
HABILITATION À DIRIGER DES RECHERCHES

présentée devant

L’Université de Rennes 1
Spécialité : informatique

par

Benoît Caillaud

Analyse, contrôle et synthèse des systèmes concurrents
Analysis, control and synthesis of concurrent systems

Contents

1 Introduction 5
1.1 Introduction. 5
1.2 Modular design of embedded systems with interface theories. 7

1.2.1 Introduction. 7
1.2.2 A quick review of industry needs. 7
1.2.3 Anatomy of an interface theory. 8
1.2.4 A variety of interface theories. 11

1.3 Analysis and design of heterogeneous systems. 11
1.4 Synthesis and control of concurrent systems. 12
1.5 organization of the document. 13

I Interface Theories for System Design 15

2 Modal interfaces 17
2.1 Introduction. 18
2.2 Modal specifications. 20

2.2.1 The Framework. 20
2.2.2 Multiple Alphabets. 21
2.2.3 Implementation and refinement. 22
2.2.4 Operations on modal specifications. 24

2.3 Interface Automata. 26
2.4 On modal Interfaces. 28

2.4.1 Profiles . 28
2.4.2 The framework of modal interfaces. 29
2.4.3 Operations on modal interfaces. 29
2.4.4 On compatibility for modal interfaces. 30

2.5 Conclusion and future work. 35

1

2

3 Constraint Markov Chains 37
3.1 Introduction. 37
3.2 Constraint Markov Chains. 39
3.3 Consistency, Refinement and Conjunction. 42

3.3.1 Consistency. 42
3.3.2 Refinement. 43
3.3.3 Conjunction. 44

3.4 Compositional Reasoning. 44
3.5 Deterministic CMCs . 46
3.6 Constraints and Decidability. 48
3.7 Related Work and Concluding Remarks. 49

II Heterogeneous Systems 51

4 Asynchronous Implementation of Synchronous Specifications 53
4.1 Introduction. 55

4.1.1 Informal discussion of the issues. 56
4.1.2 Previous work . 57
4.1.3 Contribution . 58
4.1.4 Outline . 59

4.2 The model. 59
4.2.1 Variables and labels. 59
4.2.2 Traces. 60
4.2.3 Generalized concurrent transition systems. 61
4.2.4 I/O causality. Channels and clocks. 62
4.2.5 Synchronous transition systems. 63
4.2.6 Synchronous and asynchronous composition. 64
4.2.7 Product states and product traces. 65
4.2.8 Projection operators. Traces of a GALS system. 66

4.3 Modelling and correctness of GALS implementations. 67
4.3.1 Examples. 67
4.3.2 Formal correctness criterion. 70
4.3.3 Modeling issues . 71

4.4 Correct desynchronization criteria. 72
4.4.1 Microstep weak endochrony. 72
4.4.2 Comparison with macrostep Weak Endochrony. 77
4.4.3 Comparison with related models. 78
4.4.4 Correctness results. 80

4.5 Conclusion. Future work. 83

3

4.5.1 Future work. 83

5 The Non-Standard Semantics of Hybrid Systems 85
5.1 Introduction. 86
5.2 Non-standard analysis. 89

5.2.1 Construction of non-standard domains. 90
5.2.2 Non-standard reals and integers. 91
5.2.3 Integrals and differential equations. 91
5.2.4 Semantic domain for hybrid systems. 94

5.3 The SimpleHybrid Formalism. 94
5.4 Non-standard semantics. 97

5.4.1 The semantics. 97
5.4.2 Back to the examples. 98

5.5 Constructive semantics. 99
5.6 Off-the-shelf compilers. 102
5.7 Hitting balls example. 103
5.8 Experimental results. 104

5.8.1 Using Simulink. 104
5.8.2 Using the Sundials-based Prototype. 107

5.9 Related work . 109
5.10 Conclusion . 110

III Synthesis and Control of Concurrent Systems 115

6 Distributing finite automata through Petri net synthesis 117
6.1 Introduction. 118
6.2 The Petri Net Synthesis Problem. 120

6.2.1 Regions. 121
6.2.2 Representation Theorem. 125

6.3 A Polynomial Time Synthesis Algorithm. 127
6.3.1 Computing Tensions. 128
6.3.2 Solving the Separation Problems. 130

6.4 Adding Distribution Constraints. 133
6.4.1 Re-examining states separation. 135
6.4.2 Re-examining event/state separation. 136

6.5 From Distributable Nets to Distributed Automata. 136
6.5.1 Simple Distribution Scheme. 136
6.5.2 Optimized Distribution Scheme. 139

6.6 Case Studies in Distributing Reactive Automata. 142

4

6.6.1 Mutual Exclusion. 143
6.6.2 A Simplified INRES Protocol. 145

6.7 Conclusion . 148

7 Concurrent secrets 153
7.1 Introduction. 153
7.2 Secrets, concurrent secrets, and the control problem. 155
7.3 Maximal permissive control enforcing concurrent opacity. 156

7.3.1 A case where the closure ordinal ofK(•,S) is transfinite. 157
7.3.2 A case whereSupK(L,S) is not regular 158

7.4 Control enabling andω-trees . 158
7.5 Concurrent secrets with regular opacity control. 164
7.6 conclusion. 168

Chapter 1

Introduction

Résumé : Mes travaux de recherche ont pour principal objet la réalisation par des méthodes
effectives des systèmes réactifs et répartis, en partant de spécificationsde haut niveau, partielles
et hétérogènes. Je me suis attaché à concenvoir des méthodes, des algorithmes et des outils per-
mettant la conception ou la synthèse de logiciel réactif à partir de la combinaison de plusieurs
spécifications, décrivant le comportement attendu du système, selon plusieurs points de vues : fonc-
tionnel (synchronisation, conflit, communication), contrôle (sûreté, atteignabilité, vivacité), archi-
tecturaux (placement, partitionnemnt, ségrégation), quantitatifs (temps de réponse, coût de com-
munication, disponibilité, fiabilité). Mes travaux de recherche se déclinentselon trois axes détaillés
dans les parties suivantes : (I) conception par contrats, théorie des interfaces modales (chapitre2)
et stochastiques (chapitre3) ; (II) systèmes hétérogènes, réalisations partiellement asynchrones
de spécifications synchrones (chapitre4) et modélisation hybride en utilisant des nombres réels
non-standards (chapitre5) ; (III) synthèse et contrôle des systèmes concurrents et communicants
(chapitres6 et7).

1.1 Introduction

My research interests cover the realization by algorithmic methods of reactive and distributed
systems from partial and heterogeneous specifications. I have contributed to the design of meth-
ods, algorithms and tools capable of synthesizing reactive software fromone or several incomplete
descriptions of the system’s expected behavior, regarding functionality (synchronization, conflicts,
communication), control (safety, reachability, liveness), deployment architecture (mapping, par-
titioning, segregation), or even quantitative performances (response time, communication cost,
throughput).

These techniques are better understood on fundamental models, such asautomata, Petri nets,
event structures, their timed or stochastic extensions. The results obtainedon these basic models

5

6

are then adapted to those realistic but complex models commonly used to design embedded and
telecommunication systems.

My scientific objectives can be summarized as follows:

A focus on a precise type of applications:The design of real-time embedded software to be de-
ployed over dedicated distributed architectures. Engineers in this field face two important
challenges. The first one is related to system specification. Behavioral descriptions should
be adaptable and composable. Specifications are expressed as requirements on the system
to be designed. These requirements fall into four categories: (i) functional (synchroniza-
tion, conflict, communication), (ii) control (safety, reachability, liveness), (iii) architectural
(mapping, segregation) and (iv) quantitative (response time, communicationcost, through-
put, etc). The second challenge is the deployment of the design on a distributed architecture.
Domain-specific software environments, known asmiddlewareor real-time operating sys-
temsor communication layers, are now part of the usual software design process in industry.
They provide a specialized and platform-independent distributed environment to higher-level
software components. Deployment of software components and servicesshould be done in
a safe and efficient manner.

A specific methodology: The development of methods and tools which assist engineers since the
very first design steps of reactive distributed software. The main difficulty is the adequacy
of the proposed methods with standard design methods based on componentsand model
engineering, which most often rely on heterogeneous formalisms and require correct-by-
construction component assembly.

A set of scientific and technological foundations:Those models and methods encompassing (i)
the distributed nature of the systems being considered, (ii) true concurrency and the system
openness to a non-deterministic or even stochastic environment, and (iii) real-time.

My contributions consist in methods, algorithms and tools producing distributedreactive soft-
ware from partial heterogeneous specifications of the system to be synthesized (functionality, con-
trol, architecture, quantitative performances). This means that severalheterogeneous specifications
(for instance, sequence diagrams and state machines) can be combined, analyzed (are the specifica-
tions consistent?) and mapped to lower-level specifications (for instance,communicating automata,
or Petri nets).

The scientific approach of my research work begins with a rigorous modeling of problems and
the development of sound theoretical foundations. This not only allows to prove the correctness
(functionality and control) of the proposed transformations or analysis; but this can also guarantee
the optimality of the quantitative performances of the systems produced with ourmethods (com-
munication cost, response time).

Synthesis and verification methods are best studied within fundamental models, such as au-
tomata, Petri nets, event structures, synchronous transition systems. Then, results can be adapted
to more realistic but complex formalisms, such as those developed in the realm ofmodel-based
design(for instance the SysML based HRC formalism designed during the SPEEDSEuropean

7

project [176, 68]). My research work is divided in three tracks reviewed below: Interface theories
supporting modular methods in embedded system design; Analysis and designof heterogeneous
systems; Synthesis and control of concurrent systems.

1.2 Modular design of embedded systems with interface theories

1.2.1 Introduction

The design of reusable components calls for rich specification formalisms, with which the
interactions of a component with its environment combines expectations with guarantees on its
environment. These are captured either byassume/guarantee contracts[28, 31], or by automata-
theoretic formalisms such as interface automata [78]. In a recent work [149, 148, 150, 152], we
have shown that both approaches can be unified in the realm of the modal interface algebra. In this
context, we have investigated questions related to the composition and refinement of system-level
and component-level requirements captured either as assume/guarantee contracts or modal speci-
fications. This has helped up to characterize the generic properties that an interface theory should
have in order to support modular design methods, including top-down and bottom-up approaches
and arbitrary combinations of the two, as it is often the case in industrial practice.

1.2.2 A quick review of industry needs

In software engineer’s literature, the termcontract refers to the set of specifications that de-
scribe what a system should guarantee under some assumption. Nowadays, OEM perform system
design and integration by importing/reusing entire subsystems provided by equipment suppliers. It
is crucial that the subsystems are designed according to some rules; whichhighlights the impor-
tance of providing good notions of contracts. According to our understanding of industrial needs,
gained during the SPEEDS European project [68, 176], the following list of requirements applies
to the notions ofcontractandinterfacein the context of Embedded Systems.

Contracts as legal bindings

Complex embedded and reactive systems are generally developed under amulti-layered OEM-
supplier chain. Hence, a contract-based methodology should offer provision for formalizing the
technical part of contractual relations. This should be achieved by formalizing, for a considered
subsystem: 1/ its context of use (assumptions), and 2/ what is expected from the subsystem (guar-
antees).

Making assumptions and guarantees explicit enables design in isolation and facilitates maturity
assessment of the system under development. Contracts as legal bindingsis also relevant — with a
milder understanding of the term “legal” — for the development of differentsubsystems or different
aspects of the system, by different teams of the same company.

8

Component based development of complex systems

Complexity can be addressed by decomposing systems into components and along different
aspects. The consequences of this can be articulated as follows.

1. When developed under a contract-based methodology, subsystems orcomponents should
be designable in isolation, by including the needed information regarding possible future
contexts of use. Subsystems or components should be substitutable to their specifications.
Moreover, their integration should raise no problem.

2. Large systems are concurrently developed for their differentaspectsor viewpointsby dif-
ferent teams using different frameworks and tools. Examples of such aspects include the
functional aspect, the safety or reliability aspect, the timing aspect (which is central in both
time-triggered and event-driven multi-tasking models of computation and communication),
and memory and power aspects. Each of these aspects requires specificframeworks and tools
for their analysis and design. Yet, they are not totally independent but rather interact. The
issue of dealing with multiple aspects or multiple viewpoints is thus essential. This implies
that several contracts are associated with a same system, sub-system, or component, namely
at least one per viewpoint. These contracts are to be interpreted in a conjunctive way.

3. The need for supporting conjunctive contracts also follows from the current practice in
which early requirement capture relies on Doors or even Excel for collecting many indi-
vidual requirements. These requirements typically consist of English text, semi-formal lan-
guages [48] whose sentences are translatable into predefined behavioral patterns, or even
graphical scenario languages [73, 110].

Design processes and systems architectures

It is highly desirable that designing by contracts has the mildest possible impact on the design
flow and on the possible choices regarding specification and system architectures — each OEM
has its own design flow that is part of its competitive advantage. Contract-based design should
support top-down and bottom-up navigation between mixed architectures ofsub-systems or com-
ponents described either as sets of contracts or as implementations. Such architectures must be rich
enough to support virtual prototyping with design space exploration. Design by contracts should
also comply with established formalisms or notations used in different steps of the design flow. Dif-
ferent industrial sectors advocate different system architectures, an example is AUTOSAR in the
automotive industry or the proprietary IMA (integrated modular avionics) architectures proposed
independently by the two main aircraft manufacturers.

1.2.3 Anatomy of an interface theory

Because of the requirements detailed above, an interface theory is compliedto satisfy several
generic algebraic properties. First of all, an interface theory deals with objects of two sorts:Inter-
facesthat are used to capture system-/component-wide requirements andimplementations, which

9

are actual realizations, or models of them, that satisfy the requirements captured by an interface. In
most of existing works,transition systems[5], formal languages and their weighted, timed or prob-
abilistic extensions are used to define implementations. However, for the time being, we consider
implementations as abstract objects and review the expected algebraic properties of interfaces. We
assume that we are given asatisfactionrelation relating implementations to interfaces. Imple-
mentations are denoted byM,N, . . ., while interfaces are denoted byC,D, The satisfaction
relation is denoted by|= and writeM |= C whenever implementationM satisfies interfaceC.

The satisfaction relation subsumes a refinement preorder relation on interfaces. InterfaceC
refines interfaceD if and only if the set of implementations ofC is included in the set of imple-
mentations ofD:

C ≤ D iff ∀M, M |= C ⇒M |= D

Refinement is the corner-stone of all interface theories found in the literature [78, 30, 31, 138,
122, 121], including the two theories presented in chapters2 and3 and their corresponding original
publications [150, 152, 153, 57]. However, refinement is a semantic relation that turns out to be
undecidable or untractable, in a few instances of interface theories. There are even cases where the
decidability of the refinement relation is unknown. For all these reasons, itmay be necessary to
give up completeness (the implication(∀M, M |= C ⇒ M |= D) ⇒ C ≤ D), at the benefit
of decidability and computational complexity. An alternative approach is to restrict interfaces to a
sub-class where refinement is not only decidable but can be checked with a reasonable computa-
tional complexity. In our work on modal interfaces and constraint Markovchains, we have resorted
to this this second approach and assumed interfaces to be deterministic.

Methodological requirements call for supporting conjunctions of interfaces. Some theories
provide a conjunction operator for this purpose, but some theories do not (interface automata and
general modal transition systems, for instance). In our work, the conjunction operator is instrumen-
tal to the theories we have proposed, whether they are assume/guaranteecontracts, modal interfaces
or constraint Markov chains. This operator satisfies the properties of alogical conjunction opera-
tors:

∀M,M |= C ∧D ⇐⇒ M |= C andM |= D

To reflect the hierarchical decomposition of the system into sub-systems and components, im-
plementations on one hand, and interfaces on the other hand, must be equipped with commutative
and associativestructural compositionoperators that we denote by× and⊗, respectively. The
parallel compositionoperator× applies to implementations and often represents a partially syn-
chronized product of transition systems, or the set theoretic intersection of two formal languages.
Remark that concerning the probabilistic framework presented in chapter3, parallel composition is
defined thanks to a very strong assumption of stochastic independence. Here, we consider thepar-
allel compositionas an abstract commutative and associative internal composition operator.The
counter-part of parallel composition at the level of interfaces is the product operator⊗. Product

10

C ⊗ D is the least interface capturing all possible pairwise parallel compositions ofimplementa-
tions of the two interfacesC andD:

C ⊗D = min{X|∀M,N, M |= C andN |= D impliesM ×N |= X}

In essence, produtcC ⊗ D is the strongest interface capturing all possible parallel composi-
tions of implementations ofC andD. Hence, the product operator allows for independent im-
plementability, meaning that, given a decompositionC1 ⊗ C2 ≤ D, interfacesC1 andC2 can be
realized independently. Given anyM1 |= C1 and anyM2 |= C2,M1 ×M2 |= D.

Assume/guarantee contract reasoning, component reuse and incremental design methods call
for a third composition operator. Indeed, an assume/guarantee contract(A,G) captures all im-
plementations that satisfyG under the assumption thatA holds. IfA andG are logical proposi-
tional formulae, then the contract should be interpreted as the logical implication A ⇒ G. This
explains why in the language theoretic assume/guarantee contracts developed for the SPEEDS
project [30, 31], a contract is identified to its maximal implementationM(A,G) = G ∪ ¬A. In
the case of modal interfaces, contract(A,G) should be understood as the residual (or quotient)
modal interface(G ⊗ A)/A. This can be generalized by assuming that interface theories admit a
residuation operator/ with the following property:

C/D = max{X|D ⊗X ≤ C}

Thanks to this operator, one can kill two birds with one stone. Indeed, residuation can be ap-
plied in the context of component reuse. Assume an existing designM is to be reused in order
to realize interfaceC. For complexity reasons, but also perhaps in order to protect intellectual
property,M is only known through its more abstract interfaceD. In essence,M is an arbitrary im-
plementation such thatM |= D. The designer has to complete his design with an implementation
N that acts as an adapter ofM so thatM ×N |= C. SinceM is not revealed to the designer, his
only resort is to reduce the design problem to the construction of aN such thatN |= C/D.

In a similar way residuation is instrumental to incremental design methods where asystem-
level interfaceC0 is realized by a set of component-level interfacesD1 . . . Dn, resulting from a
sequence of design steps:

C1 = C0/D1

C2 = C1/D2
...

Cn−1 = Cn−2/Dn−1

Dn = Cn−1

This completes the abstract definition of an interface theory: Satisfaction, refinement, product,
conjunction and residuation are the five main constituents of an interface theory. There are however
many possible instances of interface theories.

11

1.2.4 A variety of interface theories

We have explored four of interface theories, namely language theoretic assume/guarantee con-
tracts [28], probabilistic assume/guarantee contracts [83, 81], modal interfaces [151, 152, 153]
(presented in Chapter2) and constraint Markov chains [57] (presented in Chapter3).

Inspired by the methodological requirements and the contract-based modeling formalism de-
veloped in the realm of the SPEEDS European project (2006–2010), themodal interface theory
unifies R. Alur’s and Th. Henzinger’s Interface Automata [78] and of J.-B. Raclet’s Modal Speci-
fications [150, 152]. This chapter is based on a paper to appear in Fundamenta Informaticae [153].

An implementation of the modal interface algebra is currently being developed.The InterSMV
tool extends the syntax of the NuSMV model-checker and is based on symbolic (MTBDD) rep-
resentations of the set of realizations of a modal interface. InterSMV allows to verify (check for
the consistency, satisfaction or refinement) compositions of modal-interfaces or assume/guarantee
contracts

Constraint Markov chains are an attempt to transpose the principles of interface theories to the
stochastic setting of discrete time Markov chains. This is achieved by considering a generaliza-
tion of Markov Chains, where probability distributions are not given by extension, but rather, as
solutions of a set of constraints.

Remark that the latter theory is not a proper interface theory, as the existence of residuals is
an open problem. Indeed, it is not possible to mimic the construction of residuals used in modal
interfaces and the construction of constraint Markov chain residuals seems a forlorn hope.

Publications related to this track:[57], [153], [83], [81],[152], [150], [28], [117], [31], [56],
[80], [151], [82], [24]

1.3 Analysis and design of heterogeneous systems

This track contributes to the extension along two orthogonal dimensions of thewell-established
synchronous programming paradigm. Research in this track has been fueled by the challenge
embedded system designers have to face in order to reduce design costs: The use of a single
paradigm from system level engineering, downto the deployment of software over a distributed
asynchronous architecture.

