l1(u), if u &
supp(lz) and_L, otherwise.

When the non-contradictory labélse Ly;,i = 1,2 are equal ove¥; N V3, they are called
synchronizableTheir union is also called in this capeoductand denoted witlh, ® [>. Note that
l1®ls equald; onV;, i = 1,2. The labeld; € Ly;,i = 1,2 aredisjointif supp(l1)Nsupp(l2) = 0.

Assume that andv’ are variables with the same domaire(D, = D,.). Givenl € Ly, with
v € Vandy ¢V \ {v}, the name change operator associgte®’] € L ,juqwy With:

l(u), if u 0
l(v),ifu="1

Ho/v')(u) = {

We define the “sub-label” partial order relatishover Ly: [< Iy if Vo : (l1(v) # L =

ll(v) = ZQ(’U)).

4.2.2 Traces

A trace over the set of variablek is afinite sequence of labels ovéf. The set of all traces
overV is denoted withl'races (V') = Ly, = {(l;)o<i<n | n € NAVi : I; € Ly}. Given a trace
¢ = (l;)o<i<n We denotdength(p) = n andep[i] = [;. Note that any label is a trace of length 1.
We denote withe any sequence of length 0. In particutadenotes the empty trace, regardless of
the variable set.

Any two tracesp;, 2 € Traces(V) can be concatenated (by juxtapositipnes). The trace
1 is a prefix of py (written 1 =< o) if, by definition, po = @13 for someys. The prefix
relation is a partial order over traces. The image operator is extendedoentpvise on traces:
(li)o<i<n |v'= (i |v')o<i<n. The tracesp; € Traces(V;),i = 1,2 are calledsynchronizable
if length(p1) = length(y2) and if for all j the labelsy[j] and p2[j] are synchronizable. In
this case, we can define theoduct tracep; @ 2 = (¢1[i] @ p2[i])o<iciength(pr)- The product
operator is associative and commutative. Shpportof a traceyp, denotedsupp(yp), is the union
of the supports of its labels.

61

4.2.3 Generalized concurrent transition systems

The generalized concurrent transition systef@CTS) form our (asynchronous) implemen-
tation model. GCTSs are step transition systems where steps are synta@gentjons of the
concurrency between atomic operations (which assign or test a singddledr They generalize
the concurrent transition systems of Statk], and can be seen as a sub-set of the step transition
systems of Mukundl[35.

Definition 4.2.1 (generalized concurrent transition system)A generalized concurrent transition
system (GCTS) is atuple = (S, 3, V, o—x), whereS is the set of states (not necessarily finite)
, 3 € Sisthe initial stateV is the finite set of communication variables, ands, C S x Ly x S

is a transition relation satisfying:

GCTS1 (void transition):Vs € S : Se% 5.

GCTS2 (prefix closure): |f$e—>; s andl’ < I, then there exists” € S such thats g o

IANA
and S”G\T> s,

When there is no ambiguit}; can be dropped from the transition relation notation.

We shall say thapp = [;...1,, € Traces(V) is a trace of the GCTE = (S, 8, V, o—yx)

I l2 In

starting in the state € S if there existsy,...,s, € S such thats s1 Sp -

In this case, we also writss=—=>s,, . The set of all traces of starting ins is denoted by
Tracesy(s), and the set of all destination states of such trace®RisS(X) = {s' € S| Jp :

se—= ¢’ }. Thereachable state space Bfis RSS(X) =dqef RSS:(X).
Generalized concurrent transition systems are composed by meanschf@yimed product.
Consider two GCTSE; = (5;, si, Vi, o=y,),i = 1,2, then their product is defined as follows:

Y1 ® 3 = (81 x S, (51,52), Vi UVa, o=y e5,)

lv,)) .
where (51,52)%% (sh,55) < Sios > si ;i = 1,2. The® operator is well-defined — It
1 2 7

preserves the properties GCTS1 and GCTS2. Itis also associativ@amutative, and:

n
Tracesgr v, ((si)i<i<n) = {® vi | pi € Tracesy,(s;) pairwise synchronizable}
i=1

The variable name change operator is extended to GCTSE. ¥ (S, 3, V, o—x), v € V,
v' ¢ V \ {v}, andD, = D, then:

Slo/v) = (S, 8, VA L} U 'k { g o | so—s')

[
Sv/v

62

4.2.4 1/0 causality. Channels and clocks

In practice, communications between the different components of a systedirected. One
component emits a value on a channel, and another reads it. To take thisdotogove use
directed communication channédtsat are pairs oflirected variablesWe emit a value on a channel
¢ by assigning the variable, and we receive a value by reading the variatleThe variabledc
and?c have the same domain, denoted with We denote wittC(V) = {c |lc € V or ?7c € V'}
the set of channels associated with a set of variablle§o simplify the model, we assume that
every channel connects at most one emitter with at most one receivelingéaat!c is variable of
at most one component in the system, the same holdiri:f@ simple renaming technique allows
the use of multicast, but we shall not cover the subject here). We fusgseme that the only
variables that are not directed are thecksof the synchronous components. A clock is a variable
whose domain i9.;, = {T} (T stands for the “clock tick”). Given a sét of variables we shall
denote withClocks(V') the subset of clock variables, and withrected(V) = V \ Clocks(V)
the subset of directed variables. To simplify the notations, we abbreviatdattietick valuation
7 = T with 7 (for any clock variable-).

Definition 4.2.2 (/O transition system) We say that a GCTS is an I/O transition system when all
its variables are either directed or clockisrom now on, this chapter only considers1/O transition
systems.

To reason about desynchronization properties, we shall need thwifajldunction, which
removes the clock synchronization barriers, so that only messagesdgaatbsence) are visible,
along with message ordering on each chanfiel(D,-)* — D, defined byi(e) = ¢ and:

5(0) = { v8(p), if v # L

d(p), otherwise

Using this notation, we extend the relatigr{first defined on labels) to a preorder o¢@éraces(V):
Givenpr, g € Traces(V), we write p1 < 2 whenever we havé(p: [1,) = d(p2 [10y) for

all v € Directed(V). If o1 < pg andpy < ¢1, then we say thap; andps areasynchronously
equivalentdenotedp; ~ 2. When for allv € Directed(V') we haves(p1 [(y) = d(v2 lf))

or 6(p2 [{vy) = d(¢1 |{0y), then we say thap; and s areasynchronously non-contradictary
and writep; <1 @o. Note thate< extends to traces the non-contradiction relation over labels.
Moreover, we can extend the label difference operator to non-abatoay traces by defining the
asynchronous difference of traces\ ¢2 by induction:

{ 1\ (lp2) = (1 \ 1) \ p2
(i) \l2 = (L1 \ 2) (01 \ (I2 \ 11))

If ¢ is atrace of an I/O transition system, then we denote With the number of assignments of
non-clock variables contained in

63

4.2.5 Synchronous transition systems

Our synchronous transition systems represent causal synchrepeasications or, equiva-
lently, implementations of synchronous specifications where the global id@ckserved by some
communication infrastructure by means of added signalizatidnsynchronous transition system
is an 1/O transition system with a single clock variable, and satisfying the synals hypothesis
and a stuttering-invariance property (which is necessary if we wantrteed8ALS implementa-
tions).

Definition 4.2.3 (synchronous transition system)A microstep synchronous transition system (for
shortuSTS)isatupl& = (S, s, V, 7, o—) where all the variables df are directed, where is a
clock variable (the clock of the component), and whétes, V U {7}, o—) is a GCTS satisfying:

uSTS1 (clock transitions): if 5ot o andi(r) # L thenl |y= Ly.

©STS2 (stuttering-invariance): s~ 3 and(se—>s = s'e= > g)

uSTS3 (single assignment): two assignments of a same variable must be sapasaa clock

transition. More exactly, ifsg b g oo s andVi: #£ 1, thenly, ..., 1,

are pairwise disjoint.

Note that axiomuSTS1 identifies thelock transitions- with label< 7 > — which are the only
transitions where the clock variable is present. Such transitions sepgnater@nous reactions
during which a variable cannot be assigned more than once (cf. gx®n$3). A state which
is destination of a clock transition is calleginchronizing stateGiven a tracep of a synchronous
system, we can decompose itinto reactipns Stepo(p) < 7 > Stepi(¢) < 7 > ...where each
reactionStep; () contains no clock transition. As the transitions of e&¢ep; (¢) are disjoint, we
can denote with< Step;(¢) > the union of all its labels. We shall say that a traces complete
if it ends with a< 7 > transition. We say that aSTS isnon-blockingif from any reachable
state there is a path towards a stuttering state. Note that in a non-blocKirtg any trace can be
completed. Blocking systems are considered incorrect.

An isomorphism\ between two GCTSE,; = (S;, s;, Vi, o=y,),¢ = 1,2 consists of two
bijectionsA® : S; — Sy and\Y : V; — V5 having the properties: (v : D, = Dyv (v, (i)

A

M9 (81) = s, and (jii) seTl> s & A(s)e>A5(s') , where)(l) denotes the label obtained
1 2

from [by renamingy with AV (v) for all v € V4. If ¥; andX, are 1/O transition systems, we say
that \ is an isomorphism of 1/0 transition systems\if maps read variables onto read variables,
write variables onto write variables, and clocks onto clock&l{lfand>:, areuSTSs, them\ is an
isomorphism ofuSTSs if it is an isomorphism of 1/O transition systems.

3. Such as in th&ime-Triggered Architecturesf Kopetz[L1§].

64

4.2.6 Synchronous and asynchronous composition

As earlier mentioned, we simplify the model by only allowing point-to-point commnatita,
and we enforce this rule by syntactic means. However, broadcasecsimhlated by replicating
and renaming variables.

Definition 4.2.4 (composable transition systemsYVe say that the I/O transition systefmg i =
1,n are composabléf their variable sets are mutually disjoint.

Note that the definition requires not only point-to-point communications (rectid variable is
shared by two or more systems), but also the non-overlapping of cltekugaich is natural). Also
note that a system can have bbatland?c as variables, thus allowing the representation of systems
obtained by composition.

The composition of synchronous and asynchronous systems is dejimadans of synchro-
nized product, using FIFO models to represent communication througtmeyrus and asyn-
chronous channels. To represent synchronous communication.enfeplace synchronous FIFO
models (which argSTSs themselves). The FIFO model associated with a charsel

SFIFO(c,7) =
({co,c1} U U {cz}, co, U {le==x,7c=x}, 1, o—g)

CCEDC IEDC
where the transition relation is defined by:

—~o <le=z> <Tc=z>
<T> coe—>=Cpo—> (]
7

= ° ,x €D,

Note that modeling multicast communication (a feature that will not be addressad chapter),
can simply be done by renaming channel read variables in a componentasigen, and then
modifying the FIFO model to allow the concurrent read of the value fronefit sites.
Asynchronous communication involves infinite asynchronous FIFO moddiglf are not
uSTSS):
AFIFO(c) = (D}, ¢, | {le=x,7c =1}, o—4)
x€D,

where the transition relation contains all the transitions of the form:

<le=mp41> <?c=xz1>
Tl Tpo————>21 ... TpTp] —> L2 ... Tyt

65

Definition 4.2.5 (synchronous composition ofiSTSs) LetX; = (5;, $;, Vi, 7, o=y,),i = 1,2
be composablgSTSs and let be a clock variable. Then, the synchronous compositidty agind
Y, over the base clock is:

1|7 e =31[n /7] @ Xa[re/T] ® ® SFIFO(c,T)
ceC(V1)NC(Va)

Lemma 4.2.6 (Properties of the synchronous compositionJhe synchronous composition of the
uSTSsY; and X5 over the base clock is a uSTS of clockr. The result of the synchronous
composition is unique upto renaming of the base clock, so that we can eniage clock from
the notation. Moreover, the operatof is associative and commutative, modulo isomorphism.

In addition, note that synchronizing states| pf, £; have void communication lines (all syn-
chronous FIFO models are in their unique synchronizing state).

Definition 4.2.7 (asynchronous composition of I1/0 systems)ety; = (S;, $;, Vi, o=y,),i =
1,2 be composable I/O transition systems. Then, the asynchronous dtorpot:; and:; is:

Sy Se=SieNe Q) AFIFO(c)
ceC(V1)NC(Va)

Lemma 4.2.8 (asynchronous composition propertiesYhe asynchronous composition of I/O tran-
sition systems results in another I/O transition system. Theoperator is associative and com-
mutative. The asynchronous composition of (&I Ss is not aSTS.

Proof: (lemmas4.2.6and4.2.8 The operator is associative and commutative, which implies the
associativity and commutativity of the synchronous and asynchroneogasition operators. The
isomorphism oB2; | Xy andX; | X, is given by the renaming of the clock variable.

4.2.7 Product states and product traces

Note that the state of a synchronous or asynchronous product oy$fénss is not only given
by the state of the components, but also by the state of its communication chdandeé&d, given
the composableSTSsY;,i = 1,n, connected through the channejsi = 1,m, the state of
121218 ((8i) ;=17 (¢])i=17m)» @nd the state dfi; ¥; is ((si);—17, (¢);—17), Wherec; denotes
states ofSFIFO(c;, 7) andc! denotes states of FIFO(c;).

Nevertheless, for space reasons, we shall consider in this articlexartypdes where the tuple
(Si)izfn unambiguously identifies the state of the product. Thus, we can use the wemstate
tuple alone to label states.

As should be expected, the synchronous composition binds tighter thasytineheonous one.
Indeed, given the composahiSTSsY; = (S, §;, Vi, 7, o—y,),% = 1,n, we can map the state
space of _, ¥; onto the state space §f" ; X;:

L2 RSS(|™ %) < RSS(|| ™, %))

66

by mapping for each communication channtie state o F'1 F'O(c,) onto the state o F' 1 FO(c)
using:co — €, ¢1 — ¢, andVz € D, : ¢, — x. Similarly, we can define for any; € S;,i = 1,n
the injective “inclusion morphism” that maps traces of the synchronousuptawito traces of the
asynchronous product:

v:Traces|n s, (s) = Traces|n_ s, (u(s))

defined inductively by (e) = €, by t(v192) = t(¢1)t(p2), and (for labels) by:

L(l) = l ‘U:-lzl %U{Tﬂ@':ﬁ}, if { 75 < T>
<T17-..,Tn >,|fl:<7_>

wherer is the base clock of the synchronous composition. With these notations we hav

Son:wg s = u(s)e=—= ()

=1

4.2.8 Projection operators. Traces of a GALS system

The operatorr? () projects a state or transition label of the synchronous pradugk; onto
the corresponding state or transition labebhf Similarly, 7*() projects states and transitions of
the asynchronous produft’ ; ¥; onto states and transitions &f. The definition ofz? () and
7$*() is trivial, with the exception ofr{ () over transition labels, which involves the renaming of
the common clock to the local clocks;.

Note that, while not constrained by global clock synchronization, thegratg¢? , ¥; still
satisfy a FIFO consistency property that requires that a value is readdrchannel only after
being emitted. The following definition formalizes this for traces starting with vbahaels (from
the initial state). Intuitively, we require that in any trace of the composeisythe sequence of
values read from a channel is a prefix of the sequence of valuesrthatrgten. Moreover, we
require that a write operation occurs before the corresponding pEsdt@®n.

Definition 4.2.9 (FIFO consistency)LetY; = (S;, $;, Vi, 7i, o—;), 1 < i < n be composable
pSTSs, and lep be some trace iff'races(|J;, (Vi U {r;})). We say thap is FIFO consistent if
for each channet shared between two components we h&ye|».;) = (¢ |{.;) and the rank
of (¢ |12¢))[7] In o is greater than the rank of(¢ [{1cy)[4] in ¢ for all j < length(0(e |12cy))-

We can now characterize the traces|¢f, >;:

Lemma 4.2.10 (GALS traces)Let X, ..., %, be composablg@STSs and let € RSS(|}_,%;)
be a synchronizing state. Thenge Traces»_ s, (.(s)) ifandonlyifvi : 7*(¢) € Tracess, (77 (s))
andy is FIFO consistent.

67

Proof: The direct implication is obvious according to the definitionscoand={*(). Conversely,
considerp a consistent trace such thét: p; = 7{'(p) € Tracess, (¢ (s)). Then, the consistency
of ¢ allows us to prove, by induction ovéength(y), that the interleaving of the;’s into ¢ is
possible under the composition contraints imposed by the asynchronoQs Eigt take part in
| 721 i This impliesp € Traces)n_ s, («(s)). O

As a corollary, if we are giverp; € T'racesy, (n{(s)), 1 < i < n, and if we can order their
non-clock transitions in a FIFO-consistent way, then there exists Traces»_ =, (c(s)) such
that7*(¢) andyp; are identical upto void transitions for dll< i < n.

4.3 Modelling and correctness of GALS implementations

This section starts by illustrating our definitions with a number of small, but intugtiaenples.
Based on this intuition, we define in sectidr8.2the formal correctness criterion. Sectiérs.3
explains why our model is useful in solving the GALS implementation problem.

4.3.1 Examples

The following uSTS represents a system that emits a message on clwsamethen awaits for
one message from either chanhelr r (e.g.for whichever comes first). Data is uninterpreted (not
important), therefore not represented. The clock of the system &nd we shall assume that the
directed variable set of; is {!a, 7b, 7r}:

In a more classical macrostep framework, like thatlgfd, this system would be represented by:

82

>
S0
\\ai

83

331, macrostep version :

The correspondence between the microstep and macrostep repressrgbtsystem is straight-
forward: The states of the macrostep system are the synchronizingafttiiesnicrostep one. The
macrostep transitions correspond to full reactions connecting syrizimgstates (after forgetting
the direction of the signals and the causality between successive labels).

68

We composé&:; with theuSTSY,, which has the clock; and the directed variable sgta, 10} :

<7:2\>
) <?a> \(g <1b> S
22 L <T2> < to : i1 to . tg& > <T2>
—r

<T2>

The synchronous compositidly | X, is done using two synchronous FIFOs, corresponding to
the variables/channetsandb:

~o <la> <?a>
<T> age—= age—> Q]
SFIFO(a,T): 7w P
N—

<T>

—~0 <lb> <7b>
<7T> (bO o—> b2 o— bl
-7 . o

SFIFO(b,7): 7 ~_ -
In this example, data is uninterpreted, only write/read causality and clockisymization is con-
sidered. The composed synchronous system is (we simplified for sgeszEns the label notations,
as explained in sectioh.2.]):

[cg
So,tODT
la

?a
Z E . SlatOHslatl
1 ‘ 2 Ta’r
r < r

?a T b
83, tge——= 83,11 83,2 83,13

U

T

Note that we simplified the notation by not representing the state of the two FtR®imitial state
having void FIFOs, the status of the FIFOs is fully determined in each stat@)evér, note that the
composed system is blocked in stéte, t3) becauses F'1 FO(b, T) cannot take a clock transition
(data has been written on it, but not read). The sysfgm 3 is blocking, thus incorrect.

The asynchronous compositidh || X9 is done using the two asynchronous FIFOs, figured
below:

c <lb> b c <la> a
AFIFO(b) : \/ AFIFO(a) : \/’
<?b> <?a>

Recall that in the general case the asynchronous FIFO models are infiowesver,>; and o
can emit at most one message on any of the two channels, so our choscecdi@éfect the result
of the composition:

©
S0, t0>T177'2,7’172

I | T2 T2 T1,72,T1T2
a
%a 2 Q b Q % Q
T2 (81,%0 S1,11 S1,t2 51,13 S9,t3
R A
r r r r
Ta T2,T1T2 b
S{EO 834\731 8352 o— 83,33
T1,72,T172 T1,72,T172 7_1)7—2“77—17—2

69

It is essential to note thal; || X9 has traces, like< la >< 7a >< 7 >< b >< ?b >, that are
not asynchronously equivalent to any of the synchronous tracEs df ¥,. Such traces are not
covered by the verification done on the synchronous model, meaning ¢h@thS implementa-

tion does not preserve the semantics of the specification.

It is also important to note that requiring a one-to-one correspondegieeeén synchronous
and asynchronous traces is not a good idea, because for largesatdssy/stems it can be highly

inefficient. Consider, for instance, the following system:

and its synchronous and asynchronous compositionMth

So,tg)T

Ta
S, 51, toe——> 51,11
3 ’ 2- Ta?r
r - r

b

?a T ! b
83, to 83,11 83,2 83, 30— S4,13

O

O

70

o
SOétO 1717T2,T1T2

T2 T1,72,T1T2

a, 0., 0

la

?a T2 ! 7
T2 (s1,t0 S1,11 81, t2 S1,t3 S9,t3
23 H 22 : f ?2a? 7T 16? 767
r T r ’ r o 7r o 7r
?a T2,T1T2 b b
s3, 1o 83,11 53,12 53,13 S4,t3

CHRCERC IR IRS

T1,T2,T1T2 T1,72,T172 T1,72,T172 T1,72,T1T2

As expected, the synchronous composition binds tighter than the aspyncisrone, but for any
trace of¥3 || X5 going from(so, o) to (s4, t3) we can find an asynchronously equivalent trace in
Y3 | 2. Such a GALS implementation is obviously correct, because it does not urcgatew
behaviors. Exploiting the concurrency between different computataswwé do here) to allow the
systems to evolve at different rates is a desirable feature because it mscoimenunication and
consumption. The difference betweEpn andX; is that inX3 the transitions< 76 > and< 7r >

are concurrent in statg, while in 3, there is a non-deterministic choice between them (meaning
that if messages come on both channels, only one will be read, in an ioipbdel fashion).

4.3.2 Formal correctness criterion

We already presented, in sectidrl.] the intuition covering the notion of correctness of a
GALS implementation with respect to its microstep synchronous specificatiorgiw¥dnere the
corresponding formal correctness criterion:

Criterion 1 (correct desynchronization) LetY;,i = 1,n be composabl@STSs. Then, we shall
say that the GALS implementatidft_, 3; is correctw.r.t. the synchronous specificatiofi_, %;

if for all synchronizing states of |, %; and for all trace¢ € Traces)» s, (i(s)) there exist
¢ € Traces|n_ x,((s)) andp € Tracesn_x,(s) suchthaty < g andg ~ ().

In other words, the GALS implementation is correct if any of its traces carobwleted with a
finite number of transitions to a trace that is asynchronously equivalerddmplete synchronous
trace.

Our criterion is akin to previous correctness criteéid,[143 defined in a macrostep setting.
Most important, criteriorll allows us to exploit (like inXs || X3) the concurrency of the syn-
chronous specification to support GALS implementations that are weakbhsymized, yet cor-
rect. Important differences exist, though, as our criterion is formulatedicro-step operational
framework that simplifies, as we shall see in secdofi4 the definition of sufficient conditions
for correctness.

As explained in the introduction, our purpose is now to find sufficient itimms for correct-
ness (in the formal sense of criteridh that cover large classes of implementations. We do not

71

cover here the synthesis problem of transforming given systems to shgsfprrectness criterion.
However, we use two examples to give the intuition of future synthesis tasdstidrirst, to correct
the composition ok; with 35, we can simply prevents from firing the transition labelee b >
by guarding it with a condition that is never fulfilled:

T2
/. o, 7a ?d o, b -
22. 72<#t00—>t197_—2>t29—>t39—>t3&)72

More interesting is the case where we comphsewith a process., that non-deterministically
chooses between emittingor doing something else. In this case, the solution is to signal the
non-deterministic choice ta, so that it can adapt its behavior:

W

u/2 o—>= U9 T2
ld=0 e

‘N{d:l

; S

(e

Y ~o 7a
4 - T1 (Ug e— U1
7

Here, we assumed that the non-deterministic choice betweBn> and< !x > is an essential
feature of the specification,, which must be preserved. To make the composition correct we need
to make this choice visible from its asynchronous environment, under thedbea choice over

the value of a new channel, namédThen, we can modify; into X/, which uses this signal to
decide which message to wait for.

4.3.3 Modeling issues

The 1/O transitions systems can be viewed either as microstep specificatioas, asyn-
chronous implementation models. A sub-class of I/O transition systems satisfyribbronous
hypothesis — they have a single clock variable, which determines clochtimassand no variable
is assigned twice between successive clock transitions. Thus, theyec®eb as microstep syn-
chronous specifications. The only hypothesis that departs from th&aghsynchronous model
is stuttering-invariance. However, we see stuttering-invariance asreqgpisite for the efficient
multi-rate GALS deployment.

72

If we compare our model to macro-step models like thos@8f143, every macrostep speci-
fication (automaton) has (at least) a microstep implementation. Like many mapnmstkels, our
formalism does not explicitly represent the reaction to signal absence ddés not influence the
expressivity of the model, as reaction to signal absence can be nefg@ssing non-deterministic
choice. The composition through point-to-point links is not an essentigiati®n, as it is easy to
define FIFO models that cover multicast.

The synchronous and asynchronous composition operators reéeatshmption that an emit-
ted signal must not be left unread by the receiver. This hypothesst®fh an operational fashion
the rendez-vous-like synchronized product composition from maemfermalisms.

Composing the:STSsY;,7 = 1,n using the || operator intuitively corresponds to imple-
menting|?_,¥; as a GALS system where all the communication lines have been replaced with
asynchronous FIFOs. The components are still clocked, but individoets are independent, and
the components are only synchronized by the FIFO causality rules. InAh& @nplementation
the clock of one component can be triggered concurrently with anothek oloan assignment of
another component. The GALS implementation can function in a multi-rate fasksomo con-
straint relates the occurrence of clock transition in different components.

Compared to classical macro-step approaches, our model brings aflelethil which is es-
sential in deciding the correctness of actual implementations. Compasiagd > results in a
blocking system:

B5: (P00% 1% 26537)
7 =

Y61 (m°0e0% 1% 27)
7 -
However, this problem cannot be observed in macro-step settingse wieesystem does not block
and can even fire the transition of lalaét. Indeed, the microstep model is better suited for analysis
akin to causality checks performed in synchronous languages like Estefact, we shall see in

section4.4.4 that non-blocking correctness and semantics preservation are tatlde

4.4 Correct desynchronization criteria

Following the goal fixed in the introduction, we now define criteria that attarze a large
class of synchronous components for which small, simple wrappers ggatkterministic, effi-
cient, and semantics-preserving GALS implementations.

4.4.1 Microstep weak endochrony

Microstep weak endochrony (or, simply, weak endochrony) is thegrtpguaranteeing that
a given synchronous componemtSTS) knows how to read its inputs, so that no asynchronous
wrapper is needed. Weak endochrony requires that all internalecbbithe component is visible
as a choice over the value (and not presence/absence status) aftedfir@riable (either input or

73

output). Thus, the behavior of the system becomes predictalleyimsynchronous environment
because choices can be observed.

With this requirement, the implementation space delimited by weak endochronyathetass
very large: Concurrent behaviors are not affected by the previdasso that independent system
parts can evolve at different speeds. Weak endochrony doesqote 1/0O determinism. Instead, a
weakly endochronous component must inform the environment aboudet@rministic decisions
(the variable used to do so behaves like an oracle that is visible from dutside

Definition 4.4.1 (weak endochrony)We say that theSTSY = (S, s, V, 7, o—) is weakly en-
dochronous if it satisfies the following axioms:

#WEL (determinism): so—ts> s;,i = 1,2 = s1 = so (from now on, we shall denote with

s.p the unique state afl having the propertyse—@> s.l, and the notation is extended to
traces).

wWE2 (independence)if the labelsl; andli, are disjoint and ifl1, I # T, then:

S S
A
l1Ulo
S0 = 383 : Sgo———> S3
AN NN
52 52

uwWE3 (clock properties): assume thatsg o> s andy € Tracess(so) With 7 & supp(p).
Then:

1. p € Tracess(s1)

2. if p < 7 >€ Tracess(so), thenpy < 7 >€ Tracesx(s1) and sp.p <7 > =
s1.p < T >

3. if pyp < 7 >€ Tracesx(s1), then there existg’ < ¢ such thatpy)’ < 7 >¢€
Tracesy (o).

4. ifp<7>,0<71>€Tracesxy(sy) andy <6, thenp(0\ ¢) < 7 >€ Tracess(sp)

uWE4 (choice):if p; < v =z; >€ Tracesx(s),i = 1,2 andp; X g, thenp; < v =x9 >€
Tracesy(s).

Similar in intuition and in function to its macrostep counterpantd, weak endochrony is never-
theless specific to our more concrete causal, microstep framework. Whils,choice can only
occur at the level of atomic variable assignments, concurrency (moceseleconfluence) must
also deal with full reactions and clock transitions (through axipg&2 anduWE3, and the con-
sequences of lemma4.3. Axiom yWEA4 insures that a choice between two concurrent execution
paths does not hide a “real” choice between non-concurrent assiggme

74

Lemma 4.4.2 (independencelety = (S, §, V, 7, o—) be a weakly endochronoysSTS, let
s € S,and letyy, 2 € Tracesy(s) with supp(p1) N supp(p2) € {7}. Then:

1. If 7 & supp(yi),i = 1,2, thens.p ¢, ands.pap; are defined and equal.
2. If p; completej = 1,2, thens.p; 2 ands.pap are defined and equal.

Proof:
part 1. Fromsupp(e1) N supp(p2) C {7} andt & supp(y;),i = 1,2, we obtainsupp(e1) N
supp(p2) = 0. Then the labels [k] andp.[l] are disjoint, for all k and |. Based on this remark,
the result is easily obtained by induction ovength(y1) + length(p2), the induction step using
axiomuWE?2.
part 2: We shall give here the proof for the case whgrendy, comprise each one step. This will
prove that independent steps commute, and this result can then be epbéy &p prove that any
two complete traces commute. Assume then= Stepg(p1) < 7 > andypy = Stepo(pz) < T >.
Lets’ = s.Stepo(p1).

According to the first part of this lemma,Stepo(¢1)Stepo(p2) ands.Stepo(p2)Stepo(p1)
exist and are equal.

By applying axiomuWES3.4,s.Stepo(p1)Stepo(p2) < T > exists. Then, by applying axiom
pWE3.2ins’, we obtain that’.< 7 > Stepo(p2) < 7 > exists and is equal t8.Stepy(p2) < 7 >.
By using the definition of’, this implies

s.Stepo(p1) < T > Stepo(pa) < T > = s.Stepy(p1)Stepy(p2) < 7 >
Similarly:
s.Stepo(p2) < T > Stepo(p1) < T > = s.Stepy(p2)Stepo(p1) < 7 >
Given that the second terms of the two equalities are equal, the proof is ¢ethjle
Lemma 4.4.3 (confluence)Let X = (S, s, V, 7, o—) be a weakly endochronoysSTS, lets €
S, and lety; € Tracesx(s),i = 1,2 such thatp; > 9. Then:
1. If 7 & supp(pi),i = 1,2, thens.g1 (2 \ 1) ands.p2(p;1 \ p2) are defined and equal.
2. If ¢; complete; = 1,2, thens.g1(¢2 \ ¢1) ands.p2(p1 \ p2) are defined and equal.
Proof:
part 1:
Case a: When each of the two traces are reduced to onedabel I1, 2 = lo. Fromy; > o we
havel; i [. Then, from axiom GCTS2, we can decompésmto [; \ I; andls M11;. By applying
axiom uWE2 tols \ /3 andl; in states, we obtain that.l; (I3 \ /1) ands.(lx LI [1) exist and are
equal. Similarly,s.lo(l; \ l2) exists, and is equal ta (/s LI I1), which implies the needed result.

Case b: when onlys is reduced to a single transitioWe deduce that the desired result holds by
induction overlength(y1), and by applying case (a).

75

Case c: the general casenduction ovelength(y2) allows us to prove the first point of the lemma
in the general case.

part 2: We shall give here the proof for the case whereandy, comprise one step each. This will
prove that non-contradictory steps can be merged into confluentters. The general case is
proved by iterating this result. Assume then= Stepg(p1) < 7 > andps = Stepg(p2) < 7 >.
Lets’ = s.Stepo(p1).

Using the first point of the lemma, Stepy (1) (Stepo(p2) \ Stepo(p1)) and
s.Stepo(p2)(Stepo(p1) \ Stepo(p2)) exist and are equal. From axionWE3.4,
s.Stepo(p1)(Stepo(p2) \ Stepo(p1)) < T > exists, and then, by applying axiopWE3.2 in state
s’ we obtain that

s.Stepo(p1) < 7 > (Stepo(p2) \ Stepo(p1)) < T > = s.Stepo(v1)(Stepo(p2) \ Stepo(p1)) < 7 >

Similarly,
s.Stepo(p2) < 7 > (Stepo(w1) \ Stepo(p2)) < T > = s.5tepo(w2)(Stepo(w1) \ Stepo(p2)) < 7 >

which impliess.¢1 (2 \ v1) = s.p2(p1 \ ¢2). O
Note that the proofs of lemna4.41) and lemma.4.31) are only based on the axiom8VE3
anduyWEA4.