Synchronous programming has proved to be an appropriate paradigm for the design and im-
plementation of control and signal processing hardware/software for abroad range of applications
including plant supervision, transport vehicle control, automated production systems and consumer
electronics. Howether, It suffers from a very significant shortcoming: The compilation of syn-
chronous programs into distributed software leads to slow and inefficient implementations. The
root cause of this inefficiency comes from the need to recreate synchrony, at the expense of a
high communication burden. However, synchrony is nothing more than an abstraction that helps
engineers to write correct programs and understand how their programsbehave. Relaxing syn-
chrony is often a necessary step towards efficient distributed implementations. Chapter4 presents

12

a theory where both synchronous systems, and particular asynchronous systems (so-called weak-
synchronous systems) can be expressed, combined, analyzed and transformed. Using the properties
of weak-endochrony and weak-isochrony, we have characterizeda decidable class of synchronous
systems that can be desynchronized safely, without any need for additional communication. This
work generalizes lattency insensitive circuits [59, 165] and embraces a larger class of systems, with
improved asynchrony and less costly communication.

Synchronous programming can be applied earlier at system level design,when a model of the
system needs to be build and analyzed. Hybrid modeling plays an important role at this stage
of design. Control systems have to be analyzed in the context of a continuous mechanical/elec-
trical/hydraulic environment. In this context, synchrony is implied by the laws ofphysics. This
explains why hybrid modelers such as Simulink1 or Scicos [58] are based on this paradigm. Unfor-
tunately, some of them suffer from a lack of formal semantics and designers have to cope with the
extreme sensitivity of simulation tools to the correct parametrization of the differential equation
solvers. However, our focus is on another important aspect of hybridsystem’s semantics: Syn-
chrony and causality between discrete events. Indeed, industry standard tools such as Simulink
or Modelica do not handle event simultaneity very well. This leads to simulation artifacts which
prediction and analysis actually require an in-depth knowledge of the hybrid compiler internals.
A constructive semantics for hybrid systems, proceeding by successive infinitesimal time steps, is
presented in Chapter5. It is based on non-standard analysis, where infinitely many non-standard
real numbers are infinitely close to any given real number. This work is not the first attempt to use
non-standard analysis in the context of timed or hybrid systems [162, 40] or to analyze causality
and synchrony in reactive systems [95]. However, it is the first time a non-standard semantics is
used to address hybrid language design and compilation issues.

Publications related to this track:[30], [147], [143], [23], [19], [20], [140], [74], [141], [17],
[18], [21], [168], [142], [22]

1.4 Synthesis and control of concurrent systems

We have explored various techniques to synthesize optimal networks of communicating au-
tomata. One of them is based on linear-algebraic Petri-net synthesis algorithms, implemented in
the SYNET tool [9]. Based on this journal article, Chapter6 details how distributed protocols can
be synthesized using Petri-net synthesis. The key idea is to decompose thesynthesis problem in
two steps: Given the specification of a protocol as a finite automaton, (i) synthesize a distributable
net, that is a Petri net where places and transitions are mapped to locations of a distributed ar-
chitecture, and (ii) derive a set of communicating automata from the distributable net. While the
second step is automatic and straightforward, the first step is in essence a computer assisted design
task, where the distributed Petri-net synthesis algorithm helps the designerto refine the protocol
specification into a graph isomorphic to the marking graph of a distributable net.The existence and

1. http://www.mathworks.com/products/simulink/

http://www.mathworks.com/products/simulink/

13

the automated computation of such a refinement is largely an open problem. SeeSection6.6.2for
a discussion of the issue.

We have explored the application of control-synthesis techniques in the context of information
system security. We have considered the problem of optimal control so that secret information (a
language of system trajectories) are concealed within a system under partial observation from a set
of agents (potential attackers), meaning that no agent can gain knowledge about these secrets [11].
A system capable of concealing secret informations is said to be opaque. Opacity has been in-
troduced by Mazaré and coauthors in [133, 47], where they consider the verification of opacity
properties. We have followed a different path, by considering the enforcement of concurrent opac-
ity properties as a supervisory control problem, where the issue is to compute, an optimal control
enforcing a set of opacity properties on a system [7, 8, 11]. This is detailed in Chapter7. This
chapter is based on our JDEDS paper [11].

Publications related to this track:[55], [109], [11], [9], [50], [51], [159], [160], [8], [15], [54],
[52], [7], [53], [49]

1.5 organization of the document

The document is composed of three independent parts: PartI on interface theories, PartII on
heterogeneous system modeling, and PartIII on supervisory control. Most chapters are indepen-
dent and self-contained. Only Chapter3 is not fully self-contained and is best understood after
reading Chapter2.

14

Part I

Interface Theories for System Design

15

Chapter 2

Modal interfaces

Résumé :Les méthodes d’ingénierie des systèmes employées dans l’industrie ontconnu ces der-
nières années des évolutions sensibles, notament en adaptant des techniques de conception par
composants issues de l’ingénierie du logiciel. Ces méthodes offrent d’une part une plus grande
flexibilité du processus de conception, et permettent d’autre part des activités de conception paral-
lèles. Les concepteurs sont alors amenés à modéliser, en cours de conception, les hypothèses faites
sur l’environnement d’un composant et par la suite, à vérifier le bienfondé de ces hypothèses. Il est
donc primordial de pouvoir modéliser non seulement les propriétés comportementales du systèmes
à réaliser, mais aussi les hypothèses sous lesquelles ces propriétés sont énoncées. Ceci permet de
repousser ultérieurement la réalisation des composants, pour permettre une analyse de la compo-
sition de ces composants, reposant uniquement sur la manipulation d’abstractions de composants,
appelées interfaces.

Les concepteurs sont donc amenés à manipuler deux sortes d’objets,(i) des réalisations (de
composants) et (ii) leurs interfaces. Réalisations et interfaces sont reliées par une relation de satis-
faction, qui définit quelles sont les réalisations correctes d’une interface. La relation de satisfaction
permet de définir une relation de préordre sur les interfaces, dite relationde raffinement. La néces-
sité de pouvoir composer les modèles de conception implique que les interfaces doivent pouvoir
être combinées selon plusieurs opérateurs de composition : la conjonctiondes interfaces est re-
quise pour pouvoir combiner les différents points de vues d’un même composant. La composition
parallèle et la définition des architectures requiert que les interfaces puissent être composées à
l’aide d’une operation de produit. Enfin, une opération de résiduation des interfaces est requise
pour pouvoir (i) définir des contrats hypothèses/garanties et (ii) recourir à des méthodes de concep-
tion incrémentale, où il s’agit de réduire par étapes succéssives un problème de conception en une
suite de problèmes de moindre difficulté.

Il existe de nombreuses instances de théories d’interfaces. L’une d’entre elle est présentée dans
ce chapitre, les interfaces modales, qui généralisent à la fois les spécifications modales, les contrats
hypothèse/garantie et les automates d’interfaces. Ce chapitre aborde demanière approfondie les
propriétés algébriques générales des théories d’interfaces , celles desinterfaces modales, les rela-

17

18

tions avec d’autres formalismes apparentés (contrats et automates d’interfaces) et les implications
quant à leur utilisation comme outil support d’une méthode de conception en ingénierie des sys-
tèmes.

2.1 Introduction

Nowadays, systems are tremendously big and complex, resulting from the assembling of sev-
eral components. These many components are in general designed by teams, working indepen-
dently but with a common agreement on what the interface of each componentshould be. As a
consequence, mathematical foundations that allow to reason at the abstract level of interfaces is a
very active research area. According to our understanding of industrial needs, an interface theory
is at least subject to the following requirements:

1. Satisfaction and satisfiability are decidable.Interfaces should be seen as specifications
whose models are its possible implementations. It should thus be decidable whether an
interface admits an implementation and whether a given component implements a given in-
terface.

2. Refinement entails substituability.Refinement allows one to replace, in any context, an in-
terface by a more detailed version of it. Refinement should entail substituabilityof interface
implementations, meaning that every implementation satisfying a refinement also satisfies
the larger interface. For the sake of controlling design complexity, it is desirable to be able
to decide whether there exists an implementation satisfying two different interfaces. This is
calledshared refinement.

3. Encompassing interfaces with dissimilar alphabets.Complex systems are built by combin-
ing subsystems possessing dissimilar alphabets for referencing ports andvariables. It is thus
important to properly handle those different alphabets when combining interfaces.

4. Composition supports independent design.The interface theory should also provide a com-
bination operator on interfaces, reflecting the standard composition of implementations by,
e.g. parallel product. This operation must be associative and commutative to guarantee
independence in the development. Depending on the model, a notion of compatibility for
composition may also be considered, i.e., there can be cases where two systems cannot be
composed.

5. Interfaces are closed under conjunction.It is the current practice that early requirements
capture relies on Doors Databases, or even Excel files containing possibly many textual re-
quirements. Under the current practice, little formal support exists to handle them. Moving
ahead can be envisioned by formalizing the notation used for individual requirements. This
can be, e.g., achieved by relying on so-called semi-formal languages [48], whose sentences
are translatable into predefined behavioral patterns according to several viewpoints. Alterna-
tively, graphical scenario languages could be considered [73, 110]. Composing viewpoints

19

within a given subsystem calls for the support of the concept ofconjunctionof interfaces in
order to combine requirements and check their satisfiability.

6. Interface quotient supports incremental design and component reuse. Last but not least, a
quotienting operation, dual to composition is crucial to perform incremental design. Con-
sider a desired global specification and the specification of a preexisting component; the
quotient specification describes the part of the global specification that remains to be imple-
mented.

Building good interface theories has been the subject of intensive studies(see e.g., [100, 78,
41, 90, 94, 76, 79]). In this chapter we will concentrate on two models: (1)interface automata[78]
and (2)modal specifications[119]. Interface automata is a game semantics based variation of
input/output automata which deals with open systems, their refinement and composition, and put
the emphasis on interface compatibility. Modal specifications is a language theoretic account of
a fragment of the modal mu-calculus logic [92] which admits a richer composition algebra with
product, conjunction, and residuation operators.

In interface automata [78], an interface is represented by an input/output automaton [130], i.e.,
an automaton whose transitions are labeled withinput or outputactions. The semantics of such
an automaton is given by a two-player game: anInput player represents the environment, and an
Outputplayer represents the component itself. Interface automata do not encompass any notion
of model, because one cannot distinguish between interfaces and implementations. Alternatively,
properties of interfaces are described in game-based logics,e.g., ATL [1], with a high-cost com-
plexity.

Refinement between interface automata corresponds to the alternating refinement relation be-
tween games [2], i.e., an interface refines another one if its environment is more permissive whereas
its component is more restrictive. Shared refinement is defined in an ad-hoc manner [85] for a par-
ticular class of interfaces [63]. Contrary to most interfaces theories, the game-based interpretation
offers anoptimistic treatment of composition: two interfaces can be composed if there exists at
least one environment (i.e., one strategy for the Input player) in which they can interact together in
a safe way (i.e., whatever the strategy of the Output player is). This is referred as compatibility of
interfaces.

Modal specifications [119] correspond todeterministic modal automata, i.e., automata whose
transitions are typed withmayandmustmodalities. A modal specification thus represents a set of
models; informally, a must transition is available in every component that implementsthe modal
specification, while a may transition needs not be. The components that implement modal specifi-
cations are prefix-closed languages, or equivalently deterministic automata.

Satisfiability of modal specifications is decidable. Refinement between modal specifications
coincides with models inclusion. Since components can be seen as specifications where all tran-
sitions are typed must (all possible implementation choices have been made), satisfaction is also
expressed via alternating simulation. Conjunction is effectively computed via aproduct-like con-
struction. Combination of modal specifications, handling synchronization productsà la Arnold and

20

Nivat [6], and the dual quotient combinators can be efficiently handled in this setting [149, 148].
Interface automata and modal specifications are incomparable models asmust, mayand in-

put,outputhave orthogonal meanings. Both models have advantages and disadvantages:
– Interface automata is a model that allows to make assumptions on the environment, which is

mainly useful to derive a rich notion for composition. Unfortunately, the model is incomplete
as conjunction, and quotient are not defined for this game-based model.

– Modal specification is a rich language algebra model on which most of requirements for a
good interface theory can be considered. Unfortunately,mayandmustmodalities are not
sufficient to derive a rich notion for composition including compatibility.

It is thus worth considering unification of the frameworks of interface automata and modal
specifications. A first attempt was made by Larsen et al. [122, 138] who consideredmodal in-
terfacesthat are modal specifications whose actions are also typed ininput or outputattributes.
Larsen et al. have proposed a product-like construction allowing to address compatibility of modal
interfaces. Nevertheless contrary to what is claimed by the authors, this composition operator in
[122, 138] is not monotone with respect to the refinement of modal specifications. Thisfails to
ensure that twocompatibleinterfaces may be implemented separately.

The present chapter adds a new stone to the cathedral of results on interface theories by (1)
correcting the modal interface composition operator presented in [122, 138], (2) drawing a com-
plete picture of the modal interface algebra , and (3) pushing even further the comparison between
interface automata, modal automata and modal specifications and modal interfaces.

The rest of the chapter is organized as follows. In Sections2.2and2.3we recap the theory for
modal specifications and interface automata, respectively. In Section2.4, we present the complete
theory for modal interfaces and correct the error in [122, 138]. Finally, in Section2.5, we draw
our conclusion and discuss future extensions for the model of modal interfaces.

2.2 Modal specifications

This section overviews existing results for modal specifications. We start by introducing the
framework, then we discuss the extension to several alphabets and studythe notions of refinement
and implementation. Finally, we present results on combining modal specifications.

2.2.1 The Framework

Following our previous work [150], we will define modal specifications in term of languages,
knowing that they can also be interpreted as deterministic automata whose transitions are typed
with mayandmustmodalities. We propose the following definition.

Definition 2.2.1 A modal specificationis a tupleS = (A,
must ,may), whereA is a finite alphabet and:

must ,may : A∗ 7→ 2A

21

are partial functions satisfying the followingconsistencycondition:

must(u) ⊆ may(u). (2.1)

The fact thata ∈ may(u) means that actiona is allowed after the traceuwhereasa ∈ must(u)
indicates thata is required afteru. By negation,a 6∈ may(u) means thata is disallowed afteru.
The latter is often writtena ∈ mustnot(u). The condition (2.1) naturally imposes that every
required action is also allowed. We shall sometimes writeAS ,mayS , andmustS to refer to the
entities involved in the definition ofS.

When composing specifications, discrepancies between the modal informations carried out by
the specifications may appear. We then considerpseudo-modal specifications, denotedpS; they are
triples satisfying Definition2.2.1with the exception of (2.1). ForpS a pseudo-modal specification,
a wordu ∈ A∗ is calledconsistently specifiedin pS if it satisfies (2.1) andinconsistentotherwise;
modal specifications correspond exactly to the subclass ofconsistentpseudo-modal specifications,
that is pseudo-specifications such that everyu ∈ A∗ is consistently specified.

A similar approach has been developed in [128] for a non-modalprocess algebraic framework
in which a dedicated predicate is used to model inconsistent processes.

For pS = (A,must ,may) a pseudo-modal specification, thesupportof pS is the leastprefix-
closedlanguageLpS such that:(i) ǫ ∈ LpS , whereǫ denotes the empty word; and(ii) u ∈ LpS and
a ∈ may(u) imply u.a ∈ LpS .

2.2.2 Multiple Alphabets

Large systems are composed of many subsystems possessing their own alphabets for ports and
variables. The way those different alphabets are handled when combining subsystems requires
some care.

We start with a series of definitions on languages. LetA andC be two alphabets such that
A ⊆ C. Forv ∈ C∗, theprojectionof v onA (denotedprA(v)) is the word overA obtained from
v by erasing all symbols that do not belong toA. LetL be a language overA, theextensionof L
toC is the languagēCL = {v ∈ C∗ | prA(v) ∈ L}.

Definition 2.2.2 Theshuffle productL1×L2 of two languagesL1 ⊆ A∗
1 andL2 ⊆ A∗

2 is given by

L1 × L2 = Ā(L1) ∩ Ā(L2), whereA = A1 ∪A2.

In modal automata, one has to consider two alphabet extensions: the weak and the strong
extension. We shall see that the extension in use will depend on the operation that is performed on
modal specification [150].

Definition 2.2.3 (weak and strong extensions)Let
pS = (A,mustpS ,maypS) be a pseudo-modal specification and letC ⊇ A.

22

1. Theweak extensionof pS to C is the pseudo-modal specificationpS⇑C = (C,must ,may)
such that∀v ∈ C∗:

{
must(v) = mustpS (prA(v))
may(v) = maypS (prA(v)) ∪ (C −A).

2. Thestrong extensionof pS to C is the pseudo-modal specification̄CpS = (C,must ,may)
such that∀v ∈ C∗:

{
must(v) = mustpS (prA(v)) ∪ (C −A)
may(v) = maypS (prA(v)) ∪ (C −A).

It is easy to show thatL(S⇑C) = L(C̄S) = C̄(LS).

2.2.3 Implementation and refinement

In this section, we study the concepts ofimplementation, refinementandconsistency. We start
with implementation, also calledmodel.

Definition 2.2.4 (implementation) Let pS = (A,must ,
may) be a pseudo-modal specification.

1. Equal Alphabets: A prefix-closed languageI ⊆ A∗ is an implementationof pS , denoted
byI |= pS, if ∀u ∈ I,must(u) ⊆ Iu ⊆ may(u), whereIu = {a ∈ A | u.a ∈ I}.

2. Extended Alphabets:For C ⊇ A, a prefix-closed languageI ⊆ C∗ is aweak implementa-
tion of pS, writtenI |=w

pS, iff I |= pS⇑C holds; it is astrong implementationof pS, written
I |=s

pS, iff I |= pS↑C holds.

Modal specifications are equivalent to the fragment of theµ-calculus called the conjunctiveν-
calculus [92]. Hence, a model for a modal specification is a model for the formula represented by
the specification.

Satisfaction can be related to consistently specified words:

Lemma 2.2.5 If I |= pS, thenI ⊆ LpS holds and every word ofI is consistently specified inpS.
Similarly, ifI |=w

pS or I |=s
pS, thenI ⊆ C̄(LpS) holds and for every wordv ∈ C∗ of I, prA(v)

is consistently specified inpS.

We now switch to the case of modal refinement which extends in a natural manner the classical
notion of bisimulation on automata. We first consider the case where specifications are defined
over the same alphabet:

23

Definition 2.2.6 LetpS1 = (A,must1,may1) andpS2 = (A,must2,may2) be two pseudo-modal
specifications thenpS1 refinespS2, denotedpS1 ≤ pS2, iff for all u ∈ LpS1

:

may1(u) ⊆ may2(u)
must1(u) ⊇ must2(u).

It can be shown that refinement is a preorder relation which implies the inclusion of supports. As a
consequence, any two modal specificationsS1 andS2 such thatS1 ≤ S2 ≤ S1 have equal supports
L = LS1

= LS2
and moreover, for allu ∈ L, may1(u) = may2(u) andmust1(u) = must2(u).

Thus equivalent modal specifications differ only outside of their support; a unique representant
S = (A,must ,may) of equivalence classes of modal specifications can be defined by assuming
that for allu 6∈ LS , must(u) = ∅ andmay(u) = A. Under this assumption, modal refinement is
apartial order relationon modal specifications. In the following, only modal specifications in this
canonicalform are considered.

Definition 2.2.7 Let pS1 = (A1,must1,may1) and pS2 = (A2,must2,may2) be two pseudo-
modal specifications withA1 ⊇ A2 thenpS1 weakly refinespS2 (which is denotedpS1 ≤w

pS2), iff
pS1 ≤ pS2⇑A1

, and itstrongly refinespS2, writtenpS1 ≤s
pS2, iff pS1 ≤ pS2↑A1

.

A pseudo-modal specification can be reduced into a modal specification withpreservation of
its semantic:

Theorem 2.2.8 (consistency)Either a pseudo-modal specificationpS has no model, or there exists
a modal specificationρ(pS) having the same alphabet of actions such thatρ(pS) possesses the same
set of weak and strong implementations:

I |=w
pS ⇔ I |=w ρ(

pS)
I |=s

pS ⇔ I |=s ρ(
pS)

We shall callρ(pS) the reduction ofpS. The detailed construction ofρ(pS) can be found in
[150]. We let⊥ be a particular modal specification that admits no model and letL⊥ be the empty
set.

We conclude the section with the following theorem that relates refinement andimplementa-
tion.

Theorem 2.2.9 (implementation and refinement)

1. Weak and strong implementation and refinement are related as follows:|=s ⊆ |=w and
≤s ⊆ ≤w.

2. Weak and strong modal refinement are both sound and complete w.r.t.weak and strong thor-
ough refinement, respectively:

S2 ≤w S1 ⇔ {I | I |=w S2} ⊆ {I | I |=w S1}
S2 ≤s S1 ⇔ {I | I |=s S2} ⊆ {I | I |=s S1} .

24

As already noticed, modal specifications are equivalent to deterministic modal automata. When
allowing for nondeterminism, the theorem above does not hold as modal refinement is no more
complete [121].

2.2.4 Operations on modal specifications

Consider two modal specificationsS1 = (A1,must1,may1) andS2 = (A2,must2,may2),
we now define theirconjunction, parallel productand quotient. We proceed in two steps: we
first define these operations whenA1 = A2; the case of different alphabets is then handled by
performing a preliminary step of alphabet equalization.

In [150], we argued that alphabet equalization must be different depending onthe considered
operation. Such an extension must beneutral, meaning that it should not constrain what other
interfaces may want to require regarding these extra actions.

Conjunction WhenA1 = A2, theconjunctionS1 ∧ S2 = ρ(S1&S2) whereS1&S2 is defined
by:

mayS1&S2
(u) = may1(u) ∩ may2(u)

mustS1&S2
(u) = must1(u) ∪ must2(u).

(2.2)

Observe that it is not guaranteed thatS1&S2 satisfies (2.1). Hence, we use theorem2.2.8and
apply the reduction operationρ in order to obtain a modal specification.

For the general case whereA1 6= A2, the definition above is applied after an equalization step:
S1 ∧ S2 = S1⇑A ∧ S2⇑A , withA = A1 ∪A2.

Theorem 2.2.10
I |=w S1 ∧ S2 ⇔ I |=w S1 andI |=w S2.

The conjunction betweenS1 andS2 is exactly theirgreatest lower boundfor the weak refine-
ment relation:S1 ∧ S2 is the greatest specification that weakly refines bothS1 andS2.

A current practice in the design of a component is to give several specifications, each of them
describing a particular requirement. The conjunction of these specifications, enables to check the
consistency of these requirements, by deciding satisfiability.

Parallel product WhenA1 = A2, theparallel productS = S1 ⊗ S2 is defined by:

mayS(u) = may1(u) ∩ may2(u)
mustS(u) = must1(u) ∩ must2(u).

(2.3)

The product of two modal specifications always satisfy the consistency condition. Hence, no
reduction is needed. For the general case whereA1 6= A2, the definition above is applied after an
equalization step:S1 ⊗ S2 = ĀS1 ⊗ ĀS2.

25

In an interface theory, it is desirable to be able to develop components in isolation and then to
compose them as expected. This is ensured by the product operation as stated with the following
theorem.

Theorem 2.2.11

1. If S ′
1 ≤s S1 andS ′

2 ≤s S2, thenS ′
1 ⊗ S ′

2 ≤s S1 ⊗ S2.

2. If I1 |=s S1 andI2 |=s S2, thenI1 × I2 |=s S1 ⊗ S2.

3. Regarding supports:LS1⊗S2
= LS1

× LS2
.

Strong refinement has to be used when enlarging the alphabet, as the product is not monotonic
with respect to the weak refinement [150].

Residuation/quotient The operation ofresiduation, also calledquotient, is the adjoint of prod-
uct. Intuitively, the quotient enables to describe a part of a global specification assuming another
part is already realized by some component. IfA1 = A2, then thepseudo-quotientpS = S1 � S2

is defined by:

a ∈ maypS(u) ∩mustpS(u) if a ∈ must1(u)
and a ∈ must2(u)

a ∈ mustpS(u) \maypS(u) if a ∈ must1(u)
and a 6∈ must2(u)

a ∈ maypS(u) \mustpS(u) if a ∈ may1(u)
and a 6∈ must1(u)

a ∈ maypS(u) \mustpS(u) if a 6∈ may1(u)
and a 6∈ may2(u)

a 6∈ maypS(u) ∪mustpS(u) if a 6∈ may1(u)
and a ∈ may2(u).

Due to the second rule,S1 � S2 may have inconsistently specified words. As a consequence, a
reduction operation may be needed and the quotient ofS1 by S2 is S1/S2 = ρ(S1 � S2).
For the general case of two different alphabets, the definition above is applied after an alphabet
equalization step:S1 / S2 = S1⇑A / ĀS2.

We have the following theorems:

Theorem 2.2.12 LetS, S1 andS2 be modal specifications such thatAS2
⊇ AS ⊇ AS1

. We have

S2 ≤s S/S1 ⇔ S1 ⊗ S2 ≤s S.

Theorem 2.2.13Let S, S1 be modal specifications andI2 a prefix-closed language such that
AI2 ⊇ AS ⊇ AS1

, we have

I2 |=s S/S1 ⇔ [∀I1 : I1 |=s S1 ⇒ I1 × I2 |=s S].

26

2.3 Interface Automata

In [78], de Alfaro and Henzinger introducedinterface automata, that are automata whose tran-
sitions are typed withinput andoutput actions rather than with modalities. In this section, we
briefly overview the theory of interface automata and refer the reader to [78, 75] for more details.

Definition 2.3.1 An interface automatonis a tupleP = (X,x0, A,→), whereX is the set of
states, x0 ∈ X is the initial state, A is the alphabet ofactions,and →⊆ X × A × X is the
transition relation.

We decomposeA = A? ⊎A!, whereA? is the set of inputs andA! is the set of outputs. In the rest
of the chapter, we shall often usea? to emphasize thata ∈ A? anda! for a ∈ A!. Observe that
if we consider deterministic interface automata, then we can propose a language-based definition
similar to the one we gave for modal specifications.

The semantic of an interface automaton is given by a two-player game between: aninputplayer
that represents the environment (the moves are the input actions), and anoutputplayer that repre-
sents the component itself (the moves are the output actions). Input and output moves are in essence
orthogonal to modalities. Interface automata are operational models, they donot encompass any
notion of model, and thus neither satisfiability nor consistency, because onecannot distinguish
between interfaces and components implementations. Alternatively, properties of interfaces are
described in game-based logics,e.g., ATL [1], with a high-cost complexity. Refinement between
interface automata corresponds to the alternating refinement relation between games [2], i.e., an
interface refines another one if its environment is more permissive whereas its component is more
restrictive. There is no notion of component reuse and shared refinement is defined in an ad-hoc
manner [85].

The main advantage of the game-based approach appears in the definition of composition and
compatibilitybetween interface automata. Following [75], two interface automata are compos-
able if they have disjoint sets of output actions compose by synchronizing on shared actions and
interleave asynchronously all other actions.

Definition 2.3.2 (Product of interface automata) Let P1 = (X1, x01, A1,→1) andP2 = (X2,
x02, A2,→2) be two interface automata. The product betweenP1 andP2 is an interface automaton
P1 × P2 = (X,x0, A,→), where

– X = X0 ×X1;
– x0 = x01 × x02;
– A = A1 ∪A2, andA? = (A1?∪A2?) \ ((A1?∩A2!)∪ (A2?∩A1!)), andA! = A1!∪A2!;
– → is defined as follows:

– For each actiona ∈ A such thata 6∈ A1 ∩ A2, there exists a transition(x1, y1)
a−→

(x2, y2) iff there exists(x1)
a−→

1
(x2) andy1 = y2 or (y1)

a−→
2
(y2) andx1 = x2.

– For each actiona ∈ A1? ∩ A2?, there exists a transition(x1, y1)
a?−→ (x2, y2) iff there

exists(x1)
a?−→

1
(x2) and(y1)

a?−→
2
(y2).

27

– For eacha ∈ (A1? ∩A2!) ∪ (A2? ∩A1!), there exists a transition(x1, y1)
a!−→ (x2, y2)

iff there exists(x1)
a−→

1
(x2) and(y1)

a−→
2
(y2).

Since interface automata are not necessarily input-enabled1 (which allows to make assump-
tions on the environment), in the productP1 ×P2 of two interface automataP1 andP2, there may
be illegal stateswhere one of the automata may produce an output action that is also in the input
alphabet of the other automaton, but is not accepted at this state. In most ofexisting models for
interface theories that are based on an input output setting, the interfaces would be declared to be
incompatible. This is a pessimistic approach that can be avoided by exploiting the game-based
semantic. Indeed, the game semantic allows to propose an optimistic approach:

“Two interfaces can be composed and are compatible if there is at least oneenviron-
ment where they can work together (i.e., where they can avoid the illegal states).”

Deciding whether there exists an environment where the two interfaces canwork together is
equivalent to checking whether the environment in the product of the interfaces has a strategy to
always avoid illegal states. The set of states from which the environment has a strategy to avoid
the illegal states whatever the component does can be recursively computed as follows.

Let Illegal(P1,P2) is the subset of pairs(x1, x2) ∈ X1 ×X2 such that there exists

either an actiona ∈ A1! ∩A2? with x1
a!−→

1

but not x2
a?−→

2

or an actiona ∈ A2! ∩A1? with x2
a!−→

2

but not x1
a?−→

1

wherex a→ means thatx a→ y for some statey. If illegal states exist in the productP1 × P2,
there may still exist refinements of it that possess no illegal states. Such a refinement specifies how
the use of the resulting product should be restricted in order to guaranteethat illegal states cannot
be reached. As proved in [78], such a largest refinement is obtained by backward pruningP1 ×P2

as follows. ForY ⊆ X, the set of states ofP1 × P2, let pre !(Y) be the subsetZ ⊆ X of statesz
such thatz a!→ y for somey ∈ Y anda! ∈ A! (an output action of the product). Letpre0! (Y) = Y

and, fork ≥ 0, prek+1
! (Y) = pre !

(
prek! (Y)

)
and letpre∗! (Y) =

⋃

k pre
k
! (Y).

The desired pruning consists in:
– Removingpre∗! (Illegal(P1,P2)) fromX, and
– Removing transitions to states inpre∗! (Illegal(P1,P2)), and
– Removing unreachable states.
The result of applying the pruning toP1 × P2 is denoted by

P1 ‖ P2,

1. Recall that a system is input-enabled if it can react to any input action in any moment.

28

and is called thecompositionof the two interface automata.P1 andP2 are calledcompatibleif
applying the pruning leaves the initial state [78].

We recall the two following theorems from [78] that show that interface automata support
independent design and substituability.

Theorem 2.3.3 ([78]) The composition operation is associative and commutative.

Theorem 2.3.4 ([78]) Let P1, P2, andP3 be three interface automata. IfP2 refinesP1 and the
set of shared actionsP2 ‖ P3 of is included in the set of shared actions ofP1 ‖ P3, thenP2 ‖ P3

refinesP1 ‖ P3.

Remark 2.3.5 The operations between interface automata that have been defined so far do not
require an explicit treatment of dissimilar alphabets as it is the case for modal specifications.

2.4 On modal Interfaces

We now present the full theory formodal interfaces. Modal interfaces is an extension of modal
specifications where actions are also typed withinput andoutput. This addition allows to pro-
pose notions of composition and compatibility for modal specifications in the spiritof interface
automata.

The first account on compatibility for modal interfaces was proposed in [122, 138]. In this sec-
tion, we propose a full interface theory for modal interfaces, which includes composition, product,
conjunction, and component reuse via quotient. Moreover, we show thatthe composition operator
proposed in [122, 138] is incorrect and we propose a correction.

We shall start our theory with the definition ofprofileswhich are used to type actions of modal
specifications withinput andoutput:

2.4.1 Profiles

For an alphabet of actionsA, a profile is a functionπ : A 7→ {?, !}, labeling actions with the
symbols? (for inputs) or ! (for outputs). We write “a?” to express that “π(a) =?”, and similarly
for the other case. We denote byA? the set ofa ∈ A such thatπ(a) =? and similarly forA!. We
shall sometimes write by abuse of language,π = (A?, A!).

We now discuss operations on profiles. We consider a profileπ1 = (A1?, A1!) defined overA1

and a profileπ2 = (A2?, A2!) defined overA2.

Product between profiles The composition betweenπ1 andπ2, which is defined iffA1!∩A2! =
∅, is theπ = (A?, A!) such that

π1 ⊗ π2 :

{
A! = (A1! ∪ A2!)
A? = (A1? ∪ A2?) \A!

29

Refinement between profiles Profileπ2 refinesπ1 (denotedπ2 ≤ π1) iff A2 ⊇ A1 and both
profiles coincide onA1: ∀a ∈ A1, π2(a) = π1(a).

Conjunction between profiles The conjunction betweenπ1 andπ2 (denotedπ1 ∧ π2) is the
greatest lower bound of the profiles, whenever it exists. More precisely, the conjunction of profiles
π1 andπ2 is defined iff both profiles coincide on their common alphabet:∀a ∈ A1 ∩ A2, π1(a) =
π2(a). Whenever defined, the conjunctionπ1∧π2 coincides withπ1 for every letter inA1 and with
π2 for every letter inA2.

Quotient between profiles Thequotientπ1 / π2 is defined as the adjoint of⊗, if it exists, namely
π1 / π2 = max{π | π ⊗ π2 ≤ π1}. More precisely,π1 / π2 is defined if and only ifA1 ⊇ A2 and
A1! ⊇ A2!, and is then equal to the profileπ = (A?, A!) such that

π1 / π2 :

{
A! = A1! \A2!
A? = A1? \A2?.

2.4.2 The framework of modal interfaces

We now formally introduce modal interfaces that are modal specification whose actions are
also labeled withinput and output attributes. We will consider the language representation in
the spirit of [149, 150], while Larsen et al. followed the automata-based representation (the two
representations are equivalent).

Definition 2.4.1 (Modal Interface) A modal interfaceis a pair C = (S, π), whereS is a modal
specification on the alphabetAS andπ : AS → {?, !} is aprofile.

A model for a modal interface is a tuple(I, π′), whereI is a prefix-closed language andπ′ is a
profile forI. We say that(I, π′) strongly implements(S, π), written(I, π′) |=s (S, π), if I |=s S
andπ′ ≤ π, and similarly forweak implementation. We say that(S2, π2) ≤s (S1, π1) if S2 ≤s S1

andπ2 ≤ π1, with corresponding definition for weak refinement≤w. The compositionof two
models is the pair that results from the shuffle product× of their prefix-closed languages and of
the product of their profiles.

2.4.3 Operations on modal interfaces

Operations on modal specifications directly extend to operations on modal interfaces. We have
the following definition.

Definition 2.4.2 Consider two modal interfacesC1 = (S1,
π1) andC2 = (S2, π2), and let⋆ ∈ {∧,⊗, /}. If π1 ⋆ π2 is defined, then

C1 ⋆ C2 = (S1 ⋆ S2, π1 ⋆ π2).

30

All the nice properties of modal specifications directly extend to modal interfaces.

Theorem 2.4.3 Theorems 1 to 6 extend to modal interfaces.

2.4.4 On compatibility for modal interfaces

In this section, we take advantage of profiles to define a notion of compositionwith compati-
bility issue for modal interfaces. We shall recap the solution proposed in [122, 138], then we shall
show a counter example to Theorem 10 in [122] and then propose our correction. We first recap the
translation from interface automata to modal interfaces, which will help to make the link between
modalities and input or output actions.

From interface automata to modal interfaces

We recap the translation from interface automata to modal automata that has been proposed
in [122]. In this section, we extend this translation to modal specification, the language-extension
corresponding to modal automata.

We consider an interface automatonP = (X,x0, A,→). We assumeP to be deterministic and
we letLP denote the (prefix-closed) language defined byP. The alphabet ofSP isASP

= A and
modalities are defined for allu ∈ A∗

P :

a? ∈ mustSP
(u) if u.a? ∈ LP

a! ∈ maySP
(u) \mustSP

(u) if u.a! ∈ LP

a? ∈ maySP
(u) \mustSP

(u) if u ∈ LP

andu.a? 6∈ LP

a! 6∈ maySP
(u) if u ∈ LP

andu.a! 6∈ LP

a ∈ maySP
(u) \mustSP

(u) if u 6∈ LP .

(2.4)

Theorem 1 of [122] shows that, with the above correspondence, alternating simulation for interface
automata and modal refinement for modal interfaces coincide. Regarding supports, we have:

LSP
= LP ⊎ {u.a?.v | u ∈ LP , u.a? 6∈ LP , v ∈ A∗

P} . (2.5)

It is worth making some comments about this translation, given by formulas (2.4,2.5). Regard-
ing formula (2.5), the supporting languageLSP

allows the environment to violate the constraints
set on it by the interface automatonP. When this happens—formally, the environment exits the
alternating simulation relation—the component considers that the assumptions under which it was
supposed to perform are violated, so it allows itself breaching its own promises and can perform
anything afterward. One could also see the violation of assumptions as an exception. Then,LSP

states no particular exception handling since everything is possible. Specifying exception handling
then amounts to refining this modal interface.

31

Formula (2.4) refines (2.5) by specifying obligations. Case 1 expresses that the component
mustaccept from the environment any input within the assumptions. Case 2 indicates that the
component behaves according to best effort regarding its own outputsactions. Finally, cases 3 and
4 express that the violation of its obligations by the environment are seen as an exception, and that
exception handling is unspecified and not mandatory.

The composition by Larsen et al. and the bug in Theorem 10 of [122]

We now consider the notion of compatibility for two Modal InterfacesC1 = (S1, π1) and
C2 = (S2, π2) with S1 defined overA1 andS2 defined overA2. We assume thatC1 andC2 do
not share common output actions (which is the composability requirement similar tothe one for
interface automata). We first compute the product betweenC1 andC2 following Definition2.4.3.

We then defineIllegal(C1, C2) to be the subset of wordsu belonging to the support ofC1 ⊗ C2,
such that there exists

either an actiona ∈ A1! ∩A2?
with a ∈ may1(u1) \must2(u2)

or an actiona ∈ A2! ∩A1?
with a ∈ may2(u2) \must1(u1),

(2.6)

whereu1 = prA1
(u) and similarlyu2 = prA2

(u). Getting rid of illegal runs is performed as
follows. ForU a set of words of Modal InterfaceC, let pre !(U) be the set

pre !(U) = {v ∈ LC | ∃a! ∈ may(v), v.a! ∈ U}
Let pre0! (U) = U , and, fork ≥ 0, prek+1

! (U) = pre !
(
prek! (U)

)
. Finally, let pre∗! (U) =

⋃

k pre
k
! (U).

The composition of two modal interfaces is obtained from their product by removing states
in pre∗! (U), following the approach outlined for interface automata. Two modal interfaces are
compatible if the pruning with the illegal words do not remove the empty word. Thecomposition
betweenC1 andC2 is denotedC1 ‖ C2.

Theorem 10 in [122, 138] says that

“ (Independent Implementability). For any two composable modal interfaces C1, C2
and two implementations(I1, π1) and (I2, π2). If (I1, π1) ≤ C1 and (I2, π2) ≤ C2,
then it holds that(I1, π1)× (I2, π2) ≤ C1 ‖ C2.”

The following example shows that Theorem10 in [122, 138] is wrong.

Example 2.4.4 Figure 2.1 depicts two Modal InterfacesC1 andC2; may \ must actions are de-
picted using dashed arrows whereas solid arrows corresponds tomust actions. I1 and I2 are
implementations ofC1 andC2, respectively. Alphabets are indicated for each modal interface. Par-
allel composition according to [122] is named[C1 ‖ C2]0. Wordc?.a! is illegal since in the state
reached after this runC1 may offerb! whereasC2 may (in fact will) not accept it. However,c?.a! is
in the product of the two implementations.

32

a!c?

a!

c? a?

I1 : {a!, b!}

I2 : {a?, b?, c?}

c? a!

I1 × I2 : {a!, b!, c?}

[C1 ‖ C2]0 : {a!, b!, c?}

c?

C1 ⊗ C2 : {a!, b!, c?}

a!a! b!

C1 : {a!, b!}

c? a?

C2 : {a?, b?, c?}

[C1 ‖ C2]1 : {a!, b!, c?}
A

c?

c? a!

Figure 2.1: Counterexample regarding compatibility. Grey-shaded states are to be removed.

The correction

Call exceptionany word inLC1⊗C2 from which the environment has no strategy to prevent the
occurrence of an illegal word, meaning that an illegal word can be obtained from the exception by
following only output actions.

Definition 2.4.5 (compatibility) Theexception languageof modal interfacesC1 andC2 is the lan-
guageEC1 ‖ C2 = pre∗! (Illegal(C1, C2)). Modal interfacesC1 andC2 are said to becompatibleif
and only if the empty wordǫ is not inEC1 ‖ C2 .