Lemma 4.4.4 (completion)LetY = (S, s, V, 7, T') be a weakly endochronoysSTS, and con-
sider a states € S and two tracesp;, g2 € Tracesy(s). If ¢o is complete andr; < @9, then

there existgp3 complete such that o3 = s.09 and g3 ~ 9. In addition, ify; is complete
then we can takes = @3 \ 1.

Proof: The case where is complete is a mere corollary of lemmda4.32). The case where
T & 1 Is proved using axionuWE3.4. The general case is a simple combination of the two
previous cases.

Note that we do not require confluence for arbitrary (incomplete) tradé® intuition be-
hind this restriction is that the atomicity of reactions must be preserved, arefdtethe clock
transitions cannot follow the simple commutation rule of axieWEZ2. In the following weakly
endochronougSTS, for instance (initial stat®, s.< 7a > ands.< 7 >< ?a > are different:

?a b T
S

-
-
I ?a 7 /
o> o——>

Also note how lemmat.4.2 gives the classical independence (full commutation) results, for
the case whereupp(¢1) andsupp(p2) share no directed variable. However, the finer microstep
notion allows us to consider systems likig where the classical macrostep independence does

76

not apply (in statesy, the macrostep transitions andar do not commute, yet the system is 1/0O
deterministic).

The confluence properties of an endochronous system are evagestras stated by the fol-
lowing:

Theorem 4.4.5 (determinism)Let> = (S, 8, V, 7, T') be a weakly endochronoysSTSs € S,
and lety, @2 be traces ofl racess(s) such thatp; ~ 2. Then

1. if 7 & supp(pi), i = 1,2, thens.p1 = s.¢
2. if o1, po are complete, then.p1 = s.¢o.

Proof: Point 1 is a corollary of lemmd.4.31). Point 2 is a simple corollary of lemn#a4.4 O

Note that the last lemma (point 1) tells us that we can non-ambiguously labebths s2ach-
able from a given state in one instant by the signals emitted or receivecctoitea

In fact, these strong confluence properties allow us to put any tradeeieakly endochronous
system imnormal form in which every transition is maximal and the number of reactions minimal.
The main result is:

Theorem 4.4.6 (maximal steps/normal form)LetX = (S, 3, V, 7, T') be a weakly endochronous
uSTSs € S, andy € Tracesy(s), complete. Then, there existsc Tracess(s), complete, with
@ ~ ¢ and such thak Stepg(p) > is maximal (for label inclusion).

Proof: Let L be the set of all labelsof non-clock transitions starting insuch that < . Then,
forall 1,15 € L we havel, i lo. By using the same reasoning as in the proof of lerdda3 1),
we obtainl; LI Iy € L, for all l;,l5 € L. The maximal transitiorp[0] is the union of all the labels
in L.

This process can be iterated to construct maximal non-clock, non-voisiticmsy|j], 7 > 0,
until for a givenjp + 1 no such transition can be built. The process is finite, for each variabl&
can be assigned at most oncedy= 3[0. . . jo.

From the maximality ofs; and from lemmat.4.4 we deducethat =, <7 > (p\g;)isa
trace of'racesy;(s) with ¢ ~ . The maximality of< Stepo(p) > is easily proved byeduction
ad absurdumwhich completes our proofl

We conclude the presentation of weak endochrony by stating the verytanpoomposition-
ality result that allows to incrementally build complex weakly endochronousisys

Theorem 4.4.7 (compositionality) Let 33;,7 = 1,n be composable weakly endochron&TSs.
Then,|_,¥; is weakly endochronous.

Proof: Direct application of the previous results, by taking into account the definitiche syn-
chronous compositiorn]

Weak endochrony is illustrated by th&TSsY, X3, andXs | X9 of sectiond4.3.1, and by all
the examples of the sectiods3.2and4.3.3 The uSTS?; is not weakly endochronous because
the non-deterministic choice in statg makesY; unpredictable, so that other components, like

77

>4, cannot adjust their behavior to preserve the synchronous semdrtes.ansformation ofl;
in X} illustrates the type of instrumentation required to transform a gep&a6 into a weakly
endochronous one.

4.4.2 Comparison with macrostep Weak Endochrony

The fundamental difference between macrostep Weak Endochroriandicrostep version
is that the former can make decisions involving the value of several sigeedsved during a
reaction. In our microstep framework, each decision is based on theofadiéy one input signal.

It is easy to associate a macrostep synchronous representation — &nrL®€ spirit of 143
—to any STS. More exactly, gived = (S, s, V, 7, T'), we associate the LSTS] = (5, 3,7"),
where:

%)
Soﬁgl

!
SWS,@HSW © = Stepo(p) < T >
I =< Stepo(p) >
In other words, the macrostep version considers only transitions fropm@honizing state to
another synchronizing state, the other states being invisible at this levestwéetion.
Unfortunately, the relation between microstep and macrostep weak endgdeamot simple.

Given auSTSY, such as the one below (at left) the fact that (below, at right) is weakly en-
dochronous does not imply thatis microstep weakly endochronous. In our case, it is not.

o— L
s10—>sy_)7 52
a - a,c=1
Q
Q 50 S0
X b,c=2
c=2 &

S3o——> Sy T S4

At the same time, a microstep weakly endochronous systésmot necessarily macrostep weakly
endochronous, as the following example shows:

59 S1

=\ c ab £ abe
(T S0 51 84 @D T S0~ 54

S3 52

78

One extra problem is that there exist macrostep weakly endochronsiesrsythat have no mi-
crostep weakly endochronous encoding. One of them is the following:

AC=0 KDZO
ABC=D=0

S0 S4

BDK Ao

53

S
1 =Rrc=p=1

It appears that for each macrostep weakly endochronous systegrettists a microstep one over
the same variables and with the same asycnhronous traces. As explaitied, this is due to the
fact that macrostep weak endochrony can rely on tests involving $eagiables at a time, which
is impossible in our microstep framework.

4.4.3 Comparison with related models

Weak endochrony belongs to a family of properties whose goal is to rpeesencurrency
while ensuring the correct operation of a system in an untimed asynals@mwvironment. We
refer here to the work of Kellerl[Lq. In this paper, Keller shows that 3 propertiedeterminism
commutativity andpersistence- ensure global confluence in a very general form of asynchsonou
transition system. The determinism requirement is quite common, but commutatidifyeasis-
tence are the key point of the approach. They roughly corresponddamsaWE2 anduWES3,
ensuring that independent labels in a given state are concurrentoandtarfering, and remain
available while not taken.

Weak endochrony follows the same principles, but in a much more specifigsettin

— Our communication lines can transmit data, not mere arrival notificationss. allows us
to refine our correctness criteria to take into accainaicein the system-environment syn-
chronization protocol (axiomWE4).

— Weak endochrony deals wilynchronous systemshe most natural way of ensuring persis-
tency of transitions that are not taken is to ensure an intra-instancetgecgisconcerning
microstep transitiong{WE2), and a macrostep persistency, covering full reactiph¢g3
states that clock transitions cannot disable other transitions). It is inteyéwtne to recall
that the macrostep weak endochrony o4J needed only a macrostep persistency prop-
erty. But here we need the microstep aspect, as well. Macrostep pergistanbe seen as
covering non-interfering transactions instead of elementary communications

— Weak endochrony defines a normal, most compact form for systeavioe$, something not
provided by the general confluence results of Keller. This allows reiag@mn convergence
speed. For instance, if two synchronous reactions starting in a stateraeontradictory,
then convergence between them can be attained in at most one reaction.

79

— Finally, our systems are input/output systems, which are predictablepbdeterministic
as such (they are deterministic only if we forget about the direction of lsigna
These supplementary aspects determine the complexity of the theory andfitidtgibf the
proofs. A Major difference with Keller's work is that he is interested in tbhafluence of a single
system (which corresponds, in our setting, to lenmdaha4). Our work aims at finding conditions
under which the semantics of a system of components does not changeve/heplace a strongly
synchronized composition mechanism with a purely asynchronous one.

The work of Keller provides the link with two approaches used in asymdus circuit design:
speed independence and delay insensitivity. Speed independ&t-d 15 116 (which usually
implies the hypothesis of semimodularity) ensures that the behavior of a cloastnot depend on
the speed of its basic computing elements. Delay insensitiVitg [L32 ensures that the behavior
of a circuit does not depend on the delays of its internal or external conoation lines. These
two properties are important because they support the definition of cirghitse functionality
remains unchanged when the fabrication process changes.

Like weak endochrony, speed independence and delay insensitipippispecializations of
Keller's fundamental theorem (as noted, for instancelitf]), but the hypothesis on the systems
and communication lines are different from those of weak endochrony.

A second important difference with Keller's work is that our results asetd@n the assumption
that an underlying communication infrastructure provides a lossless neepaaging mechanism.
Under this assumption, weak endochrony implies a very permissive pacsigioperty. By com-
parison, speed independence and delay insensitivity ensure, amamdlotiys, that signals are
not lost (in a sense, they cover at the same time the correctness of theyeipasaing protocol
under given hypothesfs and the persistency property).

Wires in speed independent or delay insensitive circuits can only trangemtse not values:
An event consist in the wire changing its value from 0 to 1, or from 1 to QusTkalue choices
(as found in weakly endochronous systems) cannot be directly esqur@s Keller's formalism, as
the only possible choices are among different events, occurring @nehtfwires. Microstep weak
endochrony is not meant to express such choices, which depend oorédragsumptions on the
environment (no input is produced by the environment until the systeradyte read it). With an
appropriate introduction of clock transitions, weak endochrony shaultbte to directly represent
delay-insensitive systems with no choicé @xiom R in [173).

More work is needed to understand the precise relation between weagtgody, on one side,
and speed independence and delay insensitivity, on the other, paljidayatefining a notion of
circuit realizationfor weakly endochronous systems, along the lined o],

Our work bears some relations with that of Yun and Dill on burst-mode cirguitd. Their
goal is to deal with multiple-signal interactions, instead of single signal evdihts approach is
oriented towards circuit synthesis, and strict operation conditions gréreel, which basically
exclude true concurrency.

4. such as the fact that forks are isochronic

80

4.4.4 Correctness results

Weak endochrony is compositional. However weak endochrony of adpooents does not
guarantee the correctness (non-blocking) of the global synchsaspmecification, nor the correct-
ness (semantics preservation) of the GALS implementation model. This casilyecbacked on
the systems formed by composiig andX; — defined in Section4.3.1and4.3.2

The most important result of this chapter is the following theorem, which stads$hid cor-
rectness of the synchronous composition implies the correctness of th8 G#dlementation.

In fact, the strong confluence and determinism properties of the weakllychronous sys-
tems will allow to prove an even stronger result, that also insures state ddtmiinaddition to
observational behavior equivalence:

Criterion 2 (correct desynchronization for weakly endochronoussystems)LetY;,i = 1,n be
composableuSTSs. Then, we shall say that the GALS implementgtfony; is correctw.r.t.
the synchronous specificatidfi_,>; if for all synchronizing states of |_,%; and for all trace
¢ € Traces)n_ x,(u(s)) there existp € Traces»_x,(s) complete angp € Traces»_ x,(c(s))
such thatp < ¢, ¢ ~ (), andc(s).¢ = 1(s)..(P).

Quite interestingly, Criterio2 implies Criterionl (the former has extra requirements).

Theorem 4.4.8 (correctness)et ¥;,7 = 1,n be composable weakly endochronqu8TSs. If
|?_,%; is non-blocking, therj ", %; is correctw.r.t. |, 3; in the sense of criterio.

Two technical lemmas are needed to prove the theorem.

Lemma 4.4.9 (completion, GALS) Let4, ..., >, be composable weakly endochron&T Ss,
let s be a synchronizing state ¢f',3;, and lety € T?”aCGSle:lzi(S), complete, andp €

Traces)n_ ,(u(s)) such thatp < (). Then, there exist8 € Traces)n s, (¢(s).p) such
that b ~ v(v) andu(s).pf = i(s)..(¢))

Proof: We can assume, without losing generality, that all the labejsarfe atomic (assign exactly
one variable). By projecting and on the components;, we obtain:

(1)) complete
() < 77 ()

We denote withp; = 7 (), ¥; = 77 (v), si = 77 (s). By applying lemmad.4.42), we find a
complete trac@; such that the following holds ik;:

Si
wzﬂ /92'

7%(¢), 77 (1) € Tracess, (x7(s)) with { i
i

81

ol 0?2

Si\’ 1 - 1

»; ¥i\e} i\pi 1 i 2 1)) — i i

| D oot % shor { (VB @1\) =\
PP = $i

N\ O\ (i \e})

Figure 4.2: Diagram with the transitions used in the proof of lerdrdal 0

Now recall that the construction process used by lemimial(based on the constructions of lemma
4.4.3 insures that in each; the atomic communication operations (non-clock labels) are ordered
in the same fashion as they arejin More precisely, let; be the rank in); of the non-clock label
that has rank in 6;. Whenever; > r;, we havei > j. The same relation is preserved by the
projection ofyy onto;. Then, the ordering of the operations of thén » can be used to interleave
the labels of the tracéds into 6, and our lemma is proved)

Lemma 4.4.10 (technical)LetX, ..., X, be composable weakly endochrongi&T Ss, let be a
synchronizing state of'_,¥;, and lety, v < 7 ...7, >€ TT(ZC@S”;(L:lZi(L(S)) such thatp i 1)
andVi : 7; & supp(v). Then:

PN\ @) <1 > (9 \) € Tracesn 5,(1(s))

Proof: By projectingy andy on the components;, we obtain:

, i () pa i (1)
i (), 75 Ti Tracesy, (73 (s)) with
i (), () <7 >€ » (77 () wit { o & supp(r®()

We denote withp; = 7&(p), 1; = (1), s; = 77 (s). Also lety; = o) p? with ¢} complete and
7 & supp(p?). All these elements are pictured in figg2, which also contains the other transitions
that will be constructed during this proof.

By applying lemmat.4.32), s;.¢} (1 \ o}) < 7 > ands;.1b; < 7 > (¢} \ 1;) exist and are
equal.

By applying lemmat.4.31) in states;.o} and for the trace? and; \ ¢}, we conclude that
si-pi o7 (Vi \ i) ands;.of (Vi \ @) (97 \ (i \ ¢})) exist and are equal.

The existence of;.ol 2 (v; \ ;) means thap; (; \ ¢:) € Tracess, (si)-

The existence of;.o} (i \ ¢})(? \ (¢: \ p})) means thad; = ¢? \ (¥; \ ¢}) is a trace of
¥, starting ins;.o) (¢; \ }). Since< 7; > is a trace starting in the same state, from axjoME1

82

we obtain tha®); is a trace ofy; starting in states;.o} (1 \ ¢}) < 7; >, and by the identity of
sipr (i \ o)) < 7 > ands;.p; < 7 > (pr \ ¥i) we havey; < 7; > (¢; \ 1) € Tracess,(s;).

We proved that for all < i < n we havep;(v; \ ¢i), ¥ < 7 > (@i \ ¥i) € Tracess,(si),
meaning that

Vi (o \ @), m (¢ <mie.om > (9 \9)) € Tracess, (w7 (s))

On each channel, the projection of anyxf)\p) ory) < 71 ...7, > (p\v) is either a prefix of
the projection ofp, or a prefix of the projection ap, which are themselves consistent. Therefore,
tracesp(y) \ @) andy < 11 ... 71, > (¢ \ ¢) are also consistent. According to lemeh&.1Q this
implies thatp(y) \ @), ¥ < 71...7 > (¢ \ ¥) isinTracesn_ x,(c(s)). O

Thanks to these two technical lemmas, theode#n8can now be proved.

Proof of theorem4.4.8 Let s be a synchronizing state gt ,3; and lety € Traces»_ 5, (u(s)).
We prove the existence gf and¢ by induction over ¢ | (the number of variable assignments in
). We can assume, without losing generality, that every label asigns exactly one variable,
either clock or directed. The reduction to this case is straightforward.

If | ¢ |= 0, thenp = p andp =< 7 > clearly satisfy the conditions of criterich

Consider nowp with | ¢ |> 1. If ¢[0] =< 7 >, then we have:

©[0] Pl length(p)—1]

u(s) u(s)

The induction hypothesis can be appliedyt . . . length(y) — 1] to determines ande.

From now on, we assume thal0] is not a clock transition.

To prove thatp andp exist, we shall first construat € Tracesj»_ s, (s) such thatr ¢
supp(V), v < T >€ Tracesw:lgi(s), Y[0] = ¢[0], andw(v)) > .
Construction of 1: Consider the projections gf onto components$(¢), 1 < j < n. Sincep|0]
is not the empty transition, nor a clock transition, then there exists at legsgwh thatrs () [0]
is not a clock transition, nor a void transition. Note th&()[0] is fireable in stater? (s).

Then, we start the iterative constructionoby setting the iteration countérto O and setting
1y = [0]. The iteration step:

continuation test: If ¢; < 7 >¢€ Traceswzlgi(s), then we completed our construction.
construction step: If ¢; <7 >¢ TTCLC@Sw:lEi(S), and since !’ ,%; is non-blocking, there exists
alabel< v =z > suchthat), < v =1z >¢ Traceswzlgi(s). If ¢, <v=u1z>n,then
considen); 1 = 1; < v = x > and go to the continuation test.
If not, theny = ¢y < v =1y > 1 With x # y andv & supp(vo). However, by applying
axiom yWE4, we have); < v =y >¢€ Traces‘?zlgi(s). By consideringy;11 = ¢; <
v =1y >, we also have),;, 1 < ¢, and we go to the continuation test.

The previous algorithm is finite, bounded by the number of variablég irt;. In the end we put
the lasty; in .

83

Construction of ¢ and ¢: Lets; = s.¢p < 7 >. According to lemmat.4.10we have

o)\ p), (V) < T1y...,Th >E Traces|n»_ s, (¢(s))

Sincep[0] = «(¢)[0], we havel ¢ \ ¥ |<| ¢ |. Then, we can apply the induction hypothesis in the
synchronizing state;, and obtairt € T'races|»_x,(s1), complete, and € Traces» s, (c(s1))
such that:

Letp = ¢ < 7 > 0. Giventhaty < 1(¢p) < 71...7, > (¢ \ t(¥)) and thatp \ t(v)) < 1(6),
we deducep < (). Sincep € Tracesi» . (s) is complete, lemma.4.9can be applied to
build ©* € Traces)»_ x,((s).) such thatoy' ~ 1(?) andi(s).pe" = 1(s)..(p). By considering
@ = @y, the proof is completed]

Theoremd.4.8implies that for large classes of components for which simple wrapperstest,
correctness of the GALS implementation is implied by the correctness of thel ghptizhronous
specification. Thus, no extra signalization is needed to ensure semaatesyation (and no costly
synthesis algorithms). The GALS implementation is correct by construction.

45 Conclusion. Future work

We introduced a new model for the representation of asynchronous impuigtioas of syn-
chronous specifications. The model covers implementations where a nbglmbal synchroniza-
tion is preserved by means of signaling, and GALS implementations, whera giotxhronization
is relaxed. The model takes into account computation and communicatiorligaesal allows
us to reason about semantics-preservation and absence of deadldok$GALS deployment of
synchronous specifications. As the model captures the internal cencyrof the synchronous
specification, our correctness criteria support implementations that aredestrained and more
efficient than existing ones.

The results of sectiod.4 suggest that our model offers a good abstraction level for reasoning
about desynchronization. In particular, the level of detail is essential/galing the intricate rela-
tion between (1) causal dependencies, concurrency and conflicts mitho-step semantics of a
synchronous specification and (2) the correctness (semanticsvattamey of its GALS implemen-
tation.

45.1 Future work

Thanks to this new model, we are exploring the development of GALS circuite mfsyn-
chronous IPs. Our work aims at using asynchronous logic wrapperetpsulate the components

84

of a modular synchronous circuit into delay insensitive components. Odelrseems well-suited
to analyze designs involving both synchronous and asynchronoust cpecifications. Prelimi-
nary results are presented it¥], but we are only at the beginning of our work.

We are also considering symbolic analysis techniques that would allow ussteti@the theory
detailed in this chapter to high-level synchronous languages like Sigkaterel, instead of simple
finite state automata. The objective is to derive efficient algorithms transfgmeineral high-level
specifications into weakly endochronous ones. Preliminary results in teistioin are presented
in[169.

A third research direction concerns the (still not sufficiently clear) ratatizetween classical,
macro-step synchronous models and more operational models like micrgstdp@ious transi-
tion systemsSTS), or the ones covering the implementations of synchronous progrartaning
guages, especially when desynchronization is involved. For instansémportant to understand
how the notions of correct desynchronization and endochrony caafsposed into a constructive
framework such as the one of Ester&%

Chapter 5

The Non-Standard Semantics of Hybrid
Systems

Résumé :La modélisation a I'aide de systémes hybrides est devenue une pratigunte dans
de nombreuses industries. Pour preuve, les outils de modélisation ehdkatson hybride (Mat-
lab/Simulink étant le plus connu d 'entre eux) sont utilisés par un trés gnantbre d’ingénieurs.
D’autres formalismes connaissent également un essort rapide réaybier le langage Modelica,
qui permet, en utilisant des systemes d’équations algebro-différentidgdiefinir des composants
avec des variables dont le réle, entrée ou sortie, n'est pas figé, maisraraire inféré a la com-
pilation, lorsque le composant est instancié dans un environnementicon

Ces formalismes permettent de modéliser avec une grande facilité demeystemplexes,
mélangeant des modéles de systémes physiques et de logiciel. Tougfaines difficultés de-
meurent non-résolues : la concurrence créée par la simultéaédrassages par zéro peut étre
difficile & gérer et est source d’ambiguités. La sémantique des paisesetes d’'un modele hy-
bride n’est pas toujours simple a comprendre, en particulier quanccedesades de passages par
zéro se produisent. La question de la génération de code de simulatiefieesiéme une ques-
tion délicate. Ainsi, la partition d’un programme hybride en deux parties)d’taybride (devant
étre exécutée par un solveur déquations différentielles) et I'autre des¢servant a contréler le
solveur d’équations différentielles), est un probléme qui n’est patetotnt résolu.

Ce chapitre détaille nos travaux portant sur la définition d’un mini-langadts ftle données
hybride, reprennant les principes fondamentaux des langages fl@erdees synchrones, ainsi
gue sa sémantique formelle. Nous avons repris une construction dése®réels non-standard
pour définir cette sémantique hybride, qui nous permet de parler ageeur de variations in-
finitésimales et d'incréments de temps infinitésimaux. Le résultat eseor@nsique constructive
(mais non effective) de notre mini-langage hybride, dans laquelle un@dempent est une suite
trans-finie de transitions représentant soit I'exécution d’'un pas disdweprogramme, soit une
évolution continue infinitésimale. Cette sémantique a lI'avantage qu’'elle pelenparler avec

85

86

précision des questions de causalité et de concurrence entre pagsageero. Elle permet égale-
ment de mieux comprendre les programmes Zénon, en particuliergeeaéfinissent des modes
glissants.

5.1 Introduction

Over the last two decades, hybrid systems modelers have become thestoneeof complex
embedded system development, especially for computer controlled systemsing® has be-
come the de facto standard for physical system modeling and simulation. &lwticky building
on the success of Simulink, The Mathworks was able to dominate sevet@issetthe market for
embedded systems design. This in itself demonstrates the importance of suchntdiols chap-
ter we focus on general modelers, aimed at modeling and simulating any typérid system
and we refer the reader t6(] for a more general overview of tools for hybrid systems analysis.
Besides Simulink and its state-based extension Stateflow, several othiel $iygtems modelers
have been developed. Scicos freely available software developed by Ramine Nikoukhah at
INRIA [58, 137]. Modelica® is a non-proprietary, object-oriented, equation based language to
conveniently model complex multi-physics systems. In Modelica, equatioresrmpre-defined
causality. Hybrid systems modelers raise a number of difficult issues:

1. Zero-crossings, which trigger mode changes, can involve a combiraftmmplex opera-
tions whose scheduling may be delicate.

2. How discrete is the semantics of the discrete part of a hybrid systems mib@zle we ob-
tain a simulation engine using a purely discrete time language compiler (e.g.la@yogs
language engine) managing a bare ODE solver? Note, that, quite oftereteliand contin-
uous behaviours are not cleanly separated in hybrid systems modelers.

3. Since simulations use a single, global, solver, the choice and tuning ofeéhedtion method
affects the entire system. This may lead to undesirable interactions betvwesystams that
seemingly should not interact.

4. What are the consequences for the compilation of Modelica’s “aamaoach?

In this chapter we focus on the first three issues. The case of Modalicéhe handling of Differ-
ential Algebraic Equations (DAE) is not covered here.

Issues raised by zero-crossings The following examples illustrate some of the subtleties of zero-
crossings. In them, the resetting mechanisms involve a tuple of zero-gess$iar instance, the
statement teset [1, —1] every up|z, —z|” specifies that the signalsand —z are monitored for

1. http:// ww. mat hwor ks. cont product s/ si rmul i nk/
2. http://wwrocqg.inria.fr/scicos/
3. http://ww. nodel i ca. or g/

http://www.mathworks.com/products/simulink/
http://www-rocq.inria.fr/scicos/
http://www.modelica.org/

87

upward crossings of zero (frord 0 to > 0), and further that the signal is rest tovhen a zero-
crossing occurs om, and to—1 when a zero-crossing occurs etx, with priority to the former if
both events occur simultaneously.

y= 0init —1reset|[l,—1] everyup(z, —z]
&= 0init — lreset[—1,1,1] every uply, —v, 2| (5.1)

z= 1linit —1

In (5.1), during the interval0, 1), = andy remain steady (their slope (swith initial value to—1)
while z increases at constant speledRight aftert = 1, z has a zero-crossing, which cause®
be reset ta, which in turn causes a cascaded zero-crossing @fhich causes the value gfto
be reset td, this causes a second cascaded zero-crossing which then causes a second reset
of the value ofy to 1, and so on, unboundedly. All these cascaded zero-crossingswliie time
remains blocked at= 1. An attempt at illustrating this is depicted on Fig&r&. In this drawing,
e > 0is a “very small” step size, in that finitely manys still sum up to~ 0. Example 5.1) is

+1

T

Y 1y € 2e 3e 4e 5e 6e

Figure 5.1: ExampleH1); ¢ is infinitesimal; symbol indicates that the considered event occurs
right afterl.

lyol+ € 2e 3e 4e 5e 6e

Figure 5.2: Example.2) with yo < 0; ¢ is infinitesimal; symboly, | indicates that the consid-
ered event occurs right aftee= |yo].

88

+3
+2
+1

1y € 2e 3e 4e 5e 6e

Figure 5.3: ExampleX.3); z is not showng is infinitesimal; symboll ;. indicates that the consid-
ered event occurs right aftér

certainly pathological. In contrast,

& = 0init — sgn(yo) reset [—1, 1] every up[y, —y] (5.2)
y = x init yg '

is the simplest case afliding mode contro[93]. Supposey, < 0, and hencery > 0. Then,y
increases at constant speed until its first zero-crossing, just after timey,|. From then on,

y chatters infinitesimally around as its speed alternates betweeh and+1 with infinitesimal
steps, as shown in FiguBe2 This simple example captures the behaviour of systems like ABS in
automobile brakes. An adequate interpretation of the behavioyisodveragingover time, thus
resulting in the mean dynamigs where:

) —sgn(yo), forthe intervall0, |yo|)
y _=
0 for [[yol, 00),

see the thick shaded dynamics in Figbr2
For our last example, operatbist (), wherex is a signal, delivers at instanthe left-limit
limg q s

& = 0 init Oreset [last (x) + 1, last (z) + 2]

every uply, z]

z=11init —1

(5.3)
) = 0 init —1reset [1] every up|z]

Signalz has a zero-crossing right after= 1, which causeg to have a cascaded zero-crossing.
In Figure5.3 we show the behaviour af that results if we consider the cascaded zero-crossings
of z andy as successive “micro-stepst:has two successive jumps, dfand thenl. One could,
however, consider that the two zero-crossings occur simultaneousihean the zero-crossing of

y preempts that of (sincey is listed first), which yields a single jump @ffor . Which semantics

is best?

89

In Section5.7 we discuss a more physical example where two balls collide and show how the
three examples are simulated by Simulink in Sectidh These examples raise a number of issues:
— Can we propose a semantic domain for these examples?
— Canwe use it
— to identify (6.1) as pathological, but nob(2)?
— to decide on the semantics &(.8)?
— More generally, can we develop a semantic domain to serve as a mathenagisdbbthe
management of (possibly cascaded) zero-crossings?
We insist that engines of hybrid systems modelers cannot themselvesypedphisticated singu-
lar perturbation analyses involving averaging techniqd@s][We thus seek techniques based on
abstract analyses that compilers can support.

Our contribution In [25] we advocated the use abn-standard analysias a semantics domain
for hybrid systems on the basis that it provides a semantics “as if it werdbassgm” but without
fixing an effective step size for the solvers; hence any scheme fopthers is supported. In this
chapter we address issuBs-3) of the introduction.

The chapter is organized as follows. Some background on non-stbadalysis is provided
in section5.2 Our mathematical formalism for hybrid systems specification is introducecdtin se
tion 5.3, we call it SMPLEHYBRID. Sectionb.4is the core of the chapter; a denotational semantics
is given based on non-standard analysis; we use it in a non trivial waiutty examples5(1),
(5.2 and 6.3). The constructive semantics (s,[29] for this notion) of SMPLEHYBRID is
provided in Sectior.5; it provides a firm basis for the scheduling of actions at execution time. In
Section5.6we provide a structuring ofi BPLEHYBRID systems showing that an execution engine
can be obtained using an existing synchronous language engine thatescti generic ODE solver
at particular times. Related work is analysed in sechiéh

5.2 Non-standard analysis

Non-standard analysis was proposed by Abraham Robinson in the 1®&0ow explicit ma-
nipulations of “infinitesimals” 161, 87]. Robinson’s approach is axiomatic, in that he proposes
enriching the basic ZF (Zermelo-Fraenkel) framework with three more axioms

To our surprise, the idea of using non-standard analysis for hybsigisys is indeed not new.
Iwasaki et al. 11]] first proposed using non-standard analysis to discuss the nature ointime
hybrid systems. Bliudze and Krol(), 39] used non-standard analysis as a mathematical support
for defining a system theory for hybrid systems. The formalization thegge® closely mimics
that of Turing machines.

The introduction to non-standard analysis 83][is very pleasant and we take the liberty to
borrow and adapt it. This presentation was originally due to Lindstrem,1s¥# [Its interest is
that it does not require any fancy axiomatic material but only makes use akibm of choice —

90

actually a weaker form of it.

The goal is to augmer® U {400} by adding, to each in this set, a bunch of elements that are
“infinitesimally close” to it, callFR the resulting set. Another requirement is that all operations and
relations defined ofR should extend tdRR. A first idea is to represent such additional numbers
as convergent sequences of reflsor example, the sequences = 1/n, v, = 1//n, and
w, = 1/n? yield elements infinitesimally close to the real number < zero, observe thataheyec
ordered:0 < w, < u, < v,. Infact, this can be made systematic as we will now explain.

5.2.1 Construction of non-standard domains

For I an arbitrary set, <er F over/ is a family of subsets of such that:
1. the empty set does not belong#o

2. P,Q € FimpliesPNQ € F, and

3. Pe FandP C Q C I impliesQ € F.

ConsequentlyF cannot contain both a sétand its complemenk©. A filter that contains at least
one of the two for any subsét C I is called arultra-filter. At this point we recall Zorn’s lemma,
known to be equivalent to the axiom of choice:

Lemma 5.2.1 (Zorn’s lemma) Any partially ordered setX, <) such that any chain inX pos-
sesses an upper bound has a maximal element.

It is easily seen that a filteF over [is an ultra-filter if and only if it is maximal with respect to
set inclusion. By Zorn’s lemma, any filtéf over I can be extended to an ultra-filter overNow,

if I is infinite, the family of sets9 = {P C I | P¢ is finite} is afreefilter, meaning it contains no
finite set. It can thus be extended to a free ultra-filter dver

Lemma 5.2.2 Any infinite set has a free ultra-filter.

Every free ultra-filtetF overI uniquely defines, by setting P) = 1 if P € F and otherwis®,
a finitely additive measurey : 27 +— {0, 1}, which satisfies

wu(I) = 1and, if P is finite, thenu(P) = 0.

Now, fix an infinite set/ and a finitely additive measupe over I as above. LeK be a set and
consider the Cartesian produtt = (z;)c;. Say(x;) ~ («}) iff u{i € I | 2; # 2} = 0. Relation
~ is an equivalence relation whose equivalence classes are dendtefldnyd we define

X=X/~ (5.4)

4. Indeed, the proposed construction bears some resemblance withnidteuction ofR as the set of equivalence
classes of Cauchy sequencegimodulo the equivalence relatidn,,) ~ (v,,) iff lim, oo (un — vn) = 0.