Definition 2.4.6 (parallel composition) Given two modal interfacesC1 andC2, the relaxationof
C1 ⊗ C2 is obtained by applying the following pseudo-algorithm toC1 ⊗ C2:

for all v in LC1⊗C2 do
for all a in A do

if v 6∈ EC1 ‖ C2 and v.a ∈ EC1 ‖ C2 then
for all w in A∗ do

must(v.a.w) := ∅
may(v.a.w) := A

end for
end if

end for
end for

If C1 andC2 are compatible, the relaxation ofC1 ⊗ C2 is called theparallel compositionof C1 and

33

C2, denoted byC1 ‖ C2. WheneverC1 andC2 are incompatible, the parallel compositionC1 ‖ C2 is
defined as the inconsistent modal specification⊥.

If the environment performs ana? to which the “if ... then ...” statement applies, then illegal words
may exist for certain pairs(I1, I2) of strong implementations ofC1 andC2. If this occurs, then
C1 ‖ C2 relaxes all constraints on the future of the corresponding runs — Nothingis forbidden,
nothing is mandatory: the system has reached a “universal” state. This parallels the pruning rule
combined with alternating simulation, in the context of interface automata.

Example 2.4.7 We now show that our relaxation allows to correct the counter example stated in
Figure 2.1. We observe that our relaxation procedure yields[C1 ‖ C2]1, with A = {a!, b!, c?},
which hasI1 × I2 as an implementation.

Associativity of the parallel composition operator is one of the key requirements of an inter-
face framework, since it enables independent design of sub-systems.Unlike in [122, 138], where
associativity is only mentioned, we can now state the following theorem:

Theorem 2.4.8 The parallel composition operator is commutative and associative.

Thanks to the interplay between modalities and profiles, knowledge about exceptions is pre-
served by parallel composition. This is the very reason why it is associative. Indeed, the lasta?
action in exception runs of the fromv.a? comes with a may modality. In this way, it is distinguished
from normal inputs which come with a must modality. When taking the parallel composition with
another modal interface with a profile such thata? is also an input, the resulting modality is a may.
In this way, knowledge of the occurrence of an exception is preserved. Whenever this input action
a? is composed with an outputa!, this results in an illegal run, meaning that an exception will be
triggered earlier.

As for interface automata (Theorem 4 in [78]), strong refinement preserves compatibility, as-
suming that the refined modal interface does not introduce new shared actions.

Lemma 2.4.9 Given any three modal interfacesCi, i = 1...3, such thatC2 ≤s C1 andA1 ∩ A3 ⊇
A2 ∩A3:

– prA1∪A3
(Illegal(C2, C3)) is included inIllegal(C1, C3);

– prA1∪A3

(
EC2 ‖ C3

)
is included inEC1 ‖ C3 .

Proof: Consider an illegal wordu ∈ Illegal(C2, C3) for C2 ⊗ C3. This means that there exists
an actiona ∈ A2 ∩ A3 such that (i) eithera is an output ofC2 and an input ofC3, such that
a ∈ may2(prA2

(u)) anda 6∈ must3(prA3
(u)), or (ii) a is an input ofC2 and an output ofC3, such

thata 6∈ must2(prA2
(u)) anda ∈ may3(prA3

(u)).
By Definition2.2.7, u is also inL ¯A2∪A3C1⊗C3 . By Definition2.2.3, u′ = prA1∪A3

(u) belongs
toLC1⊗C3 .

34

Since it is assumed thatA2 ∩ A3 ⊆ A1 ∩ A3, action a belongs toA1 ∩ A3. By Defini-
tion 2.2.6, eithera is an output ofC1 and an input ofC3, such thata ∈ may1(prA1

(u′)) anda 6∈
must3(prA3

(u′)), or (ii) a is an input ofC1 and an output ofC3, such thata 6∈ must1(prA1
(u′))

anda ∈ may3(prA3
(u′)). Meaning thatu′ ∈ Illegal(C1, C3), which proves the first part of the

lemma.
Next, recall thatA1! ∪ A3! is included inA2! ∪ A3!. Hence, the projection of the back-

ward closureprA1∪A3
(pre∗! (Illegal(C2, C3))) is included in the backward closure of the projection

pre∗!
(
prA1∪A3

(Illegal(C2, C3))
)
, which is in turn included inpre∗! (Illegal(C1, C3)), thanks to the

previous part of the Lemma.

Corollary 2.4.10 (compatibility preservation) Given any three modal interfacesCi, i = 1...3,
such thatC2 ≤s C1 andA1∩A3 ⊇ A2∩A3. C1 compatible withC3 implies thatC2 andC3 are also
compatible.

Proof: This is an immediate consequence of Lemma2.4.9. AssumeC2 and C3 incompatible,
meaning thatǫ ∈ EC2 ‖ C3 . By Lemma2.4.9, ǫ = prA1∪A3

(ǫ) ∈ EC1 ‖ C3 . HenceC1 andC3 are also
incompatible.

Contrary to interface automata for whichC1 ‖ C2 is a refinement ofC1 ⊗ C2 [78], relaxation of
modal interfaces amounts to compute an abstraction of the product:

Lemma 2.4.11 Given two modal interfacesC1 andC2:

C1 ⊗ C2 ≤ C1 ‖ C2

Proof: Two cases are possible:
– if u ∈ LC1⊗C2\EC1 ‖ C2 : mustC1⊗C2(u) = mustC1 ‖ C2(u) andmayC1⊗C2(u) = mayC1 ‖ C2(u);
– if u ∈ EC1 ‖ C2 thenu ∈ LC1 ‖ C2 andmustC1 ‖ C2(u) = ∅ andmayC1 ‖ C2(u) = A.

Thus,mustC1⊗C2(u) ⊇ mustC1 ‖ C2(u) andmayC1⊗C2(u) ⊆ mayC1 ‖ C2(u).

Theorem 10 stated in [122, 138] now holds for the parallel composition operator.

Theorem 2.4.12 (independent implementability)For any two modal interfacesC1, C2 and two
implementations(I1, π1), (I2, π2) such that(I1, π1) |=s C1 and (I2, π2) |=s C2, it holds that
(I1, π1)× (I2, π2) |=s C1 ‖ C2.

Proof: If (I1, π1) |=s C1 and (I2, π2) |=s C2, then, by Theorem2.4.3, (I1, π1) × (I2, π2) |=s

C1 ⊗ C2. By the previous lemma and by the generalization of Theorem1 in Theorem2.4.3:
(I1, π1)× (I2, π2) |=s C1 ‖ C2.

35

2.5 Conclusion and future work

This chapter presents amodal interfaceframework, a unification of interface automata and
modal specifications. It is a complete theory with a powerful composition algebra that includes
operations such as conjunction (for requirements composition) and residuation (for component
reuse but also assume/guarantee contract based reasoning [150]). However, the core contribution
of the chapter is a parallel composition operator that reflects a rich notion ofcompatibility between
components, actually correcting that parallel composition proposed in [122, 138].

There are several possible directions for future research. A first step would be to implement
all the concepts and operations presented in the chapter and evaluate the resulting tool on concrete
case studies. Extensions of modal specifications can be investigated, where states are described as
valuations of a set of variables just as it has been the case for interfaceautomata [63, 76].

Another promising direction would be a timed extension of modal interfaces. In[79], de Alfaro
et al. proposedtimed interface automatathat extends timed automata just as interface automata
extend finite-word automata. The semantics of a timed interface automaton is given by a timed
game [77, 44], which allows to capture thetimed dimensionin composition. Up to now, compo-
sition is the only operation that has been defined on timed interface automata. In[64], Chatain et
al. have proposed a notion of refinement for timed games. However monotony of parallel compo-
sition with respect to this refinement relation has not been investigated yet. In[38], timed modal
specificationsare proposed. As modal specifications, timed modal specifications admit a rich com-
position algebra with product, conjunction and residuation operators. Thus, a natural direction for
future research would be to unify timed interface automata and timed modal specifications. This
would imply a translation from timed interface automata to timed modal specifications.

Finally, we believe it is worth studying the logical expressiveness of timed modal specification-
s/interfaces, as it has been the case for modal specifications [92].

36

Chapter 3

Constraint Markov Chains

Résumé :En suivant les mêmes lignes directrices que le chapitre2, le présent chapitre a pour
objectif de proposer une théorie d’interfaces stochastiques, les chaînesde Markov à contraintes
(CMC) . Une CMC est essentiellement une chaîne de Markov à temps discret dont les probabilités
de transition ne sont ni fixées ni données par extension, mais au contraire, sont solutions d’un en-
semble de contraintes exprimées par des formules du premier ordre interprétées sur les réels. Une
CMC définit donc un ensemble éventuellement infini de réalisations, c’est à dire de chaînes de Mar-
kov. Ce chapitre s’attache à montrer que les CMC forment une théorie d’interface, à l’exception
de l’opération de residuation dont l’existence est‘a ce jour une question ouverte.

3.1 Introduction

In this chapter we introduceConstraint Markov Chains(CMCs) as a foundational specification
formalism for component-based development of probabilistic systems. In particular, we provide
constructs on CMCs supporting refinement, consistency checking, logical as well as structural
composition of specifications – all indispensable ingredients for a compositional design methodol-
ogy.

Over the years several process algebraic frameworks have been proposed for describing and
analysing probabilistic systems based on Markov Chains and Markov Decision Processes, e.g. [103,
3, 127]. Also, a variety of probabilistic logics have been proposed for expressing properties of such
systems, e.g. PCTL [99]. Both approaches support refinement between specifications using various
notions of probabilistic (bi)simulation (e.g., [91, 113]) and logical entailment (e.g. [102]). Whereas
the process algebraic approach favors structural composition (e.g. parallel composition), the logi-
cal approach favors logical combinations (e.g. logical conjunction). Neither of the two approaches
supports both structural and logical composition.

For functional analysis the notion of Modal Transition Systems (MTS) [119] provides a use-

37

38

1 1

2

2 2

2

S1 S2

[1/8, 1]

[0, 1/2] H ≥ 160

W ≤ 90

H ≤ 190

W ≥ 60[1/6, 1]

[0, 1]

(a) IMCsS1 andS2

1, 1

3, 3 2, 3

2, 23, 2 H ≥ 160
H ≤ 190

H ≥ 160
W ≥ 60

z2

z1

z4

z3
W ≤ 90
H ≤ 190

W ≥ 60
W ≤ 90

S1 ∧ S2

(b) CMCS1 ∧ S2

Figure 3.1: IMCs: non-closure under conjunction

ful specification formalism supporting refinement as well as logical and structural composition
and with recent applications to Interface Theories [122, 150]. Generalizing the notion of Modal
Transition Systems to the non-functional analysis of probabilistic systems, theformalism of In-
terval Markov Chains (IMCs) was introduced in [113] with notions of satisfaction and refinement
generalizing probabilistic bisimulation. Informally, an IMC extends the notion ofMarkov Chains
by having transitions labelled byintervals (open or closed) of allowed probabilities rather than
individual probabilities.

In more recent work, IMCs have been subject to further study: a weaker (yet sound) refine-
ment for IMCs is introduced [91], and model checking procedures for PCTL for such systems are
considered [164, 91, 65]. In a very recent work [112] a composition operation has been studied for
IMCs augmented with may and must transitions very much in the spirit of [119].

However, the expressive power of IMCs is inadequate to support bothlogical and structural
composition. To see this, consider two IMCs,S1 andS2, in Figure3.1specifying different proba-
bility constraints related to the height (H) and weight (W) of a given randomperson. Attempting
to express the conjunctionS1 ∧ S2 as an IMC by simple intersection of bounds givesz1 ≤ 1/2,
1/6 ≤ z2 ≤ 1/2, 1/8 ≤ z3 and1/6 ≤ z4. However, this naive construction is too coarse and does
not adequately capture conjunction: whereas(z1, z2, z3, z4) = (1/2, 1/6, 1/8, 5/24) is a solution
to the above constraints the resulting overall probability of reaching a state satisfying H≥ 160, i.e.
z1 + z2 = 2/3, clearly violates the upper bound1/2 specified inS1. What is needed is the ability
to express dependencies between the probabilitiesz1, z2, z3, z4 besides that of being a probability
distribution, i.e. z1 + z2 + z3 + z4 = 1. Obviously, the correct conjunctive combination is ex-
pressed by the three constraintsz1 + z2 ≤ 1/2, 1/8 ≤ z3 + z4, 1/6 ≤ z2 + z4, exceeding the
expressive power of IMCs. Similarly, simple examples demonstrate that IMCsare also not closed
under parallel composition.

Constraint Markov Chains (CMCs) are a further extension of Markov Chains allowing arbi-
trary constraints on the next-state probabilities from any state. Whereas linear constraints suffice
for closure under conjunction, polynomial constraints are, as we shall see, necessary for closure
under parallel composition. We define notions of satisfaction and (weak) refinement for CMCs
conservatively extending similar notions for IMCs. In particular, as a main theorem, we prove that
for deterministic CMCs the notion of weak refinement is complete with respect to the inclusion of
implementation-sets. In addition, we provide a construction, which for any CMCS returns a deter-

39

ministic CMCρ(S) containingS with respect to weak refinement. Finally, we show that refinement
between CMCs with polynomial constraints can be decided in essentially single exponential time.

3.2 Constraint Markov Chains

Let A,B be sets of propositions withA ⊆ B. The restriction ofT ⊆ B to A is given by
Tproj

,A (≡)T ∩A. If T ⊆ 2B, thenTproj
,A (≡) {Wproj

,A (|)W ∈ T}. ForV ⊆ A define the
extension ofV to B asT ↑B≡ {W ⊆ B | Wproj

,A (=)T}, so the set of sets whose restriction
to A is T . Lift it to sets of sets as follows: ifT ⊆ 2A thenT ↑B≡ {W ⊆ B | Wproj

,A (∈)T}.

LetM ∈ [0, 1]n×k be a matrix andx ∈ [0, 1]1×k be a vector. We writeMij for the cell inith row
andjth column ofM , Mp for thepth row ofM , andxi for the ith element ofx. Finally,M is a
correspondence matrixiff 0 ≤∑k

j=1∆ij ≤ 1 for all 1 ≤ i ≤ n.

Definition 3.2.1 A Markov Chain (MC in short)is a tuple〈{1, . . . , n}, o,M,A, V 〉, where{1, . . . ,
n} is a set of states containing the initial stateo,A is a set of atomic propositions,V : {1, . . . , n} →
2A is a state valuation, andM ∈ [0, 1]n×n is a probability transition matrix:

∑n
j=1Mij = 1 for

1 ≤ i ≤ n.

We now introduceConstraint Markov Chains(CMCs in short), a finite representation for a pos-
sibly infinite set of MCs. Roughly speaking, CMCs generalize MCs in that, instead of specifying
a concrete transition matrix, they only constrain probability values in the matrix. Constraints are
modeled using acharacteristic function, which for a given source state and a distribution of prob-
abilities of leaving the state evaluates to 1 iff the distribution is permitted by the specification.
Similarly, instead of a concrete valuation function for each state, aconstraint on valuationsis
used. Here, a valuation is permitted iff it is contained in the set of admissible valuations of the
specification.

Definition 3.2.2 AConstraint Markov Chainis a tupleS = 〈{1, . . . , k}, o, φ,A, V 〉, where{1, . . . ,
k} is a set of states containing the initial stateo,A is a set of atomic propositions,V :{1, . . . , k} →
22

A
is a set of admissible state valuations. andφ : {1, . . . , k} → [0, 1]k → {0, 1} is a constraint

functionsuch that ifφ(j)(x) = 1 then thex vector is a probability distribution:0 ≤ xi ≤ 1 and
∑k

i=1 xi = 1.

An Interval Markov Chain(IMC in short) [113] is a CMC whose constraint functions are repre-
sented by intervals, so for all1 ≤ i ≤ k there exist constantsαi, βi such thatφ(j)(x) = 1 iff
xi ∈ [αi, βi].

Example 3.2.3 Two parties, a customer and a vendor, are discussing a design of a relay for an
optical telecommunication network. The relay is designed to amplify an optic signal transmitted
over a long distance over an optic fiber. The relay should have severalmodes of operation, modeled

40

by four dynamically changing properties and specified by atomic propositionsa, b, c, ande (see
Figure3.2a).

The customer presents CMCS1 (Figure 3.2b) specifying the admissible behavior of the relay
from their point of view. States are labeled with formulas characterizing sets of valuations. For
instance,”(a + b + c ≥ 2) ∧ (e = 0)” at state2 of S1 representsV1(2) = {{a, b}, {b, c}, {a, c},
{a, b, c}}, wherea, b, c, ande range over Booleans. State 1 specifies a standby mode, where no
signal is emitted and only marginal power is consumed. State 2 is the high power mode, offering a
high signal/noise ratio, and hence a high bitrate and low error rate, at the expense of a high power
consumption. State 3 is the low power mode, with a low power consumption, lowbitrate and high
error rate. The customer prescribes that the probability of the high power mode (state 2) is higher
than0.7.

The vendor replies with CMCS2 (Figure 3.2c), which represents possible relays that they can
build. Because of thermal limitations, the low power mode has a probability higher than0.2.

A stateu of S is reachablefrom a statei if there exists a probability distribution, or a vector
x ∈ [0, 1]k, with a nonzero probabilityxu, which satisfiesφ(i)(x). A CMC S is deterministiciff
for every statei, states reachable fromi have pairwise disjoint admissible valuations:

Definition 3.2.4 Let S = 〈{1, . . . , k}, o, φ,A, V 〉 be a CMC.S is deterministiciff for all states
i, u, v ∈ {1, . . . , k}, if there existsx ∈ [0, 1]k such that(φ(i)(x) ∧ (xu 6= 0)) andy ∈ [0, 1]k such
that (φ(i)(y)(∧yv 6= 0)), then we have thatV (u) ∩ V (v) = ∅.

In our example bothS1 andS2 are deterministic specifications. In particular states2 and3, reach-
able from1 in both CMCs, have disjoint constraints on valuations (see Figure3.2).

We relate CMC specifications to MCs implementing them, by extending the definition ofsat-
isfaction presented in [113] to observe the valuations constraints and the full-fledged constraint
functions. Crucially, like [113], we abstract from syntactic structure of transitions—a single tran-
sition in the implementation MC can contribute to satisfaction of more than one transitionin the
specification, by distributing its probability mass against several transitions.Similarly many MC
transitions can contribute to satisfaction of just one specification transition. This redistribution of
probability mass is described by correspondence matrices. Consider the following example:

Example 3.2.5 We illustrate the concept of correspondence matrix between SpecificationS1 (given
in Figure. 3.2b) and ImplementationP2 (given in Figure3.2e). The CMCS1 has three outgoing
transitions from state 1 but, due to constraint function in1, the transition labeled withx1 cannot
be taken (the constraint impliesx1 = 0). The probability mass going from state 1 to states 2 and 3
in P2 corresponds to the probability allowed byS1 from its state1 to its state2; The redistribution
is done with the help of the matrix∆ given in Figure3.2h. Theith column in∆ describes how big
fraction of each transition probability (for transitions leaving 1) is associated with probability xi
in S2. Observe that the constraint functionφ1(1)(0, 0.8, 0.2) = φ1(1)((0, 0.7, 0.1, 0.2) × ∆) is
satisfied.

41

a ber≤ 10−9 The bit error rate is less than 1 per billion bits transmitted.

b br> 10Gbits/s The bit rate is higher than 10 Gbits/s.

c P < 10W Power consumption is less than 10 W.

e Standby The relay is not transmitting.

(a) Atomic propositions in the optic relay specifications

x2

1 (e = 1) ∧ (a = b = c = 0)

x1

2

3 (a+ b+ c ≤ 1) ∧ (e = 0)

(a+ b+ c ≥ 2) ∧ (e = 0)

x3

1

1

φ1(1)(x) ≡ (x1 = 0) ∧ (x2 ≥ 0.7) ∧ (x2 + x3 = 1)

(b) CMCS1, the customer specification of the optic re-
lay

2

3

1

y3

1

1

y2

(a = 1) ∧ (e = 0)

(a = 0) ∧ (e = 0)

y1

(e = 1) ∧ (a = b = c = 0)

φ2(1)(y) ≡ (y1 = 0) ∧ (y3 ≥ 0.2) ∧ (y2 + y3 = 1)

(c) The manufacturer specification,S2, of the optic relay

∅

1

2

3

.75

.25

{e}

1

1

{a, b, c}

(d) Markov ChainP1 satisfyingS1 andS2

.1
1

2

4

.7

.2

3

{e}

1

1

{a, b, c}

∅

{b, c}
1

(e) Another Markov ChainP2 satisfyingS1 andS2

z3,3

1

1

1

2, 2 2, 3

3, 33, 2

1, 1

z2,2

z3,2

z1,1
z2,3

1

φ3(1, 1)(Z) ≡
[(

∀j, z1,j = 0
)

∧
(

z2,2 + z2,3 ≥ 0.7
)

∧ (z2,2 + z2,3 + z3,2 + z3,3 = 1)
]

∧
[

(∀i, zi,1 = 0) ∧ (z2,3 + z3,3 ≥ 0.2)
]

(f) ConjunctionS3 of S1 andS2. Constraints on propo-
sitions, pairwise conjunctions (intersections) of con-
straints ofS1 andS2, are left out to avoid clutter

(a+ b+ c ≥ 2) ∧ (e = 0)

x3

1

1

x2x1

1

3

2

(e = 1) ∧ (a = b = c = 0)

[
(a+ b+ c ≤ 1)∨
((a = 0) ∧ (b = c = 1))

]

∧ (e = 0)

φ4(1)(x) ≡ (x1 = 0) ∧ (x2 ≥ 0.7)

∧ (x3 ≥ 0.2) ∧ (x2 + x3 = 1)

(g) CMCS4 generalizingS3, soS3 � S4

1 1

x1

3

4

2

.1

2

3

x3

.7

.2

x21

1

1

∆

∆=









0 0 0

0 1 0

0 1 0

0 0 1









(h) Correspondence for initial states ofP2 andS1

2

3

x3

x2

1

x1

1, 1

2, 2

3, 2

2, 3

3, 3

z1,1

z2,3z2,2

∆

1

1−γ

1

1

γ

z3,3z3,2
∆=












0 0 0

0 1 0

0 γ 1−γ
0 0 1

0 0 1












(i) Weak refinement for initial states ofS3 andS4

Figure 3.2: Examples

42

Definition 3.2.6 Let P = 〈{1, . . . , n}, oP ,M,AP , VP 〉 be a MC andS = 〈{1, . . . , k}, oS , φ,
AS , VS〉 be a CMC withAs ⊆ Ap. ThenR ⊆ {1, . . . , n} × {1, . . . , k} is a satisfaction rela-
tion between states ofP andS iff wheneverpRu then (1)VP (p)proj,AS

(∈)VS(u), and (2) there

exists a correspondence matrix∆ ∈ [0, 1]n×k such that (a) for all1 ≤ p′ ≤ n with Mpp′ 6= 0,
∑k

j=1∆p′j = 1; (b) φ(u)(Mp ×∆) holds and (c) if∆p′u′ 6= 0 thenp′Ru′.

We writeP |= S iff there exists a satisfaction relation relatingoP andoS , and callP an imple-
mentationof S. The set of all implementations ofS is given by[[S]] ≡ {P | P |= S}. Rows of
∆ that correspond to reachable states ofP always sum up to 1. This is to guarantee that the entire
probability mass of implementation transitions is allocated. For unreachable states, we leave the
corresponding rows in∆ unconstrained.P may have a richer alphabet thanS, in order to facilitate
abstract modeling: this way an implementation can maintain local information using aninternal
variable.

Remark 3.2.7 Our semantics for CMCs follows the Markov Decision process (MDP in short)
semantics tradition [164, 65]. In the literature, the MDP semantic is opposed to the Uncertain
Markov Chain (UMC in short) semantics where the probability distribution fromeach state is fixed
a priori.

3.3 Consistency, Refinement and Conjunction

We now study the notions of consistency, refinement, and conjunction for Constraint Markov
Chains.

3.3.1 Consistency

A CMC S is consistentif it admits at least one implementation. We now discuss how to de-
cide consistency. A stateu of S is valuation consistentiff V (u) 6= ∅; it is constraint consistent
iff there exists a probability distribution vectorx ∈ [0, 1]1×k such thatφ(u)(x) = 1. It is easy
to see that ifeach stateof S is both valuation and constraint consistent thenS is also consistent.
However, inconsistency of a state does not imply inconsistency of the specification. The operations
presented later in this chapter may introduce inconsistent states, leaving a question if a resulting
CMC is consistent. In order to decide whetherS is inconsistent, local inconsistencies are propa-
gated throughout the entire state-space using apruning operatorβ that removes inconsistent states
from S. The resultβ(S) is a new CMC, which may still contain some inconsistent states. The
operator is applied iteratively, until a fixpoint is reached. If the resulting CMC β∗(S) contains at
least one state thenS is consistent. AlsoS has the same models asβ∗(S).

We defineβ formally. LetS = 〈{1, . . . , k}, o, φ,A, V 〉. If o is locally inconsistent then let
β(S) = ∅. If S does not contain inconsistent states thenβ(S) = S. Else proceed in two steps.
First fork′ < k define a functionν : {1, . . . , k} → {⊥, 1, . . . , k′}, which will remove inconsistent

43

states. All locally inconsistent states are mapped to⊥. For all 1 ≤ i ≤ k takeν(i) = ⊥ iff
[(V (i) = ∅) ∨ (∀x ∈ [0, 1]k, φ(i)(x) = 0)]. All remaining states are mapped injectively into
{1, . . . , k′}: ν(i) 6= ⊥ ⇒ ∀j 6= i, ν(j) 6= ν(i). Then letβ(S) = 〈{1, . . . , k′}, ν(o), φ′, A, V ′},
whereV ′(i) = V (ν−1(i)) and for all1 ≤ j ≤ k′ the constraintφ′(j)(y1, . . . , yk′) is: ∃x1, . . . , xk
s.t.
[

ν(q) = ⊥ ⇒ xq = 0
]

and
[
∀1 ≤ l ≤ k′, yl = xν−1(l)

]
and

[
φ(ν−1(j))(x1, . . . , xk)

]
.

The constraint makes the locally inconsistent states unreachable, and then⊥ is dropped as a state.

Theorem 3.3.1 LetS = 〈{1, . . . , k}, o, φ,A, V 〉} be a CMC andβ∗(S) = limn→∞ βn(S) be the
fixpoint ofβ. For any MCP , we have (1)P |= S ⇐⇒ P |= β(S) and (2)[[S]] = [[β∗(S)]].

3.3.2 Refinement

Refinementis a concept that allows to “compare” two specifications. Roughly speaking, if S1
refinesS2, then any model ofS1 should also be a model ofS2. In [113], Jonsson and Larsen have
proposed a notion of strong refinement between IMCs. This definition extends to CMCs in the
following way.

Definition 3.3.2 LetS1 = 〈{1, . . . , k1}, o1, φ1, A1, V1〉 andS2 = 〈{1, . . . , k2}, o2, φ2, A2, V2〉 be
CMCs withA2 ⊆ A1. The relationR ⊆ {1, . . . , k1} × {1, . . . , k2} is a strong refinement relation
between states ofS1 andS2 iff whenevervRu then (1)V1(v)proj,A2

(⊆)V2(u) and (2) there

exists a correspondence matrix∆ ∈ [0, 1]k1×k2 such that for all probability distribution vectors
x ∈ [0, 1]1×k1 if φ1(v)(x) holds then (a)xi 6= 0 ⇒ ∑k2

j=1∆ij = 1; (b) φ2(u)(x ×∆) holds and
(c) if ∆v′u′ 6= 0 thenv′Ru′. We say thatS1 strongly refinesS2 iff o1R o2.

It is easy to see that strong refinement implies implementation set inclusion. However, the
converse is not true. The strong refinement imposes a “fixed-in-advance” witness matrix regardless
of the probability distribution satisfying the constraint function. We proposeaweak refinementthat
is complete for deterministic CMCs. Our definition generalizes the one proposed in [91] for IMCs.

Definition 3.3.3 LetS1 = 〈{1, . . . , k1}, o1, φ1, A1, V1〉 andS2 = 〈{1, . . . , k2}, o2, φ2, A2, V2〉 be
two CMCs, withA2 ⊆ A1. ThenR ⊆ {1, . . . , k1} × {1, . . . , k2} is a weak refinement relationiff
whenevervRu then (1)V1(v)proj,A2

(⊆)V2(u) and (2) for any probability distribution vector

x ∈ [0, 1]1×k1 such thatφ1(v)(x), there exists a matrix∆ ∈ [0, 1]k1×k2 such that (a) for allS1
states1 ≤ i ≤ k1, xi 6= 0 ⇒∑k2

j=1∆ij = 1; (b) φ2(u)(x×∆) and (c)∆v′u′ 6= 0 ⇒ v′Ru′. We
say that CMCS1 (weakly) refinesS2, writtenS1 � S2, iff o1R o2.

It is easy to see that the weak refinement implies implementation set inclusion. Showing the con-
verse is more involved. We postpone it to Section3.5.

44

Example 3.3.4 Figure 3.2i illustrates a family of correspondence matrices parameterized byγ
witnessing the weak refinement between initial states ofS3 andS4 (defined in Figure3.2). The
actual matrix used in proving the weak refinement depends on the probability distribution vector
z that satisfies the constraint functionφ3 of state(1, 1). Takeγ = 0.7−z22

z23
if z22 ≤ 0.7 and

γ = 0.8−z22
z23

otherwise. It is easy to see that ifφ3((1, 1))(z) holds, thenφ4(1)(z ×∆) holds.

3.3.3 Conjunction

Conjunctionis a useful operation combining requirements of several specifications.

Definition 3.3.5 LetS1 = 〈{1, . . . , k1}, o1, φ1, A1, V1〉 andS2 = 〈{1, . . . , k2}, o2, φ2, A2, V2〉 be
two CMCs. The conjunction ofS1 and S2, written S1 ∧ S2, is the CMCS = 〈{1, . . . , k1} ×
{1, . . . , k2}, (o1, o2), φ, A, V 〉 withA = A1 ∪A2, V ((u, v)) = V1(u)↑A ∩V2(v)↑A, and

φ((u, v))(x1,1, x1,2, . . . , x2,1, . . . , xk1,k2
) ≡ φ1(u)(

k2∑

j=1

x1,j , . . . ,

k2∑

j=1

xk1,j)∧φ2(v)(
k1∑

i=1

xi,1, . . . ,

k1∑

i=1

xi,k2
).

Conjunction is an operation that conserves determinism and may introduce inconsistent states (see
Example3.3 below) and thus a use of conjunction should normally be followed by applyingthe
pruning operatorβ. As we already said in the introduction, the result of conjoining two IMCs is
not an IMC in general, but a CMC whose constraint functions are linear.

Example 3.3.6 Figure 3.2fdepicts a CMCS3 expressing the conjunction of IMCsS1 andS2 (see
Figures3.2b–3.2c). The constraintz2,3+z3,3≥0.2 in state(1, 1) cannot be expressed as an interval.

Finally, the following theorem shows the conjunction of two specifications coincides with their
greatest lower bound with respect to the weak refinement (also calledshared refinement).

Theorem 3.3.7 LetS1, S2 andS3 be three CMCs. We have((S1 ∧S2) � S1)∧ ((S1 ∧S2) � S2)
and(S3 � S1) ∧ (S3 � S2) ⇒ S3 � (S1 ∧ S2).

3.4 Compositional Reasoning

Let us now turn to studying composition of CMCs. We start by discussing howsystems and
specifications can be composed in a non-synchronizing way, then we introduce a notion of synchro-
nization. The non-synchronizingindependentcomposition is largely just a product of two MCs (or
CMCs). We begin with composition of MCs.

Definition 3.4.1 LetS1 = 〈{1, . . . , n1}, o1,M ′, A1, V1〉 andS2 = 〈{1, . . . , n2}, o2,M ′′, A2, V2〉
be two MCs and supposeA1∩A2 = ∅. The parallel composition ofP1 andP2 is the MCP1 ‖
P2 = 〈{1, . . . , n1} × {1, . . . , n2}, (o1, o2),M,A1 ∪ A2, V 〉 where:M ∈ [0, 1](n1×n2)×(n1×n2) is
such thatM(p,q)(r,s) =M ′

pr ·M ′′
qs; andV ((p, q)) = V1(p) ∪ V2(q).

45

We now define independent parallel composition between CMCs.

Definition 3.4.2 Let S1 = 〈{1, . . . , k1}, o1, φ1, A1, V1〉 and S2 = 〈{1, . . . , k2}, o2, φ2, A2, V2〉
be CMCs withA1 ∩ A2 = ∅. The parallel composition ofS1 andS2 is the CMCS1 ‖ S2 =
〈{1, . . . , k1}×{1, . . . , k2}, (o1, o2), φ, A1∪A2, V 〉, whereφ(u, v)(z1,1, z1,2, . . . z2,1, . . . , zk1,k2) =
∃x1, . . . , xk1 , y1, . . . , yk2 ∈ [0, 1] such that∀(i, j) ∈ {1, . . . , k1} × {1, . . . , k2} we havezi,j =
xi · yj andφ1(u)(x1, . . . , xk1) = φ2(v)(y1, . . . , yk2) = 1; Finally, V ((u, v)) = {Q1 ∪Q2 | Q1 ∈
V1(u), Q2 ∈ V2(v)}.

Composition preserves determinism. It is worth mentioning that IMCs are not closed under com-
position. Consider IMCsS andS′ given in Figure3.3aand their compositionS ‖ S′ given in
Figure3.3b. Assume first thatS ‖ S′ is an IMC. As a variablezij is the product of two variables
xi andyj , if S ‖ S′ is an IMC, then one can show that the interval forzij is obtained by computing
the products of the bounds of the intervals over whichxi andyj range. Hence, we can show that
z11 ∈ [0, 1/2], z12 ∈ [0, 1/3], z21 ∈ [1/6, 1], z22 ∈ [0, 2/3]. Let [a, b] be the interval for the con-
straintzij , it is easy to see that there exists implementationsI1 of S1 andI2 of S2 such thatI1 ‖ I2
satisfies the constrainzij = a (resp. zij = b). However, while each bound of each interval can
be satisfied independently, some points in the polytope defined by the intervalsand the constraint
∑
zij = 1 cannot be reached. As an example, considerz11 = 0, z12 = 1/3, z21 = 1/3, z22 = 1/3.

It is clearly inside the polytope, but one cannot find an implementationI of S ‖ S′ satisfying the
constraints given by the parallel composition. Indeed, havingz11 = 0 implies thatx1 = 0 and thus
thatz12 = 0.

Theorem 3.4.3 If S′
1, S

′
2, S1, S2 are CMCs thenS′

1�S1 ∧ S′
2�S2 impliesS′

1 ‖S′
2 � S1 ‖S2,

so the weak refinement is a precongruence with respect to parallel composition. Consequently, for
any MCsP1 andP2 we have thatP1 |=S1 ∧ P2 |=S2 impliesP1 ‖P2 |= S1 ‖S2.

As alphabets of composed CMCs have to be disjoint, the composition does not synchronize
the components on state valuations like it is typically done for other (non-probabilistic) models.
However, synchronization can be introduced by conjoining the compositionwith asynchronizer—
a single-state CMC whose constraint function relates the atomic propositions of the composed
CMCs.

Example 3.4.4 The CMCS ‖ S′ of Figure3.3bis synchronized with the synchronizerSync given
in Figure3.3c. Sync removes fromS ‖ S′ all the valuations that do not satisfy(a = d)∧ (b = ¬c).
The resulting CMC is given in Figure3.3d. Observe that an inconsistency appears in State(1, 1).
This is because there is no implementations of the two CMCs that can synchronize in the prescribed
way. In general inconsistencies like this one can be uncovered by applying the pruning operator,
which would return an empty specification. So synchronizers enable discovery of incompatibilities
between component specifications in the same way as it is known for non-probabilistic specification
models.

46

1

2

1

2

x2 ∈ [1/3, 1] y2 ∈ [0, 2/3]

{{c}}{{a}{a, b}}

y1 ∈ [1/2, 1]x1 ∈ [0, 1/2]

{{d}}{∅{b}{a, b}}

S S ′

(a) Two CMCsS andS′

1, 1

1, 2

2, 1

2, 2

{{a, c}{a, b, c}}

z11
z12

z21

z22

{{c}{b, c}{a, b, c}}

{{a, d}{a, b, d}}

{{d}{b, d}{a, b, d}}

(b) S ‖ S′

1

1

Sync

(a = d) ∧ (b = ¬c)

(c) SynchronizerSync

1, 1

1, 2

2, 1

2, 2

∅

z11

{{a, b, d}}

{{c}}

{{a, b, d}}

z21

z12

z22

(d) (S ‖ S′) ∧ Sync

Figure 3.3: Synchronization

The following theorem states that synchronization is associative with respect to composition.

Theorem 3.4.5 LetS1,S2 andS3 be three CMCs with pairwise disjoint sets of propositionsA1,A2

andA3. LetSync123 be a synchronizer overA1∪A2∪A3 and letSync12 be the same synchronizer
with its set of propositions restricted toA1 ∪ A2. The following holds[[[((S1 ‖ S2) ∧ Sync12) ‖
S3] ∧ Sync123]] = [[(S1 ‖ S2 ‖ S3) ∧ S123]].

3.5 Deterministic CMCs

Clearly, if all implementations of a specificationS1 are also implementations of a specification
S2, then a designer can consider the former to be a proper strengthening ofthe latter. Indeed,S1
specifies implementations that break no assumptions that can be made about implementations of
S2. Thus implementation set inclusionis a desirable refinement for specifications. Unfortunately,
it is not directly computable. However, as we have already said, the weak refinement soundly
approximates it. Had that approximation been complete, we would have an effective decision
procedure for implementation set inclusion. Indeed this is the case for an important subclass of
specifications: the one of deterministic CMCs. We introduce the definition ofSingle Valuation
Normal Form, which plays an important role in both the determinization algorithm and in the proof
of completeness.

Definition 3.5.1 A CMC is in aSingle Valuation Normal Formif all its admissible valuation sets
are singleton (|V (i)| = 1 for each1 ≤ i ≤ k).

It turns out that every consistent CMC (except those that have more than one admissible val-
uation in the initial state) can be transformed into the normal form preserving itsimplementation
set.

47

We now present a determinization algorithm that can be applied to any CMCS whose initial
state is a single valuation set. This algorithm relies on normalizing the specificationfirst, and
otherwise applies an algorithm which resembles determinization of automata. Theresult of the
algorithm is a new CMC whose set of implementations includes the one ofS. This weakening
character of determinization resembles the known determinization algorithms formodal transition
systems [16].

Definition 3.5.2 LetS = 〈{1, . . . , k}, o, φ,A, V 〉 be a consistent CMC in the single valuation nor-
mal form. Letm < k andh : {1, . . . , k} → {1, . . . ,m} be a surjection such that (1){1, . . . , k} =
∪v∈{1,...,m}h

−1(v) and (2) for all1 ≤ i 6= j ≤ k, if there exists1 ≤ u ≤ k andx, y ∈ [0, 1]k

such that(φ(u)(x) ∧ xi 6= 0) and(φ(u)(y) ∧ yj 6= 0), then(h(i) = h(j) ⇐⇒ V (i) = V (j));
otherwiseh(i) 6= h(j). A deterministic CMC forS is the CMCρ(S) = 〈{1, . . . ,m}, o′, φ′, A, V ′〉
whereo′ = h(o), ∀1 ≤ i ≤ k, V ′(h(i)) = V (i), and for each1 ≤ i ≤ m,

φ′(i)(y1, . . . , ym) = ∃x1, . . . , xk,
∨

u∈h−1(i)

[(∀1 ≤ j ≤ m, yj =
∑

v∈h−1(j)

xv) ∧ φ(u)(x1, . . . , xk)].

Theorem 3.5.3 LetS be a CMC insingle valuation normal form, we haveS � ρ(S).

As weak refinement implies inclusion, a direct consequence of Theorem3.5.3is that[[S]] ⊆ [[ρ(S)]].

We now state the main theorem of the section.

Theorem 3.5.4 Let S1 = 〈{1, . . . , k1}, o1, φ1, A1, V1〉 and S2 = 〈{1, . . . , k2}, o2, φ2, A2, V2〉
be two consistent single valuation normal form deterministic CMCs withA2 ⊆ A1. We have
[[S1]] ⊆ [[S2]] ⇒ S1 � S2.

Proof: We present here a sketch of the proof. We construct the refinement relation by relating
all pairs of states ofS1 andS2 for which implementation inclusion holds. LetR ⊆ {1, . . . , k1} ×
{1, . . . , k2} such thatvRu iff for all MC I and statep of I, p |= v ⇒ p |= u. As we consider
pruned CMCs, there exist implementations for all states. Then the usual, albeit complex and long
in this case, coinductive proof technique is applied, showing that this relation is indeed a weak
refinement relation.