5. Observe that, as a consequenceannot be sigma-additive (in contrast to probability measures or Raéan
sures) in that it isiot true thatu(lJ,, An) = >, u(A») holds for an infinite denumerable sequente of pairwise
disjoint subsets of.

91

X is naturally embedded inttX by mapping every: € X to the constant tuple such that = =

for everyi € I. Any algebraic structure oveX (group, ring, field) carries over t&X by almost
pointwise extension. In particular, ;] # 0, meaning thap{: | z; = 0} = 0 we can define
its inverse[z;] ! by takingy; = x;l if ; # 0 andy; = 0 otherwise. This construction yields
pli | yiz; = 1} = 1, whence[y;][z;] = 1 in *X. The existence of an inverse for any non-zero
element of a ring is indeed stated by the following first order formuletz = 0 Vv Jy(xy = 1)).
More generally:

Lemma 5.2.3 (Transfer Principle) Every first order formula is true oveK iff it is true overX.

5.2.2 Non-standard reals and integers

We just apply the above general constructiorXte= R and/ = N and denote the result by
*RR, which is then a field according to the transfer principle. By the same princiglés totally
ordered byu,| < [vy,] iff u{n | v, > u,} = 0. Foru, an arbitrary sequence of real numbers, let
lim(u) C R =4t RU {—00, 400} denote the (possibly empty) set of all limit points of sequence
w: for z € lim(u), letv, = u,, be a subsequence afconverging toxr. If lim(u) # (), there
exists exactly one limit point € lim(u) such thatu{n;} = 1, and any other limit point yields a
p-measure) for the corresponding subsequerfc€all = the standard partof [z,,] and we write
x = st([z,]). Infinite z € *R have no standard part .

It is also of interest to apply the general constructidd)(to X = I = N, which results in the
set™N of non-standard integers'N differs fromN by the addition ofinfinite integerswhich are
equivalence classes of sequences of integers whose essential Himit.is

5.2.3 Integrals and differential equations

Any sequencéyg,,) of functionsg,, : R — R pointwise defines a functiojg,| : *R — *R by
setting

[9n]([2n]) = [gn(n)] (5.5)

A function*R — *R which can be obtained in this way is calledernal. Properties of and opera-
tions on ordinary functions extend pointwise to internal functionsfof» *R. Forg : R — R, its
non-standard versiois the internal functiorig = [g, g, ¢, . . .]. The same notions apply to sets. An
internal setd = [A4,,] is calledhyperfiniteif ©{n | A, finite} = 1; thecardinal | A| of A is defined
as[|Ayl].

6. So far this was a bit of hand waving. To prove this,det sup{z € R | [z] < [z,]}, where[x] denotes the
constant sequence equalitoSince[zy] is finite, z exists and we only need to show tha},] — [z] is infinitesimal. If
not, then there existg € R,y > 0 such that eithey] < [z,] — [z] or [y] < [z] — [z.], @ contradiction. The unicity of
x is clear.

92

(a A b
e Bx)>0/z:= 2 G
dynamics:i = f(a,z,t)
guard:Vb # a : gb(z) <0

v P

(a A (b \
J) a(z)>0/x:=2°
dynamics:*z(n + 1) = *z(n) + 9. f(a, *z(n), 0
guard:vb # a : gb(x) <0

v PN

Figure 5.4: Hybrid system with mode switching, showing one transition. Tapdsrd, continuous
time form. Bottom: non-standard form. We write for shtrtn) instead ofx(t,,) and*z(t) is the
piecewise constant, right continuous interpolatiorugt,,).

Now, consider an infinite numbéY € *N and the set
T={0+ %2, . .21} (5.6)

By definition, if N = [N,,], thenT' = [T},] with

2
"_{O’Nn’Nn’Nn

hence|T| = [|T.]] = [Nn + 1] = N + 1. Next, consider an internal function= [g¢,,] and a
hyperfinite setd = [A,,]. We can then define trmumof g over A by

ZaeA g(a) —def [ZaeAn gn<a)]

If tis as above andl : R — R is a standard function, we get

ZteT %*f(t) = [ZteTn N%lf(tn)] (5.7)

Now, f continuous implie$™, ;. 5 f(t.) = [y f(t)dt, so,

Jo Tyt = st(Syer £47(1)) (5.8)
Under the same assumptions, for any [0, 1],
fo u)du = St(ZueT,ugt %* (t)) (5.9)

Now, consider the ODE with initial condition

&= f(z,t), x(0) =z (5.10)

93

and assume it possesses a solufioi| > ¢ — x(t) such that functiort — f(x(t),t) is continu-
ous. Rewriting $.10 in integral formz(t) = xo + fo ,u)du and using %.9) yields

z(t) = st(xo + > weTu<t +*f (2(u),u)) (5.11)

Substitute in $.11) 0 = 1/N which is> 0 and infinitesimal, so thal’ = {¢,, = nd | n =
0,...,N}. Then, the expression in parentheses at the right hand smﬁe]ﬂj (s the piecewise-

constant right-continuous functidn(t), ¢ € [0,1] such that, fom =1,..., N:
(ty) = *z(tn— O X *f(x(tn_1), tn_
w(ta) = “alta1) +0x F(altar) tan) 512)
z(to) = o

Hence, the solution: of ODE (5.10 on the one hand, ant: as computed by algorithnb(12
on the other, are related by = st(*z). In other words, formula¥.12) can be seen asron-
standard operational semantiésr ODE (5.10. In particular, formula%.11) has the remarkable
consequence that non-standard semantics are all equivalent whateyarticular choice for the
infinitesimal step) is.

We can push the above argument further by considering the (stamgairit) system with mode
switching depicted on Figurg.4, top. In this figure, we show one transition of a system having
a finite setA > a, b, etc of modes While in modea € A the dynamics of the system are given
by & = f(a,z,t). Mode switching is triggered when the fimgro-crossingoccurs: g2 (z) > 0,
which causes a switch to modeand the reset aof to the current value of some signgl. Now,
suppose that this hybrid system possesses a solution: € R such that: (iy — f(a,z(t),t)is
continuous while the system stays within medend (ii) the sequence of zero-crossings is either
finite or diverging. Then the same reasoning as above can be use@tiveed= st(*z), for z and
*r solutions of the system shown at top and bottom, respectively, of Figdrdhe above analysis
is summarized by the followin§tandardisation Principle:

Principle 5.2.4 Non-standard dynamical system of Figéd, bottom, can always be considered,
for any non-standard function ¢° : *R +— *R. It possesses a well defined non-standard seman-
tics*x. If, furthermore:

1) functionsf, ¢g° are internal, and

2) the hybrid system at the top of Figusel possesses a unique solutiesuch that
a) t— f(a,z(t),t) is continuous within each mode, and
b) the sequence of zero-crossings is finite or diverging,

thenz = st(*x) holds, regardless of the choice of infinitesimal stepThus, the non-standard
operational semantics is intrinsic in that it does not depend on a particiiar

Note the “lazyness” of the argument justifying the non-standard semaltseys: if the (standard)
system possesses a “nice” solution, then this solution is found by thetaondasd semantics. This

94

argument does not tell you whether or not the standard system pessegh a nice solution. In
some sense, checking this is left for run time trial. The key point is that thacerised to check for
any condition prior to considering the non-standard semantics, as it @lnesyits own meaning.
Non-standard semantics can be used in an assumption-agnostic way.

5.2.4 Semantic domain for hybrid systems

Using non-standard analysis has the following advantages:

1. Time setT is bothdensein R and discretein that each instant il possesses a unique
previous and next instant.

2. SinceT is discrete, we can specify dynamical systems aver full generality, without the
need for referring to any kind of smoothness condition—e.g., as. gy,

3. Did the problem with the smoothness condition miraculously disappear?uNetsyp. But
it is postponed to the very end, at run time, thanks to Standardisation Pribceif the
hybrid system under consideration has a unique solution in the usual méitedreanse,
then the standardisation of our operational semantics computes it.

5.3 The SimpleHybrid Formalism

In this section we develop a tiny “mathematical language” for hybrid systemsallit Sm-
PLEHYBRID. By this we mean a formalism that has the essential features of a langusigal(a
set of primitive entities and statements, plus a composition operator), but tiesigged primarily
to facilitate mathematical manipulation. Primitive statementsiofPEEHYBRID are equations of
the following form:

Eqy: y= f([z])

Eqy: y=last (z)

Eqs: y=2

Eg,: ¢=up(2) (5.13)

Eqs: y = xinit ypresetu

Eqg: u=[v] every [(] init ug

Eq;: y=pre(x) init yo
Note that, in a concrete programming language, equations-Eq, and Eq; would appear as
expressions. The above choice of primitives is, however, equally nhalvdt is close to a Static

Single Assignment (SSA) form with intermediate values stored in variablesarsgd to simplify
the mathematical developments.

95

In (5.13 symbolsu, x, y, v, z denotevariables with respective domain®,,, D,., etc., taken
from an underlying se&’ of variables andz| = [z1,..., ;] is a tuple of variables. Symbal
denotes variables akero-crossindaken from an underlying st C X of clock variables (generi-
cally denoted by the symbal). Clock variables take their values from the set ofcédicks where
a clock is any subset dk .. Symbolsy, andu, denote values. Finally, dotted variablesand
y indicate derivatives. Equatiorfsg,—FEq, define dynamical systems, or, equivalently, sets of be-
haviours with time index séR; = [0,+o00). For example,Eq; meansvt € Ry : y, = dy.
Hybrid systems are specified via sets of equations of the ®gm-Eq,, taken conjunctively. In
the following we give an informal explanation of the above primitives, withoaking explicit
the necessary continuity and smoothness assumptions for them to makeTdenserresponding
mathematical semantics will be given in the next section.

We identify any clockr with the boolean predicate it defines (the same convention also applies
to zero-crossings):

7w = Ift € TthenT elseF (5.14)

For X C X finite, astateover X is an element € Dx whereDx = []. .y D, and abehaviour
overX isanelement € R, — Dx. Forz € X, leto(z) € Ry — D, be thez-coordinate o,
we call it asignal By abuse of notation, and since no confusion will result, we wrjtestead of
o — o(t)(x) and(; instead ofc — o (t)(¢). We now briefly review the primitives listed i5(13.

Eq,: means thay; = f(z},...,27) holds for allt, wheref is a total function over its domain
and tuplefz] = [z, ..., 2"];

Eqy: meansy; = x;_ =def lim, n x5, 1.€., 34 is theleft-limit of z; whens approaches from
below.

Eqs: meansvt € Ry : yy = a4.
Eq,: defines the clocK such that, using conventiob.(4):

G = [z <O0[A [z >0

Thus(selects the instantsat which z; crosses zero from below, we call such a clock a
zero-crossingWe will need to consider tuples; . .. (x| of zero-crossings, denoted by the
symbol[(].

Eqs: Fory,x two signals,yp a value, and: a discretesignal (see below)Fq; states that ODE
1 = x¢ holds with initial conditionyy and this ODE is reset to the value givenidwgt each
instant of the discrete clock af.

Eqq Foru a signalug € R™ a value, and¢] = [¢; ... (] and[v] = [v; ... vx] two matching
tuples of zero-crossings and signalg; states that: has clock(= Ule ¢; and, for every
te U;Zl ¢, up = v;¢ holds, andu; = g for ¢ < ¢q, the first instant of .

7. Say that two tuplegu, . .. ux] and[v1 ... v;] arematchingif they possess identical numbers of components: i.e.
k=1

96

So far we have introduced the needed statements to define systems of ODiodélthanges and
reset conditions. The additional stateméigt. allows embedding discrete time systems. We first
need to clarify what “discrete time” means.

Signals are typed discrete or continuous

For each signat, we assume a clock, such that: is guaranteed constant on the complement
of .. We callr, theclock ofx. A signal is typeddiscreteif either it has been declared as such, or
if its clock is some zero-crossing. Otherwise it@ntinuous.For example Fq, defines a discrete
clock and signak: output by E¢5 is discrete (note that it is not required 85 that inputv is
discrete).

Remark 5.3.1 Mathematically, a clock is discrete if its restriction to any bounded interv& ofs
finite, a property that cannot be statically checked in general. The ralédioadefining “discrete”
as stated above is twofold: (i) it is a syntactic criterion and thus it can be statichltgked; (ii) it
generally matches the mathematical definition of a discrete clock.

For instance, iff : Ry — R is continuous, therero(f) =4 {t € Ry | f(t) = 0} is
a closed subset dk,. If, furthermore, all instants belonging teero(f) are isolated (i.e., are
pairwise separated by a non-empty interval), themo(f) is either a finite set or a diverging
sequence; in both cases it is discrete in the mathematical sense. Fungtfoom which zero-
crossings are constructed would typically possess such properties.

Of course, property (ii) is not guaranteed in all cases; for tricky signséts of zero-crossings
may very well be Zeno or even a Cantor set (see exandplp).(On the other hand, statically
checking that a clock is discrete in the pure mathematical sense is simpbpssible.

Some operators only apply to discrete signals. They define discrete diyreecifying their
value at each instant of their clock. This by itself is not enough since iekete signal undefined
before the first instant of its clock. An explicit initial value must therefaeegiven.

Eq,: assumeg discreteand defineg as the delayed version efby settingr, = 7, and setting
thenth new value fory equal to then — 1)th one ofz; an initial conditiony is provided.

As previously stated, hybrid systems are specified ImPEEHYBRID via sets of equations of
the form Eq,—FEq,, taken conjunctively. As an illustration, composing OBk with statement
xz = f(y,v) of the form Eq,, and resefiqg, yields the ODE

¥ = f(y,v) init yo reset [v] every [(] (5.15)

which means that ODE; = f(x;) holds with initial conditiony, and that this ODE is reset to a
value given byz; each time zero-crossing occurs (where; = up(z;)).

97

5.4 Non-standard semantics

Throughout this section we fix a basic infinitesimal base étep 0. Without loss of gener-
ality, we can assume that= [¢,| for some decreasing sequenggof reals converging to, see
Section5.2.2 Following [40], as our universal time base we replde by the non-standard set

T = {t,=nd|ne*N}
Fort € T, define

°t = max{s|seT,s<t
xls | ! (5.16)
t* = min{s|seT,s>t}
We thus havet, = t,_; andt;, = t,41. The key fact abouT is that for everyu € R, there
exists a unique € T such thaft < u < t andt — w is infinitesimal. Thudl is, at the same time,
dense inR ., and can still be handled as if it were discrete and totally ordered.

5.4.1 The semantics

A hybrid systenis a tupleS = (X, T, %), whereX C X andT C T are finite and® is a set of
behaviours oveX UT. ForY O X UT, we can lift to Y, written =Y, by taking all behaviours
overY whose projection oveK U 7" are inX. Then, forS; = (X, T;,%;),i = 1,2, we define the
parallel composition

Sy |8y = (X, T, 5, XUT EQTXUT> : (5.17)

whereX = X; U Xy andT = T, U Ts.

For a systent = (X, X)), specified as the parallel composition of a finite set of statements of
one of the forms¥q,—FEq, let Clocks(S) be the (finite) set of all discrete clock variables involved
in the specification of. Then aclock configuratiorfor S is a map

k: Clocks(S) — {F, T}, (5.18)

that assigns a truth value to each discrete clock variab$e Glock configurations are used to indi-
cate the presence or absence of each discrete cloglabh given instant. A clock configuration
« for S is calledreachableif there exists a behaviaer and an instant such that (¢)(T") = (7))
for everyT € Clocks(S).

The non-standard semantics aM®LEHYBRID is given in the second column of Talbed.
Note the semantics @f = up(z), which corresponds to a “weak preemption” in that the change
in the sign ofz at instant results in the emission of a zero-crossing at the next ingtant

The important fact about this semantics is that, unlike for a fixed step sinelégstd) semantics,
it does not suffer from overshoot problems for zero-crossingsven zenoness, or any need of
mentioning continuity properties, since steps are infinitesimal but “discr¥&t"the semantics is
still statically defined, as was desired.

98

5.4.2 Back to the examples

Observe that Figure§.1-5.3 plot the non-standard semantics ofv8LEHYBRID systems
(5.1-5.3) according to the second column of Talblegl. We now discuss these examples in de-
tail.

Example (5.1) The mysteries regarding exampk1) are now clarified: the first zero-crossing
occurs at time = 1 + 0 (corresponding td , of Figure5.1). Then, setting = 20, zero-crossings
occur repeatedly with a period &£, forever, thus filling the time line untif-co. The non-standard
domain of timeT = {nd | n € *N} allows for having several successive zero-crossings each
of zero duration, with time still eventually diverging, since we can always finnfinitely large
enough so thato > t for ¢t € R,. Now, the key feature of examplé.(Q) is that, despite being
well defined within a non-standard analysis framework, there is no gestandardisation.

Example (5.2 In contrast, consider exampl&.p). We claim that standardisation = st(y)
exists and has thaverageddynamics given just beforé (). To show this, we use a variation of
the argument developed in analysing formula$)-(5.8), see SectionS.2.2and5.2.3 Let (x,y)
be the non-standard semantics 81, i.e., given by Figuré.2 Again, lete = 20 ande,, be the
sequence of positive (standard) reals converging sach that = [¢,]. Consider the following
sequence of (standard) dynamical systegfhs

" = 0init — sgn(yo)
reset [—1, 1] every up[y"” — e, —y" + &, (5.19)
Y= zx™init y

The behaviour of)™ can again be seen on Figlse, with, howeverg,, substituted foe. For any

k € "N, we haveke = [ke,]| and thus, since alternates between1 and-+1 at multiples ofe

(see Figuré.2), it follows thatz(ke) = [z"(key,)], expressing that = [z"], see §.5). The same
reasoning shows that = [y"]. On the other hand, using elementary arguments from standard
analysis, $.19 defines a sequence of functiogs, ¢ > 0 that converges uniformly tg defined

just before $.3) whenn * +o00 — this part of the argument cannot be invoked for exampl#) (

The above analysis shows that= st(y) wherey is given by 6.2) andy is given just beforeq.3).

Example (5.3) Itis to some extent an intermediate case. While not “as pathological” as é&xamp
(5.1), its non-standard semantics is still not standardisable because of thke glomp att = 1.

If we insist that only systems having a standardisable semantics are al;dbpie this program
should be rejected. If, however, we still want to accept it, then its efiesgmantics must be based
on extra, somehow arbitrary, principles. Two alternative approacmebe& considered:

99

1. The first one consists in staying with the non-standard semantics whapsiiogo to zero,
thussuper-dense timillowing [124, 125 is used. In particular, all zero-crossings remain
with the same scheduling. This requires being able to statically check thatateemnly
finitely many cascaded zero-crossings at any given instant.

2. The other possibility is to adopt the policy of synchronous languagessubtcessive non-
standard micro-steps at= 1 are collapsed to be simultaneous and then the zero-crossing
of y has priority, giving rise to a single jump of siiefor x att = 1. Super-dense time is
then not needed, but we must be able to statically check that no signaltexhire than
one zero-crossing at any given instant.

We will see at the end of Sectidn5that such static checks are made possible by our constructive
semantics. To summarize: (i) anyMPLEHYBRID system possesses a non-standard semantics;
(i) the latter may or may not be standardisable, but it does capture subtiempathological
cases; (iii) sufficient, statically checkable conditions for being standsbidiswill be provided by

the constructive semantics.

Simultaneous zero-crossings In [15€], R. Nikoukhah advocates rejecting simultaneous zero-
crossings, unless it can be statically checked that they should occadudeates that, in case si-
multaneous zero-crossings do incidentally occur, they should be intede@n-deterministically.
Numerical solvers (e.g., Sundials CVODE) do detect simultaneous zessteg, and so discard-
ing some or processing them sequentially would be a source of non-datmmiliVe prefer a
synchronous interpretation in which the programmer decides what hapygen zero-crossings
occur simultaneously. Writing, for example, a handler

[O, L _1] every [up(:c) & up(y), up(y), up(:c)] '

would mean that the valugis returned when both andy cross zero] when it is onlyup(y), and
—1 when itis onlyup(z). Note that this synchronous interpretation conforms with the behaviour
of Simulink.

5.5 Constructive semantics

As for any synchronous language, tbenstructive semantids86] formalizes how a reaction
should be executed, that is, how the different actions should be deldeatia given instant, given
a program'’s underlying causality constraints. Different approaches heen proposed.

G. Berry [36] advocated using a Scott domain with an extra value “undefined”, to b@reted
as “not executed yet”; the domain of values is made a flat partial ordeztbygg “undefined< any
other value”. Undefined should not be confused with the special sthaentwhich is characteric
of synchronous languages and belongs to the domain of values. Usimgtisistatusindefined
Esterel reactions are encoded as sets of equations in this Scott domdre amiciimal fixpoint is

100

sought, by iterating from the configuration where all variables and sigmalandefined. If in the
fixpoint all variables are uniquely defined, then the program is determimisticcan be executed.
An earlier approach was proposed by F. Boussid8f based on micro-step automata, which are
automata describing the allowed schedules and decomposing a reaction irtestajgs of atomic
operations. These two approaches were indeed developed and sfoivalent for Signalq9].
Here we develop a Scott semantics.

Scheduling constraints Let | be a special value not belonging to any domBip, to be inter-
preted as “not evaluated ye® Define, for anyr € X, D} = D, U {L}. Writez = T to mean
thatz # 1. Let < be thescheduling constrainthat relates any two variablesandwv, that have,
respectively, domain®; andD;-:

u<dv =qef [u=T]V [v=_1] (5.20)

i.e.,u<<v meangv = T| = [u = T], which formalizes that{ cannot be evaluated strictly befar&
In particular, for any clock,

VieT=x <y =det [T =T|V |y =L1]V [=F

wherer, is defined in §.14). Observe that statement= f(u), wheref is a function, abstracts as
u < v sincev can be substituted by its evaluatigtw) everywhere. Relatior captures causality
constraints within a system of equations.

The constructive semantics is obtained by abstracting, in the non-stasetaehtics (second
column of Tableb.4), any statement of the formy = exp where expressionazp involves variables
Ts, Us, Ts fOr s = °t,t,t°, by the scheduling constraints <1 v, us < y¢, Or 75 <l Y, respectively.
For exampley, = f(x;) is abstracted ag; < y;.

Observe that the semantics Of= up(z) corresponds to a “weak preemption” in that the
change in the sign afat instant results in emitting a zero-crossing at the next instanidence, no
clock occurs on any consequent part of a zero-time causality coristféarefore, preconditions
suchast € 7 =" inthe mid column of Tabl&.4do not impair the validity of the above mentioned
abstractions.

Pre- and post-variables In writing the constructive semantics, we would like to abstract away
dummy time index. To this end, for each variablec X of the considered systefy we augment
X with the two auxiliary variableSz andz®, such thatz; = x+; andz} = z;+ hold for every
t. Using these auxiliary variables and clock variables, time indean be abstracted away in the
constructive semantics. Using the above notations, the constructive tiesniaugiven in the last
column of Table5.4.

8. This notation deviates from the historically established use of symbiol synchronous languages to denote

absence. Absence of a signal in a reaction is a well defined status thatréstht of evaluating the considered reaction.
“Absence” and “not evaluated yet” should therefore not be cowfuse

101

It is indeed tempting to extendiPLEHYBRID with the statement <1 y, seen as a statement
belonging to the generic family in row 1. Doing this makes it possible to expressatisality
analysis of a 81PLEHYBRID program, and even additional scheduling constraints that the pro-
grammer may want to enforce, in the languager® EHYBRID itself. This trick is not new; it was
already used for the Signal synchronous langué&gg [

Causality circuits Using the above abstraction, for each given clock configuratiof,ahe
transitive closure of relatior: is apre-orderon X — by abuse of notation, we also callt. If

S is such thatk is a partial order for any reachable clock configuration (sé&el® and below),

then no causality circuit occurs it and the different variables can be evaluated according to any
order compatible withd. Since no clock occurs on any consequent part of a zero-time causality
constraint, the only possible cause of circuits in relatiois via sets of statements of the forfiy .

We thus formally justify here the rule that no delay-free, derivative;fdata flow circuit should
exist in the considered program.

Single assignment condition Say that systent obeys the single assignment condition if no
variable ofS sits on the left hand side of two or more equations. The following holds:

Lemma 5.5.1 If S possesses no causality circuit and obeys the single assignment coyitiigioit
is deterministic and the partial ordet at each clock configuration specifies all correct schedulings
for the execution of.

Interactions of sub-systems The constructive semantics conveys the necessary information to
identify when several ODE equations of typ&; must be jointly submitted to the same solver
because they are coupled in all directions — coupling may involve the ODHgraheir associated
zero-crossings and resets. Exam@e2) is one such example. Of more interest is the ability
to identify thelack of interaction, for example when two sub-systems only communicate in a
unidirectional way. This addresses isg)eaised in the introduction.

Cascaded zero-crossings The constructive semantics of examptel} involves the following
scheduling constraints, where, denotes the zero-crossing induced by signal
*2<4(<z, ' <Q(C, (—z) <y, and®y < (¢y, (—y) < z, thus statically showing that infinitely many
cascaded zero-crossings foandy can occur.

On the other hand, the constructive semantics of exandpBifivolves the single scheduling
constrainty < (¢, (—y) <z, thus statically showing that at most one zero-crossing f@n occur
at any given time.

Finally, the constructive semantics of exam@e3| involves scheduling constraints <1 ¢, <
(x,y) and®y < ¢, < z, thus showing a risk of at most two cascaded zero-crossings for

To conclude, our constructive semantics is powerful enough to supipoistatic checkings
required for cascaded zero-crossings, see the discussion of lesaf-5.3).

102

5.6 Off-the-shelf compilers

In this section we explain how to derive aM®PLEHYBRID compiler by reusing a legacy syn-
chronous language engine in combination with a legacy ODE solver. Thhismous language
engine will regard ODE solutions between two successive zero-cgssas just another (big!)
step, regardless of the fact that this step is managed by an externalraantigly the solver. In the
chapter we only explain the principles, the detailed development of such witbbe presented
elsewhere. The key idea is to structureSLEHYBRID systems in a specific way. Decompose
every SMPLEHYBRID systemsS' as

S = Sobk || SweopE, Where (5.21)

— SubsystenSopr, collects all equations iy of the form Eq,—Eq;;

— Subsysten$,,,opg, collects all equations iy of the formEq,, Eq,, Eq and Eq-;

— Since equations of typdsg, and Eq, appear in both subsystems and we want to preserve
the single-assignment condition 8f if it does hold, we must guard these equations by clock
conditions. Thus, such equations are assignefl,topg at instants of zero-crossing, and
otherwise they are assignedigpg.

One way to achieve the last type of separation would be to extend the sixpresss of 81-
PLEHYBRID by allowing for equationgyuarded by clocks For instance,Eq; would become
“onT : y = f([z])". This would be feasible but it would increase the complexity of the for-
malism while adding little value in the study of fundamental issues. Thus, werpt@fkeep
SIMPLEHYBRID asiitis.

So we instead propose a simple convention to acheive the necessaggsbxgmess. Faf,

a system, lets be the union of all zero-crossings involved.$n— there are only finitely many
of them, thus(s is a discrete clock too. While assigning an equation of t¥e to S,.opr, we
guard it by(s as the following equation of typ€qg:

y=/f(z]) every(y (5.22)
——— ——

original equation added guard

We also do the same for equations of typg,. On the other hand, the sarilg, andEq, equations

are assigned t6opg andit is understood that these equations are preempted by corresponding
guarded equation$s.22 at instants of(s. This trick avoids the duplication of equations at any
given instant and allows decompositidhZ1) to preserve the single-assignment condition if it was
satisfied bysS.

Now, Sh.opg IS nothing but a synchronous program (it can be encoded in Lustre)th©
other handSopg, is exactly what a state-of-the-art ODE solver (such as SuntjialEn compute,
namely solving ODEs with given initial conditions and resetting values, and paltiren some
specified variables are subject to zero-crossings.

9. https://computation.linl.gov/casc/sundials/main.html

103

A prototype tool has been developed based on these principles usingrid&lS solver. In
Section5.8we report some experiments on the examples of the introduction, showingéhaiv-
ior in Simulink and with the tool.

5.7 Hitting balls example

We consider the case of two balls hitting each other along a wall as showigareb.5. The
figure shows the initial conditiod; < ds = wy = 0 andw; > 0, meaning that bal sits steady
on contact of the wall, whereas ballis going to hit it. To simplify, these are ideal balls of zero
diameter. For convenience, the system is activated at initial time-d; /w1, so that the first hit
occurs right aftet = 0 (formally, at timet = 0).

" Q)
——=

dy

Figure 5.5: The hitting balls example: initial condition.

Corresponding equations are:

i‘l = U1 init d1
9'52 = V2 init dg
01 = 0 init w; reset last (v9)

(5.23)
every up(r; — 2]

U2 = 0 init wyreset [last (v1), —last (v2)]

every up|[r; — T2, 7]

The non-standard semantics yields:

1. att = 9, z1 = d.wy > 0, which causes; — x> to have a zero-crossing.
As aresult, at = 20 the two balls exchange their velocitias: = 0 andv, = wy.
Att = 30, x1 = 20.w; andxy = 0.w1, Which causess to have a zero-crossing.
Hence at = 40, 1 = 9 = 20.w1, v1 = 0 andvy = —w;.

a kr wbd

Att =50, x1 = 20.w;, andzs = d.w1, Which causes; — x5 to have a zero-crossing.
6. Hence atat = 60, 1 = 20.w1, z9 = 0, v1 = —w; andvy = 0.

Then, balll moves to—oo and no more zero-crossing occurs. Observe that this non-standard
semantics is not standardisable. For this example, the super-dense timestateypl) at the end
of Section5.4.2is preferred.

104

5.8 Experimental results

We have modelled examples. Q) to (5.3) in both Simulink (version 7.7.0.471, R2008b) and a
prototype based on the Sundials (version 2.4.0) CVODE libradg][

5.8.1 Using Simulink

Time offset: 0

Figure 5.6: ExampleH(.1) in Simulink

105

Example(5.1) The Simulink model corresponds to the following set of equatiBns

y = 1/s(iy, updown(lx),0)

x,le =1/s(ix, up(2z),0)

z=1/s(—1,1)

iy = switchup(lx, 1, switchup(—lz, —1,—1))

iy = switchup(y, —1, switchup(—y, 1, switchup(z, 1, —1)))
2y = switchup(y, 1, switchup(—y, 1, switchup(z,1,—1)))

We write 1/s(init, zero, input) for the integration of a signakhput with initial value init and
reset given by a zero-crossing conditionro. The integration operator may return a second output
(the so-called state port which corresponds to the left limit of sigfalWe write it [z in the
equations aboveupdown(r) means that a zero-crossing is detected whenosses zero in any
direction; up(r) whenr crosses zero from a negative to a positive valuestchup(x,e;,es)
returns the value af, whenx crosses zero, the value @f otherwise'!. The zero-crossing handler
[—1,1,1] every [y, —v, 2| is encoded with two equations: the equatierdefines the initial value
for x whereas, is true wheny or —y or z cross zero. This is encoded by the integer expression

switchup(y, 1, switchup(—y, 1, switchup(z,1,—1)))

A simulation is given in Figur®.6. It shows that Simulink does not introduce a delay in the effect
of a zero-crossing. The numerical solver runs and stops atttiné with the first zero-crossing
up(z). This implies several zero-crossings:

— z, = 1 asy depends oix and thus did not cross zero.

— As a consequence,is reset with the value afr which equalsl.

— Attimet + ¢, y is reset tai, = 1.

— Then, no more zero-crossing occurs and the two sigaady remain constant.
This effect is a direct consequence of the priority between zersioigpsnade explicit by the
programmer.

Example (5.2 The Simulink model is depicted in FiguBe7 with the corresponding outputs for
z andy. In normal mode, the simulation fails because of too many zero-crossingtaih= 112,

10. For lack of space, we do not show the corresponding blockatiagiWe show a systematic encoding here with
no simpliciation of the code.

11. In Simulink,switchup(x, e1, e2) is implemented with a switch operator and a hit-crossing operator applied to

12. Simulink stops with the error: At time 1.000000000019998, simulatitsn(h000) consecutive zero crossings.
Consecutive zero crossings will slow down the simulation or cause thdatioruto hang. To continue the simulation,
you may 1) Try using Adaptive zero-crossing detection algorithm ori2jlile the zero crossing of the blocks shown in
the following table.

106

We output the result of a simulation using adaptive zero-crossing dete@timtakey, = —1.

x = 1/s(iz, updown(y),0)

y=1/s(yo, x)
iz = switchup(y, —1, switchup(—y, 1, —yo))

Results in Figureb.7 show thaty stick to zero (more or less a threshold parameter used by the
adaptive algorithm) whereasalternate froml to —1. Note that because of the use of the adaptive
algorithm, the signat may stay some time ator —1 before changing.