The crucial point of the argument lies in proving the closure property — i.e.that if anS1 state
u advances possibly tou′ then indeed the corresponding statev of S2 can also advance tov′ and
the(u′, v′) pair is inR. In other words that implementation inclusion of predecessors implies the
implementation inclusion of successors. This is proven in an ad absurdum argument, roughly as
follows. Assume that there would exist an implementationI ′ of u′ which is not an implementation
of v′. Then one can construct an implementationI ′′ of u which evolves asI ′. This implementation
would not implementv′ but it could implement some other state ofS2. This case will be ruled out

48

by requiring determinism and a normal form ofS2. Then the only way forI ′′ to evolve is to satisfy
v′ which contradicts the assumption thatI ′ is not an implementation ofv′. 2

Observe that since any consistent CMC with a single valuation in initial state canbe normalized,
Theorem3.5.4holds even ifS1 andS2 are not in single valuation normal form. We conclude that
weak refinement and the implementation set inclusion coincide on the class of deterministic CMCs
with at most single valuation in the initial state.

3.6 Constraints and Decidability

In the definition of CMCs, no particular type of constraints is implied, and nothing can be
said, for instance on the decidability of refinement. For first order constraints over reals all our
operators and relations are computable [170]. Several more tractable classes of constraints can
be considered: interval, linear or polynomial constraints. Interval constraints are of the form
φ(i)(x) =

∧

j αij ≤ xj ≤ βij . Linear constraints are of the formφ(i)(x) = x × Ci ≤ bi
whereCi is a matrix andbi a row vector. Polynomial constraints are first order formulas of the
form φ(i)(x) = ∃y,∧j sign(Pij(x, y)) = σij with Pij being polynomials of arbitrary degrees
andσij ∈ {−1, 0,+1}. These classes have increasing expressiveness, and yet what really distin-
guishes them is their closure properties with respect to the independent parallel and conjunction
composition operators. Indeed, only the class of polynomial constraints is closed under indepen-
dent parallel composition, as polynomial equations of the formzij − xiyj = 0 are introduced
in the resulting constraints. Concerning the conjunction operator, only the linear and polynomial
classes are closed under this composition operator, as the resulting constraints are of the form
φ(i, j)(x) = φ1(i)(x×M1) ∧ φ2(j)(x×M2) which in general are not interval constraints.

We now consider the refinement checking problem between CMCs with polynomial con-
straints: GivenS1 andS2, two CMCs with polynomial constraints and less thann states ands
polynomials of degreed, decide whetherS1 refinesS2. It reduces to checking the validity ofO(n2)
instances of the following first order formula:∀x, φ1(i)(x) ⇒ ∃∆, φ2(j)(x×∆)∧∧i′(

∑

j′ ∆i′j′ =
1) ∧ ∧i′,j′(i

′Rj′ ∨ ∆i′j′ = 0) where constraint
∧

i′
∑

j′ ∆i′j′ = 1 relates to axiom 2.a of defini-
tion 3.3.3, under the assumption that an unreachable dummy universal state is inserted in S2. De-
ciding the validity of such formulas can be done by quantifier elimination. The cylindrical algebraic
decomposition algorithm [45], implemented in several symbolic computation tools (for instance,
Maple [178]) performs this quantifier elimination in time double exponential in the number of
variables, even when the number of quantifier alternations is constant [46]. With this algorithm,

refinement can be decided in timeO(n222
n2

). However, considering constraintsφ contain only
existential quantifiers, quantifier alternation is exactly one in our case, andthere are quantifier
elimination algorithms that have a worst case complexity single exponential only inthe number of
variables, although they are double exponential in the number of quantifieralternations [14]. Using
this algorithm, refinement can be decided in timeO(n2sn

2

dn
2

).
Deciding whether a CMC is deterministic is of particular importance since refinement is not

49

complete in the class of non-deterministic CMCs and that determinization is an abstraction in
general. Determinism of a CMC with polynomial constraints can also be decidedin time single
exponential in the size of the CMC. However, this problem becomes polynomial when restricting
constraints to be linear inequalities. Consider a CMCS with linear constraintsφ(i)(x) = x×Ci ≤
bi. Recall that CMCS is deterministic if and only if for all statesi, j such thati < j, V (i)∩V (j) 6=
∅ implies for allk, {x|x×Ck ≤ bk ∧ xi = 0} = ∅ or {y|y×Ck ≤ bk ∧ yj = 0} = ∅. This can be
decided in polynomial time using Fourrier-Motzkin elimination [163].

3.7 Related Work and Concluding Remarks

We have presented Constraint Markov Chains—a new model for representing a possibly infi-
nite family of Markov Chains. Unlike the previous attempts [113, 91], our model is closed under
many design operations, including composition and conjunction. We have studied these operations
as well as several classical compositional reasoning properties, showing that, among others, the
CMC specification theory is equipped with a complete refinement relation (for deterministic spec-
ifications), which naturally interacts with parallel composition, synchronization and conjunction.

Two recent contributions [91, 112] are strongly related to these results. Fecher et al. [91]
propose a definition of weak refinement for Interval Markov Chains that is coarser than the re-
finement defined in [113] (see also Definition3.3.2here). They also give a model checking pro-
cedure for PCTL [67] and Interval Markov Chains. Our definition of weak refinement coincides
with theirs for Interval Markov Chains, which are a subclass of CMCs. Very recently Katoen and
coauthors [112] have extended Fecher’s work toInteractiveMarkov Chains, a convenient model
for performance evaluation [101, 104]. Their abstraction uses the continuous time version of In-
terval Markov Chains [114] augmented with may and must transitions, very much in the spirit
of [119, 148]. Parallel composition is defined and studied for this abstraction, howeverconjunction
has been studied neither in [91] nor in [112].

In future, it would be of interest to design, implement and evaluate efficientalgorithms for
procedures outlined in this chapter. We would also like to define a quotient relation for CMCs,
presumably building on results presented in [120]. The quotienting operation is of particular im-
portance for component reuse. One could also investigate applicability of our approach in model
checking procedures, in the same style as Fecher and coauthors have used Interval Markov Chains
for model checking PCTL [91]. Finally the model presented in [112] can probably be extended
from intervals to more general constraints.

50

Part II

Heterogeneous Systems

51

Chapter 4

Asynchronous Implementation of
Synchronous Specifications

Résumé : La prise en compte de la concurrence, de la communication et des dépendences
causales en général est une question centrale pour la conception des systèmes embarqués en
réseaux.

Le paradigme de la programmation synchrone est maintenant reconnucomme l’un des stan-
dards industriels du domaine. On le retrouve à plusieurs niveaux de la chaîne de conception des
systèmes embarqués de la conception système à la programmation de systèmes de contrôle. Le
déploiement efficace de programmes synchrones sur des architectures réparties est cependant un
problème difficile mais essentiel pour la programmation à au niveau de cesarchitectures pour des
applications de contrôle. Cette problématique se retrouve dans de nombreuses applications, pour
les quelles le processus de conception tient compte du caractère répartide l’architecture. Cet
ainsi que pour les systèmes de commandes de vol mis en œuvre sur les avions Airbus récents, les
règles de conception assurent la répartition et donc la désynchronisation des programmes syn-
chrones, sans adjonction de protocoles complexes. À l’autre extrémité du spectre des architectures
VLSI constituent aussi un domaine d’application intéressant pour la programmation synchrone.
La prééminance des architectures ditesnetwork on chipsintroduit un fort degé d’asynchronie dans
les circuits.

Dans ces deux cas, Il semble particulièrement utile de savoir transformer un programme
synchrone en un réseau asynchrone d’îlots synchrones. Ce sont les architectureslocalement syn-
chrones, globalement asynchrones(GALS). C’est une question délicate, et à défaut de pouvoir
générer automatiquement les schémas de communication et des synchronisation, il semble par-
ticulièrement utile de pouvoir prouver qu’un réseau synchrone de programmes synchrones peut
être déployé sur une architecture asynchrone, sans adjonction de synchronisation, mais tout en
préservant la sémantique du réseau de programmes.

Il faut bien se représenter, que le problème de déployer un réseau synchrone sur une architec-

53

54

ture asynchrone est uniquement un problème d’optimisation, puisqu’il admet une solution triviale,
mais totalement inefficace, tant en terme de communication, que d’utilisationdes ressources de
calcul. Le véritable problème est plutôt une question de synthèse d’un schéma de synchronisation
qui optimise une fonction de coût tenant compte de la communication et du parallélisme du système
GALS résultant.

Nous n’avons pas regardé cette question à proprement parler. Nousavons cherché à carac-
tériser l’espace des solutions, le problème d’optimisation relevant plutôt de techniques heuristiques
pour des problèmes d’optimisation combinatoire.

Nous avons regardé le problème suivant: étant donné un réseau de programmes synchrones,
décider si son déploiement sur une architecture répartie admet les mêmes comportements que
le réseau synchrone. Ce problème est indécidable, même quand les programmes synchrones se
réduisent a des automates finis.

Nous avons donc considéré des conditions suffisantes au déploiementcorrect. Plutôt que de
se ramener, par la force brute, à un problème de vérification sur la composition asynchrone des
programmes synchrones, approche non modulaire qui aboutit en général à un système infini, nous
avons recherché des méthodes modulaires ne reposant pas sur la vérification globale, mais plutôt
sur une approche modulaire, reposant sur la vérification de relations binaires entre programmes
synchrones, pour lesquelles un passage à l’échelle peut être escompté.

Les conditions suffisantes que nous avons proprosé sont en fait la conjonction de deux pro-
priétés distinctes. La première, dite d’isochronie, est locale à un programme synchrone, et est une
propriété de déterminisme d’un programme, quand on désynchroniseses entrées. La seconde, dite
d’endochronieest une propriété portant sur un réseau de programmes et reflète une sorte compat-
ibilité entre programmes synchrones. Ces deux propriétés ont été proposées avec deux variantes,
l’une forte, fondée sur une sémantique macro-pas des programmes synchrones (dans laquelle une
réaction est décrite par une seule transition), l’autre, plus faible, reposesur une sémantique micro-
pas (dans laquelle une réaction est représentée par une suite d’affectations de variables, terminée
par une transition spéciale, marquant le passage à la réaction suivante).

Ces travaux ont été initiés en 1999 à l’occasion d’une collaboration avec Albert Benveniste [21,
23]. Elle s’est ensuite poursuivie en collaboration avec Dumitru Potop-Butucaru, alors postdoc à
Rennes [74, 143, 147]. Dumitru Potop-Butucaru, depuis devenu chercheur à l’INRIA à Rocquen-
court dans léquipe Aoste, a poursuivi ces travaux, en les orientant vers la recherche de méthode
heuristiques pour la desynchronisation correcte de réseaux de programmes synchrones [145, 146].
Cette même problématique a été reprise dans les travaux de thèse de Julien Ouy (doctorat effec-
tué dans l’équipe Espresso à Rennes), mais avec application au langagede programmation Sig-
nal [139].

55

4.1 Introduction

Dealing with concurrency, time and causality in the design of electronic systemshas become
increasingly difficult as the complexity of the designs grew.

Thesynchronous programming model[98, 26, 144] has had major successes at the specification
level because it provides a simpler way to employ the power of concurrency in functional specifica-
tion. Provided that a few high-level constraints ensure compliance with the synchrony hypothesis,
the designer can forget about timing and communication issues and concentrate on functionality.
The synchronous model features deterministic concurrency and simple composition mechanisms
facilitating the incremental development of large systems. Also, synchronous models are usually
easier to analyze/verify/optimize compared to asynchronous counterparts, often because the state-
transition representations are smaller.

Synchronous languages like ESTEREL, LUSTRE, and SIGNAL , the quasi-synchronous STATE-
CHARTSmodeling methodology, and design environments like SIMULINK / STATEFLOW all benefit
from the simplicity of thesynchronous hypothesis:

1. Cycle-based execution model. Behaviors are sequences ofreactionsindexed by aglobal
logical clock.

2. Within each reaction, the behavior is non-divergent and causal, so that the status of every
signal is defined prior to being used in computations.

Note that condition 2 empowers the conceptual abstraction that computations and communications
are infinitely fast (“zero-time”) and take place at discrete points in time, with noduration. It
also allows universally-recognized mathematical models like the Mealy machinesand the digital
circuits to be used as semantic foundations.

Eventhough the synchronous assumption simplifies system specification andverification, the
problem of deriving a correct physical implementation from it does remain [26]. In particular,
difficulties arise when the target implementation architecture has a distributed nature that does not
match the synchronous assumption because of large variance in computationand communication
speeds and because of the difficulty of maintaining a global notion of time. Thisis increasingly the
case in complex microprocessors and Systems-on-a-Chip (SoC), and for many important classes
of embedded applications in avionics, industrial plants, and the automotive industry.

For instance, many industrial embedded applications consist of multiple processing elements,
operating at different rates, distributed over an extended area, and connected via communication
buses. To use a synchronous approach in the development of such applications, one solution is to
replace the asynchronous buses with communication infrastructures that comply with a notion of
global synchronization. This is examplified by the family of Timed-Triggered Architectures intro-
duced and promoted by H. Kopetz [118]. However, such a fully synchronous implementation must
be conservative, forcing the global clock to run as slow as the slowest computation/communication
process. The overhead implied by time-triggered architectures and synchronous implementations
is often large enough to convince designers to use asynchronous solutions.

56

GALS

sc
h

ed
u

le
r

sc
h

ed
u

le
r

sy
n

ch
ro

n
o

u
s

sy
n

ch
ro

n
o

u
s

sy
n

ch
ro

n
o

u
s

sy
n

ch
ro

n
o

u
s

Synchrony

synchronous asynchronous

⊥

⊥ ⊥

⊥

Figure 4.1: From synchrony to GALS. Bullets represent informative values (messages). Vertical
gray boxes represent reactions. Horizontal ones represent asynchronous signals.

Gathering advantages of both the synchronous and asynchronous approaches, Globally Asyn-
chronous Locally Synchronous (GALS) architectures are emerging asan architecture of choice for
implementing complex specifications in both hardware and software. In a GALSsystem, locally-
clocked synchronous components are connected through asynchronous communication lines. Thus,
unlike for a purely asynchronous design, the existing synchronous tools can be used for most of
the development process, while the implementation can exploit the more efficient/unconstrained/re-
quired asynchronous communication schemes.

We further pursue in this chapter our quest for correct-by-construction deployment of syn-
chronous specifications over GALS architectures.

4.1.1 Informal discussion of the issues

In the synchronous paradigm[98, 26, 144], an execution of the program, also calledtrace,
is a sequence of reactions, each reaction assigning a unique value (status) to each variable of the
program. Not all variables need to be involved in each reaction. However, this is taken into account
by extending the domain of values of all variables with an extra symbol⊥, which denotes absence.
Thus, absence can be tested and used to exercise control.

No global clock exists in theasynchronous paradigm, meaning that no notion of reaction exists,
and that absence (⊥) has no meaning and cannot be sensed. Only the sequences of values on indi-
vidual channels can be observed, so that anasynchronous observationof the execution of a system
is a function assigning to each communication channel the sequence of transmitted messages/val-
ues. Asynchronously observing a synchronous execution consists of removing the⊥ events and
the synchronization boundaries of the reactions to obtain an asynchronous observation.

In many cases, applications designed in a synchronous framework will be implemented
for use in an asynchronous environment. Two problems arise: First, the synchronous applica-
tions must be fitted with wrappers that read the asynchronous inputs and schedule them into reac-
tions before giving them to the program and triggering the program clock (the scheduling operation
inserts the missing⊥ values). As the synchronous paradigm is often used in the development of

57

safety-critical systems, input reading and the system itself must be deterministic, or at least pre-
dictable. It is therefore essential to consider classes of synchronousspecifications that facilitate the
development of efficient wrappers which make input reading deterministic while not restricting the
behavior of the system.

Second, the implementation must preserve the semantics of the synchronous specification,
meaning that the set of asynchronous observations of the specification must be identical to the
set of observations of the implementation. Preservation of semantics is important because the
advantages of synchrony lie with specification and verification. We would therefore like each im-
plementation trace to be covered by the verification of the synchronous model. This problem is of
particular importance when the synchronous specification must be implementedover a distributed
architecture (an operation calleddesynchronization). In such cases, input reading and computation
must be coordinated between distributed sites, and doing this without a careful analysis can be very
inefficient (in terms of speed, consumption, communication, etc.) or simply incorrect.

This chapter addresses the problem of desynchronizing a modular synchronous specification by
replacing the communication lines between modules with asynchronous FIFOs. Instead of a single,
global wrapper, we shall have one wrapper per system component, aspictured in fig. 4.1. The
exact problem we address is that ofcharacterizing large classes of synchronous components for
which small, simple wrappers1 produce deterministic, efficient, and semantics-preserving GALS
implementations. These classes of systems can then be considered as the implementation space,
and the remaining problem is that of making given synchronous systems belong to these classes (by
adding supplementary signaling). Naturally, a larger implementation space covers better solutions
that use less synchronization.

4.1.2 Previous work

Previous approaches to implementing modular synchronous specifications over GALS archi-
tectures are respectively based onlatency-insensitive systems, on Kahn process networks (KPN),
and onendochronous and isochronous systems.

In the latency-insensitive systemsof Carloni et al. [59], each synchronous component reads
every input and writes every output at each reaction. The communication protocols effectively
simulate a single-clock system, which is inefficient, but simplifies the implementation.

In aKahn process network[129], requiring that each component has a deterministic input/out-
put behavior implies the determinism of the global system (and thus any wrapper is a good one).
Often used, due to its robustness, in the development of embedded systems,the KPN-based ap-
proach has been adapted by Caspiet al. for the desynchronization of functional dataflow syn-
chronous specifications [61]. Giving the approach its strength, the determinism is also its main
drawback, as non-determinism is often useful in the specification and analysis of concurrent sys-
tems. We also mention here the approach of Talpinet al. [167], which is based on a bounded
version of the Kahn principle.

1. For instance, wrappers that trigger a transition as soon as the neededinput is available.

58

The approach based onendo/isochronous systemshas been proposed by Benvenisteet al. [23]
in order to support the analysis of partial specifications (which can be non-deterministic, or incom-
plete), to exploit execution modes, and to cover truly concurrent and multi-clock implementations.
Informally speaking, a synchronous component is endochronous when the presence and absence of
each variable can be inferred incrementally during each reaction from thecurrent state and from the
values of already present values. An endochronous component knows how to read its inputs, mean-
ing that no wrapper is needed. Unfortunately, endochronous components can exhibit no internal
concurrency, which makes endochrony non-compositional (thus, incremental system development
is impossible). Isochrony is a semantics-preservation criterion over pairsof synchronous systems.
The work of Singh and Theobald ongeneralized latency-insensitive systems[165] can be seen as
implementing endochrony in hardware.

Essential improvement is brought by the work by Potopet al. [143] on weak endochrony and
weak isochrony. Weak endochrony extends endochrony by allowing operations within a compo-
nent to run independently when no synchronization is necessary. The notion is compositional,
allowing incremental development of large systems. Being formulated in a non-causal2 frame-
work, this approach is also less constrained than the KPN-based one, allowing non-determinism in
the less abstract causal model. The non-causal framework is also the maindisadvantage, because it
hides implementation properties, like the presence of synchronization or communication deadlocks
(which are important in practice).

The distribution of synchronous or strongly synchronized specifications has been studied in
many other settings. We only mention here the Time-Triggered Architectures ofKopetz [118], the
ocrep tool of Giraultet al. [61], the AAA methodology of Sorel [97], and the desynchronization
approach of Cortadellaet al. [42].

From a more theoretical point of view, our work is closely related to results related to the
confluence of asynchronous system models [116]. In this sense, our work is closely related to
results concerning the design of delay-insensitive [173, 132, 71], speed-independent [115], and
burst-mode [179] circuits (we will come back with a comparison in section4.4.3).

4.1.3 Contribution

This chapter brings an important improvement over previous work, by allowing us toreason
about concurrency and efficient synchronization in a causal, operational synchronous framework
that takes into account the composition through read/write mechanisms. The approach inher-
its the advantages of the weak endochrony-based approach: It allowsthe representation of non-
deterministic specifications, takes into account execution and communication modes, and covers
concurrent and multi-clock implementations. At the same time, it allows us to reasonin a unified
model about semantics-preservation and the absence of deadlocks dueto synchronization and com-

2. The termcausal/causalitycovers here the execution order of the various operations that make upa synchronous
reaction. The formalism presented in this chapter has the means of representing this order. Other formalisms, including
those of [23, 143], do not.

59

munication (which are both essential correctness properties of any implementation). As we shall
see,the level of detail is essential in this analysis, as it reveals the strong ties thatexist between the
two correctness properties, and simplifies the correctness analysis.

Our main contribution is the definition of a new model for the representation of asynchronous
implementations of synchronous specifications. The model covers classical implementations, where
a notion of global synchronization is preserved by means of signaling, and globally asynchronous,
locally synchronous (GALS) implementations where the global clock is removed. We use this
model to derive criteria ensuring the correct deployment of synchronous specifications over GALS
architectures.