Example (5.3) The corresponding Simulink model is given below as a set of equatiohs. T
time, the first integration block returns bothand the state pott:.

x,lx = 1/s(ixz, up(zx),0)

z=1/s(—-1,1)

y = 1/s(iy, up(z),0)

iz = switchup(y,lx + 1, switchup(z,lz + 2,0))
zx = switchup(y, 1, switchup(z,1, —1))

iy = switchup(z,1,—1)

A run of the example is given in Figui8. It shows that Simulink does not introduce a delay in
the effect of a zero-crossing:
— The numerical solver runs an stops at titne 1 with the first zero-crossingp(z).
— This implies a second zero-crossing for the equation wfth valuel. As a consequence,
y crosses zero (going from1 to 1). Time dit not progress, i.e., the zero-crossingdy) is
synchronous withup(z).
— As a consequence, the equation fois reset with valudz + 1, that is, 1 sinceup(y) is
treated beforeip(z) in the handleswitchup(y, lz + 1, switchup(z,lx 4 2,0)).
This confirms that a cascade of zero-crossing is instantaneous in Sinithiakis, Simulink takes
the following interpretation for a zero-crossing:

up(2): = [zet < 0] A [y > 0]

which means that the effect of a zero-crossing is instantaneous. Thisthiigg main benefit of
non-standard analysis as a model for reasonning on hybrid systentheamcatment of zero-
crossing. Choosing the Simulink interpretation would only change the defirfiap(.) in the
non-standard semantics.

107

phase time X y z

| 0. 000000e+00 -1.000000e+00 -1.000000e+00 -1.000000e+00
C 1. 000000e- 01 -1.000000e+00 -1.000000e+00 -9.000000e- 01
C 2.000000e- 01 -1.000000e+00 -1.000000e+00 -8.000000e- 01
C 3. 000000e- 01 -1.000000e+00 -1.000000e+00 -7.000000e-01
C 4.000000e-01 -1.000000e+00 -1.000000e+00 -6.000000e-01
C 5.000000e- 01 -1.000000e+00 -1.000000e+00 -5.000000e- 01
C 6. 000000e- 01 -1.000000e+00 -1.000000e+00 -4.000000e- 01
C 7.000000e- 01 -1.000000e+00 -1.000000e+00 -3.000000e- 01
C 8. 000000e- 01 -1.000000e+00 -1.000000e+00 -2.000000e-01
C 9. 000000e- 01 -1.000000e+00 -1. 000000e+00 -1.000000e- 01
C 1. 000000e+00 -1.000000e+00 -1.000000e+00 -2.235451e-14
c’ 1. 000000e+00 -1.000000e+00 -1.000000e+00 7.786350e- 14
z 1. 000000e+00 up(z)

D 1. 000000e+00 1. 000000e+00 -1.000000e+00 7.786350e- 14
z 1. 000000e+00 up(x)

D 1. 000000e+00 1. 000000e+00 1.000000e+00 7.786350e- 14
z 1. 000000e+00 up(y)

D 1.000000e+00 -1.000000e+00 1. 000000e+00 7.786350e- 14
z 1. 000000e+00 up(-x)

D 1. 000000e+00 -1.000000e+00 -1.000000e+00 7.786350e- 14
z 1. 000000e+00 up(-y)

D 1.000000e+00 1.000000e+00 -1.000000e+00 7.786350e- 14

Table 5.1: Log of examplées(1) (prototype tool)

5.8.2 Using the Sundials-based Prototype

We have developed a prototype implementation of our language in Ocaml, wdrighrises a
generic interface to the CVODE library (using serial vectors), and an mmai¢ation of the algo-
rithm that alternates between continuous phases and discrete phasgmimseeto zero-crossings.
Each example was manually translated into a single Ocaml function that is call8drals
during continuous phases, and by the algorithm directly during discreteegh

Example(5.1) The results of running the prototype tool on exampld)are shown in Tablé.1

The first row (‘') shows the initial state values, it is followed by a seriéexecutions of the
CVODE solver (‘C") during which the states evolve according to theindgities, and then just
after 1.0, a zero-crossing is detected (‘Z’). The values of the conimstates at the time of the
zero-crossing (‘C), becomelast values during the subsequent discrete phase (‘D’). The first zero-
crossing occurs fonp(z). It triggers an unbounded cascade of discrete phases, afterfeslito
another (single and non-simultaneous) zero-crossing is detected. efihergeup(x), up(y),
up(—x), up(—y) is repeated indefinitely without the continuous solver ever being reinvoked

Example (5.2 The results for examples(2) are shown in Tabl&.2 The value ofy exceeds
zero and triggers the zero-crossing(y) just aftert = 1.0. Then, the value of is changed
from 1.0 to —1.0 during the discrete phase, but as there are no further zero-creglsengontinuous
solver is called again. Another zero-crossing(—y), is discovered almost immediately and

108

phase time X y

| 0.000000000000000e+00 1.000000e+00 -1.000000e+00
C 1.000000000000000e- 01 1. 000000e+00 -9.000000e- 01
C 2.000000000000000e- 01 1. 000000e+00 -8.000000e- 01
C 3.000000000000000e- 01 1. 000000e+00 -7.000000e-01
C 4.000000000000000e- 01 1. 000000e+00 -6.000000e-01
C 5..000000000000000e- 01 1. 000000e+00 -5.000000e- 01
C 6. 000000000000000e- 01 1. 000000e+00 -4.000000e- 01
C 7.000000000000000e- 01 1. 000000e+00 -3.000000e- 01
C 7.999999999999999%e- 01 1. 000000e+00 -2.000000e-01
C 8.999999999999999e- 01 1. 000000e+00 -1.000000e- 01
C 9. 999999999999999e- 01 1. 000000e+00 -4.464441e- 14
c’ 1.000000000000100e+00 1. 000000e+00 5.557360e- 14
z 1. 000000000000100e+00 up(y)

D 1. 000000000000100e+00 -1.000000e+00 5.557360e- 14
c’ 1. 000000000000175e+00 -1.000000e+00 -1.974954e- 14
z 1.000000000000175e+00 up(-y)

D 1.000000000000175e+00 1. 000000e+00 -1.974954e- 14
c’ 1. 000000000000195e+00 1. 000000e+00 9.288416e- 18
z 1.000000000000195e+00 up(y)

D 1.000000000000195e+00 -1.000000e+00 9.288416e- 18
c’ 1.000000000000215e+00 -1.000000e+00 -1.972025e- 14
z 1. 000000000000215e+00 up(-y)

D 1.000000000000215e+00 1.000000e+00 -1.972025e- 14
c’ 1.000000000000234€+00 1.000000e+00 3.853879e-17
z 1. 000000000000234e+00 up(y)

D 1.000000000000234e+00 -1.000000e+00 3.853879%e- 17
c’ 1.000000000000254e+00 -1.000000e+00 -1.969104e- 14
z 1.000000000000254€+00 up(-y)

D 1. 000000000000254e+00 1. 000000e+00 -1.969104e- 14
c’ 1.000000000000274e+00 1. 000000e+00 6.770241e- 17

Table 5.2: Log of examples(2) (prototype tool)

another discrete phase is triggered during whidgs changed back to.0. This process is repeated
indefinitely; time is advanced in small increments by the continuous solver, andatbe ofx

is alternated betweeh0 and —1.0 by intervening discrete phases. The observed behaviour thus
approximates the ideal behaviour; a small overshoot, which is propdrtmsetep size chosen by
the continuous solver, effectively simulates thef the non-standard semantics. Note that the time
column is given with a greater precision than in the other examples. Withouxtirzesggnificant
figures, it appears as if the simulation iterates without bound-at 1.0. As it is, time barely
advances just as is in Simulink when the adaptive zero-crossing detelgfaitran is not used.

Example (5.3) The results for examples(3) are shown in Tablé&.3. Both x andy are con-
stant throughout the initial continuous phases, bircreases steadily from1.0. The first zero-
crossingup(z), is triggered just after crosse®.0. The ensuing discrete phase se@scremented

by 2.0 andy set to1.0. The latter update triggers the zero-crossingy), which causes another
discrete phase to be executed at the same instant of time. During this sesmwetedohase; is in-
cremented by.0. The simulation then continues with an unbounded number of continuousgphas
Note that, during a discrete phase, the effects of changes to varialtesmorossing expressions

109

phase time X y z

| 0. 000000e+00 0. 000000e+00 -1.000000e+00 -1.000000e+00
C 1.000000e- 01 0. 000000e+00 -1.000000e+00 -9.000000e-01
C 2.000000e- 01 0. 000000e+00 -1.000000e+00 -8.000000e-01
C 3. 000000e- 01 0. 000000e+00 -1.000000e+00 -7.000000e-01
C 4.000000e-01 0. 000000e+00 -1.000000e+00 -6.000000e- 01
C 5. 000000e- 01 0. 000000e+00 -1.000000e+00 -5.000000e- 01
C 6. 000000e- 01 0. 000000e+00 -1.000000e+00 -4.000000e-01
C 7.000000e- 01 0. 000000e+00 -1.000000e+00 -3.000000e-01
C 8. 000000e- 01 0. 000000e+00 -1.000000e+00 -2.000000e-01
C 9. 000000e- 01 0.000000e+00 -1.000000e+00 -1.000000e- 01
C 1.000000e+00 0. 000000e+00 -1.000000e+00 -1.500536e- 16
c’ 1.000000e+00 0. 000000e+00 -1.000000e+00 1.000680e- 13
z 1. 000000e+00 up(z)

D 1. .000000e+00 2.000000e+00 1. 000000e+00 1. 000680e- 13
z 1. 000000e+00 up(y)

D 1.000000e+00 3.000000e+00 1.000000e+00 1.000680e- 13
C 1.100000e+00 3.000000e+00 1. 000000e+00 1. 000000e- 01
C 1.200000e+00 3.000000e+00 1. 000000e+00 2.000000e-01

Table 5.3: Log of examplex(3) (prototype tool)

are not detected immediately, rather any new zero-crossings are dedfteteithe discrete phase,
i.e. after variables have been reset as necessary, when the lastofahaeeo-crossing expressions
are compared with their new values. There is thus no question of priority iexaimiple:up(z)
occurs strictly beforaip(y), even though no simulation time elapses between them.

5.9 Related work

Studies on hybrid systems modelers from a semantics point of view are nabserous. We
discuss the few we consider relevant for comparison. First of all, eadlnerevious work 27]. In
fact, the agenda presented in that paper closely resembles the oneel@pdere. Except that,
in [27] the tool of non-standard analysis was not used. Consequedif]ys\ffers from some hand
waving, as careful readers will notice.

Perhaps the attempt most similar to ours is the work of the Ptolemy group, byeEand
H. Zheng [L24, 125, which studies the handling of discontinuities in hybrid systems modelers.
They apply the model ofagged signal§123. Events are tagged with an extended time index
taken from the seR, x N with its associated lexicographic order. This set is referred to by
the authors asuper-densé¢ime. This type of multi-dimensional time set was considered earlier
for discrete time systems models in the area of synchronous languzgje3]. Our approach
avoids using super-dense time because the non-standard indBxssbbth discrete and dense.
The existence of a previous instefiitand a next instant® was used in Tabl&.4, replacing the
multi-dimensional instant&, 0) and (¢, 1) of [124, 125. On another aspect, the approad24,
125 is made complicated by issues of smoothness, Lipschitzness, existencamigondness of
solutions, Zenoness, etc (see section 61&@#] on “Ideal Sover Semantics” and section 7 ©2H
on “Continuous Time Models”). These issues do not simply dissappear iapguoach, instead

110

they are more or less postponed to run time. Finally, we do not see how esirtfiro examples
could be analyzed within the framework dfZ4, 125.

The work described by P. Mosterman and his co-workers at The Malds\jio34] is also very
interesting. It attempts to establish the Simulink modeler on a solid semantic basisoithe
tribution of the paper is to show how (a restricted class of) variable steprsoban be given a
functional streamsemantics §2]. To achieve this, the class of solvers is first restricted to those
relying onexplicit schemessimplicit ones cannot be put in explicit functional form. While this
indeed provides a hybrid systems modeler with a stream semantics, the sernsaatitemely
complex since it the discretization method is made explicit — in particular, chatigingnethod
changes the semantics. This approach precludes using implicit schenasghlthey are valuable
from the point of view of numerical analysis.

In [156], R. Nikoukhah discusses cascaded zero-crossings. He advaeggeting the “syn-
chronous” interpretation of them, see the interpretafipof Example 6.3) in Section5.5. He
favors instead a micro-step style of interpretation, where cascadeamamsings interleave non-
deterministically. We prefer a synchronous interpretation in which the anogrer makes ex-
plicit what to do when two zero-crossings occur. Then non-determinis®sasolely in numerical
solvers, and not from the semantics of a program. Because the dffapt o) is delayed by one
cycle of T, a cascade of zero-crossing can last for several successiaatmefT. Note that the
synchronous interpretation coincides with that of Simulink (see discussiSedtion5.8) where
zero-crossings have an immediate effect.

5.10 Conclusion

We have proposed a novel approach to the semantics of hybrid systerakemsoth doing so,
we wanted:

1) To leave the choice of integration method unconstrained;
2) To ensure that hybrid systems are a conservative extension cétéisicne systems;
3) To provide semantic support for:
a) Statically analyzing and scheduling the actions triggered by cascaadedressings;

b) Separating discrete and continuous behaviours, and treating thetoybatmbining exist-
ing ODE solvers with existing synchronous language compilers;

¢) Rejecting programs with causality circuits;

d) Allowing for the use of several local solvers instead of a single, dgloba, with the ob-
jective of limiting side effects between non-interacting sub-systems, duegatsigteadjust-
ments.

Achieving these objectives was made possible thanks to the use of nalastaanalysis as a
semantic domain. We believe that non-standard semantics is not a fancydhimgth addicts.

111

It is rather a very natural way of viewing continuous time and hybrid sysfeons the syntactic
side, as is usually preferred by computer scientists. Our study of ebeado-crossings benefits
greatly from the semantics. The non-standard semantics allowed for tidedelopment of a
prototype by combining an off-the-shelf ODE solver with an of-the-shgithronous language
compiler.

ACKNOWLEDGEMENT The authors are indebted to Ramine Nikoukhah and Sébastien Furic for
detailed discussions regarding Modelica, and to Daniel Krob and SimorBdifior comments on

their work.

112

Integrator

o © © ¥ & o o < © ®

0.5

-05r

20

18

Time offset: 0

Figure 5.7: ExampleH.2) in Simulink

08

06

0.4r

0.2

-0.2

Time offset: 0

Figure 5.8: ExampleH.3) in Simulink

10

113

114

statement non-standard semantics constructive semantics
Eq y= f([=]) yr = f([x4]) [z] Qy
Eq, y=last(z) Yt = Toy ‘r <y
Eqs y=1 yt:%(xt—x-t) r <y
Ct' = [th S 0} A\ [Zt > 0] z < C.
Eq, (=up(z) o o
¢ is discrete (is discrete
Eqy y= =z T, discrete Tul Y
init yq LET\Tu = Yt =yYeor+0 X Tey ‘r< yinityy <
reset u t €Ty, = Y= Uy y resetu <y
discrete e =) G discreter, = | J. ;
Eq6 ° = [’U] u Uz Cz u Uz CZ
. [(]<u
every [(] t<min(lJ;G) = w=wo
- o] <u every [(]
it ug ..
te G\ (Uj<i G) = w =iy init ug <u

Eq; y= pre(x)

T, = T, discrete

Ty = T, discrete

. t <min(r,) = w=yo T, <1y
init yg
tery, = y=xo ‘r<Qyinityo <y
Eqs Si|S:
Sy = (X1,%1) (X,EJX n 22“‘) , X=X1UX | [Si] | [9]
Sy = (X2,%9)

Table 5.4: Non-standard semantics (mid column) and constructive semaighascplumn) of

SIMPLEHYBRID. Timet is universally quantified.

Part Il

Synthesis and Control of Concurrent
Systems

115

Chapter 6

Distributing finite automata through
Petri net synthesis

Résumé :La programmation des systemes communicants est une activité délicasndknt du
programmeur des compétences spécifiques aux systemes répauiseideles de la concurrence.
Il est donc souhaitable de pouvoir offrir aux concepteurs un modéefgagrammation qui fasse
abstraction de la communication. Ceci suppose bien entendu que desdetile synthése de
protocoles communicants puissent étre utilisées et que celles-ci peaddiss protocoles corrects,
efficaces et economes en messages échangeés.

Les techniques de synthése de réseaux de Petri permettent de tmagrsfor modéle dans
lequel la concurrence entre événements n’est pas explicite, en uélenmehcurrent. Ces tech-
niques sont intéressantes pour des applications aussi variées quethesg de circuits matériels
asynchrones ou la construction de modéles a partir de traces d'exacutio

Ce chapitre, repris deqd], présente une spécialisation d’'un algorithme de synthése de réseaux
de Petri généraux pour ne produire que des réseaux pouvant &iterfeent transformés en sys-
temes communicants : les réseaux distribuables. les réseaux distribifabbeent une classe
syntaxique de réseaux dont les places et transitions sont répartiasnsensemble de sites, et
qui ne permettent pas d’exprimer des propriétés de conflit entre simsdistincts. L'algorithme
de synthese en temps polynomial repose sur la résolution dans lesarationnels de systémes
d’'inéquations linéaires, les contraintes de distribution apparaissant ecodes conditions de signe
de certaines variables.

Une fois obtenu un réseau distribuable (si il en existe), il est aisé deftnaner le réseau dis-
tribuable en processus communicants. L'intérét de cet algorithmeuedegrobleme de synthése
d’'un systéme communicant est décomposé en trois étapes, la p&tandréa transformation de
la spécification de maniére a ce qu’elle admette comme solution un résedbudible. Une fois
cette premiere étape franchie, le calcul d’un réseau distribuable et safivtamation en processus

117

118

communicants est automatique. Cet algorithme a été mis en ceuvre daitShoet’.

6.1 Introduction

The synthesis problenfor Petri nets is the question whether a given automaton (or a given
language) on alphabéf is isomorphic to the state graph (or equal to the set of behaviours) of
a Petri net to be discovered, with set of events identicak’to We will address this question
for finite automata defined on an enriched alphdliet\) where\ : E — A maps each event
e € Etoalocation\(e) € A. Considering these automata as specifications of distributed systems,
we search for realizing them hyistributablenets [LO7], such that two transitions with different
locations are never in conflict. A distributable net translates easily to anadepi family of finite
communicating automata which, plugged in at separate locations in an asyoctroetwork,
provide the desired implementation. We give in this chapter the description aharithm for
distributed net synthesis and report on a few case studies where ltesuap assistance for the
engineering of distributed protocols. Our goal is to attract engineers thaiteie which may yield
unexpected but effective solutions to practical distribution problemsingeiy a totally hidden
way on linear algebra that often beats intuition. A few case studies in distlimaesynthesis
would suffice to make the point, but we prefer to give a thorough pretsemtzf the algorithm, yet
unpublished, in order to allow users try different implementations. The miatdilae chapter is
mainly assembled fron®], preliminary studies ([2],[50]) and research reportsi(f],[49]).

The problem of synthesizing nets equivalent to a given finite automatorad@essed first
by Ehrenfeucht and Rozenberg, who showedsi#] fnd [89] how deciding on the feasability of
this problem for elementary nets, using the crucial concepegibns A (boolean) region in an
automaton is a subset of states such that this set is entered or exited unifgrailytransitions
with a common label (exactly as if it were the set of reachable cases of thatdtold a fixed
condition or place). Regions may be interpreted as and give re®itoicnets with a single place,
filled by incoming transitions and emptied by outgoing transitions. By considéhi@adinitely
many different subsets of regions of a finite automaton, and gluing atomi@nédtansitions, a
finite number of nets may be derived in this way from a finite automaton, but itweyccur that
none of them has a case graph isomorphic to the given automaton. Thos®tuwhich are iso-
morphic to reachable case graphs of elementary nets are characterizenldeparation axioms
one expressing that any two different states are separated by soioe cegtaining exactly one
of them, and the other expressing that for any evertich state disablingcan be separated from
all states enabling by some region exited by. When these axioms are satisfied, the automaton
is isomorphic to the reachable case graph of the elementary net assemhietthérwhole set of
regions (viewed as atomic subnets). The same holds of any smaller nebéssgéom a subset of
regions large enough to witness the satisfaction of both separation ax@dns [

The concept of regions was extended next by MukurH], who defined regions modelling

1. http://lwww.irisa.fr/s4/tools/synet/

119

extensions of places in state graphs of general Petri nets with the stgpréiltn Mukund’s ex-
tended regions may again be interpreted as one-place Petri nets, withréwaav weighted by
non negative integers. Using these (integral) regions, Mukund estatblesth abstract correspon-
dence (namely a co-reflection) between separstegdautomata and Petri nets, where separated
step automata satisfy an adapted version of Ehrenfeucht and Rogerdmpraration axioms. The
separation axioms served also (albeit with slightly different regions) teackexize up to isomor-
phism automata which may be realized by pure Petri nets with the sequentkiiten[34], and
automatawith concurrency relatiorwhich may be realized by general Petri nei§][The afore
mentioned results do not directly entail the decidability of the Petri net realizatioblem for
finite automata, since the set of integral regions of a finite automaton is infinitéracy to the set
of boolean regions, this set cannot be inspected exhaustively in a finderd of time for stating
validity or invalidity of the separation axioms. It was shown 112 that the synthesis problem for
pure Petri nets is nevertheless decidable, because the set of integralsrefiafiinite automaton
forms a free module and one may actually compute a finite set of generatbis ofodule. The
decision was extended later on to general Petri nets, possibly accongmkdtitoopd 10]. In both
cases, deciding on the synthesis problem for Petri nets (or on theatieation problem for finite
automata) takes time polynomial in the size of automata.

In contrast, the synthesis problem for elementary nets isrmoomplete problem[3]. The
jump of complexity may be explained as follows. Integral regions, congidesenaps from states
to non-negative integers, are stable under addition of maps, henceréhsyied for linear rea-
soning. On the contrary, regions, considered as maps from staZ22#, are not stable under
addition of maps, hence they are suited only for (non-linear) combinateaabning. This did
not prevent practically efficient algorithms based on binary decisiorratiag and graph traversal
to be constructed and used for deriving elementary nets from large aatgraa70]. The tool
PETRIFY in which these algorithms are integrated shows convincing applications sfntitesis
to asynchronous circuit§9]. Elementary net synthesis finds there a privileged field of application,
where it brings in a new technology.

The potential fields of application of general Petri net synthesis havieesm investigated to
a comparable degree. Following the path shownli], applications may be found in supervi-
sory control of discrete event systems, but the most critical issue oibdisgtd and asynchronous
control has not yet been considered at depth. More positively, thke presented in ¢9], [50])
brings the elements of an emerging technology for distributing finite reactioereata. Successful
experiments have been conducted on simple communication protocols usingltBenaT which
has the nice feature to accomodate distribution constraints on the nets it is apighesize from
automata.

The rest of the chapter presents the principles of the synthesis ofafjEtedri nets (section
2), a proof that the synthesis problem can be solved in polynomial time fte fintomata (sec-
tion 3), an adaptation of the synthesis algorithm to distributable nets (sectiantr@nslation of
distributable nets to asynchronously communicating automata (section 5), $e&steaies in dis-
tributing reactive automata using'SET (section 6), and a few conclusions (section 7).

120

6.2 The Petri Net Synthesis Problem

The purpose of the section is to give an axiomatic characterization of tti@nsilypof finite
automata which are isomorphic to reachable state graphs of unlabelled &striTris charac-
terization is based on Ehrenfeucht and Rozenberg’s separation afdomementary transition
systems, adapted to general Petri nets through an adequate exteniencohcept of regions.
The extended regions we propose are similar in spirit to those consideMdkund [135 and by
Droste and Shorttgg].

Before stating the definition of regions, let us fix terminology and notatioresa¥§ume a finite
setE of events A (finite) automatorover E is an initialized transition systemd = (S, E, T, so)
with a (finite) nonempty set aftatessS, a (possibly empty) set afansitions7 C S x E x S, and
aninitial state s, € S. For conveniences = s is an equivalent ofs, e, s') € T, ands < and

s 764> are respective abbreviations 8§’ € S (s 5 §') andVs’ € S =(s 5 s'). An automaton

A is deterministicif for any states € S and for any event € E, (s > s') A (s 5 s") =

s’ = s”. An automatonA is co-deterministidf for any states € S and for any event € FE,

(s 5 s) A (s" 5 s) = s = s”. On the one hand, the automata we consider are not always
deterministic or co-deterministic, on the other hand, they are alwegshable i.e. such that

S = {s|sy — s} where— is the reflexive and inductive closure of the unlabelled transition
relation— = U{-5% |e € E}. An automaton isvent-reduced it is reachable and every event

e € F occurs on at least one transition e, s’) € T. We recall hereafter the definition of marked
Petri nets and their sequential state graphs (see, 84]) [

Definition 6.2.1 (Petri nets) A (finite) Petri net is a tripleN = (P, E, F') where P and E are
(finite) disjoint sets oplacesandeventsand F'is a function,F' : (Px E) U (E x P) — N. The net
ispureif F'(p,e) = 0or F(e,p) = 0 for every place and for every every; it is impureotherwise.
A markingof N is a mapM : P — N. An evenk hasconcessiorat M if M (p) > F(p,e) for
every placep € P. An event which has concession atf may befired, resulting in a transition
M [e > M’ whereM’ is the marking such that/’(p) = M (p) — F(p,e) + F(e,p) for every
placep € P.

Definition 6.2.2 (Marked nets and state graphs)A marked Petri netis a quadruplé = (P, E, F', M)
whereM is a marking of the underlying néP, £, F), called theinitial marking The marked net

is place simpléf it is never the case that/y(p) = M(p’) for different place® andp’ such that
[F(p,e) = F(p',e) A\ F(e,p) = F(e,p')] for every event € E. Thereachable markingsf N/

are the markings\/ : P — N such that)/, [« > M, where[x > is the reflexive and transitive
closure of the unlabelled transition relation of the underlying f8tE, F'). The sequential state
graph of NV is the automatooV* = (RM (N), E, T, My) where RM (N) is the set of reachable
markings ofV andT = {M % M'| M, M’ € RM(N)A M [e> M'}.

From this definition, the sequential state graph of a marked Petri net isrendt@tgic, co-deterministic

121

and reachable automaton, but it is generally not finite. Nets consideregl $etjuel are place sim-
ple but not necessarily pure.

6.2.1 Regions

We come now to the definition of regions, which does not depend upon itenéiss of au-
tomata; still, we are mostly interested in regions of finite automata, for the axiomatiaatbriza-
tion given in Sectior6.2.2is valid only for finite automata.

Definition 6.2.3 (Regions)A region of the automatodl = (S, E, T, sg) is a tuple (o, *n,n®)
wheres : S — N, *nandn® : £ — N are maps such that:

@ s> = o(s)>*nle) and

) s5s = o) =o(s) —*nle) +n°(e)

A region(o, *n,n®) is pureif *n(e) = 0 or () = 0 for every event € E.

It is readily observed that every plageof a net\' = (P, E, F, M;) determines an associated
region (o, *n, n°®) of the sequential state grapt*, such thaiv(M) = M(p) for every reachable
markingM € RM(N'), and®n(e) = F(p,e) andn®(e) = F(e,p) for every event.

Conversely, every region= (o, *n,n*) of A determines an atomic n&t’ = ({p}, E, F’, M),
such thatF’(p,e) = *n(e), F'(e,p) = n*(e), andM{(p) = o(so). In case whemd = N* and
regionp derives from a homonymic plageof A/, the atomic net\’ is actually isomorphic to the
atomic subnet ofV" with the unique place.

Before investigating the structure of the set of regions of an automataus latroduce nota-
tions and terminology based on an analogy with electricity specifiute regions In this partic-
ular case, the map = n* — *n provides the same information as the pair of mélpsn°®). The
mapn measures the variations efalong the paths of the automaton as a function of the events
that occur, since

s 5 s = oa(s') —o(s) =nle) (6.1)

on account of Conditiofb) in Def. 6.2.3 Thus, if the automaton is reachable, the mdp totally
determined fronw (s¢) andn; and the following condition is satisfied for every everd E:

[s1 580 A sa5sh] = o(s)) —o(s1) = o(sh) — o(s2) (6.2)

Given a region(o, *n,n*) of an automator4, one may look atd as the model of an electric
circuit, where each transition-> s’ represents a component of typewith nominaltensionn(e),
plugged in between nodesands’. The mapo may thus be seen as a distributionpaftential
Conversely, a map : S — N satisfying Conditior6.2 defines a distribution of potential that can
be realized by connecting components with adequate tensgiefsinduced from differences of
potentialo(s’) — o(s) uniformly attached to transitions> s’. It will be assumed from now on
that A is an event-reduced automaton, hence the mapn® — °*n may be derived frora for every
region of A. For clarity, let us turn this into a formal definition.

122

Definition 6.2.4 Let A = (S, E,T,so) be an event-reduced automaton. A map S — N
satisfying Conditiorb.2is called adistribution (of potentialpver the nodes ofl. Thederivedmap
n : B — Z such thatr andn satisfy together Conditio6.1 is called adistribution (of tension)
over the events od.

Leading further the analogy, we will show thatjifderives fromo theno(s) = o(sg) + f;o n
for every states (where integration follows any path frosg to s in A) and thatfc n = 0 along
every cycleC of A. For precision, let us state a few definitions.

Definition 6.2.5 Theunderlying graphof the automatom = (S, E, T, s¢) is the oriented multi-
graphG(A) = (S,U,8°, 8') with components as follows.

— S, the set ohodesis the set of states of.

— U, the set ofarcs is the disjoint union of two copies @f, U = T U T~ where- ™ and -~

are respective injections froffi to U. Arcsu € T are forward transitions. Arcsu € T~ are

backwardransitions.

— Thesource ma@® : U — S (resp. thetarget map! : U — S) is defined witid°(t+) = s and

A7) =sfort = (s 5 s) €T (resp. witho' (t+) = s’ andd' (t7) = s).

Definition 6.2.6 A pathin A or in G(A) is a non-empty sequence of arBs= wu; ...u, such
that 9! (u;) = 0°(u;11) for all i < n. Thesourceand targetof path P are the respective nodes
9°(P) = 3°(u1) andd'(P) = 0% (u,). Thereverseof path P is the pathP~! = u,,~!...u; 7!
whereu; 7! = t;7 if u; = t;7 andu; 7t = ¢, if u; = t,7. Path P is elementaryf 8° (u;) # 9°(u;)
andd!(u;) # 0'(u;) for all i j. Path P is acycleif 9'(P) = 9°(P).

In the sequel, path and cycle will always be used to mean elementary patelementary
cycle.

Now for any mapy : E — Z, let [,n = [# 1 — [, n where [5 7 is defined as the sum

of n o £(t;) for forward transitiong; " on pathP and [, 7 is defined as the sum afo ¢(t;) for

backward transitions;~ on pathP; let fcn be defined similarly for a cycl€'. It should thus
be clear from condition§.1 and6.2 that whenevetr : S — N andn : E — Z are compatible
distributions of potential and of tension, the following identities do hold fornepath P and for
every cycleC:

/P 0= o(0'(P)) — o(°(P)) (6.3)

/Cn) (6.4)

This suggests the following alternative to D&f2.4

123

Definition 6.2.7 A mapn : F — Z satisfying equatiof.4 for every cycle’ of the automatom
is adistribution (of tensionpver the events oA.

A simple reasoning shows that the two definitions of distributions of tensi@mgjivDef.6.2.4and
Def. 6.2.7are equivalent fofinite event-reduced automata. Suppose that = 0 for every cycle
C. ltis easily seen that two pattizdand P’ such that bottd"(P) = 9°(P’) andd*(P) = 9*(P’)
can always be cut into finitely many slicé&s and P/ such thatP;, = P/ or P,(P/)~!is a cycle. It
follows from the hypothesis omthatfpi n= fP{ n forall i, whence[, n = [, n. Therefore, there

is nothing ambiguous if we Ief;ﬁ n be defined ag, n for any pathP from s’ to s. It should now
appear that must derive from some distribution of potential: the adequate distributions — N
are obtained by integratingaccording to

o(s) = o(s0) + /) (6.5)

S0
The resulting distributions are defined up to an additive constant, since any valu€ f) greater
than or equal to the opposite Sﬁsﬁ) 7 for all s (and in particular fory) may be chosen (recall that
S has been assumed finite).
o Now the opposite of ;) nis [;°nand[;°n+ [nequals[; 7. We may therefore sum up as
ollows.