4.1.4 Outline

The remainder of the chapter is organized as follows: Section4.2defines the formal framework
used throughout the chapter, and section4.3 gives intuitive examples and explains why the new
structures are adapted to modeling and reasoning about the correctnessof GALS implementations
of synchronous specifications. Sections4.4defines criteria ensuring correct desynchronization. A
short conclusion is given in section4.5.

4.2 The model

This section defines our model of asynchronous implementation of a synchronous specification.
We structured its presentation into several parts. The subsections4.2.1, 4.2.2, and4.2.3introduce
rather standard notations for transition systems (labels, traces, concurrent transition systems, and
composition by synchronized product). Subsection4.2.4is the first to define communication chan-
nels, clocks, and the I/O transition systems which form our basic implementation model. Section
4.2.5defines the synchronous transition systems – which are I/O transition systemssatisfying the
synchronous hypothesis. In section4.2.6we explain how transition systems are synchronously and
asynchronously composed using FIFO models. Recall that intuitive examples are given later, in
section4.3.

4.2.1 Variables and labels

Our components and systems interact with each other and with their environment throughvari-
ables. Thedomainof a variablev is denoted withDv. GivenV afiniteset of variables, alabelover
V is a partial valuation of its variables. Formally, the set of all labels overV is LV =

∏

v∈V D⊥
v ,

whereD⊥
v = Dv ∪ {⊥}, and⊥ 6∈ Dv is a special symbol denoting theabsenceof a value. The

supportof a labell ∈ LV is supp(l) = {v ∈ V | l(v) 6= ⊥}. We denote with⊥V the label of
empty support overV . For simplicity, we shall usually write out a label as the set of its non-absent
variable valuations. For instance,< v = 0, u = 1 >V denotes the label overV with support{u, v}
and which assigns 0 tov and 1 tou. When confusion is not possible, the setV of variables can

60

be omitted from the notation. Also, when confusion is not possible and we need to save space (for
instance in large system representations) we shall drop the “< >” delimiters.

If l ∈ LV andV ′ is another set of variables, then theimageof l throughV ′ is the label
l |V ′∈ LV ′ that equalsl overV ∩ V ′ and equals⊥ onV ′ \ V .

The labelsli ∈ LVi , i = 1, 2, arenon-contradictory, denotedl1 ⊲⊳ l2, if for all v ∈ V1 ∩ V2
such thatli(v) 6= ⊥, i = 1, 2 we havel1(v) = l2(v). In this case, we define their:

– union: l1⊔l2 ∈ LV1∪V2 , of supportsupp(l1)∪supp(l2) and which equalsli oversupp(li), i =
1, 2.

– intersection: l1 ⊓ l2 ∈ LV1∪V2 , of supportsupp(l1) ∩ supp(l2) and which equalsli on its
support.

The union and intersection operators are associative and commutative. When the labelsl1, l2 ∈ LV
are non-contradictory, we also define theirdifferencel1 \ l2 ∈ LV by l1 \ l2(u) = l1(u), if u 6∈
supp(l2) and⊥, otherwise.

When the non-contradictory labelsli ∈ LVi , i = 1, 2 are equal overV1 ∩ V2, they are called
synchronizable. Their union is also called in this caseproductand denoted withl1 ⊗ l2. Note that
l1⊗l2 equalsli onVi, i = 1, 2. The labelsli ∈ LVi , i = 1, 2 aredisjoint if supp(l1)∩supp(l2) = ∅.

Assume thatv andv′ are variables with the same domain (i.e. Dv = Dv′). Givenl ∈ LV , with
v ∈ V andv′ 6∈ V \ {v}, the name change operator associatesl[v/v′] ∈ LV \{v}∪{v′} with:

l[v/v′](u) =

{

l(u), if u 6= v′

l(v), if u = v′

We define the “sub-label” partial order relation≤ overLV : l1 ≤ l2 if ∀v : (l1(v) 6= ⊥ ⇒
l1(v) = l2(v)).

4.2.2 Traces

A traceover the set of variablesV is afinite sequence of labels overV . The set of all traces
overV is denoted withTraces(V) = L∗

V = {(li)0≤i<n | n ∈ N ∧ ∀i : li ∈ LV }. Given a trace
ϕ = (li)0≤i<n we denotelength(ϕ) = n andϕ[i] = li. Note that any label is a trace of length 1.
We denote withǫ any sequence of length 0. In particularǫ denotes the empty trace, regardless of
the variable set.

Any two tracesϕ1, ϕ2 ∈ Traces(V) can be concatenated (by juxtapositionϕ1ϕ2). The trace
ϕ1 is a prefix ofϕ2 (written ϕ1 � ϕ2) if, by definition, ϕ2 = ϕ1ϕ3 for someϕ3. The prefix
relation is a partial order over traces. The image operator is extended component-wise on traces:
(li)0≤i<n |V ′= (li |V ′)0≤i<n. The tracesϕi ∈ Traces(Vi), i = 1, 2 are calledsynchronizable
if length(ϕ1) = length(ϕ2) and if for all j the labelsϕ1[j] andϕ2[j] are synchronizable. In
this case, we can define theproduct traceϕ1 ⊗ ϕ2 = (ϕ1[i] ⊗ ϕ2[i])0≤i<length(ϕ1). The product
operator is associative and commutative. Thesupportof a traceϕ, denotedsupp(ϕ), is the union
of the supports of its labels.

61

4.2.3 Generalized concurrent transition systems

The generalized concurrent transition systems(GCTS) form our (asynchronous) implemen-
tation model. GCTSs are step transition systems where steps are syntactic representions of the
concurrency between atomic operations (which assign or test a single variable). They generalize
the concurrent transition systems of Stark [166], and can be seen as a sub-set of the step transition
systems of Mukund [135].

Definition 4.2.1 (generalized concurrent transition system)A generalized concurrent transition
system (GCTS) is a tupleΣ = (S, ŝ, V, ◦→Σ), whereS is the set of states (not necessarily finite)
, ŝ ∈ S is the initial state,V is the finite set of communication variables, and◦→Σ ⊆ S×LV ×S
is a transition relation satisfying:

GCTS1 (void transition):∀s ∈ S : s◦
⊥V

Σ
// s .

GCTS2 (prefix closure): If s◦ l

Σ
// s′ andl′ ≤ l, then there existss′′ ∈ S such thats◦ l′

Σ
// s′′

and s′′ ◦
l\l′

Σ
// s′ .

When there is no ambiguity,Σ can be dropped from the transition relation notation.

We shall say thatϕ = l1 . . . ln ∈ Traces(V) is a trace of the GCTSΣ = (S, ŝ, V, ◦→Σ)

starting in the states ∈ S if there exists1, . . . , sn ∈ S such thats◦
l1 // s1 ◦

l2 // . . .◦
ln // sn .

In this case, we also writes◦
ϕ +3 sn . The set of all traces ofΣ starting ins is denoted by

TracesΣ(s), and the set of all destination states of such traces is:RSSs(Σ) = {s′ ∈ S | ∃ϕ :

s◦
ϕ +3 s′ }. Thereachable state space ofΣ isRSS(Σ) =def RSSŝ(Σ).

Generalized concurrent transition systems are composed by means of synchronized product.
Consider two GCTSsΣi = (Si, ŝi, Vi, ◦→Σi

), i = 1, 2, then their product is defined as follows:

Σ1 ⊗ Σ2 = (S1 × S2, (ŝ1, ŝ2), V1 ∪ V2, ◦→Σ1⊗Σ2
)

where (s1, s2)◦
l

Σ1⊗Σ2

// (s′1, s
′
2) ⇔ si ◦

l|Vi

Σi

// s′i , i = 1, 2. The⊗ operator is well-defined — It

preserves the properties GCTS1 and GCTS2. It is also associative andcommutative, and:

Traces⊗n
i=1

Σi
((si)1≤i≤n) = {

n⊗

i=1

ϕi | ϕi ∈ TracesΣi
(si) pairwise synchronizable}

The variable name change operator is extended to GCTSs. IfΣ = (S, ŝ, V, ◦→Σ), v ∈ V ,
v′ 6∈ V \ {v}, andDv = Dv′ , then:

Σ[v/v′] = (S, ŝ, V \ {v} ∪ {v′}, { s◦l[v/v
′]

Σ[v/v′]
// s′ | s◦ l

Σ
// s′ })

62

4.2.4 I/O causality. Channels and clocks

In practice, communications between the different components of a system are directed. One
component emits a value on a channel, and another reads it. To take this into account, we use
directed communication channelsthat are pairs ofdirected variables. We emit a value on a channel
c by assigning the variable!c, and we receive a value by reading the variable?c. The variables!c
and?c have the same domain, denoted withDc. We denote withC(V) = {c |!c ∈ V or ?c ∈ V }
the set of channels associated with a set of variablesV . To simplify the model, we assume that
every channel connects at most one emitter with at most one receiver, meaning that!c is variable of
at most one component in the system, the same holding for?c (a simple renaming technique allows
the use of multicast, but we shall not cover the subject here). We furtherassume that the only
variables that are not directed are theclocksof the synchronous components. A clock is a variable
whose domain isDclk = {⊤} (⊤ stands for the “clock tick”). Given a setV of variables we shall
denote withClocks(V) the subset of clock variables, and withDirected(V) = V \ Clocks(V)
the subset of directed variables. To simplify the notations, we abbreviate theclock tick valuation
τ = ⊤ with τ (for any clock variableτ).

Definition 4.2.2 (I/O transition system) We say that a GCTS is an I/O transition system when all
its variables are either directed or clocks.From now on, this chapter only considers I/O transition
systems.

To reason about desynchronization properties, we shall need the following function, which
removes the clock synchronization barriers, so that only messages (andnot absence) are visible,
along with message ordering on each channel:δ : (D⊥

v)
∗ → D∗

v , defined byδ(ǫ) = ǫ and:

δ(vϕ) =

{

vδ(ϕ), if v 6= ⊥
δ(ϕ), otherwise

Using this notation, we extend the relation≤ (first defined on labels) to a preorder overTraces(V):
Givenϕ1, ϕ2 ∈ Traces(V), we writeϕ1 ≤ ϕ2 whenever we haveδ(ϕ1 |{v}) � δ(ϕ2 |{v}) for
all v ∈ Directed(V). If ϕ1 ≤ ϕ2 andϕ2 ≤ ϕ1, then we say thatϕ1 andϕ2 areasynchronously
equivalent, denotedϕ1 ∼ ϕ2. When for allv ∈ Directed(V) we haveδ(ϕ1 |{v}) � δ(ϕ2 |{v})
or δ(ϕ2 |{v}) � δ(ϕ1 |{v}), then we say thatϕ1 andϕ2 areasynchronously non-contradictory,
and writeϕ1 ⊲⊳ ϕ2. Note that⊲⊳ extends to traces the non-contradiction relation over labels.
Moreover, we can extend the label difference operator to non-contradictory traces by defining the
asynchronous difference of tracesϕ1 \ ϕ2 by induction:

{

ϕ1 \ (lϕ2) = (ϕ1 \ l) \ ϕ2

(l1ϕ1) \ l2 = (l1 \ l2)(ϕ1 \ (l2 \ l1))

If ϕ is a trace of an I/O transition system, then we denote with| ϕ | the number of assignments of
non-clock variables contained inϕ.

63

4.2.5 Synchronous transition systems

Our synchronous transition systems represent causal synchronousspecifications or, equiva-
lently, implementations of synchronous specifications where the global clockis preserved by some
communication infrastructure by means of added signalization3. A synchronous transition system
is an I/O transition system with a single clock variable, and satisfying the synchronous hypothesis
and a stuttering-invariance property (which is necessary if we want to derive GALS implementa-
tions).

Definition 4.2.3 (synchronous transition system)A microstep synchronous transition system (for
shortµSTS) is a tupleΣ = (S, ŝ, V, τ, ◦→) where all the variables ofV are directed, whereτ is a
clock variable (the clock of the component), and where(S, ŝ, V ∪ {τ}, ◦→) is a GCTS satisfying:

µSTS1 (clock transitions): if s◦ l // s′ andl(τ) 6= ⊥ thenl |V= ⊥V .

µSTS2 (stuttering-invariance): ŝ◦
<τ> // ŝ and(s◦

<τ> // s′ ⇒ s′ ◦
<τ> // s′)

µSTS3 (single assignment): two assignments of a same variable must be separated by a clock

transition. More exactly, ifs0 ◦
l1 // s1 ◦

l2 // . . .◦
ln // sn and∀i : li 6= τ , thenl1, . . . , ln

are pairwise disjoint.

Note that axiomµSTS1 identifies theclock transitions– with label< τ > – which are the only
transitions where the clock variable is present. Such transitions separate synchronous reactions
during which a variable cannot be assigned more than once (cf. axiomµSTS3). A state which
is destination of a clock transition is calledsynchronizing state. Given a traceϕ of a synchronous
system, we can decompose it into reactionsϕ = Step0(ϕ) < τ > Step1(ϕ) < τ > . . .where each
reactionStepi(ϕ) contains no clock transition. As the transitions of eachStepi(ϕ) are disjoint, we
can denote with< Stepi(ϕ) > the union of all its labels. We shall say that a traceϕ is complete
if it ends with a< τ > transition. We say that aµSTS isnon-blockingif from any reachable
state there is a path towards a stuttering state. Note that in a non-blockingµSTS any trace can be
completed. Blocking systems are considered incorrect.

An isomorphismλ between two GCTSsΣi = (Si, ŝi, Vi, ◦→Σi
), i = 1, 2 consists of two

bijectionsλS : S1 → S2 andλV : V1 → V2 having the properties: (i)∀v : Dv = DλV (v), (ii)

λS(ŝ1) = ŝ2, and (iii) s◦ l

Σ1

// s′ ⇔ λS(s)◦
λ(l)

Σ2

// λS(s′) , whereλ(l) denotes the label obtained

from l by renamingv with λV (v) for all v ∈ V1. If Σ1 andΣ2 are I/O transition systems, we say
thatλ is an isomorphism of I/O transition systems ifλV maps read variables onto read variables,
write variables onto write variables, and clocks onto clocks. IfΣ1 andΣ2 areµSTSs, thenλ is an
isomorphism ofµSTSs if it is an isomorphism of I/O transition systems.

3. Such as in theTime-Triggered Architecturesof Kopetz[118].

64

4.2.6 Synchronous and asynchronous composition

As earlier mentioned, we simplify the model by only allowing point-to-point communication,
and we enforce this rule by syntactic means. However, broadcast can be simulated by replicating
and renaming variables.

Definition 4.2.4 (composable transition systems)We say that the I/O transition systemsΣi, i =
1, n arecomposableif their variable sets are mutually disjoint.

Note that the definition requires not only point-to-point communications (no directed variable is
shared by two or more systems), but also the non-overlapping of clock sets (which is natural). Also
note that a system can have both!c and?c as variables, thus allowing the representation of systems
obtained by composition.

The composition of synchronous and asynchronous systems is defined by means of synchro-
nized product, using FIFO models to represent communication through synchronous and asyn-
chronous channels. To represent synchronous communication, we use 1-place synchronous FIFO
models (which areµSTSs themselves). The FIFO model associated with a channelc is:

SFIFO(c, τ) =

({c0, c1} ∪
⋃

x∈Dc

{cx}, c0,
⋃

x∈Dc

{!c = x, ?c = x}, τ, ◦→S)

where the transition relation is defined by:

c0
◦

<τ> 77 ◦
<!c=x>// cx ◦

<?c=x>// c1
◦

<τ>

cc , x ∈ Dc

Note that modeling multicast communication (a feature that will not be addressedin this chapter),
can simply be done by renaming channel read variables in a component-wisefashion, and then
modifying the FIFO model to allow the concurrent read of the value from different sites.

Asynchronous communication involves infinite asynchronous FIFO models (which are not
µSTSs):

AFIFO(c) = (D∗
c , ǫ,

⋃

x∈Dc

{!c = x, ?c = x}, ◦→A)

where the transition relation contains all the transitions of the form:

x1 . . . xn ◦
<!c=xn+1>// x1 . . . xnxn+1 ◦

<?c=x1>// x2 . . . xn+1

65

Definition 4.2.5 (synchronous composition ofµSTSs) LetΣi = (Si, ŝi, Vi, τi, ◦→Σi
), i = 1, 2

be composableµSTSs and letτ be a clock variable. Then, the synchronous composition ofΣ1 and
Σ2 over the base clockτ is:

Σ1 |τ Σ2 = Σ1[τ1/τ]⊗ Σ2[τ2/τ]⊗
⊗

c∈C(V1)∩C(V2)

SFIFO(c, τ)

Lemma 4.2.6 (Properties of the synchronous composition)The synchronous composition of the
µSTSsΣ1 and Σ2 over the base clockτ is a µSTS of clockτ . The result of the synchronous
composition is unique upto renaming of the base clock, so that we can omit the base clockτ from
the notation. Moreover, the operator| is associative and commutative, modulo isomorphism.

In addition, note that synchronizing states of|ni=1Σi have void communication lines (all syn-
chronous FIFO models are in their unique synchronizing state).

Definition 4.2.7 (asynchronous composition of I/O systems)LetΣi = (Si, ŝi, Vi, ◦→Σi
), i =

1, 2 be composable I/O transition systems. Then, the asynchronous composition ofΣ1 andΣ2 is:

Σ1 ‖ Σ2 = Σ1 ⊗ Σ2 ⊗
⊗

c∈C(V1)∩C(V2)

AFIFO(c)

Lemma 4.2.8 (asynchronous composition properties)The asynchronous composition of I/O tran-
sition systems results in another I/O transition system. The‖ operator is associative and com-
mutative. The asynchronous composition of twoµSTSs is not aµSTS.

Proof:(lemmas4.2.6and4.2.8) The operator⊗ is associative and commutative, which implies the
associativity and commutativity of the synchronous and asynchronous composition operators. The
isomorphism ofΣ1 |τ1 Σ2 andΣ1 |τ2 Σ2 is given by the renaming of the clock variable.2

4.2.7 Product states and product traces

Note that the state of a synchronous or asynchronous product of I/O systems is not only given
by the state of the components, but also by the state of its communication channels. Indeed, given
the composableµSTSsΣi, i = 1, n, connected through the channelsci, i = 1,m, the state of
|ni=1Σi is ((si)i=1,n, (c

s
i)i=1,m), and the state of‖ni=1Σi is ((si)i=1,n, (c

a
i)i=1,m), wherecsi denotes

states ofSFIFO(ci, τ) andcai denotes states ofAFIFO(ci).
Nevertheless, for space reasons, we shall consider in this article only examples where the tuple

(si)i=1,n unambiguously identifies the state of the product. Thus, we can use the component state
tuple alone to label states.

As should be expected, the synchronous composition binds tighter than the asynchronous one.
Indeed, given the composableµSTSsΣi = (Si, ŝi, Vi, τi, ◦→Σi

), i = 1, n, we can map the state
space of|ni=1Σi onto the state space of‖ni=1Σi:

ι : RSS(|ni=1Σi) →֒ RSS(‖ni=1Σi)

66

by mapping for each communication channelc the state ofSFIFO(c, τ) onto the state ofAFIFO(c)
using:c0 7→ ǫ, c1 7→ ǫ, and∀x ∈ Dc : cx 7→ x. Similarly, we can define for anysi ∈ Si, i = 1, n
the injective “inclusion morphism” that maps traces of the synchronous product into traces of the
asynchronous product:

ι : Traces|ni=1
Σi
(s) →֒ Traces‖n

i=1
Σi
(ι(s))

defined inductively byι(ǫ) = ǫ, by ι(ϕ1ϕ2) = ι(ϕ1)ι(ϕ2), and (for labels) by:

ι(l) =

{

l |⋃n
i=1

Vi∪{τi|i=1,n}, if l 6= < τ >

< τ1, . . . , τn >, if l = < τ >

whereτ is the base clock of the synchronous composition. With these notations we have:

s◦
ϕ

|ni=1
Σi

+3 s′ ⇒ ι(s)◦
ι(ϕ)

‖n
i=1

Σi

+3 ι(s′)

4.2.8 Projection operators. Traces of a GALS system

The operatorπσi () projects a state or transition label of the synchronous product|ni=1Σi onto
the corresponding state or transition label ofΣi. Similarly, παi () projects states and transitions of
the asynchronous product‖ni=1Σi onto states and transitions ofΣi. The definition ofπσi () and
παi () is trivial, with the exception ofπσi () over transition labels, which involves the renaming of
the common clockτ to the local clockτi.