Proposition 6.2.8 The pureregions(o, *n,n®) of a finite event-reduced automatehare in bi-
jection with the pairgn, k) such thatt € N andn satisfies equatioB.4 for every cycleC. The
bijection is given by) = n* — *nandk = min{o(s) | s € S}. The reciprocal bijection is given by

*nle) = max{0,—n(e)}
n*(e) = max{0,n(e)}
o(s) = max{[in|s eS}t+k

We will now extend this characterization from pure regionaraitrary regionsof A.

Proposition 6.2.9 The regiongo, *n, n*) of a finite event-reduced automatehare in bijection
with the triples(n, k, §) such that: € N, n satisfies equatiofi.4for every cycle”, andd : £ — N
is a map such that

5(e) < k + min{0, n(e)} + min{/sn 55} — min{/sn |seS) (6.6)

The bijection is given by = n* — *n, k = min{o(s)|s € S}, andd(e) = *n(e) if n(e) > 0,
d(e) = n*(e) otherwise. The reciprocal bijection is given by
() = d(e)+max{0, —n(e)}
n*(e) = d(e) +max{o,nle)}
o(s) = max{[in|seSt+k

124

Proof: Let (o,°n,n*) be an arbitrary region ofl. For every event € E, define:
n(e) =n°(e) —*nle) °n(e) =max{0,—n(e)} n°(e) =max{0,n(e)}

From Def.6.2.3 (o, °n,n°) is a pure region ofi, hence there exists€ N such that, for alk € .S,
o(s)=max{ [n|s €S}+k.

Observe that)(e) = n°(e) — °n(e). Therefore,n®(e) — n°(e) = *n(e) — °n(e), and if §(e)
denotes this difference thef{e) > 0, for on the one handy(e) > 0 entails°n(e) = 0 and
d(e) = *n(e) — °n(e) = °n(e), and on the other handye) < 0 entails°n(e) = —n(e) and
5(e) = *nle) +nle) = *n(e) + (n°(e) — *nle)) = n*(e).

From condition (a) in Def6.2.3 *1n(e) < o(s) whenevers %, or yet equivalentlyn(e) + d(e) <
max{ [, n|s €S} +k.

Now §(e) satisfies relatio.6, establishing half of the proposition, since

max{/ns’eS}:/n—min{/ n|s €S}
s’ S0 S0

In order to establish the other half, considek, andé satisfying the conditions of the proposition,
and leto, *n andn® be the maps defined by the correspondence. We will show(ahew, n°) is

a region ofA. From Prop6.2.8 the mapo is a distribution of potential over the states4fand

7 is the derived distribution of tension over the eventstofSincen(e) = n*(e) — *n(e) for all e,
condition (b) in Def.6.2.3is satisfied. Now, condition (a) in De6.2.3may be rewritten into the
implication

55 = 5(6)—min{0,n(e)}§k+/8n—min{/s7]|3’€S}

S0

which follows directly from relatior6.6. |

The reader may observe that one shifts from pure regions to impurensdgyoadding simultane-
ously somej(e) satisfying relatior6.6 to *rn(e) and ton®(e) for each event. Conversely, one
returns from general regions to pure regions by subtracting simultalyefvam °*7(e) and from
n®(e) the maximab(e) satisfying relatior6.6 for each event.

Definition 6.2.10 Let R, . s denote the region od fixed by the correspondence given in Pro2.9
In case wherk = 0 and ¢ takes for eacle the maximal value allowed by relatidh6, the region
R, s is said to becanonicaland it is given the simpler notatioR,,. ThusR, = (o,°n,n°®) is
defined by

)+ [on where a(so) = max{[n]|secS}
)+ min{f:O n|ls>} = min{o(s)|s>}
n*(e) = nle)+°n(e)

(s0

o
o(so

125

Observe thaf?,, may be computed from using time polynomial i}S| and|E|, which are both
bounded byT'| + 1 (sinceA is reachable and event reduced). Canonical regions will play a major
role in the sequel.

6.2.2 Representation Theorem

We come now to the logical laws explaining the structure of the sequential stqie of a net
in terms of the regions that derive from its places.

Definition 6.2.11 (Separated automaton)An automatond = (S, E, T, sg) is separatedf and
only if the following axioms hold for all statess’ € S and for every event € E:

(SSA) s # s = o(s) # o(s') for some regiomR = (o, *n, n*)

- R solves thestates separatigoroblem at(s, s’) -

e
(ESSA) s 4 = a(s) < *n(e) for some regiomR = (o, *n,n*)
- R solves theevent/state separatiqgmoblem at(s, e) -
A subset of regions with enough elements to witness the satisfaction of lhmthsas called an
admissiblesubset of regions.

Let us explain the motivations under the definition of separated automatane Iblaserves
the sequential state grapti* of a marked Petri net/, one may remark that it is a separated
automaton: on the one hand, if markingsand M’ are different,M (p) # M’(p) for some place
p, and the region that derives froprsolves the states separation probleri\dt M/); on the other
hand, if evente cannot be fired af\/, M(p) < F(p,e) for some placey, and the region that
derives fromp solves the event / state separation probleifate). Thus, the regions of/* that
derive from the places o¥ form an admissible subset of regions, and axi#i®si and ESS A
are valid in every automaton isomorphic to the sequential state graph of adizeke net. Now
reverting the analysis, consider a separated automatoAxiom SSA means that states of
may be represented injectively as markings of aXetwhose placeg are defined from regions
(o,°n,n®) as one may expect: states mapped to markind/ such thatM (p) = o(s). In the
considered representation, the contraposed version of akiSfiA means that an eveatwhich
has concession at marking in NV is necessarily enabled atin A. As o(s) evolves through a
transitions = s’ in A in the same way a8/ (p) evolves through a transitioh/ [e) M’ in N/, A
andA* cannot differ that much. We will show that the separation axioms chaizetastually the
variety offinite event reducedutomata isomorphic to sequential state graphs of marked Petri nets.
Recall that in an event-reduced automatbe- (S, E, T, s¢), each event € E labels at least one
transition inT'.

Lemma 6.2.12 A separated automaton is deterministic and co-deterministic.

€

Proof: Let A = (S, E, T, so) be a separated automaton whése™ s') and(s = s”). Then for
any region(o, *n,n®) of A, o(s') = o(s) + n(e) = o(s”) with n = n®* — *n. Therefores’ = 5"

126

follows by axiomSS A. Co-determinism is shown in a similar way. [

Definition 6.2.13 (Net synthesized from a finite subset of regions)

Given an event reduced automatdn= (S, F, T, s¢) and a finite subseP of regions ofA, with
typical regionp = (o,°*n,n°®), let A*[P] = (P, E, F, M) be the marked Petri net such that
F(p,e) = *nle), F(e,p) = n°(e), and Mo(p) = o(s0).

Theorem 6.2.14 (Characterization result) A finite event reduced automaton is isomorphic to the
sequential state graph of some marked Petri net if and only if it satisfeesdaparation axioms
SSAandESSA A finite event reduced and separated automatais actually isomorphic to the
sequential state graph of*[P] for any finite admissible subs&tof regions ofA.

Proof: Let A = (S, E, T, s¢) be a finite event reduced automaton. If this automaton is separated,
it follows from finiteness that one can extract a finite admissible suBdedm its infinite set of
regions. It suffices to show thatt is then isomorphic to the sequential state grapoft A*[P].
Let V' = (P, E, F, M) then by definition'V* = (RM(N), E, T, M,) whereRM (N) is the set

of reachable markings 0¥ andv M, M’ € RM(N), (M 5 M') € Tifand only if M [e > M’

in A/. Define~ C (S x RM(N)) such thats ~ M if and only if for all regionsp € P:

p = (0,°n,n*) = M(p) = o(s). From this definition,~ is a functional relation. From the
axiom SS A and the assumption th&t is an admissible subset of regions4f ~ is an injective
relation. We will show that- is an isomorphism of automata. Observing on the one hand that
so ~ My, and on the other hand that bathand N* are deterministic and reachable, it suffices
to establish the following transfer property: sf~ M then for anye € E, s < in A if and

only if M[e > in N, and thens’ ~ M’ wheres 5 s’ and M [e > M’. So lets ~ M.
Supposes = in A, then for every place € P: p = (0,°n,1°) = o(s) > *n(e) by definition

of regions and hencé/(p) > F(p,e), showing thatM [e > in A/. SupposeM [e > in N

and assume for contradiction that764> in A. From the axiomESSA and the assumption that
P is an admissible subset of regions 4f there exists inP some regiorp = (o, *n,n*) such
thato(s) < *n(e), henceM (p) < F(p,e) contradictingV/ [e >. Suppose finally that 5 s’
in AandM [e > M’ in . We should prove that for any plagec P:p = (0,°n,n°) =
M'(p) = o(s’). From the sequential firing rule\l’(p) = M(p) — F(p,e) + F(e,p). From
the definition of the netN' = A*[P], F(p,e) = *n(e) and F(e,p) = n*(e). Froms ~ M,
M(p) = o(s). From the definition of regiong,s % s') = o(s) — *n(e) + n°(e) = o(s').
Altogether,M'(p) = M (p) — F(p,e)+ F(e,p) = o(s) —*n(e)+n°(e) = o(s'),ands’ ~ M'. 1

Definition 6.2.15 Given an automatom, a subsefR of regions ofA is logically completef all
instances ind of the separation problems solved by regionsicdre equally solved by regions in
R.

127

Beware of that logically complete sets of regions are generally not admisdiblexplain this,
consider for instance the automatdn= (S, FE, T, s¢) defined withS = {sg,s1}, F = {e},
andT = {sy 5 51,51 — so}. This automaton is not isomorphic to the sequential state graph of any
marked Petri net: stateg ands, cannot be separated by any regioiofThus the set of all regions

of A is not admissible, but it is logically complete by trivial application of the definitidnother,
more conclusive, example of a logically complete set of regions is, in anynatiom, the subset of

all regions(o, *n, n®) such thatn(e) # 0 andn®(e) # 0 may hold simultaneously fat most one
evente: whenever two statesands’ are separated by a region, they are separated as well by a pure
region; whenever a region solves the event / state separation prob{er)athe problem may be
solved as well by a region such tHat(e’) = 0 or n®(e’) = 0 for every event’ # e. The point

is that, for deciding on separation, it suffices to search for admissibkesibf some logically
complete set of regions. This is the common principle of all net synthesistalgsrknown so far,
differing one from another on the choice of the logically complete set abnsg This set must be
finite, or at least finitely generated, in order to support effective #dlyos. The algorithm defined

in the next section uses the fact that the satasfonicalregions is logically complete.

6.3 A Polynomial Time Synthesis Algorithm

We describe in this section an algorithm for the synthesis of Petri nets frote &utomata
taking time polynomial in the size of the automata, thus establishing the following:

Theorem 6.3.1 Deciding whether a finite event-reduced automaton is isomorphic to thesequ
tial state graph of some marked Petri net, and producing then a minintal iret realizing the
automaton, takes time polynomial in the number of transitions of the automaton

The algorithm stems from the observation that the set of canonical reigitotgcally complete.

Proposition 6.3.2 In any finite event-reduced automateh the set of canonical regiong, is
logically complete, and a subset of canonical regi¢is, | € H} is admissible if and only if:

) s#s = dncH fsson + fsson,
i) A = ImeH [n<min{fn]sS)
Proof: By definition, a regior(o, *n,n*) solves the states separation problerfsat’) if and only
if o(s) =o(so) + fsz n # o(so) + f;'o n = o(s’) wheren = n® — *n. The separation of from s’
by the canonical regioi®,, is expressed by an identical condition, and this condition holds if and
only if fsso n # fSSO n.
By definition, aregioric, *n, *) solves the event/state separation problef@’at) if and only
if o(s") =o(s0) + f;o n < *n(e) wheren = n®* —*n. Now by Prop6.2.9 (o,°n,n*) = R, 1 s for
somek € N andé : £ — N such that
*n(e) = o(e) + max{0, —n(e)} and

128

*nle) <k+ min{f:O nlsS}— min{fjo n|seSt

Aso(so) =k —min{[’ n|sc S}itcomes thaty(e) < o(so) +min{ [’ n|s=}.

To sum up, if the considered regid), ;. s separates’ from e, then necessarily

f;oln < min{fjon | s5}. By the definition of separation and Prap2.8 the canonical
region R, defined byn = n® — *n separates’ from e if and only if o(sg) + f;o n < o(so) +
min{ > n | s =} and this relation holds if and only Mj(: n < min{ [n|s=}).]

The proof of Theo6.3.1proceeds in two stages, described in separate subsections. We compute
first a finite set of maps generating all distributions of tension as linear combinations. We then use
this finite presentation to check the separation conditions of Bt8f2 We are thus looking for an
admissiblefamily of distributions, containing enough elements to witness the satisfactiootiof b
separation axioms. By Prof.3.2 every admissible family of distributiorid induces actually an
admissible family of region$R,, | n € H} (whereR,, is computed from; in polynomial time).

6.3.1 Computing Tensions

From now on A = (S, E, T, sp) is a fixed automaton, finite and event-reduced.

Notation 6.3.3 Let Z[E] denote the set of maps : £ — Z equipped with addition of maps
and multiplication of maps by integers. Each map £ — Z may thus be written as a linear
combination” . u(e) x e, wheree : E — Z is the mag(e’) = 1if e = ¢/, 0 otherwise. For
instanceu = a — 2bis the mapu(a) = 1, u(b) = —2, andu(e) = 0 for e ¢ {a, b}. Alternatively,
amapu : E — Z may be seen as dirvector with entries.(e) € Z. The scalar product af and
vinZ[E]istheintegen - v =) . u(e) - v(e).

Definition 6.3.4 TheParikh imageof a path P (of the automatom) is the mapy)(P) : E — Z
such thaty)(P)(e) = [,e. The Parikh image of a cycl€ is the mapy(C) : E — Z such that

b(C)(e) = [e

Example 6.3.5 The Parikh image of the cyclé going through statesy, ss, ss, s2, s4, So in the
automaton of Fig6.1is¢(C) = —a+d +a+ b +d =2d +V

Figure 6.1: an automaton

129

Proposition 6.3.6 A mapn € Z|[E] defines a distribution of tension over the eventsiaf and
only if n - ¢»(C') = 0 for every cycle” of A.

Proof: From Def.6.2.7, n represents a distribution of tension over the eventd dfand only if
Jon = 0 for every cycleC. For eacte € E, definern, : E — Z such thaty.(¢) = n(e) if ¢’ = e,

0 otherwise. Now[, 1 =" e (o) = 2 cep (n(e) x ¥(C)(e)) = n-¥(C). |

Corollary 6.3.7 The maps) € Z[FE] that define distributions of tension over the events @fre
the solutions of a linear systei - = O whereM is an integral matrix whose rows are all Parikh
images of (elementary) cycles 4f

As the number of (elementary) cycles dfis finite, the matrix\/ of the above corollary is
well defined. At this stage, the classical algorithm of von zur Gathen @aISng (see 163)
may be employed to compute (using time polynomial in the siz&/¢fa finite set of solutions
{m,...,mx} of M -n = Osuch that every solution of this system writes in a unique way as a linear
combinationzyn; + . . . + zxmi With integer coefficients; € Z (and any such combination yields a
solution). Distributions of tension form therefordraely generatedhteger module (seelB1] for
a definition). Note thak < |E| (since generators; are linearly independent) and herice< |T|
(since|E| < |T'| by the hypothesis of event reducedness).

We have not paid much attention to algorithmic complexity in the above. As the nuwhady
ementary) cycles of a finite automaton is not polynomial in the number of transitiesituation
is problematic: one cannot set any bound polynomidlihon the number of rows af/ (whose
number of columns is bounded k¥ | as A is event-reduced). Fortunately, a standard result of ap-
plied graph theory (semg.[66] or [96]) tells us that one needs not consider all cycles: it suffices to
take as rows oll/ the Parikh images df"|—|.S|+1 fundamentatycles ofA (see Def6.3.8below).

Let us recall briefly this result. An elementary cycleAfC = u, ...u,, may be represented
by amapC : T — {-1,0,1} as follows: if C = ¢t~ or C = t~t* for some transitiort,
then letC(t) = O forallt € T, else, forallt € T, letC(t) = +1 if w; = t* for somei,
C(t) = -1 if u; =t~ for somei, andC(t) = 0 in any other case. The result is the following:
everyspanning treef A (see Def6.3.8below) determines a family of = |T'| — | S|+ 1 cycles of
A, let{C1,...,Cg}, such that any cycle ofl writes as a linear combinatiafi = Zle xj x Cj
with coefficientsr; € {—1,0,1}. Thus, forany map : £ — Z

RESER R

J

As [,n = n-y(C) for every cycleC (see the proof of Prof5.3.6), it follows thaty defines a
distribution of tension over the events.4fif and only if M’ - = OwhereM’ is the integral matrix

130

Figure 6.2: an automaton with one of its spanning trees (in solid lines)

whose rows are the Parikh images of the fundamental cycles . Cz. Therefore, computing a
set of generating distributiod(s);, . . . , ;. } takes time polynomial in the number of transitig@3.

It remains to give a precise definition of spanning trees and fundamsmek¢ and to show an
example.

Definition 6.3.8 Given a finite reachable automateh= (S, E, T, s(), aspanning treés a reach-
able automatoB = (S, E,T", so) with an identical set of states, such th&t C 7" and all ele-
mentary cycles o8 have formC' = ¢t~ or C = t~t* (henceB is a tree). ThdT| — |S| + 1

transitionst € T'\ T” are calledchords For each chord, there exists a unique cycté such that
Cy(t) = 1and C(t') = 0 for every chordt’ # t (thusCy(t') #0 = t' =t v t' € T'). The
fundamental cyclesf A are the cycle€’; defined from the chordse 7'\ T".

Note thatloopss = s are special cycles, which appear as fundamental cycles under aicg ch
of the spanning tre#3. Note also that for each spanning trBeand for each state # s, there
exists a unique path fromy to s in B, denoted byP; (hence,P; is also a path frons to s in
A). Abusing the notations, |g®;, denote the subgraph &f with the unique node, and with the
Parikh image)(Ps,) = 0. Thus, for any state and for any map) € Z[E]:

</p "e> = > (n(e) x $(Ps)(e) = n- (P

eckE

Example 6.3.9 The Parikh images of the fundamental cycles defined by the spannimgdiesgted
in solid lines in Fig.6.2are 2a + b and2a + 24’ + b+ b'. Thus,n € Z[E] is a distribution of
tension if and only i2n(a) + n(b) = 0 and2n(a’) + n(b’) = 0. The distributions of tension are
therefore generated byy = a — 2bandny = o’ — 2b'.

From now on,P; is the path fromsg to s in a fixed spanning tree, af{d), ..., 7} is a fixed
set of generators for distributions of tension.
6.3.2 Solving the Separation Problems

Deciding upon separation ef comprises two subproblems, since two axioms must be satisfied.
We consider first the states separation ax®sd which is the easier one to check. This axiom is

131

Table 6.1
Y(Ps;) || so | 51| S2 | 83| 84| 85 | 56
a o112]1}2|1]|3
o011]1|1]|1
a o010 1]|1]1
b 0/0|0]0]1]|]0]|1
Table 6.2

nj-(Ps;) || so | s1 | 52| 83| 84| 85| 6
i o|j1/0|-12|0]-1|1
- olo|1|lo|-1]1]1

valid in A if each pair of distinct statesands’ is separatedy a distribution of tension such that
fon# [n- As [n=n-1(Ps) and thus depends linearly op s ands’ are separated if and

only if they are sepsarated by some distribution in the generatingset. ., nx }. In order to check

this, it suffices to construct a table as follows: rows are indexed byrgenen; € {ni,..., 7},
columns are indexed by statess S, and the contents of each entpy, s) is the scalar product

1+ (Ps). The axiomS S A is satisfied if and only if the columns of the table are all different (hence
the distributions{n,, ..., n;} form an admissible set w.r.t. state separation). In the converse case,
the Petri net synthesis problem has no solutior4oAs |S| < |T'|+1 (for all states are reachable),

k < |T|, and there existS| x (|.S| — 1)/2 pairs of distinct states, checking states separation takes
time polynomial in|T'|.

Example 6.3.10The Parikh images)(Ps) of the paths froms, to s in the spanning tree of the
automaton shown in Fig6.2 are shown in Tablé.1 The scalar products); - ¢(Ps,), where
m = a— 2bandn, = o’ — 2V, are shown in Tablé&.2 As all columns are different, the states
separation axiomt S A is satisfied. Thus, the family of distributiofig;, 72} is admissible w.r.t.
state separation.

Let us consider now the event/state separation aXit#s A. This axiom is valid inA if each pair
(s, e) made of a state’ and an event disabled at’ is separatedy a distribution (of tensiony

such thatfjo/ n < min{ [} n|s5}.

Defines; (s',s) = 1 - (Py) —n;-p(Ps) fori e {1,...,k} ands € S, and seiy = 3%, 2 x ;.
The question is to decide whether one can find Z solving the system of linear homogeneous

132

inequalities

k
{Zﬁi(s',s)xzi<0 ‘ si} (6.7)
=1

The constant$; (s', s) may be computed in time polynomial[i@|. The number of the inequalities
and the number of the unknows are bounded by polynomials ifi"|. Moreover, there are less
than|S| x | E| instances of the event/state separation problem. Therefoy)frbay be solved

or proved unfeasible using time polynomial in the number of inequalities and mutiner of the
unknown then event/state separation may also be decided in polynomial time.

Now (6.7) is ahomogeneousystem of linear inequalities, hence it has an integral solution (in
ZF) if and only if it has a rational solution ("), and the integral solutions are the integer multi-
ples of the rational solutions. Khachiyan’s method of ellipsoids ($6&) may therefore be used
to decide on the feasability 06(7) and to compute a solution, if it exists, in polynomial time.

By collecting the distributiong = > le z; X n; that result from the solutions 06(7) for all
instances o?S.S A, one obtains fron{n, ..., n;} new distributions{ 741, . .., n;} which form
an admissible set w.r.t. event/state separation.

Example 6.3.11In our running example, the homogeneous system of linear inequalitiesexha
press event/state separation(at, a) is the following:

S Ziﬁi(sl,s) X z; <0
S0 z1 <0

S3 221 <0

S4 21+ 29 <0

Sx 221 — 29 <0

This system, amounting tg < 0 and2z; < z3 < —z1, IS solvable. A solution is for instance
z1 = —2 and zy = —3. This solution determines a distribution of tensign= —2n; — 312 given
by the map); = —2a + 4b — 3a’ + 6b'. The canonical regiorR,, derived fromys according to
Def.6.2.10separates from s; as desired. The mags)s, n4, 75 }, wheren, = 2a — 4b + 3a’ — 6V’
andn; = —a + 2b, form an admissible set w.r.t. event/state separation.

Summary The separation axioms may be checked within time polynomial in the number of tran-
sitions, yielding an admissible set of distributiofrg, ..., n;}. An admissible set of canonical
regionsP = {Rm,..., Rn,} derives according to De6.2.1Q0 A is then isomorphic to the se-
quential state graph of*[P] (Def.6.2.13. A minimal admissible subsét’ may be extracted from

P using time polynomial inT|, providing a minimal net realizatiod*[P’] of A. Theo.6.3.1is

133

Figure 6.3: net synthesized from canonical regions

therefore proved.

Let us add one comment. When we cafi[P’] a minimal realization ofd, we mean that no place
can be suppressed while keeping a sequential state graph isomorphievi® donot mean that
| P’| is the minimal number of places needed for realizihg

Example 6.3.12In the automaton of Figs.2, all instances of the state separation problem, solved
either byn, or by 7, as we saw, are solved as well hy. The canonical region$R,,, R,,, R, }
which derive fromys = —2a + 4b — 3a’ + 6/, ny = 2a — 4b + 3a’ — 6V, andns; = —a + 2b form
therefore an admissible set of regions. Applying Be2.10to produce canonical regiong, =
(o,°n,n*) from distributions of tension, and using relationg'(p,e) = *n(e), F(e,p) = n*(e),

and My(p) = o(so) to derine places from regiong,,, one obtains the placgs;, ps, andps of

the net displayed in Figh.3. The sequential state graph of this net is actually isomorphic to the
automaton of Fig6.1

6.4 Adding Distribution Constraints

In order to show the principles of the application of net synthesis to the distibof finite
reactive automata, we introduce a special class of labelled Petri nets, diatlébutablenets. The
label of an event indicates the location of its host in a network of automatdwhimmunicate by
asynchronous message passing. The goal of distributable nets is talsollited conflicts. This
discipline is enforced by imposing common locations on conflicting events. egt@fthe section
deals with the synthesis of distributable nets from finite automata with fixed losatioevents.
This extended realization problem can still be solved in polynomial time. Antadaynthesis
algorithm has been implementedImNET.

Definition 6.4.1 (Distributable net system) A distributablenet system with set @dcationsA is a
quintupleN = (P, E, F, My, \) where(P, E, F, M) is a marked Petrinetand : (PUFE) — A

134

is a placementmap such thaf’(p,e) # 0 = A(p) = A(e) for every placep € P and for every
evente € F.

Our definition of distributable nets differs notably from Hopkins'’s definitigven in [LO7], since
we impose from start on placement maps a constraint strong enough t@ ¢énsiexistence of
distributed implementations. We postpone the discussion about distributed impd¢iomen to
section6.5, and come now to the synthesis of distributable nets.

Definition 6.4.2 (Automata with set of locations) An automaton with set ddcationsA is a quin-
tuple A = (S, E, T, so, k) Where(S, E, T, s9) is an automaton and : £ — A is a placement
map.

The synthesis problem for distributable nets (or the net realization profdemutomata with
locations) consists in deciding from an automaténE, T', sg,) with set of locations\, given as
input, whether the underlying automat@si, £, 7', s¢) is isomorphic to the sequential state graph
of a distributable netP, E, F, My, \), to be constructed, with an identical set of locatidnand
such that\ extendsz. We shall produce a decision algorithm for this extended realization proble
by restricting the algorithm defined in secti6rBto a special class of regions, callkgtalizable
regions, such that conflict occurs exclusively between events wittathe &cation in the induced
atomic nets.

Definition 6.4.3 (Localizable regions)In an automaton with locationgl = (S, E, T, so, k), @
region(a, *n,n®) of (S, E, T, so) is localizable w.rt. x if (Ve',e” € E) *n(e’) #0 A *n(e”) #0
= k(e') = k(e").

From Def.6.4.1and Def.6.4.3 each place of a distributable n&f with placement map\ :
(P UFE) — A determines a region of the sequential state gr&fhwhich is localizable with
respect to\[E. A placep and the regiorio, *n,n*) which it determines are in fact linked by the
relation F'(p, e) = *n(e), hence®’n(e) # 0 entailsA(e) = A(p), and®n(e’) # 0 A *n(e”) # 0=
A(e') = A(e”). Therefore, the sequential state graph of a distributable net hassswadmissible
subset of localizable regions. Converselyifs an admissible subset of regions of the automaton
A = (S,E,T,sp) and all regions inP are localizable with respectto: £ — A, the netA*[P]
synthesized fronP can be lifted to a distributable net. From D6f4.3 one may actually extend
K to a placement map : (P U E) — A conform to Def.6.4.1by setting\(e) = x(e) fore € E,
A(p) = k(e) for placesgp € P such thap = (o, *n,n*) and®n(e) # 0 for somee, and by choosing
arbitrarily A(p) for the remaining places € P which do not fit this condition. To sum up:

Proposition 6.4.4 An automaton with locationsl = (S, E, T, sg,) may be realized by a dis-
tributable net if and only if the underlying automat¢§, £, T', sg) has an admissible subsét
of localizable regions, in which case the né&t[P] synthesized fron®? may always be lifted to a
distributable net.

135

Therefore, in order to decide on the net realization problem for autométdoegations, it suf-
fices to decide on the restricted validity of the separation axioms with resdecttizable regions.
Restricting validity of the separation axioms increases notably the complexite afettision. It
may therefore be wise, before deriving a distributable net from an atbométh locations, to
derive first a Petri net from the underlying automaton. If this is notiptessthe synthesis of the
distributable net will certainly fail!

Henceforth,A = (S, E, T, sq) is a fixed automaton, finite, reachable and event reduced,
k : E — Ais a surjective placement map with codomain= {1,...,m}, and{n,...,n}
is a generating set of distributions of tension okefsee 6.3.1)). We examine successively for the
axiomsSS A and ESS A the conditions of their restricted validity with respect to tiocalizable
regions. The canonical regions which were used in se@iB8mre not likely to fit in with distri-
bution constraints. We shall consider here another logically complete segiohs, namely the
regions ofA which reach valu@ at some state € S and that may therefore be callstlict regions
of A. These are all regionB,, o ; wheren is a linear combination of the generatdrg, . .., 7}
andé : E — N satisfies conditio®.6 of Prop.6.2.9 As a result, we establish the following:

Theorem 6.4.5 Deciding whether a finite reachable and event reduced automaton wittidosa
is isomorphic to the sequential state graph of a distributable net systemraddging this net
when it exists takes time polynomial in the number of transitions of the automato

6.4.1 Re-examining states separation

Consider a pair of distinct state$ and s” and suppose that(s’) # o(s”) for somex-
localizable region(o, *n,n®). Letn = n®* — *n. Fromo(s') # o(s”) follows the assertiori)
thatn - (¢(Py) — ¥(Ps)) # 0. From the assumption thét, *n, n°) is x-localizable, and since
n(e)+°*n(e) > 0for all e, follows the assertiofii) that there is at most one locatior {1,...,m}
such that)(e) < 0 for some event with locatior(e) = .. Conversely, if a distribution of tension
n satisfies(i) and(ii), one may easily produce froma x-localizable region separating from
s”: one may choose e.g. the regiﬁ’r;ho’o (both strict and pure). Deciding on the existence of a
r-localizable region separatingfrom s” thus reduces to deciding whetl{@rand(ii) are satisfied
for some distribution of tension.

Sincen writes as a linear combination;; z; n; with coefficientsz; € Z, this can be done by
solving or showing unfeasible each system in the indexed famly of 2(m + 1) homogeneous
systems of linear inequalities in thgs defined as follows, withx € { <, >} and. € {0,...,m}.
Each systenX, , has one strict inequality expressing condit{gn namelyy ", z; (n; - (¢(Py) —
P(Pyr))) x 0, plus inequalities enforcingi), namely one inequality , z; - 7;(e) > 0 for each
evente such that:(e) # «.

Becauses is a surjective mapy is bounded by E| and hence byT'|. As each systenx, ,
has size polynomial itil’|, the indexed familyX,. , has size polynomial ifZ’|. Because all in-
equalities are homogeneous, , has a solution irz* if and only if it has a solution i® *. Thus

136

each system in the indexed family;. , may be solved up to a multiplicative factor or be shown
unfeasible within time polynomial ifil’| following the ellipsoid method. Deciding whether the
states separation axiom is valid with respecttlmcalizable regions and computinglocalizable
regions that witness its validity takes therefore time polynomi&lin

6.4.2 Re-examining event/state separation

Consider a state’ € S and an event’ € E disabled at’. Supposer(s’) < *n(e’) for some
x-localizable regions, *n,n*). Then*n(e¢’) > 0, hence®n(e) = 0 for every event such that
k(e) # k(). Therefore, ify = n® — *n, it holds(iii) thatx(e) # k(') = n(e) > 0foralle € E.
Moreover, it holdgiv) thatn - (¢)(Ps) — ¥ (Py)) > 0 for every states enablinge’. Conversely, if
a distribution of tensiom satisfies(iii) and(iv), one may always compute froma x-localizable
region separating’ from s’: one may choose.g.the strict region? ,, o s with § : £ — N defined

by
5(e’) = min{0,n(e")} + min{/ n|s ‘—3} — min{/ n|sesS}

andd(e) = 0 for e # ¢’. Deciding upon the existence of<alocalizable region separatirg from
s’ reduces therefore to deciding whetliig) and(iv) are satisfied for some distribution of tension
n.

Now lettingn = >, z;-n; with z; € Z, consider the system of homogeneous linear inequalities
in the unknownz;'s defined as followsX: has a first series of inequalities reflectifiig) , namely
one inequality}_, z; - n;(e) > 0 for each event such thatx(e) # x(¢’), and a second series of
inequalities reflectingiv), namely one inequality ", z; (1; - (¢(Ps) —¢(Py))) > 0 for each state
s enablinge’. Allinequalities are homogeneous, hentenay be solved or shown unfeasible using
time polynomial in|T"|. Deciding whether the event/state separation axiom is valid with respect to
r-localizable regions and computinglocalizable regions that witness its validity can therefore be
done in polynomial time.

6.5 From Distributable Nets to Distributed Automata

6.5.1 Simple Distribution Scheme

As yet, we have shown how constructing from a finite automaton with locatienen this
is possible, a distributable net with the specified locations for events and wihwential state
graph isomorphic to the given automaton. This net is obviobslynded each place has a least
upper boung in the reachable markings. In order to complete the machinery for distributiitej fi
automata, it remains to show that a bounded distributable netmwitbcations may always be
implemented byn finite automatad,, . .., A,, communicating with each other by asynchronous
message passing.

137

From now on,N' = (P, E, F, My, \) is a bounded distributable net with set of locations
{1,...,m}, henceX : (PUE) — {1,...,m}. In order to produce a distributed implementa-
tion {A4;,..., A, } of N, we proceed in two stages. In the first stage, we extentb a larger
net N’ in which i) each place of N is split tom + 1 places: ondocal place(p,) for each
location: € {1,...,m}, and oneglobal place(p, 0) whose tokens represent messages in transit,
andii) silentevents are supplied feendingokens i.e. for moving them frorfp, i) to (p, 0) when
A(p) # i, or forreceivingtokens i.e. for moving them frottp, 0) to (p, i) when\(p) = i. We show
that\/ is divergence freandbranching bisimilarto N under the assumption that silent events are
unobservable. In the second stage, we remove the global places ffatteoé the removal is to
disconnect\'" and to producen component netd/;. The finite automatal; are obtained from the
state graphs of the net; by cutting out every marking in which some plage) exceed® (the
least upper bound gfin V).

We describe now the constructionst = (P, E', F', M{)). Anillustration is given in Fig6.4
(where locations are indicated as subscripts). Each pladé isfreplicatedm + 1 times in A,

b1

1?7 2!
(p1,1) P (p1,0) P (p1,2)

—O— ¢

(p2= 1) 1ps (p27 O) 27pa (p27 2)

Figure 6.4: Constructingy”’

thus P’ = P x {0,...,m}. The initial marking is determined from the initial marking .&f

138

by the relation)M/((p,i)) = My(p) if A(p) = ¢ and0 otherwise, suggesting the privileged role
of the place(p, A(p)) among the representatives @f E’ is the unionE U S U R of the set of
events ofA/ and two new sets of evenss(for sending) and? (for receiving). The flow of tokens
attached to the events il reproduces the flow of tokens N up to the following adjustments.
Let F'((p,i),e) = F(p,e) if A(e) = i and0 otherwise, and similarly lef” (e, (p,i)) = F(e,p)
if A(e) = 7 and0 otherwise. AsN is a distributable netF’((p,i),e) # 0 = A(p) = i, thus
input and output are in fact dealt with asymmetrically. Let us come next ta glemts. For each
placep of N and for each location # A(p), an event!p is supplied for sending tokens from the
local place(p, i) to the global placgp,0). ThusS = {ilp|1 <i<m Ape P Ai# Xp)},
and the flow of tokens attached itp is defined byF’((p,i),ilp) = F'(i'p,(p,0)) = 1 and
F'(z,ip) = F'(ilp,x) = 0 for any other place: € P’. Last, for each placg of N with location
A(p) = i, an event?p is supplied for receiving tokens into the local pldpe\(p)) from the global
place(p,0). ThusR = {i?p|p € P Ni = A(p)}, and the flow of tokens attacheditty is defined
by F'((p,0),i?p) = F'(i?p, (p,i)) = 1 and F'(x,i?p) = F'(i?p,z) = 0 for any other place
x € P’. This completes the definition of” .

We want to show thafV" and N’ are equivalent up to an abstraction of the silent events
r € Rands € S. In order to define precisely this equivalence, let us relabel by some ne
symbolT ¢ E all the transitions labelled by € R or s € S in the sequential state graph
N'* = (RM(N"),E', T',M})). Nextlet~C RM(N) x RM(N") be the relation between
the reachable markings of the respective nktsand A/ such thatdM ~ M’ if and only if
M(p) =>{M'((p,7))|0 <i < m} for everyp € P. We shall prove the following facts:

1. N"* is divergence freavhich means that no infinite sequencereffaibelled transitions takes
place in this graph,

2. different markings ofV" have disjoint images undey, i.e., relation~—! acts functionally
on RM(N7),

3. ~ is abranching bisimulatiof174], which means in our specific case that the following
assertions are valid, with ranging overE, and with the subscripted/ and M’ ranging
respectively oveRM (N') andRM (N”).

a) Mo ~ My,

b) My ~ M| A M| 5 My = My ~ M),

c) My ~ MjAM] S My = 3IMy- My 5 My A My ~ M),

d) My ~ M| AM; S My= 3My- M| (5)* 5 My A My ~ M,
Relations(a) and(b) follow directly from the definitions of\/’, F/ and~. The considered defini-
tions also entail the following:

e) My ~ M| AM; 5 My A M| S My = My ~ M),
f) My~ M| AM] S = M 5,
g) My~ M{AM 5 AVp- Mi(p) = M{(p,Ap)) = M| 5.

139

NoweA f = c, andb A e A g = d provided that in\/ * all maximal sequences oflabelled
transitions originated from/; lead to a marking\/’ such that\/’(p, A(p)) = > { M ((p,4)) |0 <
i < m} for everyp € P.

Forp € P, let6,(M{) = S{Mi((pi)|1 < i < mAi # Ap)} and A, (M) =

S {M{((p,i))]0 < i < mAi# Ap)}. With these definitions, any maximal sequencerof
labelled transitions originated frofY] includes exactly, (1/{) occurrences of sending everits
andA,(Mj7) occurrences of receiving everityp for eachp € P. Thus, all maximal sequences of
7-labelled transitions originated frot/; have the same bounded lengtf), (5, (M) + A, (M7)),
which establishes fadt Moreover, by(b), any maximal sequence oflabelled transitions origi-
nated from); reaches the indicated markidd’, which establishes faét Therefore " and N’
behave in the same way up to an abstraction of the silent events; moreawesiftiblation pre-
serves distinctions between markings: separate markings lnéive disjoint sets of images under
relation~.

It remains to derive from\” finite communicating automatdy, . . ., A,, . For this purpose, we
remove from\” the global place$p, 0) . What is left is a family of netdV’;, i € {1,...,m}, as
follows: N'; = (P], E}, F, M|), P} is the set of local places with locatienZ is the set of events
or silent events with locatioy and F; and], are the induced restrictions &f and M. Thus
P/ =Px{i}andE; ={eec E|i= Ae)}U{ilp|pe PANi# Xp)}U{i?p|p e PNi= X(p)}.
Foreach € {1,...,m}, let A; be the finite automaton that derives from the state grapti’pby
cutting out all markings where some plagei) exceed® (the least upper bound ofin \V). The
resulting family{ A, ..., A,,} is a distributed implementation df”’, and therefore of\'. Each
automatond; is installed in the associated locatitnAn eventi!p (hencei # \(p)) is interpreted
by sending messageto the destination\(p). An eventi?p (hencei = X\(p)) is interpreted by
looking for message in the mailbox at the addressp). Each message is supposed to reach its
destination. No other assumption is made on synchronization.

The markings of\V’ are thus represented by tuples, s1, ..., s,) wheres; : {(p,j)|p €
P} — N : for j = 0, s; represents the global state of the communication mediumj far
{1,...,m}, s; is the local state of automatofy;. This representation is injective; therefore, dis-
tinctions between markings are preserved by the distributed implementatidn of

6.5.2 Optimized Distribution Scheme

We propose here two independent optimizations of the distribution scherfarnedin sec-
tion 6.5.1, aiming to decrease the flow of messages on the communication me@li&rg 6r to
decrease the size of the communicating autonttad).

Aggregating Messages

The distribution scheme specified above leads to inefficient communicatioarsz® For
instance, two messages are needed for implementing a transition that mradkers for two

140

remote places even though they are mapped on the same location. A refinbdtibs scheme,
producing automata with less communications, is presented now. It is bes=dialty on the
same ideas, but less places are added and less tokens flow througimtnergoation medium
(see figures.5).

1 PN 3

f G(J-:El)!(l'_zl) //'/B(El).\'\\ ?(81) 2 D
H%Q% s @) ‘\'\

/ v .\'\ q

medium = »--mm o
/

A28202 22
2

Figure 6.5: Communications between locations

From now on, letN" = (P, E, F, My, \) be a distributable net system over set of locatidns
Each event € E has an output flow® : P — N such thae®(p) = F(e, p). This output flow may
be decomposed thus intdaral partej ., : P — N and aremotepartefomote: £ — N:

() = e*(p) it Ale) = Alp)
local'”’ 0 otherwise
etomotd?) = e*(p) ifAle) # Alp)
remot 0 otherwise

The latter part may be further decomposedt@sote = Xiea €] Wheree; : P — Nis the
map such that:

e*(p) ifl=Ap)# Ae)

er(p) =)
: 0 otherwise

Fore € E andl € A, define:

Re:{el.”GA?el.?éO}

R = U R,

eex"1(1)

141

R=|JR

leA

The distributable net syste” = (P, E', F’, M{;, \') may be re-defined as follows. A new
location, representing the communication medium, is addéd= A W {mediun}. Two types
of communication places are added: on the one hand ptaée$) used as output buffers, where
each packef € R, is represented by a single token, and on the other hand p#¢¢sised as
communication buffers, where each token represents a packet in trensigh the communication
medium. This results in the set of placBs = P W {«(l,&) |l € A, & € Ry} W {B(&)|€ €
R}. Silent eventd(l, &) are supplied for moving packefse R; from output buffersa(, ¢) to
the communication buffep(¢); silent events?(¢) are supplied for picking packetsfrom the
communication medium and dispatching them on arrival. This results in the sgenfsE’ =
Ew{l(l,§)|le A e R}u{?()]| e R}. Letthe locations of the new places and events as
follows:

N(a(l,€) = I
N(B()) = medium
N(LE) =1
N((e) =1

The other locations are like iV. For placep € P and events: € E inherited fromN\/,
the flow relationF” is defined thus:F’(z,y) = F(z,y) if A(x) = A(y), 0 otherwise. The flow
relation F” is extended as follows to the new places or events, Wiz, y) = 0 in all cases left
unspecified:

(ee E,§€R.) F'(
(ee E,§€R.) F'(
(leA Eer) F((E)BE)) =1
((ER) F/(
(EeR,peP) F'(

One proves that/"* is divergence free and branching bisimilarX& in the same way as in
section 6.1, but using now the alternative relatioh ~ M’ if and only if Vp € P, M(p) =
M'(p) +X¢er £(p) x M'(B(E)) + Zien,cer §(p) x M'(a(i, §)).

A distributed implementation af\V” follows along the same lines as in sectiérb.1: the
automatad; are obtained by expanding the state graphs of the sutw‘{em N, with boundsp
set on placeép, i) € P.

142

Pruning Automata

A drawback of the distribution schemes described so far is to producenatadigger than
needed: the automaty may be ready to accept inputs from the communication medium at states
where no input will ever come! One may remedy this drawback by computiegttlithe A; from
the state graph of’. The stages of the computation are as follows. For eachil, ..., m}, let A,
be the automaton obtained frok?* by renaming withr (¢ E’) all transitionsM - M’ such that
e € E'\E] (E!is defined as in sectid®5.]). Next letA! be the finite non-deterministic automaton
whose transitiond/ 5 M’ are derived from the sequences of transitidfis= M; — M, ... =
M, % M'in A} such that # 7. Finally let A; be the finite deterministic automaton which derives
from A according to the traditional subset construction. Since the subsetmiséve\ E; thus
abstracted from is precisely the subset of events which do not afteptahes inP/, the automaton
A; is isomorphic to the induced restriction &f'7 on the subset of markings df”; which occur
as sub-markings of reachable markings\6f Therefore, the system of communicating automata
{Aq,..., A, } has a state graph isomorphicA6™. Since the bisimulation-—! between\"* and
N* acts functionally onRM (N7), {Ay, ..., Ay} is a distributed implementation df’, and this
implementation preserves distinctions between markings.

Remark 6.5.1 If one does not insist on realizing”” up to isomorphism, one can go one step
further by minimizing the automat4,. The language ok’ then coincides with the set of sequences
of events ink performed by the communicating automata.

Remark 6.5.2 In order to abstract from a subset of evefits E, it suffices to redefind as the
copy of A" in which all events i £/ \ E}) U& have been replaced with If N = A*[P], the set of
sequences of events i\ £ that may be performed by the communicating automgtaoincides
now with the language of th&-collapse ofA (the automaton obtained by collapsing every pair of
statess and s’ such thats = s’ ande € £).

6.6 Case Studies in Distributing Reactive Automata

This section details two applications of distributable Petri net synthesis. fhedise is the
systematic derivation of two distributed protocols for mutual exclusion. Hoeersl case is the
synthesis of a simplified transport level communication protocol derivad the INRES proto-
col [106. Both examples illustrate a new methodology for distributed program syiethessed
on the algorithms for distributable Petri net synthesis presented in the pseséztions : a dis-
tributable Petri net is first synthesized and then turned into a collectionroimemicating finite
state automata, each of which defines the behaviour of the sequentiakpiocated at a spe-
cific site of the distributed architecture. We could have contented ourseltleslistributing the
sytnhesized Petri net over the distributed architecture without going teeségl machines. This
would fit nicely if the goal was to implement protocols in hardware, since wwoency at each

143

site could then be exploited within circuit synthesis. However, this would net the customary
requirements for software implementations of low-level protocols : each siteeiprocessor, and
emulating concurrency would be too inefficient.

6.6.1 Mutual Exclusion

x1 X2

5 7

Figure 6.6: Specification of the mutual exclusion service

Introduction

Mutual exclusion is one of the basic services that are often presenttiibdisd operating
systems. We focus on the possible ways of achieving mutual exclusionamyachronous network
of processors in which communication is performed by message passisgemthat no message
shall be lost or replicated.

The specification of mutual exclusion between two udérsand Us is given in figure6.6.
Eventr;, i € {1,2} corresponds to a request by uggrto enter critical section. The meaning of
evente;, i € {1,2} is that userU; is allowed to enter critical section while eveny, i € {1,2}
corresponds to the exit of uséy from critical section. Mutual exclusion is ensured whenever both
agents cannot be in critical section at the same time.

A distributed implementation of mutual exclusion consists in a pair of sequentiaépses
Py, P, where proces$;, i € {1,2} controls usetlU; and both processes communicate only by
asynchronous message passing.

We wish to apply the method sketched in sectiénsand6.5 to the derivation of processes
P, and . Unfortunately, the automaton in figuée6 is not isomorphic to the reachability graph
of any distributable Petri net. This is due to the conflict between evgrdade, in state4 while
these two events are mapped to distinct locations.

144

7 11

Figure 6.7: Mutual exclusion: a first refinement

The next sections describe two ways of inserting silent events in the autoofdtgure6.6 so
that distributable Petri net synthesis becomes feasible. The processedirig silent transitions
is manual and does rely solely on designer’s intuition. In this respect, gndadiffer in any way
from silent transition insertion inl[77].

A monitor-based solution

A first solution consists in refining event, i € {1,2} by 7;e; wherer; is located on a third
processV/. This leads to the automaton in figue& which is comformant to the original automaton
with respect to theoco testing equivalencel[fd. The refined automaton is isomorphic to the
reachability graph of the distributable Petri net in figér&

Communicating automata can then be produced from the distributable Petroheirig
the method described in sectioB$.1and6.5.2 By abstracting from the subset of evets=
{71, ™}, and by applying minimization, one obtains the automata shown in f&y@r& he process
at location M acts as a monitor for the two other processes = 1...2, which in turn act
as interfaces between user processesand the monitord/. It follows from the method that
the implementation is behaviorally correct, hence all and only the sequeheesrits which are
compatible with the service specifications in fig6té can occur. In spite of the minimization, the
automaton in figuré.6 can moreover be reconstructed from the distributed implementation.

145

)
&

} reqlrqu? }

Figure 6.8: Mutual exclusion: distributable Petri net generated fromttaréfinement

(]

[(&]

P1::

A token-based solution

A second solution to the mutual exclusion protocol synthesis problem is tosuiés0, 1,

3 and 4 and to insert converse transitions labelled by silent eventsnd =, as represented in
figure 6.10 Eventr;, i € {1,2} is located on process; therefore no distributed conflict is
created and more importantly, the distributed conflict between everasde, is alleviated. Not
surprisingly, the reachability graph of the synthesized Petri net shofiguire 6.11is isomorphic
to the refined automaton.

Two communicating automata may be derived from the distributable Petri netyiiotjdhe
method described in sectiois5.1 and 6.5.2 By abstracting from the subset of evergis=
{m, T2}, one obtains the automata shown in figér&2 mutual exclusion is thus achieved by
circulating a token between procesggsand P,. Minimization has not been used: the automata
produced by determinization are already minimal. It follows therefore framtkthod that the
automaton in figuré.6 can be reconstructed from this distributed implementation.

6.6.2 A Simplified INRES Protocol

In this section, we consider a simplified version of the INRES communicaticognb[106].
The specifications of service of the INRES protocol are given in figut& For the sake of the
exposition, we consider the simplified service described in figutd The simplified protocol
defines the transmission of data between two ugets — A anduser — B linked to respective
protocol entitiesA and B. Events means that entity is given byuser — A some data to transmit;
eventr means that entity3 delivers some data teser — B; eventd is a disconnection request
(located onB); eventa is the notification of the disconnection (located 4n With this protocol,
data exchanges (words {rr)*) may take place until a disconnection is requested.

We aim at synthesizing a distributed implementation of this protocol: two praedsard B,
communicating with one another through a reliable communication medium. Evanta are
located on procesd, while events- andd are located orB. This is defined by the location map
Al A(s) = AMa) = Aand(r) = A\(d) = B.

146

P1: P2:

lexit lexit

lexit Ireql Ireq2 lexit,
?reql ?req2
y/ lgrantl |

?exit
2grantl, __lgrant2 ?grant2
?reql ?req2
?req2
: ?exit ?exit
£ lgrant2 \ /lgrantl e2
7req\‘ /req1

2exit,

Figure 6.9: Mutual exclusion: communicating automata generated from thesfirement

We wish to usdistributablePetri net synthesis to produce a Petri net implementation of the
communication protocol: thus, for every plaeef the net, the flow relatiod” must satisfy:

F(p,s)=F(p,a)=00rF(p,r) = F(p,d) =0

Unfortunately the automaton specifying the service (shown on the left bafigure 6.14)
is not isomorphic to the marking graph of any distributable Petri net: evamd state cannot
be separated. However this can be alleviated by refining the automaton irdakdyvibisimilar
automaton which is actually the marking graph of a distribuable Petri net.

In [72, 70], is advocated an event splitting heuristics for refining non separatedata into
separated automata. In our case, the two occurrencesray be replaced by; and sy, and
similarly for d, leading to three different refinements. However, none of the refintmreata is
separated with respect to the restricted sdbodlizableregions, compatible with the distribution
constraints. Even though in the non distributed case event splitting is a s¥istemethod for
refining automata into separated automata, it is potentially useless in the distdbaged

As an alternative resort, refinement can be done by inserting silenttivassvhile keeping
weak bisimilarity. This has been used ib/[] for a similar purpose. In our case, the adequate
refinement step consists in replacing transitiors 4 by two transitions:3 - 4 % 5 (see the
automaton on the right hand side of figugd 4), with silent eventr located on proces8. The
refined automaton is then isomorphic to the reachable marking graph of then&eshown in
figure6.15 Places and transitions are sorted according to their locatibms the left andB on
the right.

The distributable Petri net is then expanded into the Petri net shown i Bglé by making

147

Figure 6.10: Mutual exclusion: a second refinement

P1: i P2::

Figure 6.11: Mutual exclusion: distributable Petri net generated froredbend refinement

communications between processes explicit. By distributing its reachable stpteas indicated
in section6.5.2 with an abstraction fron§ = {7} and with minimization, one obtains the au-
tomata shown in figur@.17. It follows from the method that this distributed implementation is
behaviorally correct. In spite of the minimization, the automaton on the left higiedo$ fig-
ure 6.14 can moreover be reconstructed from this distributed implementation. The\fRES
protocol can be dealt with in much the same way, however with an increasgulexity.

Another solution consists in a partial unfolding of the service automatontbati(i) in every
directed cycle, the number of occurrences of each state is congruegrtatanodulo two and (ii)
concurrency is preserved. This means that the cyelés unfolded into a cycle.ry.s2.r5 and
that the concurrent diamondd is preserved in the unfolding as two concurrent diamondis;
andss|ds, as shown on the left-hand side of fig@@d.8 This unfolding is a correct refinement of
the service since it is bisimilar to the service automaton. Interestingly, the edfaldtomaton is
isomorphic to the marking graph of a distributable net, shown on the rightdidaaf figure6.18
This gives another implementation of the protocol, without silent transition.

148

Figure 6.12: Mutual exclusion: communicating automata generated fromabedesfinement

-

Disreq

Conconf Conconf

Disreq Disind

Datreq | Datind Datreq Disind

Disreq Disind

Conresp Disreq Conreq

K\ Conind

Figure 6.13: The INRES protocol: specification of service

Remark that unfolding the service automaton is by no means a general méti@dounter-
example is given figuré.19(left-hand side), where labelis mapped to locatiod, b to B, ¢ to
C, z andy to D. Consider an unfolding of this automaton such that concurrent diamdndsd
aly are preserved (see for instance fig6r&9 right-hand side). Event-state separation problems
remain unsolvable in every state preceding; (resp.a;.c;) whenever this state can be reached by
aword of the formu.c;.x; (resp.u.b;.y;). Consider for instance the unfolding given fig@&9

6.7 Conclusion

A novel method for producing distributed implementations of finite reactivenaat® was
presented in this chapter, based on the synthesis of general Petthaetglies in turn on linear

149

—_ =2 —_ =2

(%]
=
n
(%]
=
(%]

d . a 4 1 d s T _, @

Figure 6.14: Simple protocol: specification of service and its refinement

r

© |O

S

Hi‘ d——

O —O

Figure 6.15: Simple protocol: synthesized Petri net

algebra. A tool calledYNET was built to this effect, integrating elementary algorithms on graphs
and standard algorithms of linear algebra. Our limited experience with the afiptiof this tool

to the synthesis of distributed protocols makes us rather confident in tttcptaisefulness of the
method. Nevertheless, different approaches to the distributed realinéfiaite reactive automata
may emerge, and we do not claim that the method based on distributable Petvilhalways
give the best results. Notwithstanding this fact, two major problems remain sti# solved in
the framework of distributable Petri net synthesis. The first problemhedicpon in section 7,
is to define techniques for transforming arbitrary automata into synthesizatimata. We saw
that event splitting is not the right answer in the context of distribution. Mmwoenising is the
investigation of silent event insertions, started by W. Vogler in the simpleegbof one-safe nets
and with a view at independence rather than distributlofyf The second problem, more general,
is to re-examine Petri net synthesis for transition systems given by commatiatides rather than
by extension (i.e., as sets of states and transitions). One may take as exaorpespanded
products of finite automata, or guarded expressions in some logical igagarad more generally
symbolic transition systems. Dealing with both types of problems would open pargpectives
to the ideas exposed here.

150

Communication
medium

Figure 6.16: Simple protocol: Petri-net with communications

Figure 6.17: Simple protocol: communicating automata

>0 dt 2 =
a2 d2
1 1
s s sl r
1 di 2 al 4
i
rl r2
|
0 d2 2 s2 r2
al dl
s2 s2
v d2 3 a2 4 A B:

Figure 6.18: Simple protocol: unfolding modulo 2 and resulting distributable net

151

Figure 6.19: Counter-example proving unfolding lacks generality anghos&ible unfoldingcd fig

Figure 6.20: Insertion of-transitions and resulting distributable net

152

Chapter 7

Concurrent secrets

Résumé : Il arrive fréiguemment que les médias révelent I'exploitation fraudulelisee faille
dans le systeme d’information d’'une compagnie ou d’'un organisme puBkci n'est pas une
surprise quand on connait la complexité de ces systémes. De fait, I'enalyle contrdle des
flux d’'information dans les systémes de ce type est un sujet de grandieange. En effet, il est
souhaitable de pouvoir empécher toute fuite d’information confidentiellejtawéme gu’elle ait
eu lieu.

Reprenant la propriété d'opacité proposée par Mazaré et AR3 47], ce chapitre, repris
de [11], aborde la question de la synthése de contréle de supervision, paureasl’absence
de fuite d'informations dites secrétes, quand le systéme est exposé wirammeEment constitué
d’'un ensemble d’agents pouvant étre pernicieux. L'existence diatr@e maximal permissif est
démontrée. Ce contrdle peut étre calculé dans plusieurs cas partigudiefenction des ensembles
d’actions observables par chacun des agents et des langagesssecre

7.1 Introduction

This work is an attempt to import supervisory control into the area of compatarrity. Given
an automaton, or plant, and given specifications of the desired behaviherplant, Ramadge and
Wonham'’s theory presented ifg5 154 yields a finite, non blocking, and maximal permissive
control of the plant enforcing this behaviour (in the normal case or wimeibservable events are
uncontrolable). Controller synthesis is a desirable complement to modelichetor it allows
curing the problems that model checkers can reveal. Supervisorythat found applications in
manufacturing systems, in embedded systems, and more generally in sifedy systems. We
feel it could find applications as well in computer security, and we shalkstoi support this thesis.

With the above goal in mind, we have searched for a class of securityeprebikely to be
dealt with as control problems. We model an interactive computer systeftsarsers as a closed
entity in which the users observe their own interactions with the system. Thedctosity is

153

154

represented with a finite automaton over an alphabeihe synchronous interactions between
each usei and the system are figured by the elements of a corresponding sulbetiphaC >
(users may synchronize when their sub-alphabets intersect). Usuallpénvisory control, the
control objective is a predicate on the runs of the plant, specifying sombination of safety and
liveness properties, and the observers act as sensothey supply informations on the status of
the plant, used by the controller to produce an adequate feedback gnabdiisabling events in
the plant. Here, the game is different: the observers are not on the siteaaintroller but they are
opponents. As for the control objective, there are still predicatgf the runs of the system, but
the interpretation is again different: an obseriehould never find out that the actual trajectory of
the system belongs to the secr&f)(he has been assigned.

One reason why we believe the model sketched above is worth investigatingt,isn the
case of a single observer, it has already been introduced indeflridgi33 and studied further
in [47]. What we callsecretshere was called the@paque predicateslbeit with larger families of
predicates (sets of runs) and observation functions. It was showT]ithiat anonymity problems
and non-interference problems may be reduced to opacity problems, sigtaple observation
functions. It was showibidemthat model-checking a system for opacity is undecidable in the
general case where an opaque predicate may refer to the visited statey e any recursive
predicate on sequences of event labels. Nonetheless, techniqedsdnaabstract interpretation
were proposed ird[/] for checking opacity in unbounded Petri nets.

In this chapter, we limit ourselves to deal with finite state systems and with regrddi-
cates defined on sequences of transition labels. We have thus all chalwdisi to decide opacity,
even though several pai(ebserver, secretare taken into simultaneous account. Now differing
from [47], we want to be able tenforceopacity by supervisory control when the result of the
decision is negative. In other terms, we want to disable the least possihily fzf trajectories
such that no observer can ever find out that the system’s actual trgjbeiongs to some secret.
At first sight, this looks like a simple problem, all the more when it is assumed firatemts are
controllable as we do in this chapter (we leave the uncontrollable eventghierfeonsideration).
The problem is in fact not that simple, for the observers have full krbgdeof the system, hence
any control device that may be added to the system is known to them. We walitheless show
that there exists always an optimal control for enforcing the concusesmets on opponents, fully
aware of this control. We will also provide techniques for computing this optaoatrol under
assumptions that fit at least with some applications.

The rest of the chapter is organized as follows. The notation and thkeprae introduced in
section7.2 Section7.3 shows that a unique optimal solution always exists, but it is generally not
regular. Using the fixpoint characterization of the optimal control, probfsontrol enabledness
of trajectories are presented as infinite trees in sedtidnconditions on proof trees entailing the
regularity of the optimal control are also stated there. Secti&mproduces closely connected
conditions on concurrent secrets. An application is sketched in set#pwhere directions for
further work are also suggested.

155

7.2 Secrets, concurrent secrets, and the control problem

To begin with, let us fix the notationt is a finite alphabety* is the free monoid generated
by ¥, andRat(X*) is the family of rational subsets af* i.e. the family of regular languages over
3. Letuwv denote the concatenation product of the wordsnd v, thusw is a prefix ofuv and
the empty word: is a prefix of every word. The length afis denoted byu|. Forl < |ul, u[l]
denotes the prefix af with the lengthl, and for0 < I < |u|, u(1) denotes thé'" letter occurring
in u. For any sub-alphabét; C 3, letn; : ¥* — X7 be the unique monoid morphism extending
the mapr; (o) = o if o € 3; elsee (letterso € ¥ are mapped to words by the usual embedding
of ¥ into ¥*). Foru,v € ¥*, letu ~; v if m;(u) = m;(v). Throughout the chaptef, is a non-
empty prefix-closed language Rut(¥*) and for alli € {1,--- ,n}, ¥; C %, S; € Rat(¥*), and
S; C L.

The languagd. represents the behaviour of a system withsers. For € {1,---,n}, the
sub-alphabek; represents the set of the interactions that may take place between the agstem
the useri. Users observe the system by interacting with it. If the system’s trajectoepisesented
by w € L, then the induced observation for the usés 7;(w). Two users can communicate only
by jointly interacting with the systeng.g. o € 3; N X; is an interaction of the system with the
users; andj.

Foreach € {1,--- ,n}, the membership of the actual system'’s trajectory to the suhsetL
is intended to be kepecretfrom the uset. In the terminology of 133 and [47], the predicates;
should beopaquew.r.t. the observation functiom; and the languagé.

Definition 7.2.1 S; is opaquew.r.t. m; (@nd L) if (Vw € S;) (Fw’ € L\ S;) w ~; v’

When the predicat§; coincides with its prefix closurg;, non-opacity is the same as normality
which may be expressedds € S; Vo' € L w ~; w' = w' € S;. However, opacity is not the
opposite of normality, as the following example shows. Gies: (ab)* + (ab)*a letX; = {b}
andsS; = (ab)*a thensS; is both opaque and normal.

As we explained in the introduction, we use here a strongly restricted férmeooriginal
definition of opacity where the observation functions may be state and hi#pgndent. On the
other hand, we consider a concurrent version of opacity.

Definition 7.2.2 (S;); is concurrently opaquéw.r.t. L) if for all 7, S; is opaque w.r.t;.

Dealing with concurrent opacity does not make a big change for chedgiagity, which is
easy in our case (although not necessarily computationally simple) sincensiler exclusively
regular systems and secrets.

Proposition 1 It is decidable whethefsS;); is concurrently opaque.

156

Proof: By definition, it suffices to decide for eaéke {1,...,n} whethersS; is opaque w.r.tz;.
The considered property holds if and onlyrif(S;) C m;(L \ S;). As L andS; are regularL \ S;

is regular, and since morphic images of regular languages are regidaelétion can be decided.
O

Example 7.2.3Let > = {a,b,c} and L be the set of prefixes of words (a + b) c. LetX; =
Y9 = {c}, and letS; and .S, be the intersections df with ¥* a ¥* and X* b 3*, respectively. The
concurrent secretSi, Sz) is opaque. From the observation of the everdne is indeed unable to
infer whether it was preceded with aror with ab.

In the sequelS = {(>1, S1), ..., (2., Sn)} denotes a concurrent secret upon a fixed language
L C ¥ (3 CX¥andS; C L C ¥* for all 7). We say thatS is opaque if(.S;); is concurrently
opague. A control is any non-empty prefix-closed languageé L (we assume here that all events
o € X are controllable). We say th&tis opaque under the contrdl C L if the induced secret
(S!); defined withS; = S; N L is concurrently opaque w.r.L'.

Our purpose is to solve the concurrent opacity control problem stated@ss.

Problem 1 Show that the set of controls enforcing the opacity efther is empty or has a greatest
element, and compute this maximal permissive control.

Enforcing concurrent opacity:(> 1) requires, as we shall see, significantly more efforts than
enforcing opacity.

7.3 Maximal permissive control enforcing concurrent opacity

In this section, we show that the concurrent opacity control problenahasque maximal
solution that we characterize as a greatest fixpoint. We propose twaoecaxamples in which
this maximal permissive control either is not regular or cannot be computhitha finite number
of fixpoint iterations.

Definition 7.3.1 For any prefix-closed subséf of L, the safe kernebf L’ w.r.t. the secretS,
notationK (L', S), is the subset of all words € L’ such thatv = uv = (Vi)(Iu' € L'\ S;) u ~;

o'

Thus,S is opaque under the contrdl C Lifand only if L' = K(L',S), i.e. L is a fixpoint
of K(e,S). Itis immediately observed th& (L', S) is continuous in the first argument (w.r.t. set
inclusion). As the prefix-closed subsetsloform a complete sub-lattice @(X*), it follows from
Knaster-Tarski’s theoreni[1] that K (e, S) has a greatest fixpoint in this sub-lattice.

Definition 7.3.2 Let SupK (L, S) be the greatest fixed point of the operafd(e, S).

Proposition 2 SupK (L, S) is the union of all controls enforcing the opacity®fIf SupK(L,S) #
(), then it is the maximal permissive control enforcing the opacity,aftherwise no such control
can exist.

157

Figure 7.1: An automaton

Proof: This is a direct application of the Knaster-Tarski’s fixpoint theorem. O

Remark 7.3.3 The condition’ C SupK(L,S) is necessanput not sufficientfor some non-
empty controlL’ to enforce the opacity af. For instance, in Exampl&.2.3 SupK(L,S) = L,
but the secreb; is not opaque w.rtL' = ¢ + a + ac.

The fixpoint characterization of the optimal control enforcing opacitysdoet show that
SupK(L,S) can be computed, nor that the control can be implemented with a finite device.
Whenn = 1, i.e. whenS = {(X,51)}, this is not a problem because in this particular case,
SupK (L, S) is equal toK (L, S) and it may be shown that'(L, S) is the set of words with all
prefixes inL N7 ' (L\ S1). Therefore SupK (L, S) = X*\ (X*\ (LN YL\ S1)) ©*) which is
regular. Whem > 1, two situations contrast. The nice situation is wiserp K (L, S) can be com-
puted fromL by a finite number of iterated applications of the operdidg®, S). Actually, when
L’ is aregular subset df, the same holds fak'(Z/, S), hence in the considered caSepK (L, S)
is regular. The rest of the section illustrates the converse situation.

7.3.1 A case where the closure ordinal ok (e, S) is transfinite

Let ¥ = {a,b,c,d,e, f} and letL be the prefix-closed language accepted by the finite au-
tomaton of Figure7.1 (where all states are accepting states). Define {(X;,51), (32, 52)}
with 31 = {¢, f}, S1 = Z*afc(X\ {c})” (this secret is safe if, by observing onlyand f, one
cannot find out in any run that the last occurrence @fas preceded by f), andXs = {b, e},

Sy = X*deb (X \ {b})" (this secret is safe if, by observing ortlyande, one cannot find out in any
run that the last occurrence bfvas preceded bye). Let L, = K(L,S) be the first language en-
countered in the greatest fixpoint iteration convergingtpK (L, S), thenL; = L\ afcX*
(the runafc reveals the secret; and the runs imfd>~* reveal nothing). The second item
Ly = K(L1,S) is the languagd.; \ afdebX* (relatively to L, the runafdeb reveals the se-
cret So, and the runs i fdeaX* reveal nothing). Aftem fc andafdeb have been eliminated,
the initial situation reproduces up to the prefikdea. Therefore, the fixpoint iteration produces a
strictly decreasing and infinite sequence of langudged he limit SupK (L, S) of this decreasing
chain is the set of all prefixes of words in the regularisgt= (afde)”, hence it is regular. The op-
timal control enforcing the opacity & may be implemented by any finite automaton recognizing
L.

158

Let us now extend the concurrent secret ifite= {(X1, S1), (X2, S2), (X3, S3) } with (X1, .51)
and (X,, S2) as above}s = () andS; = X* \ (X*cX*). Then, the closure ordinal df (e, S)
increases fromw to w + 1. To see this observe that, singg is empty, the secrefs is safe
relatively to any languagé’ C L containing at least one word containing at least one occurrence
of c. The greatest fixpoint iteration f&fup K (L, S) starts with the same decreasing sequeice
as before, buf((L,,, S) differs now fromL,, becausd.,, contains no word containing(differing
in that form allL;). In fact, L,,11 = K(L,,S) = 0 and this is a fixpoint. Opacity can therefore
not be enforced.

7.3.2 A case wher&upK(L,S) is not regular

Let X = {a,b,z,y} and L be the set of prefixes of words iz)" (¢ + ab) (yb)*. Define
S={(%;,S;) | 1 <i<3}asfollows (letting—L' = L\ L' for L' C L):

1. %) = {a,b}, =51 =& + (az)* ab (yb)* + (T \ {b})*
2. 3y = {z,y}, - = (azx)* (yb)*
3. ¥3={a,b,z,y}, 7S5 =¢c+aX"

We claim thatSupK (L, S) is not a regular language and worse, the family of regular controls
enforcing the opacity of has no largest element. Recall that the subset of maximal words in
a regular language is regular. In order to establish the first part ofléwa,cone can show
that SupK (L, S) is equal to the sef’ of all prefixes of words in the non regular language
Unew (az)" (e + ab) (yb)"™. A detailed proof of this fact may be found if][

To show that the family of regular controls enforcing the opacitySofias no largest ele-
ment, one assumes the opposite. [Rebe the largest prefix-closed regular subsetL.ofuch
that S is opaque w.r.t.R. Necessarily(az)" (yb)" ¢ R for somen. If it were otherwise, be-
cause(az)" " (yb)" ! is the sole wordy’ € L'\ S; such thatw ~; w' for w = (az)™ (yb)",

R would coincide withZ’, which is not possibleI{’ is not regular). Letn be the least in-
teger such thataz)" (yb)" ¢ R, and letR’ be R augmented with all prefixes of words in
{(az)™ (yb)™ , (az)™ * ab (yb)" '} not already inR. The languagé’ is prefix-closed and regular,
and one can verify tha is opaque w.r.tR’. Thus, a contradiction has been reached.

7.4 Control enabling andw-trees
Warning 1 From now on,S;¥* C S; isimposed on all setS; in S = {(X1, 51), ..., (Zn, Sn)}-

This section serves as a bridge between the general problem anddtiegbisolutions that we
shall propose in specific cases. The working assumption that secressfix-closed is motivated
by its convenience (if not its necessity) for enforcing opacity with finiteticdn Although this
working assumption was not satisfied in the examples from secfidh$and7.3.2 it is quite
natural since it amounts to strengthening the secrecy requirement assfodlowbserver should

159

never have the knowledge that the trajectory of the system & or wasin S; at some instant
in the past. We give below a simpler definition of the operdtds, S), which is equivalent to
the earlier definition when secrets are suffix-closed. Then we consittees that may be seen as
proofs of control enabledness of trajectories. Finally, we proposditions on sets of proof trees
entailing the regularity obupK (L, S), thus paving the way for sectiahb.

Definition 7.4.1 (modified form of Def.7.3.1) For any prefix-closed subsét of L, thesafe ker-
nelof L' w.r.t. the secref, notationK (L', S), is the largest subset @f such thatv € K(L',S) =
(Vi)(Fw' € L'\ S;) w ~; w'.

Proposition 3 Definitions7.3.1and7.4.1are equivalent.

Proof: For the duration of this proof, I¢t (e, S) andK”’ (e, S) be the two operators from Def.3.1
and Def.7.4.1 respectively. Clearlyk (L', S) C K'(L’,S) for any L’. We show the converse re-
lation. Consider any wordv € K'(L',S) and letw = wv be any decomposition of this word
into two factors. We should prove that for ale {1,...,n}, u ~; «’ forsomeu’ € L'\ S;. As

w e K'(L',S) and by definitionyw ~; w' for somew’ € L'\ S;. Noww' ~; uv, hence there exists
at least one decompositianl = u/v’ such thatw ~; «'. Finally, v’ € L’ by prefix-closedness of
L', andu’ ¢ S, by suffix-closedness ;. Thereforew € K(L',S). O

Definition 7.4.2 Givenw € L, a proof of enablednesef w isamapf : {1,...,n}* — L such
that f(e) =wandforallT € {1,...,n}*andj € {1,...,n}, f(7) ~; f(rj)and f(7j) ¢ S;.

The mapf in the above definition is just a completeary ordered tree labelled on nodes, thus
in particular it is an infinite tree. The next proposition follows immediately fromchénductive
definition of SupK (L, S).

Proposition 4 For anyw € L, w € SupK (L, S) if and only if there exists a proof of the control
enabledness af.

A nice situation is when the control enabledness of a trajectory may bedovatie a regular
tree. Let us recall the definition.

Definition 7.4.3 Let f : {1,...,n}* — L be a (complete:-ary ordered labelled) tree. For any
7 € {1,...,n}*, the sub-tree off rooted atr, in notation f /7, is the (complete:.-ary ordered
labelled) tree defined withf /7)(7') = f(r7') forall 7' € {1,...,n}*. The treef is regular if it
has a finite number of sub-tre¢g .

Any regular treef may be folded to a finite rooted graph. When the control enabledness
of the (good) trajectories may be proved using regular trees excludikiedypredicate is therefore
recursively enumerable. This condition is necessary and sufficiebéfog able to enforce control,

160

but not efficiently. In the rest of the section, we search for additiopaditions entailing the
regularity of the controbupK (L, S).

A first attempt towards this goal is to impose an upper bound on the numbdiffer€nt)
subtrees of a regular proof tree. Equivalently, one may require that@if trees conform to a
finite collection of finite patterns as follows.

Definition 7.4.4 Afinite pattern for proofg¢of enabledness of trajectories) is a finite, deterministic
and complete automatof@, {1,...,n},qo) (thusqgy € @ and anyi € {1,...,n} mapsQ to
itself). A proof treef : {1,...,n}* — L conforms taa finite pattern if there exists a labelling map
A:@Q — Lsuchthatf(r) = A(qo - 7) forall 7 € {1,...,n}* letting ¢ - 7 be defined inductively
withg-e =qgandq- (mim2) = (¢-m) -mforall ¢ € Q.

The idea behind this definition is that proof trees contain bounded informapiomthe choice
of a bounded number of words in

Example 7.45Let Y = {a,b} and L = ¥*. LetS = {(X1,51), (X2, 52)} with ¥; = {a},
-S1 = b*a* and Xy = {b}, =S2 = a*b*. The finite pattern shown on Figua2 supplies

qo
/ X\
2
q1 q2
T T

Figure 7.2

proofs of control enabledness for all trajectories. For any wardvith n occurrences ofi andm
occurrences ob, the labelling map defined with(qo) = w, A(¢1) = b™a”™, and A(g2) = a™b™
induces in fact aw-tree witnessing that) € SupK (L, S).

There are two sources of problems with the proof patterns from™D&# The first difficulty
is that, givenL, S and (@, {1,...,n},q), the set of the labelling maps : ¢ — L consid-
ered in this definition is generally not regulag. it cannot be defined with a finite automaton
on (E*)‘QL For instance, if the labelling maps considered in exaniplie5 did form a regular
set, then the set of all paif$™a™, a"b™) would be regular, but the iteration lemma for rational
sets B7] entails the opposite (if the set is regular, for somie> 1 and for large enough andm,
(b™a™, ab™) could be written agr, 2’) (y, v') (2, 2') where0 < |y|+|y/], |z|+]2'|+|y|+|y'| < N,
and (z,2')(y,y')*(z,2’) is included in the set). The second difficulty is that, givenS and
(@Q,{1,...,n},q), the set of values taken at= ¢y by the labelling maps from Defl.4.4is
sometimes not regular. An example is shown hereafter.

161

Example 7.4.6 LetY = {qa,b} and L = ¥*. LetS = {(X1,51), (X2, 52)} whereX; = {a},
Yo = {b}, and—S; = =Sy = (¢ + b)(ab)*(e + a). Consider the set of all maps labelling
adequately the finite proof pattern from Figufe8. The set of values taken by these mapg-atq

is the set of all words in which the numbers of occurrencasdb differ by at most one, hence it
is not regular.

qo

q1
20
Figure 7.3

Note that in both examples4.5and7.4.6 SupK (L, S) = ¥*, and proofs of enabledness may
be obtained for allv € ¥* by labelling the finite proof pattern shown in Figufet.

q0

a1 q2
12(_) |t

Figure 7.4

In order to dodge the problems, one may concentrate on restricted @iefs as follows.

Definition 7.4.7 A type (of proof of enabledness) is a finite pattefn= (Q, {1,...,n}, go) with
a prefix-closed subsét C {1,...,n}* such that(Vqg € Q) (3! € T) (¢ = qo -) and for any
mapi : Q — L,

(vr) (%) (75 € T A Mo - 7) 5 Mgo - 75) A Mao - 74) ¢ Sj) = (Va) (V) (Aa) = Mg -)
AXg-j) & 5;)

wherer andj range over{1,...,n}* resp. over{l,...,n}. A proof treef : {1,...,n}* — L
has typeT if it conforms to this pattern (see Déf.4.4).

The sefl" in Def. 7.4.7induces a (finite) tree, rootedat that spans the automato®, {1,...,n}, q).
The pointis that forany map: Q — L, if (A(¢) =~ A(q-j7) A Xq-j) ¢ S;) for all arcs(q, q - j)

162

in the spanning tree, then it holds also for all chords for all remaining edges of (the underlying
graph 0f)(Q7 {17 cee 7n}7 qO)

Theorem 7.4.8 If there exists a finite number of types of proofs of enabledness for gttaaies
w € SupK(L,S), thenSupK (L, S) is a regular language.

Proof: It suffices to show that when typg = (Q,{1,...,n},qo,T) has been fixed, the set of
trajectoriesw € L with proofs of enabledness of typE is regular. In view of the definitions
7.4.4and7.4.7, a wordw belongs to the considered set if and only{fyp) = w for some map

A @Q — L satisfyingA(qo - 7) =~ A(qo - 7j) and X(qo - 7j) ¢ S; wheneverrj € T and

j €{1,...,n}. Inorderto show that this is a regular set, we construct the Arnoldtdicaluct {]

of a family of automatad . indexed withr € T, as follows. LetA. be a (finite deterministic)
partial automaton recognizing, and for each sequeneg in 7" with j € {1,...,n}, let A;; be

a (finite deterministic) partial automaton recognizibg S;. This defines the components of the
product. As for the synchronizations, [étbe the set off-vectorsv : T — (X U {€}) such that
(0(r) € ; V U(1j) € £j) = U(r) = 0(rj) wheneverrj in T andj € {1,...,n}. The induced
product is a (finite deterministic) partial automatdn= (Q, V, ¢;) defined as follows:

- the set of state®) is a set ofl-vectors,

- for eachr € T, ¢y(7) is the initial state ofA4 .,
-forallge Qandr € T, ¢(7) is a state ofd ,,
-forallge Q, 7€ Vandr € T, (q-7) (1) =q(r) - U(7).
Thereforeg - ¢'is defined if and only iff(7) - ¥(7) = /(1) is defined for all.

Let ¢ ..., be a word ovelV accepted byd. An associated™-vectorw : T — L may be
defined by settingi(7) = #1(7) ...) (7) for all 7 € T'. It follows directly from the construction
that the map\ : Q — L such that\(qo - 7) = w(7) for all 7 € T satisfies\(qo - 7) ~; A(qo - 7J)
andX\(qo - 7j) ¢ S;forrj € Tandj € {1,...,n}, hencew(e) € SupK(L,S).

As A is a finite automaton, the projection of the languagelddlonge is a regular language.
In order to complete the proof, it suffices therefore to show that fomaagy\ : () — L satisfying
Mgo - 7) ~j Mqo - 75) andX(qo - 7j) ¢ S; for all 7j € T, the vector : T — L defined
with @ (1) = A(qo - 7) for all 7 € T" may be written as a word . . . 7, recognized byA. Given
the construction of this automaton, it suffices to exhibit a sequénce. v,,, € V* such that
w(r) = 1(7) ... Un(7) forall 7 € T'. This is the contribution of the lemnma4.9 O

Lemma7.4.9Letw : T — X* whereT is a prefix-closed subset ¢1,...,n}* and @(r) ~;
w(rj) forall 7j € T withj € {1,...,n}. Thenw(r) = 0y(7) ... 0, (7) for all 7 € T for some
sequence of vectofg, : 7' — X U {e} such that for allrj € T', (0i(7) € £; V Uk(7j) € £;) =
Uk(7) = Ok (7).

Proof: Let & be the set of all pairér,:) such thatr € T"and0 < i < |@(7)|. Let < be the
partial order or€ defined with(r,i) < (7/,¢') if 7 = 7/ andi < . Foreacly € {1,...,n}, let

163

(1,1) I (74, k) if mj(0(7)[i])) = m;(W(75)[k])), @W(T)(i) = @(77)(k), and this letter is irE;.
Let = denote the equivalence éhgenerated from the union of the relatidtts. We claim that
this equivalence does not intersect and is compatible with the partial @rdest us establish this
double claim.

i) Suppose for a contradiction thaat, i) < (7,4") and(r,i) = (7,4"). Then, by definition of=
and the relation$-;, the wordsi(7)[z] anddi(7)[:'] end with a common letted(7) (i) = @(7)(4'),
and this letter occurs the same number of times in both words <Ag, this is clearly not possible.

ii) Suppose for a contradiction th@at, i) < (7,4") and(7’,j) < (7', 7’) while (7,4) = (7',)
and(r,i") = (7', j). Then, by definition of= and the relation8-;, @ (7)(i) = w(’)(j") and this
letter o occurs the same number of times in both wodt]s)[i] and@(7')[j']. In the same way,
w(T)(i") = W(7")(j) and this letter’ occurs the same number of times in both waids)[:'] and
w(7")[j]. Sincei < ¢ andj < j', it follows thato ando’ are different letters (see Figureh).

Now letT = pxy...x and7™’ = py; ...y, wherep is the longest common prefix of and
7" andzyp,y, € {1,...,n}. Then by definition of= and the relationgt;, (r,7) = (7, 5’) and
(1,i") = (7',) entail thato ando’ belong jointly to all the alphabets,, (1 < h < k) and
Xy, (1 < h < 1). On the other hand, by thepart of the proof,(r,i) = (7/,;) entails that
necessarilys(7)[i] IF; ! o ... ollb;! o Ik, o ... ollky, @(7)[j']. Therefore the wordsi(r)|i]
andi(7')[4'] must have the same number of occurrences of the lettevhich is obviously not
possible.

LetC = (£/ =). Since< is compatible and does not intersect with the binary relation
(< U=)*/ =is astrict partial order od. LetC; ... C,, be an enumeration ¢f compatible with
this order. Each equivalence claSse C induces naturally a vectar € V, viz. v(7) = w(7)(i)
if (1,4) € C for somei, or e otherwise. Let; ..., be the vectors associated wifh ... C,,,

respectively. Then forany € T, w(7) = 01(7) ... Ui, (7) as desired. a O
i i
w(7) < 7
AN N /./ 0./
N
N
./. h N
/./ N
w(r’) - ~
-/
J J
Figure 7.5

Theorem?7.4.8opens the way to the practical synthesis of supervisory control faurcent
opacity. The conditions for its application are examined further in secti&n

164

7.5 Concurrent secrets with regular opacity control

We propose here conditions on concurrent se&ets{ (X1, S1), ..., (Z,, S,)} ensuring that
the maximal permissive opacity contrSkpK (L, S) is the language of a finite automaton, that
may effectively be constructed from finite automata accepting the languagel the secrets;.

We examine first the case where the alphabgtform a chain for the inclusion, second the case
where the secretS; form a chain for the inclusion, third the case where every segristsaturated
by any equivalence-; such that: # j (a set issaturatedby an equivalence if it is a union of
equivalence classes). We consider finally the combinations of the ttses fma the different pairs

(i, 7).

Proposition 5 If the alphabets:; form a chain for the inclusion, then the enabledness of all tra-
jectoriesw € SupK (L,S) may be shown with a single type of pro@is

Proof: Given the chairk; C 3y C ... C %, we construct a typgd = (Q,{1,...,n},q,7T)
as follows.T is the set of strictly increasing sequences of numbefs jn..,n} (7' is drawn with
solid arcs in Figurer.6), @ = T andgqy = e. Foranyr in T andi € {1,...,n}, 7-i = 7'i
wherer’ is the largest prefix of formed of integers strictly smaller thar(see again Figurg.6).
As (~; o ~;) C~;fori < j, 7; conforms to Def7.4.7. Finally, for anyw € SupK(L,S), by
Prop.7.4.8 there must existamap: Q@ — L,i.e. A\ : T'— L, such that\(¢) = w and for all
1) € T, N(T) 25 XN(7j) ANX(T)) ¢ 5. O

Proposition 6 If the secretsS; form a chain for the inclusion, then the enabledness of all trajecto-
riesw € SupK (L,S) may be shown with a single type of progis

Proof: Given the chainS; € S, C ... C S, we construct a typ&s = (Q,{1,...,n},qo,7T)
as follows.T is the set of strictly increasing sequences of numbefs jn..,n} (7' is drawn with
solid arcs in Figure.7), Q@ = T andqy = . For anyr in T'andi € {1,...,n}, 7-i = 7i if
7i € T andt - i = 7 otherwise (see again Figuve?). If i < j, then for anyrj in T (= @), and
forany map\ : Q — L, A\(1j) ¢ S; = A(7j - i) ¢ S; sinceS; C S;. Therefore;7; conforms to
Def. 7.4.7, and the desired conclusion follows from Pr@pt.8 O

Proposition 7 If for all distincti,j € {1,...,n}, the secretS; is saturated by the equivalence
relation ~;, then the enabledness of all trajectoriese SupK(L,S) may be shown with a type
of proofsTs.

Proof: We construct a typfs = (Q,{1,...,n},qo,T) as follows.T is the set of sequences in
{1,...,n}* with at most one occurrence of each numierg drawn with solid arcs in Figure.8),
Q =Tandgy =¢. ForanyrinT andi € {1,...,n},7-i = 7iif 7i € T andr - i = 7 otherwise

(see again Figur&€.8). Let X : Q — L be any map such that(r) ~; A(7j) A X(1j) & S;)

165

wheneverrj € 7. One may show by induction onthat A\(7) ¢ S; for anyi € {1,...,n}
occurring inT. Indeed, if this property holds far, it must hold forrj because\(7) ~; A(7j) and

~; saturatess; and L \ S; for all 7 occurring inT. Therefore,73 conforms to Def7.4.7, and the

desired conclusion follows from Prop.4.8 |

{, 12{ 7 -
/ X 3 123
2 <

Figure 7.8: 73 forn =3

166

Figure 7.9:7,

One can deal similarly with many other situations whefe_ ¥, or S; C S; or ~; saturates
S;, or conversely withi and j, for all distincti, j € {1,...,n}. For instance, lek = 3, and
supposed; C S, X3 C Xy, and~; saturatesSs. Then the enabledness of alle SupK (L, S)
may be proved using the typg (see Figurer.9).

Unfortunately, we cannot extend propositids)6, and7 into a general proposition, for we do
not know whetheSupK (L, S) is regular in three particular cases:
- 51 C Sy, X9 C X3, and~, saturatess,
- 51 C Sy, ~9 saturatesSs, andXs C X,
- ~ saturatesS,, ~, saturatessz, and~; saturatess;.
The best we can do is therefore to propose an algorithm that constnuciglee type for all proofs
of enabledness in all cases where this is possible. In this perspecéviefraduce rewrite rules
on labelled graphs. In each rule, one vertex of the left member is drapmkthe edges that were
incident to this vertex are redirected to other vertices. The vertices ayjed @rdlesent on both sides
of arule serve as an application context (indicated by the labels put ontcermed vertices). The
rewrite rules are displayed in FigurelO(wherei # j andsat is an abbreviation for “saturates”).

Proposition 8 GivenS = {(X£1,51),...,(Zn,Sn)}, let R be the set of the rewrite rules that
correspond to predicates true if. Whenever the completeary tree rewrites to some finite
graph, any such graph yields a uniform typefor proving the enabledness of all trajectories. The
spanning tree off is the subset of edges of the completary tree that have been preserved by
the rewriting.

Proof: In view of Def.7.4.7it is enough to show, for each graghon the right hand side of a
rewrite rule (see Figur&.10, that any map\ : {z,y} — Lor A : {z,y,z} — L compatible
with the rigid edges ofy is compatible also with the dashed edgeChfwhere\ is compatible

167

X Y X y.--.
o$>o*1>o > o*|>o/ N S; C 5
X 0 Y j X y
O*»O#O > O*I>o 2, €%
J
J\\ J Y
o o
V4 V4
X Z X oz
o J (33/ : o] o > o#é/;»o’/ I satSj
\;; ’
X Yy i X y._.
O;O*I»O > o*|>o’\ S True

Figure 7.10: Four rules

with = 5 y if A(z) ~; A(y) and\(y) ¢ S;. Considering the predicates defining the application
conditions of the rewrite rules, this verification is immediate. O

When propositior8 can be applied, the construction proposed in the proof of propoS§itis
may be used to produce a finite automaton realizing the maximal permissive opadityl, but
Prop.8is not immediately effective. We remedy now this deficiency.

Proposition 9 It is decidable whether some finite graph may be derived from the comphate
tree using the rules iR and such graphs can be computed when they exist.

Proof: As a preliminary remark, note that the rewrite rulesinare not necessarily confluent,
hence the finite graph we compute is just one among a set of possible petetbss.

Let/ = {1,...,n} and letF’ C I* be the set of all word&, orij, oriji such thatl'rue, or
(S; C S; vy C%), orx; satSj, respectively. If the words i are considered as forbidden
factors for words inf*, the remaining words form a regular language- * \ (I*FI*).

If T is infinite, the rewrite syster® cannot terminate on the completeary tree and it cannot
produce any finite graph. 1 is finite, let(Q, {1, ..., n}, go) be the partial automaton defined with
Q=T,qo=¢,andr-i =7iforriinT.

To obtain a typd@, {1, ...,n}, g0, T") conforming Def.7.4.7, it suffices now to complete the
partial automatori@, {1, ...,n}, qo) as follows: for all words- in 7', and by increasing lengths of
wordsr,

-setri - j = 7iif 73 - jis undefined and; C S; or ~; satS; andr = 7’ - j,
-setri-j =7 jif 7i-jis stillundefined and; C ¥;. O

168

Example 7.5.1Let> = {a,b,c} and letL be a prefix-closed regular language over Define
S ={(21,51),...,(X3,53)} such that>; = {a,c}, ¥o = {b,c}, X3 = {b}, and S; = S;X* for
all i € {1,...,3}. The construction sketched in the proof of proposi8oyields the type/, and
the spanning tre& displayed in Figurer.9.

SupK(L,S) may be computed by stages following the structurd ofOne computes first
SupK(L,S) \ Ss, using the type that appears i at the end of both paths3 and 3. Next, one
computesSupK (L, S) \ S1 from SupK (L, S) \ Ss, using the type at the end of the patin 7;.
Finally, one computeSupK (L, S) from SupK (L,S) \ S1 and SupK (L, S) \ Ss.

7.6 conclusion

We shall try first in this section to illustrate the possible applications of the wakhawve
presented. Consider a computer system that provides servigassgrsU1, . . . , Un with disjoint
alphabets:,...,%,,. Let L C ¥* be the language of the system, where ¥, for all .. One
wants to give every usdri the guarantee that no coalition of other users can ever be sure that he
has started working. The problem is therefore to enforce the opacitg athcurrent secret =
{(21,51),...,(%,, Sn)} where for each, S; = L N X*3; X" andX] = U,4;3;. As ~; saturates
S; for j # i, one can construct a finite automaton accepfing K (L, S). We feel this example is
typical of many practical security problems.

Some limitations of this work are voluntamy,g. we restricted ourselves on purpose to regular
languages and to regular control, but some other limitations could hopefulifgdakin continua-
tions of this work. A list follows.

From the beginning of section.4, we worked with open secretse. secretsS; such that
S;¥* C S;. The goal was to make De7.3.1equivalent to the simpler definition Def.4.1
Another way to obtain this equivalence is to impose on each s&¢rigte following condition,
where< is the order prefix:

(Vw e L\ S;) mi(w) =uoc = (Jve L\ S;) (v<w A m(v) =u). Such secrets mag.g.carry
the information that some system procesis a critical section.

As regards the control objective, we focussed our efforts on opdxitywe did not take the
deadlock freeness or the liveness of the controlled system into coatsaoheand this is a shortcom-
ing. Another valuable extension would be to work with boolean combinationigaafity predicates,
e.g.if Sy is opaque w.r.t3; thenSs is not opaque w.r.ts.

We end with a few words on observability and controlability. On the side of bsewvation
functions, we have restricted our attention to projections on subalphdiogts,would be more
adequate to accomodate also all alphabetic morphisms. As regards coatdeaitvwith all events
as controlable events, but it would be more realistic to accomodate alsotrolable events.

Bibliography

[1]

[2]

[3]

Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternatiimg temporal logic.
J. ACM 49(5):672—713, 2002.

Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Mosh¥ardi. Alternating
refinement relations. IProc. of the 9th International Conference on Concurrency The-
ory (CONCUR’98) volume 1466 ofLecture Notes in Computer Sciengages 163-178.
Springer, 1998.

S. Andova. Process algebra with probabilistic choice.ARTS volume 1601 ofLNCS
pages 111-129. Springer, 1999.

[4] A. Arnold and M. Nivat. Comportements de processusAttes du Colloque AFCET “Les

mathématiques de I'informatiquepages 35-68, 1982.

[5] André Arnold. Finite transition systemsPrentice Hall, 1994.

[6] André Arnold and Maurice Nivat. Metric interpretations of infinite tregsl semantics of

[7]

[8]

[9]
[10]
[11]

[12]

non deterministic recursive programeheoretical Computer Sciencgl, 1980.

E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, &darondeau. Concurrent
secrets. Rapport de recherche 5771, INRIA, nov 2005.

E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, &darondeau. Concurrent
secrets. In S. Lafortune, F. Lin, and D. Tilbury, edita8sh Workshop on Discrete Event
Systems, WODES’0Bnn Arbor, Michigan, USA, jul 2006.

E. Badouel, B. Caillaud, and P. Darondeau. Distributing finite automataugi petri net
synthesisJournal on Formal Aspects of Computiri:447-470, 2002.

E. Badouel and Ph. Darondeau. On the synthesis of gendrahpés. Research Report
3025, Inria, 1996.

Eric Badouel, Marek Bednarczyk, Andrje Borzyszkowski, BirCaillaud, and Philippe
Darondeau. Concurrent secrddscrete Event Dynamic Syster3(4):425—-446, dec 2007.

Eric Badouel, Luca Bernardinello, and Philippe Darondeau. PRwoiyal algorithms for
the synthesis of bounded nets. Pnoceedings Caap 95/olume 915 ofLecture Notes in
Computer Scienged.995.

169

170

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Eric Badouel, Luca Bernardinello, and Philippe Darondeau. HMmthesis problem for
elementary net systems is np-complébeor. Comput. Sgil86(1-2):107-134, 1997.

S. Basu. New results on quantifier elimination over real closed figildsapplications to
constraint databasedournal of the ACM46(4):537-555, July 1999.

M. A. Bednarczyk, L. Bernardinello, B. Caillaud, W. Pawlowskigal.. Pomello. Modular
system development with pullbacks. Applications and Theory of Petri Nets 20@®lume
2679 ofLecture Notes in Computer Scienpages 140-160. Springer, jun 2003.

Nikola Benes, Jan Kretinsky, Kim G. Larsen, and Jiri Srba. Oterdeinism in modal
transition systemsTheoretical Computer Scienc#10(41):4026—-2043, 2009.

A. Benveniste, B. Caillaud, L. Carloni, P. Caspi, and A. Sangiow&imcentelli. Causality
and scheduling constraints in heterogeneous reactive systems modelirtylCIO 2003,
Proceedings of the Second International Symposium on Formal MefleodComponents
and Objects volume 3188 ofLecture Notes in Computer Sciengmges 1-16. Springer,
2004.

A. Benveniste, B. Caillaud, L. Carloni, P. Caspi, and A. Sangiairsncentelli. Heteroge-
neous reactive systems modeling: Capturing causality and the correofriessely time-
triggered architectures (Itta). roceedings of the Fourth ACM International Conference
on Embedded Software, EMSOFT.@CM Press, sep 2004.

A. Benveniste, B. Caillaud, L. Carloni, P. Caspi, and A. Sangioirincentelli. Communi-
cation by sampling in time-sensitive distributed system®rboteedings of the Sixth Annual
ACM Conference on Embedded Software, EMSOFTp@ges 152—-160. ACM Press, 2006.

A. Benveniste, B. Caillaud, L. P. Carloni, and A. L. Sangiovanirieéntelli. Tag machines.
In Proceedings of the fifth ACM International Conference on Embedded&eftivmsoft)
pages 255-263, Jersey City, NJ, USA, sep 2005. ACM Press.

A. Benveniste, B. Caillaud, and P. Le Guernic. From synchromsimchrony. In J.C.M.
Baeten and S. Mauw, editor€ONCUR’99, Concurrency Theory, 10th International Con-
ference volume 1664 otf_ecture Notes in Computer Scienpages 162—-177. Springer, aug
1999.

A. Benveniste, B. Caillaud, and P. Le Guernic. From synchromgsiinchrony. Research
report 3641, INRIA Rennes, mar 1999. Also published as IRISA &ebeReport PI-1233.

A. Benveniste, B. Caillaud, and P. Le Guernic. Compositionality in dataflynchronous
languages: specification and distributed code generatioformation and Computatign
163:125-171, 2000.

A. Benveniste, B. Caillaud, and R. Passerone. A generic modealrafacts for embedded
systems. Research report 6214, INRIA Rennes, jun 2007.

A. Benveniste, B. Caillaud, and M. Pouzet. The fundamentals ofithgystems modelers.
In IEEE Conf. on Decision and Control, CD2010.

171

[26] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Lertyeand R. de Simone. The
Synchronous Languages Twelve Years LaRmceedings of the IEEB1(1):64—-83, 2003.

[27] Albert Benveniste. Compositional and uniform modelling of hybridteys. IEEE Trans.
on Automatic Contrgl43(4):579-584, April 1998.

[28] Albert Benveniste, Benoit Caillaud, Alberto Ferrari, Leonardonitruca, Roberto
Passerone, and Christos Sofronis. Multiple viewpoint contract-baeaifisation and de-
sign. InProceedings of the Software Technology Concertation on Formal MeflooCom-
ponents and Objects (FMCO’0Aolume 5382 oRevised Lectures, Lecture Notes in Com-
puter ScienceAmsterdam, The Netherlands, oct 2008. Springer.

[29] Albert Benveniste, Benoit Caillaud, and Paul Le Guernic. Compaosility in dataflow
synchronous languages: Specification and distributed code generatitdn Comput,
163(1):125-171, 2000.

[30] Albert Benveniste, Benoit Caillaud, Luca P. Carloni, Paul Caspid &lberto L.
Sangiovanni-Vincentelli. Composing heterogeneous reactive syst&@8/ Trans. Em-
bedded Comput. Syst.(4), 2008.

[31] Albert Benveniste, Benoit Caillaud, and Roberto Passerone. Maltipoint state machines
for rich component models. In Pieter Mosterman and Gabriela Nicolesitarsdlodel-
Based Design of Heterogeneous Embedded Sys@RG Press, 2009.

[32] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolaswalbs, Paul Le Guernic,
and Robert de Simone. The synchronous languages 12 year$latezedings of the IEEE
91(1):64-83, 2003.

[33] Albert Benveniste, Paul Le Guernic, Yves Sorel, and Michelri&orA denotational theory
of synchronous reactive systenisf. Comput, 99(2):192—-230, 1992.

[34] L. Bernardinello, G. De Michelis, K. Petruni, and S. Vigna. On thackyonic structure
of transition systems. In J. Desel, edit8tructures in Concurrency Theqrgages 11-31.
Springer-Verlag, 1996.

[35] G. Berry. The constructive semantics of pure Esterel. Draftkbawvailable at
http://www.esterel-technologies.com/, July 1999.

[36] Gérard Berry. Constructive Semantics of Esterel: From TheoBragtice (Abstract). In
AMAST '96: Proceedings of the 5th International Conference on Aigelvliethodology
and Software Technologpage 225, London, UK, 1996. Springer-Verlag.

[37] J. Berstel.Transductions and Context-Free Languag@ésubner Verlag, 1978.

[38] Nathalie Bertrand, Sophie Pinchinat, and Jean-Baptiste Raclet.eRefitt and consistency
of timed modal specifications. FProc. of the 3rd International Conference on Language and
Automata Theory and Applications (LATA'Q9plume 5457 oL ecture Notes in Computer
Sciencepages 152-163, Tarragona, Spain, 2009. Springer.

172

[39] Simon Bliudze.Un cadre formel pour I'étude des systémes industriels complexeseam ex
ple basé sur l'infrastructure de 'UMT.SPhD thesis, Ecole Polytechnique, 2006.

[40] Simon Bliudze and Daniel Krob. Modelling of complex systems: Systemdageflow
machines Fundam. Inform.91(2):251-274, 2009.

[41] Simon Bliudze and Joseph Sifakis. A notion of glue expressiveimessomponent-based
systems. InProc. of the 19th International Conference on Concurrency TheG®N-
CUR’08), volume 5201 ofLecture Notes in Computer Sciengages 508-522. Springer,
2008.

[42] I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. LwimdaC. Sotiriou. Handshake
protocols for de-synchronization. Proceedings AsyncQfages 149-158, Crete, Greece,
2004.

[43] F. Boussinot. Une sémantique du langage Esterel . TechnicatiReph INRIA, 1986.

[44] Thomas Brihaye, Francois Laroussinie, Nicolas Markey, ands&raOreiby. Timed con-
current game structures. Rroc. of the 18th International Conference on Concurrency The-
ory (CONCUR’07) volume 4703 ofLecture Notes in Computer Sciengages 445-459.
Springer, 2007.

[45] C. W. Brown. Simple cad construction and its applicatiofmurnal of Symbolic Computa-
tion, 31(5):521-547, May 2001.

[46] C. W. Brown and J. H. Davenport. The complexity of quantifier elimima@ad cylindrical
algeraic decomposition. IRroceedings of the 2007 international symposium on Symbolic
and algebraic computation (ISSAC’QPages 54-60, Waterloo, ON, Canada, 2007.

[47] J.W. Bryans, M. Koutny, L. Mazaré, and P.Y.A. Ryan. Opacityegafised to transition
systems. IrProc. of the Workshop on Formal Aspects in Security and Trust (FZ085)
2005.

[48] J. F. M. Burg.Linguistic instruments in requirements engineerih@S Press, 1997.

[49] B. Caillaud. SNET : un outil de synthése de réseaux de petri bornés, applications. Rappo
de recherche 3155, INRIA, avril 1997.

[50] B. Caillaud. Bounded petri-net synthesis techniques and their afiplis to the distribution
of reactive automataJESA, European Journal on Automated Sys{e38$3—9):925-942,
1999.

[51] B. Caillaud, P. Caspi, A. Girault, and C. Jard. Distributing automata $gnehronous
networks of processor€gzuropean Journal on Automated Systems (JESA(3):503-524,
1997.

[52] B. Caillaud, P. Darondeau, L. Hélouét, and G. Lesventes. Hnsssgexifications... with pn
as completions. In F. Cassez, C. Jard, B. Rozoy, and M. Ryan, edaiseedings of the
summer school MOVEP'2k: Modelling and verification of parallel psgespages 87-103,
Nantes, jun 2000.

173

[53] B. Caillaud, P. Darondeau, L. Hélouét, and G. Lesventes. Hnssggexifications... with pn
as completions. Research report 3970, INRIA Rennes, jul 2000.

[54] B. Caillaud, P. Darondeau, L. Hélouét, and G. Lesvenk#8lSCs as specifications... with
PN as completionsvolume 2067 ofLecture Notes in Computer Sciengages 125-152.
Springer, 2001.

[55] B. Caillaud, P. Darondeau, L. Lavagno, and X. Xie (edSynthesis and Control of Discrete
Event System&Kluwer Academic Press, 2002.

[56] Benoit Caillaud, Benoit Delahaye, Kim G. Larsen, Axel Legay, halkL. Pedersen, and
Andrzej Wasowski. Compositional Design Methodology with Constraintk@éarChains.
Research Report RR-6993, INRIA, 2009.

[57] Benoit Caillaud, Benoit Delahaye, Kim G. Larsen, Axel Legay, kéikLarsen Pedersen,
and Andrzej Wasowski. Compositional design methodology with constrairkanahains.
In Proceedings of the 7th International Conference on Quantitative Evaluafi®@ysTems
(QEST) 2010IEEE Computer Society, 2010.

[58] Stephen L. Campbell, Jean-Philippe Chancelier, and Ramine Nikbukkideling and
Simulation in Scilab/ScicosSpringer, 2006. ISBN 0-387-27802-8.

[59] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli. The theorfjatency-insensitive
design.|IEEE Transactions on Computer-Aided Design of Integrated CircuitsSysilems
20(9):1059-1076, 2001.

[60] Luca P. Carloni, Roberto Passerone, Alessandro Pinto, andrtdllhe Sangiovanni-
Vincentelli. Languages and tools for hybrid systems desigoundations and Trends in
Electronic Design Automatiqri.(1/2), 2006.

[61] P. Caspi, A. Girault, and D. Pilaud. Automatic distribution of reactivsetems for asyn-
chronous networks of processordiEEE Trans. on Software Engineering5(3):416-427,
1999.

[62] Paul Caspi and Marc Pouzet. A co-iterative characterizatioyrdhgonous stream func-
tions. Electr. Notes Theor. Comput. Scil, 1998.

[63] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, Eretidy Y. C. Mang. Syn-
chronous and bidirectional component interfaceroc. of the 14th International Confer-
ence on Computer Aided Verification (CAV'02)lume 2404 of_ecture Notes in Computer
Sciencepages 414-427, 2002.

[64] Thomas Chatain, Alexandre David, and Kim G. Larsen. Playing gawi#s timed
games. Research Report LSV-08-34, Laboratoire Spécificatiorriicd&on, ENS Cachan,
France, December 2008. 15 pages.

[65] K. Chatterjee, K. Sen, and T. A. Henzinger. Model-checking aanegular properties of
interval Markov chains. IfoSSaC3Svolume 4962 o NCS pages 302—-317. Springer, 2008.

[66] W.K. Chen.Applied Graph TheoryNorth Holland, 1971.

174

[67] F. Ciesinski and M. GroRer. On probabilistic computation tree logic.Vdhdation of
Stochastic System#lume 2925 oL NCS pages 147-188. Springer, 2004.

[68] The SPEEDS Consortium. Speeds methodology - a white paper, 2008.

[69] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, @&d’akovlev. Complete state
encoding based on the theory of regionsPtac. 2nd Int. Symposium on Advanced Research
on Asynchronous Circuits and Systepages 36—47. IEEE Computer Society Press, 1996.

[70] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, adrakovlev. Deriving petri
nets from finite transition systemdEE Transactions on Computer7(8):859—882, 1998.

[71] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, @& d&akovlev. Logic Synthesis
of Asynchronous Controllers and Interfac&pringer, 2002.

[72] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev.n§esizing petri nets from
state-based models. Rroceedings of ICCAD’95ages 164-173. IEEE Computer Society
Press, 1995.

[73] Werner Damm and David Harel. LSCs: Breathing life into messagessegcharts-ormal
Methods in System Desigh9(1):45-80, 2001.

[74] S. Dasgupta, D. Potop-Butucaru, B. Caillaud, and A. YakovleenFweakly endochronous
systems to delay-insensitive circuits. Pmoceedings of the second international workshop
on formal methods for globally asynchronous locally synchronous d€BigIGALS 2005)
2005.

[75] Luca de Alfaro. Game models for open systems.Vémification: Theory and Practice
volume 2772 oL ecture Notes in Computer Scienpages 269-289. Springer, 2003.

[76] Luca de Alfaro, Leandro Dias da Silva, Marco Faella, Axel Ledaytam Roy, and Maria
Sorea. Sociable interfaces. &th International Workshop on Frontiers of Combining
Systems (FroCos’05yolume 3717 ofLecture Notes in Computer Sciengages 81-105.
Springer, 2005.

[77] Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Rupak Mammadnd Mariélle
Stoelinga. The element of surprise in timed games®riyc. of the 14th International Con-
ference on Concurrency Theory (CONCUR’0&)lume 2761 of_ecture Notes in Computer
Sciencepages 142-156. Springer, 2003.

[78] Luca de Alfaro and Thomas A. Henzinger. Interface automat®raceedings of the Ninth
Annual Symposium on Foundations of Software Enginegpages 109-120. ACM Press,
2001.

[79] Luca de Alfaro, Thomas A. Henzinger, and Mariélle Stoelinga. Timéetiaces. InProc.
of the 2nd Workshop on Embedded Software (EMSOFT@R)me 2491 of_ecture Notes
in Computer Sciencgages 108-122. Springer, 2002.

[80] Benoit Delahaye, Benoit Caillaud, and Axel Legay. Compositioregldening on (Proba-
bilistic) Contracts. Research Report RR-6970, INRIA, 2009.

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

175

Benoit Delahaye, Benoit Caillaud, and Axel Legay. Probabilistictre@ts : A com-
positional reasoning methodology for the design of systems with stochastioramon-
deterministic aspect$ormal Methods in System Desid2011. to appear.

Benoit Delahaye and Benoit Caillaud. A model for probabilistic reagpon assume/guar-
antee contracts. Research Report 6719, INRIA, 2008.

Benoit Delahaye, Benoit Caillaud, and Axel Legay. Probabilistittre@ts: A composi-
tional reasoning methodology for the design of stochastic systenfarom of the 10th In-
ternational Conference on Application of Concurrency to System DeAigS8I[D’10) Braga,
Portugal, June 2010.

Jorg Desel and Wolfgang Reisig. The synthesis problem of petsi Acta Inf, 33(4):297—-
315, 1996.

Laurent Doyen, Thomas A. Henzinger, Barbara JobstmannTatj@na Petrov. Interface
theories with component reuse. In L. de Alfaro and J. Palsberg, edRarvs. of the 8th
International Conference on Embedded Software (EMSOFT)es 79—-88. ACM Press,
2008.

M. Droste and R.M. Shortt. Petri nets and automata with concurreziayians - an ad-
junction. In M. Droste and Y. Gurevich, editoSemantics of Programming Languages and
Model Theorypages 69-87, 1993.

N. Cutland (ed.)Nonstandard analysis and its applicatiotSambridge Univ. Press, 1988.

Andrzej Ehrenfeucht and Grzegorz Rozenberg. Theo@rstiructures, part i: Clans, basic
subclasses, and morphisniheor. Comput. Sgi70(3):277-303, 1990.

Andrzej Ehrenfeucht and Grzegorz Rozenberg. TheoB@rstfuctures, part ii. Representa-
tion through labeled tree familie3heor. Comput. S¢i70(3):305-342, 1990.

Johan Eker, Jorn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun L. Ludvig, Stephen
Neuendorffer, S. Sachs, and Yuhong Xiong. Taming heterogeneigypttlemy approach.
Proc. of the IEEE91(1):127-144, 2003.

H. Fecher, M. Leucker, and V. Wolf. Don’t Know in probabilistigssems. INSPIN volume
3925 ofLNCS pages 71-88. Springer, 2006.

G. Feuillade. Modal specifications are a syntactic fragment of theafauus. Research
Report RR-5612, INRIA, June 2005.

A.F. Filippov. Differential Equations with Discontinuous Right-hand Sid&¥iley, 1988.
ISBN 978-9027726995.

Cédric Fournet, C. A. R. Hoare, Sriram K. Rajamani, and JakdiioReStuck-free con-
formance. InProc. of the 16th International Conference on Computer Aided Verificatio
(CAV’'04), volume 3114 ofLecture Notes in Computer Sciengages 242—-254. Springer,
2004.

176

[95] Angelo Gargantini, Dino Mandrioli, and Angelo Morzenti. Dealing witlreéme transi-
tions in axiom systemdnformation and Computatigri50(2):119-131, 1999.

[96] M. Gondran and M. MinouxGraphs and AlgorithmsJohn Wiley, 1984.

[97] T. Grandpierre and Y. Sorel. From algorithm and architectureiBpations to automatic
generation of distributed real-time executives: a seamless flow of grapisédrmations. In
Proceedings MEMOCODE’'Q3ont Saint-Michel, France, 2003.

[98] N. Halbwachs.Synchronous programming of reactive systeKisiwer Academic Publish-
ers, 1993.

[99] H. Hansson and B. Jonsson. A logic for reasoning about time erability. Formal Asp.
Comput, 6(5):512-535, 1994.

[100] Thomas A. Henzinger and Joseph Sifakis. The embedded systsigsn cthallenge. In
Proc. of the 14th International Symposium on Formal Methods (FM'06ume 4085 of
Lecture Notes in Computer Scienpages 1-15. Springer, 2006.

[101] H.Hermanns, U. Herzog, and J. Katoen. Process algebpafformance evaluatio.heor.
Comput. Scj.274(1-2):43-87, 2002.

[102] H. Hermanns, B. Wachter, and L. Zhang. Probabilistic CEGARCAY, volume 5123 of
LNCS pages 162-175. Springer, 2008.

[103] H. Hermansinteractive Markov Chainsspringer, 2002.

[104] J. Hillston. A Compositional Approach to Performance Modellingambridge University
Press, 1996.

[105] Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L. [Redu Serban, Dan E.
Shumaker, and Carol S. Woodward. SUNDIALS: Suite of nonlinear difidrential/al-
gebraic equation solversACM Transactions on Mathematical Softwage (3):363-396,
September 2005.

[106] D. Hogrefe. OSI formal specification case study: the INRE$gea and service. Technical
Report 91-012, University of Bern, 1991.

[107] Richard P. Hopkins. Distributable nets. In Grzegorz Rozenlestigor, Advances in Petri
Nets 1991, Papers from the 11th International Conference on ApplicasiodsTheory of
Petri Nets volume 524 ofLecture Notes in Computer Sciengmages 161-187. Springer,
1991.

[108] F. Hoppensteadt. Properties of solutions of ordinary differeatjaations with small pa-
rametersComm. on Pure and Applied Majt24:807—840, 1971.

[109] INRIA RennesProceedings of the Symposium on the Supervisory Control of Discretd E
Systems, SCODES’20aris, France, jul 2001.

[110] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MBT)-TS,
Geneva, September 1999.

177

[111] Yumi lwasaki, Adam Farquhar, Vijay A. Saraswat, Daniel G. Bop and Vineet Gupta.
Modeling time in hybrid systems: How fast is “instantaneous”? 1J@AI, pages 1773—
1781, 1995.

[112] D. Klink J. Katoen and M. R. Neuhauser. Compositional abstraéiostochastic systems.
In Proceedings of the 7th International Conference on Formal Modelirdy Aamalysis of
Timed Systems (FORMATS'0RNCS, pages 195-211. Springer, 2009.

[113] B. Jonsson and K. G. Larsen. Specification and refinementobiapilistic processes. In
LICS, pages 266-277. IEEE Computer Society, 1991.

[114] J. Katoen, D. Klink, M. Leucker, and V. Wolf. Three-valuedthction for continuous-time
Markov chains. INCAV, volume 4590 o£. NCS pages 311-324. Springer, 2007.

[115] Robert Keller. Towards a theory of speed-independent medUlEEE Transactions on
ComputersC-23(1):21-33, January 1974.

[116] RobertKeller. A fundamental theorem of asynchronous parlaputation.Lecture Notes
in Computer Scien¢®4:103-112, 1975.

[117] J. Klein, B. Caillaud, and L. Hélouét. Merging scenariosPtnceedings of the Ninth Inter-
national Workshop on Formal Methods for Industrial Critical Systemd]E&S’04, volume
133 of Electronic Notes in Theoretical Computer Scignpages 193-215, Linz, Austria,
2005.

[118] H. Kopetz. Real-Time Systems, Design Principles for Distributed Embedded Applications
Kluwer Academic Publishers, 1997.

[119] K. G. Larsen. Modal specifications. KVMS volume 407 ofLNCS pages 232-246.
Springer, 1989.

[120] K. G. Larsen and A. Skou. Compositional verification of probaitiilisrocesses. ICON-
CUR volume 630 olLNCS pages 456-471. Springer, 1992.

[121] K. Guldstrand Larsen, U. Nyman, and A. Wasowski. On modaheefient and consistency.
In CONCUR volume 4703 o£.NCS pages 105-119. Springer, 2007.

[122] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. MdiodO automata for
interface and product line theories. Pnogramming languages and systems, 16th European
Symposium on Programming, ESOP 200&ges 64-79, 2007.

[123] Edward A. Lee and Alberto L. Sangiovanni-Vincentelli. A framekimr comparing models
of computation. IEEE Trans. on CAD of Integrated Circuits and Systehg(12):1217—-
1229, 1998.

[124] Edward A. Lee and Haiyang Zheng. Operational semantics aicglgstems. IrHSCG
pages 25-53, 2005.

[125] Edward A. Lee and Haiyang Zheng. Leveraging synchrotanguage principles for het-
erogeneous modeling and design of embedded systerB818OFT pages 114-123, 2007.

178

[126] T. Lindstrgm. An invitation to nonstandard analysis. In N.J. Cutladdpe Nonstandard
Analysis and its Applicationpages 1-105. Cambridge Univ. Press, 1988.

[127] N. Lopez and M. Nufiez. An overview of probabilistic processehigs and their equiva-
lences. Invalidation of Stochastic Systemwslume 2925 of NCS pages 89—-123. Springer,
2004.

[128] G. Luttgen and W. Vogler. Conjunction on processes: Full attstravia ready-tree seman-
tics. Theoretical Computer Scienc&73:19-40, 2007.

[129] N.Lynchand E. Stark. A proof of the Kahn principle for input/auttputomatalnformation
and Computation82(1):81-92, 7 1989.

[130] Nancy Lynch and Mark R. Tuttle. An introduction to Input/Output auttan@wI-quarterly
2(3), 1989.

[131] S. Mac Lane and G. BirkhoffAlgebra Chelsea Publishing Company, 1967.

[132] Alain Martin. The limitations of delay-insensitivity in asynchronous @its. technical
report CS-TR-90-02, Caltech, 1990.

[133] L. Mazaré. Using unification for opacity properties.Rroc. of the Workshop on Issues in
the Theory of Security (WITS'Q8004.

[134] Pieter J. Mosterman, Justyna Zander, Gregoire Hamon, and Beck@. Towards Com-
putational Hybrid System Semantics for Time-Based Block Diagrams3rdriFAC Con-
ference on Analysis and Design of Hybrid Systems (ADHS[E)es 376—385, Zaragoza,
Spain, September 2009. keynote paper.

[135] Madhavan Mukund. Petri nets and step transition systeimis.J. Found. Comput. Sgi.
3(4):443-478, 1992.

[136] David E. Muller and W. S. Bartky. A theory of asynchronousuits. InProceedings of an
International Symposium on the Theory of Switchipages 204-243. Harvard University
Press, 1959.

[137] M. Najafi and R. Nikoukhah. Implementation of Hybrid Automata in Scictés IEEE
Multi-conference on Systems and Cont&007.

[138] Ulrik Nyman. Modal Transition Systems as the Basis for Interface Theories and Rroduc
Lines PhD thesis, Aalborg University, Department of Computer Science, @bpte2008.

[139] Julien Ouy, Jean-Pierre Talpin, Loic Besnard, and Paul LerBueSeparate compilation of
polychronous specification&lectr. Notes Theor. Comput. S&00(1):51-70, 2008.

[140] D. Potop-Butucaru and B. Caillaud. Correct-by-constructigmelsronous implementation
of modular synchronous specifications Aroceedings of the Fifth International Conference
on Application of Concurrency to System Design, ACSD 22065.

[141] D. Potop-Butucaru, B. Caillaud, and A. Benveniste. Concagrém synchronous systems.

In Proceedings of the International Conference on Application of Coecusr to System
Design, ACSD 2004004.

[142]

[143]

[144]

[145]

[146]

[147]

[148]
[149]

[150]

[151]

[152]

[153]

[154]

179

D. Potop-Butucaru, B. Caillaud, and A. Benveniste. Concagrém synchronous systems.
Research Report 5110, INRIA, feb 2004. Also published as IRI&Arhal Publication
PI-1605.

D. Potop-Butucaru, B. Caillaud, and A. Benveniste. Concuagrém synchronous systems.
Formal Methods in System Desidt8(2), mar 2006.

D. Potop-Butucaru, R. de Simone, and J.-P. Talpin. The synohsohypothesis and syn-
chronous languages. In R. Zurawski, ediftne Embedded Systems Handh@&flo5. CRC
Press.

Dumitru Potop-Butucaru, Robert de Simone, and Yves Sorel. $dacg and sufficient con-
ditions for deterministic desynchronization. Proceedings of the 7th ACM & IEEE inter-
national conference on embedded software, EMSOFT ,2tdiyes 124-133, 2007.

Dumitru Potop-Butucaru, Robert de Simone, Yves Sorel, and-Beare Talpin. From
concurrent multi-clock programs to deterministic asynchronous implementatiofsoc.
of the ninth international conference on application of concurrency ttegyslesign, ACSD
2009 pages 42-51, 2009.

P. Potop-Butucaru and B. Caillaud. Correct-by-constructign@sonous implementation
of modular synchronous specificatiorsindamenta Informatica€8(1):131-159, 2007.

J-B. Raclet. Residual for component specificationszAGS 2007.

Jean-Baptiste RacleQuotient de spécifications pour la réutilisation de composaBRtsD
thesis, Université de Rennes |, december 2007. (In French).

Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benaitadd, and Roberto
Passerone. Why are modalities good for interface theorie®Poln of the 9th International
Conference on Application of Concurrency to System Design (ACSD3@g8es 119-127.
IEEE Computer Society Press, 2009.

Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, BenoitaGd, and Roberto
Passerone. Why are modalities good for interface theories? Resegpoint 8899, IN-
RIA, 2009.

Jean-Baptiste Raclet, Albert Benveniste, Benoit Caillaud, Axaalle and Roberto
Passerone. Modal interfaces: Unifying interface automata and moedeifisptions. In
Proc. 9th International Conference on Embedded Software (EMSOBY)28ages 87-96.
IEEE Computer Society, oct 2009.

Jean-Baptiste Raclet, Albert Benveniste, Benoit Caillaud, Axeajale and Roberto
Passerone. A modal interface theory for component-based ddsignlamenta Informati-
cae 107:1-32, 2011.

P.J. Ramadge and W.M. Wonham. On the supremal controllable laagfi@ggiven lan-
guage.SIAM Journal of Control and Optimizatip25:637—659, 1987.

180

[155] P.J. Ramadge and W.M. Wonham. Supervisory control of a clatis@kte event processes.
SIAM Journal of Control and Optimizatio25:206—-230, 1987.

[156] Ramine Nikoukhah. Hybrid dynamics in Modelica: Should all eventsdiesidered syn-
chronous? IrFirst Internation Workshop on Equation-Based Object Oriented Laggsa
and Tools (EOOLT 2007pages 37—48, Berlin, Germany, 2007.

[157] W. Reisig. Petri nets. IEATCS Monographs on Theoretical Computer Scienckime 4.
Springer, 1985.

[158] N. Rezg, X. Xie, and A. Ghaffari. Supervisory control in deter event systems using the
theory of regions. In R. Boel and G. Stremersch, editbiscrete Event Systems: Analysis
and Contro] pages 391-398. Kluwer Academic Publishers, 2000.

[159] Laurie Ricker and Benoiit Caillaud. Revisiting state-baed modelsyfahssizing optimal
communicating decentralized discrete-event controllersEuropean Control Conference
2009 (ECC’09) Budapest, Hungary, aug 2009.

[160] Laurie Ricker and Benoit Caillaud. Mind the gap: Expanding comnatioic options in
decentralized discrete-event control. 46th IEEE Conference on Decision and Control
New Orleans, LA, USA, 2007.

[161] A. Robinson.Non-Standard AnalysisPrinceton Landmarks in Mathematics, 1996. ISBN
0-691-04490-2.

[162] Heinrich Rust.Operational semantics for timed systems: a non-standard approachito un
form modeling of timed and hybrid systemelume 3456 ofLecture notes in computer
science Springer, 2005.

[163] A. Schrijver.Theory of linear and integer programmingViley, April 1998.

[164] K. Sen, M. Viswanathan, and G. Agha. Model-checking Mar&bo&ins in the presence of
uncertainties. IMACAS volume 3920 of.NCS pages 394-410. Springer, 2006.

[165] M. Singh and M. Theobald. Generalized latency insensitive syshengals architectures.
In Proceedings FMGALS200Risa, Italy, 2003.

[166] E. Stark. Concurrent transition systemBheoretical Computer Scienc4(3):221-269,
1989.

[167] J.-P. Talpin, P. Le Guernic, S. K. Shukla, R. Gupta, and F. Boudormal refinement
checking in a system-level design methodoldgyndamenta Informatica®2(2):243-273,
2004.

[168] J.-P. Talpin, D. Potop-Butucaru, J. Ouy, and B. Caillaud. Coitipoal synthesis of latency-
insensitive systems from multi-clocked synchronous specifications.aRdseeport 1730,
IRISA, jun 2005.

[169] J.-P. Talpin, D. Potop-Butucaru, J. Ouy, and B. Caillaud. Frorii+olocked synchronous
processes to latency-insensitive modules (short paper)Prdoeedings of the fifth ACM

181

International Conference on Embedded Software (EmguHt)es 282—-285, Jersey City, NJ,
USA, sep 2005. ACM Press.

[170] A. Tarski. A Decision Method for Elementary Algebra and Geome®gND Corp., 1948.

[171] A. Tarski. A lattice-theoretical fixpoint theorem and its applicatio®acific Journal of
Mathematics5:285-309, 1955.

[172] J. Tretmans. Test generation with inputs, outputs and repetitiveagriee. Journal on
Software — Concepts and Tool¥(3):103-120, 1996.

[173] Jan Tijmen Udding. A formal model for defining and classifying detesensitive circuits
and systemsDistributed Computingl(4):197-204, 1986.

[174] R.J. van Glabbeek and W.P. Weijland. Branching time and abstractioisimulation se-
mantics. InProc. IFIP Congresspages 613—618. North Holland / IFIP, 1989.

[175] W. Vogler. Concurrent implementation of asynchronous transitistesns. InProceedings
of ICATPN’99 volume 1639 oL NCS pages 284-303. Springer-Verlag, 1999.

[176] Michael Winokur, Susanne Graf, and Bernhard Josko. @ontrased system design - the
speeds approach. Proceedings of the 2008 INCOSE International Symposigfs.

[177] A. Yakovlev. Designing control logic for counterflow pipeline pessor using petri nets.
Formal Methods in System Desigi2:39-71, 1998.

[178] Hitoshi Yanami and Hirokazu Anai. Synrac: a maple toolbox for isgiveal algebraic
constraints ACM Communications in Computer Algeb# (3):112-113, September 2007.

[179] K. Yunand D. Dill. Automatic synthesis of extended burst-mode circlHSE Transactions
on Computer-Aided Design of Integrated Circuits and Systég(®):101-132, feb. 1999.

	Introduction
	Introduction
	Modular design of embedded systems with interface theories
	Introduction
	A quick review of industry needs
	Anatomy of an interface theory
	A variety of interface theories

	Analysis and design of heterogeneous systems
	Synthesis and control of concurrent systems
	organization of the document

	I Interface Theories for System Design
	Modal interfaces
	Introduction
	Modal specifications
	The Framework
	Multiple Alphabets
	Implementation and refinement
	Operations on modal specifications

	Interface Automata
	On modal Interfaces
	Profiles
	The framework of modal interfaces
	Operations on modal interfaces
	On compatibility for modal interfaces

	Conclusion and future work

	Constraint Markov Chains
	Introduction
	Constraint Markov Chains
	Consistency, Refinement and Conjunction
	Consistency
	Refinement
	Conjunction

	Compositional Reasoning
	Deterministic CMCs
	Constraints and Decidability
	Related Work and Concluding Remarks

	II Heterogeneous Systems
	Asynchronous Implementation of Synchronous Specifications
	Introduction
	Informal discussion of the issues
	Previous work
	Contribution
	Outline

	The model
	Variables and labels
	Traces
	Generalized concurrent transition systems
	I/O causality. Channels and clocks
	Synchronous transition systems
	Synchronous and asynchronous composition
	Product states and product traces
	Projection operators. Traces of a GALS system

	Modelling and correctness of GALS implementations
	Examples
	Formal correctness criterion
	Modeling issues

	Correct desynchronization criteria
	Microstep weak endochrony
	Comparison with macrostep Weak Endochrony
	Comparison with related models
	Correctness results

	Conclusion. Future work
	Future work

	The Non-Standard Semantics of Hybrid Systems
	Introduction
	Non-standard analysis
	Construction of non-standard domains
	Non-standard reals and integers
	Integrals and differential equations
	Semantic domain for hybrid systems

	The SimpleHybrid Formalism
	Non-standard semantics
	The semantics
	Back to the examples

	Constructive semantics
	Off-the-shelf compilers
	Hitting balls example
	Experimental results
	Using Simulink
	Using the Sundials-based Prototype

	Related work
	Conclusion

	III Synthesis and Control of Concurrent Systems
	Distributing finite automata through Petri net synthesis
	Introduction
	The Petri Net Synthesis Problem
	Regions
	Representation Theorem

	A Polynomial Time Synthesis Algorithm
	Computing Tensions
	Solving the Separation Problems

	Adding Distribution Constraints
	Re-examining states separation
	Re-examining event/state separation

	From Distributable Nets to Distributed Automata
	Simple Distribution Scheme
	Optimized Distribution Scheme

	Case Studies in Distributing Reactive Automata
	Mutual Exclusion
	A Simplified INRES Protocol

	Conclusion

	Concurrent secrets
	Introduction
	Secrets, concurrent secrets, and the control problem
	Maximal permissive control enforcing concurrent opacity
	A case where the closure ordinal of K(,S) is transfinite
	A case where Sup K(L,S) is not regular

	Control enabling and -trees
	Concurrent secrets with regular opacity control
	conclusion