Note that, while not constrained by global clock synchronization, the traces of ‖ni=1Σi still
satisfy a FIFO consistency property that requires that a value is read from a channel only after
being emitted. The following definition formalizes this for traces starting with void channels (from
the initial state). Intuitively, we require that in any trace of the composed system the sequence of
values read from a channel is a prefix of the sequence of values that are written. Moreover, we
require that a write operation occurs before the corresponding read operation.

Definition 4.2.9 (FIFO consistency)LetΣi = (Si, ŝi, Vi, τi, ◦→i), 1 ≤ i ≤ n be composable
µSTSs, and letϕ be some trace inTraces(

⋃n
i=1(Vi ∪ {τi})). We say thatϕ is FIFO consistent if

for each channelc shared between two components we haveδ(ϕ |{?c}) � δ(ϕ |{!c}) and the rank
of δ(ϕ |{?c})[j] in ϕ is greater than the rank ofδ(ϕ |{!c})[j] in ϕ for all j ≤ length(δ(ϕ |{?c})).

We can now characterize the traces of‖ni=1Σi:

Lemma 4.2.10 (GALS traces)LetΣ1, . . . ,Σn be composableµSTSs and lets ∈ RSS(|ni=1Σi)
be a synchronizing state. Then,ϕ ∈ Traces‖n

i=1
Σi
(ι(s)) if and only if∀i : παi (ϕ) ∈ TracesΣi

(πσi (s))
andϕ is FIFO consistent.

67

Proof: The direct implication is obvious according to the definitions of⊗ andπαi (). Conversely,
considerϕ a consistent trace such that∀i : ϕi = παi (ϕ) ∈ TracesΣi

(πσi (s)). Then, the consistency
of ϕ allows us to prove, by induction overlength(ϕ), that the interleaving of theϕi’s into ϕ is
possible under the composition contraints imposed by the asynchronous FIFOs that take part in
‖ni=1Σi. This impliesϕ ∈ Traces‖n

i=1
Σi
(ι(s)). 2

As a corollary, if we are givenϕi ∈ TracesΣi
(πσi (s)), 1 ≤ i ≤ n, and if we can order their

non-clock transitions in a FIFO-consistent way, then there existsϕ ∈ Traces‖n
i=1

Σi
(ι(s)) such

thatπαi (ϕ) andϕi are identical upto void transitions for all1 ≤ i ≤ n.

4.3 Modelling and correctness of GALS implementations

This section starts by illustrating our definitions with a number of small, but intuitiveexamples.
Based on this intuition, we define in section4.3.2the formal correctness criterion. Section4.3.3
explains why our model is useful in solving the GALS implementation problem.

4.3.1 Examples

The followingµSTS represents a system that emits a message on channela and then awaits for
one message from either channelb or r (e.g. for whichever comes first). Data is uninterpreted (not
important), therefore not represented. The clock of the system isτ1, and we shall assume that the
directed variable set ofΣ1 is {!a, ?b, ?r}:

Σ1 :

s2 ◦
<τ1>

yy

s0
◦

<τ1> 77 ◦
<!a>// s1

◦

<?b> ==||||||

◦ <?r>

!!B
BB

BB
B

s3 ◦
<τ1>

yy

In a more classical macrostep framework, like that of [143], this system would be represented by:

Σ1, macrostep version :

s2

s0

ab
==||||||

ar

!!B
BB

BB
B

s3

The correspondence between the microstep and macrostep representations of a system is straight-
forward: The states of the macrostep system are the synchronizing statesof the microstep one. The
macrostep transitions correspond to full reactions connecting synchronizing states (after forgetting
the direction of the signals and the causality between successive labels).

68

We composeΣ1 with theµSTSΣ2, which has the clockτ2 and the directed variable set{?a, !b}:

Σ2 : t0
◦

<τ2> 88 ◦
<?a> // t1 ◦<τ2>

// t2
◦

<τ2>

��
◦
<!b> // t3 ◦

<τ2>
xx

The synchronous compositionΣ1 | Σ2 is done using two synchronous FIFOs, corresponding to
the variables/channelsa andb:

SFIFO(a, τ) :
a0
◦

<τ> 66 ◦
<!a>// a2 ◦

<?a>// a1
◦

<τ>

bb

SFIFO(b, τ) :
b0

◦
<τ> 77 ◦

<!b> // b2 ◦
<?b> // b1

◦

<τ>

bb

In this example, data is uninterpreted, only write/read causality and clock synchronization is con-
sidered. The composed synchronous system is (we simplified for space reasons the label notations,
as explained in section4.2.1):

Σ1 | Σ2 :

s0, t0
◦

τtt◦

!a
��

s1, t0 ◦
?a //

◦

?r
��

◦
?a?r

##H
HH

HH
HH

HH
s1, t1

◦

?r
��

s3, t0 ◦
?a // s3, t1 ◦

τ // s3, t2
◦

τ

GG
◦

!b // s3, t3

Note that we simplified the notation by not representing the state of the two FIFOs(the initial state
having void FIFOs, the status of the FIFOs is fully determined in each state). However, note that the
composed system is blocked in state(s3, t3) becauseSFIFO(b, τ) cannot take a clock transition
(data has been written on it, but not read). The systemΣ1 | Σ2 is blocking, thus incorrect.

The asynchronous compositionΣ1 ‖ Σ2 is done using the two asynchronous FIFOs, figured
below:

AFIFO(b) :
ǫ◦
<!b> // b

◦

<?b>

^^
AFIFO(a) :

ǫ◦
<!a> // a

◦

<?a>

^^

Recall that in the general case the asynchronous FIFO models are infinite. However,Σ1 andΣ2

can emit at most one message on any of the two channels, so our choice does not affect the result
of the composition:

69

Σ1 ‖ Σ2 :

s0, t0
◦

τ1,τ2,τ1τ2tt◦

!a
��

s1, t0
◦

τ2
++

◦
?a //

◦

?r
��

◦
?a?r

##H
HH

HH
HH

HH
s1, t1 ◦

τ2 //
◦

?r
��

◦
τ2?r

##H
HH

HH
HH

HH
s1, t2

◦

τ2

��
◦

!b //
◦

?r
��

◦
!b?r

##H
HH

HH
HH

HH
s1, t3

◦

τ2

��
◦

?b //
◦

?r
��

s2, t3
◦

τ1,τ2,τ1τ2

��

s3, t0
◦

τ1,τ2,τ1τ2

GG
◦

?a // s3, t1
◦

τ1

GG
◦
τ2,τ1τ2// s3, t2

◦

τ1,τ2,τ1τ2

GG
◦

!b // s3, t3
◦

τ1,τ2,τ1τ2

GG

It is essential to note thatΣ1 ‖ Σ2 has traces, like< !a >< ?a >< τ2 >< !b >< ?b >, that are
not asynchronously equivalent to any of the synchronous traces ofΣ1 | Σ2. Such traces are not
covered by the verification done on the synchronous model, meaning that the GALS implementa-
tion does not preserve the semantics of the specification.

It is also important to note that requiring a one-to-one correspondence between synchronous
and asynchronous traces is not a good idea, because for large classes of systems it can be highly
inefficient. Consider, for instance, the following system:

Σ3 :

s2
◦

τ1

��

◦
?r

 B
BB

BB
BB

B

s0
◦

τ1 77 ◦
!a // s1

◦

?b
>>||||||||

◦
?r

 B
BB

BB
BB

B
◦

?b?r // s4 ◦
τ1

yy

s3
◦

τ1

XX
◦

?b
>>||||||||

and its synchronous and asynchronous composition withΣ2:

Σ3 | Σ2 :

s0, t0
◦

τtt◦

!a
��

s1, t0 ◦
?a //

◦

?r
��

◦
?a?r

##H
HH

HH
HH

HH
s1, t1

◦

?r
��

s3, t0 ◦
?a // s3, t1 ◦

τ // s3, t2
◦

τ

GG
◦

!b // s3, t3 ◦
?b // s4, t3

◦

τ

GG

70

Σ3 ‖ Σ2 :

s0, t0
◦

τ1,τ2,τ1τ2tt◦

!a

��
s1, t0

◦
τ2

++
◦
?a //

◦

?r

��

◦
?a?r

!!C
CC

CC
CC

CC
s1, t1 ◦

τ2 //
◦

?r

��

◦
τ2?r

!!C
CC

CC
CC

CC
s1, t2

◦

τ2

��
◦

!b //
◦

?r

��

◦
!b?r

!!C
CC

CC
CC

CC
s1, t3

◦

τ2

��
◦
?b //

◦

?r

��

◦
?b?r

!!C
CC

CC
CC

CC
s2, t3

◦

τ1,τ2,τ1τ2

��

◦

?r

��
s3, t0

◦

τ1,τ2,τ1τ2

GG
◦
?a // s3, t1

◦

τ1

GG
◦
τ2,τ1τ2// s3, t2

◦

τ1,τ2,τ1τ2

GG
◦

!b // s3, t3
◦

τ1,τ2,τ1τ2

GG
◦
?b // s4, t3

◦

τ1,τ2,τ1τ2

GG

As expected, the synchronous composition binds tighter than the asynchronous one, but for any
trace ofΣ3 ‖ Σ2 going from(s0, t0) to (s4, t3) we can find an asynchronously equivalent trace in
Σ3 | Σ2. Such a GALS implementation is obviously correct, because it does not introduce new
behaviors. Exploiting the concurrency between different computations (as we do here) to allow the
systems to evolve at different rates is a desirable feature because it minimizes communication and
consumption. The difference betweenΣ1 andΣ3 is that inΣ3 the transitions< ?b > and< ?r >
are concurrent in states1, while inΣ1 there is a non-deterministic choice between them (meaning
that if messages come on both channels, only one will be read, in an unpredictable fashion).

4.3.2 Formal correctness criterion

We already presented, in section4.1.1, the intuition covering the notion of correctness of a
GALS implementation with respect to its microstep synchronous specification. Wegive here the
corresponding formal correctness criterion:

Criterion 1 (correct desynchronization) LetΣi, i = 1, n be composableµSTSs. Then, we shall
say that the GALS implementation‖ni=1Σi is correctw.r.t. the synchronous specification|ni=1Σi
if for all synchronizing states of |ni=1Σi and for all traceϕ ∈ Traces‖n

i=1
Σi
(ι(s)) there exist

ϕ̃ ∈ Traces‖n
i=1

Σi
(ι(s)) andϕ ∈ Traces|ni=1

Σi
(s) such thatϕ � ϕ̃ andϕ̃ ∼ ι(ϕ).

In other words, the GALS implementation is correct if any of its traces can be completed with a
finite number of transitions to a trace that is asynchronously equivalent to acomplete synchronous
trace.

Our criterion is akin to previous correctness criteria [23, 143] defined in a macrostep setting.
Most important, criterion1 allows us to exploit (like inΣ3 ‖ Σ2) the concurrency of the syn-
chronous specification to support GALS implementations that are weakly synchronized, yet cor-
rect. Important differences exist, though, as our criterion is formulated ina micro-step operational
framework that simplifies, as we shall see in section4.4.4, the definition of sufficient conditions
for correctness.

As explained in the introduction, our purpose is now to find sufficient conditions for correct-
ness (in the formal sense of criterion1) that cover large classes of implementations. We do not

71

cover here the synthesis problem of transforming given systems to satisfythe correctness criterion.
However, we use two examples to give the intuition of future synthesis techniques: First, to correct
the composition ofΣ1 with Σ2, we can simply preventΣ2 from firing the transition labeled< !b >
by guarding it with a condition that is never fulfilled:

Σ′
2 : t0

◦
τ2 88 ◦

?a // t1 ◦τ2
// t2

◦

τ2

��
◦
?d // t′3 ◦

!b // t3 ◦
τ2

xx

More interesting is the case where we composeΣ1 with a processΣ4 that non-deterministically
chooses between emittingb or doing something else. In this case, the solution is to signal the
non-deterministic choice toΣ1, so that it can adapt its behavior:

Σ4 :

u′2 ◦
!b // u2 ◦

τ2
yy

u0
◦

τ1 66 ◦
?a // u1

◦

!d=0 >>}}}}}

◦ !d=1
 A

AA
AA

u′3 ◦
!x // u3 ◦

τ2
yy

Here, we assumed that the non-deterministic choice between< !b > and< !x > is an essential
feature of the specificationΣ4, which must be preserved. To make the composition correct we need
to make this choice visible from its asynchronous environment, under the form of a choice over
the value of a new channel, namedd. Then, we can modifyΣ1 into Σ′

1, which uses this signal to
decide which message to wait for.

Σ′
1 :

s′2 ◦
?b // s2 ◦

τ1
yy

s0
◦

τ1 77 ◦
!a // s1

◦

?d=0 >>~~~~~

◦ ?d=1
 @

@@
@@

s′3 ◦
?r // s3 ◦

τ1
yy

4.3.3 Modeling issues

The I/O transitions systems can be viewed either as microstep specifications, oras asyn-
chronous implementation models. A sub-class of I/O transition systems satisfy thesynchronous
hypothesis – they have a single clock variable, which determines clock transitions, and no variable
is assigned twice between successive clock transitions. Thus, they can be seen as microstep syn-
chronous specifications. The only hypothesis that departs from the classical synchronous model
is stuttering-invariance. However, we see stuttering-invariance as a prerequisite for the efficient
multi-rate GALS deployment.

72

If we compare our model to macro-step models like those of [23, 143], every macrostep speci-
fication (automaton) has (at least) a microstep implementation. Like many macro-step models, our
formalism does not explicitly represent the reaction to signal absence. This does not influence the
expressivity of the model, as reaction to signal absence can be represented using non-deterministic
choice. The composition through point-to-point links is not an essential restriction, as it is easy to
define FIFO models that cover multicast.

The synchronous and asynchronous composition operators reflect the assumption that an emit-
ted signal must not be left unread by the receiver. This hypothesis reflects in an operational fashion
the rendez-vous-like synchronized product composition from macro-step formalisms.

Composing theµSTSsΣi, i = 1, n using the ‖ operator intuitively corresponds to imple-
menting|ni=1Σi as a GALS system where all the communication lines have been replaced with
asynchronous FIFOs. The components are still clocked, but individualclocks are independent, and
the components are only synchronized by the FIFO causality rules. In the GALS implementation
the clock of one component can be triggered concurrently with another clock or an assignment of
another component. The GALS implementation can function in a multi-rate fashion,as no con-
straint relates the occurrence of clock transition in different components.

Compared to classical macro-step approaches, our model brings a levelof detail which is es-
sential in deciding the correctness of actual implementations. ComposingΣ5 andΣ6 results in a
blocking system:

Σ5 : 0
◦

τ1 99 ◦
!a // 1◦

?b // 2◦
!c // 3

◦
τ1ee

Σ6 : 0
◦

τ2 99 ◦
?c // 1◦

!b // 2
◦

τ2ee

However, this problem cannot be observed in macro-step settings, where the system does not block
and can even fire the transition of labelabc. Indeed, the microstep model is better suited for analysis
akin to causality checks performed in synchronous languages like Esterel. In fact, we shall see in
section4.4.4, that non-blocking correctness and semantics preservation are truly related.

4.4 Correct desynchronization criteria

Following the goal fixed in the introduction, we now define criteria that characterize a large
class of synchronous components for which small, simple wrappers produce deterministic, effi-
cient, and semantics-preserving GALS implementations.

4.4.1 Microstep weak endochrony

Microstep weak endochrony (or, simply, weak endochrony) is the property guaranteeing that
a given synchronous component (µSTS) knows how to read its inputs, so that no asynchronous
wrapper is needed. Weak endochrony requires that all internal choice of the component is visible
as a choice over the value (and not presence/absence status) of a directed variable (either input or

73

output). Thus, the behavior of the system becomes predictable inany asynchronous environment,
because choices can be observed.

With this requirement, the implementation space delimited by weak endochrony is nonetheless
very large: Concurrent behaviors are not affected by the previousrule, so that independent system
parts can evolve at different speeds. Weak endochrony does not require I/O determinism. Instead, a
weakly endochronous component must inform the environment about non-deterministic decisions
(the variable used to do so behaves like an oracle that is visible from outside).

Definition 4.4.1 (weak endochrony)We say that theµSTSΣ = (S, ŝ, V, τ, ◦→) is weakly en-
dochronous if it satisfies the following axioms:

µWE1 (determinism): s◦
l // si , i = 1, 2 ⇒ s1 = s2 (from now on, we shall denote with

s.ϕ the unique state ofΣ having the propertys◦
ϕ // s.l , and the notation is extended to

traces).

µWE2 (independence):if the labelsl1 andl2 are disjoint and ifl1, l2 6= τ , then:

s1

s0
◦

l1 =={{{{{

◦

l2 !!C
CC

CC

s2

⇒ ∃s3 :

s1
◦ l2

!!C
CC

CC

s0
◦

l1 =={{{{{

◦

l2 !!C
CC

CC
◦

l1⊔l2 // s3

s2
◦ l1

=={{{{{

µWE3 (clock properties): assume thats0 ◦
<τ> // s1 andϕ ∈ TracesΣ(s0) with τ 6∈ supp(ϕ).

Then:

1. ϕ ∈ TracesΣ(s1)

2. if ϕ < τ >∈ TracesΣ(s0), thenϕ < τ >∈ TracesΣ(s1) and s0.ϕ < τ > =
s1.ϕ < τ >

3. if ϕψ < τ >∈ TracesΣ(s1), then there existsψ′ ≤ ψ such thatϕψ′ < τ >∈
TracesΣ(s0).

4. if ϕ < τ >, θ < τ >∈ TracesΣ(s0) andϕ ⊲⊳ θ, thenϕ(θ \ ϕ) < τ >∈ TracesΣ(s0)

µWE4 (choice): if ϕi < v = xi >∈ TracesΣ(s), i = 1, 2 andϕ1 ⊲⊳ ϕ2, thenϕ1 < v = x2 >∈
TracesΣ(s).

Similar in intuition and in function to its macrostep counterpart [143], weak endochrony is never-
theless specific to our more concrete causal, microstep framework. Thus,while choice can only
occur at the level of atomic variable assignments, concurrency (more precisely confluence) must
also deal with full reactions and clock transitions (through axiomsµWE2 andµWE3, and the con-
sequences of lemma4.4.3). Axiom µWE4 insures that a choice between two concurrent execution
paths does not hide a “real” choice between non-concurrent assignments.

74

Lemma 4.4.2 (independence)Let Σ = (S, ŝ, V, τ, ◦→) be a weakly endochronousµSTS, let
s ∈ S, and letϕ1, ϕ2 ∈ TracesΣ(s) with supp(ϕ1) ∩ supp(ϕ2) ⊆ {τ}. Then:

1. If τ 6∈ supp(ϕi), i = 1, 2, thens.ϕ1ϕ2 ands.ϕ2ϕ1 are defined and equal.

2. If ϕi complete,i = 1, 2, thens.ϕ1ϕ2 ands.ϕ2ϕ1 are defined and equal.

Proof:
part 1: Fromsupp(ϕ1) ∩ supp(ϕ2) ⊆ {τ} andτ 6∈ supp(ϕi), i = 1, 2, we obtainsupp(ϕ1) ∩
supp(ϕ2) = ∅. Then the labelsϕ1[k] andϕ2[l] are disjoint, for all k and l. Based on this remark,
the result is easily obtained by induction overlength(ϕ1) + length(ϕ2), the induction step using
axiomµWE2.
part 2: We shall give here the proof for the case whereϕ1 andϕ2 comprise each one step. This will
prove that independent steps commute, and this result can then be easily applied to prove that any
two complete traces commute. Assume thenϕ1 = Step0(ϕ1) < τ > andϕ2 = Step0(ϕ2) < τ >.
Let s′ = s.Step0(ϕ1).

According to the first part of this lemma,s.Step0(ϕ1)Step0(ϕ2) ands.Step0(ϕ2)Step0(ϕ1)
exist and are equal.

By applying axiomµWE3.4,s.Step0(ϕ1)Step0(ϕ2) < τ > exists. Then, by applying axiom
µWE3.2 ins′, we obtain thats′.< τ > Step0(ϕ2) < τ > exists and is equal tos′.Step0(ϕ2) < τ >.
By using the definition ofs′, this implies

s.Step0(ϕ1) < τ > Step0(ϕ2) < τ > = s.Step0(ϕ1)Step0(ϕ2) < τ >

Similarly:

s.Step0(ϕ2) < τ > Step0(ϕ1) < τ > = s.Step0(ϕ2)Step0(ϕ1) < τ >

Given that the second terms of the two equalities are equal, the proof is completed.2

Lemma 4.4.3 (confluence)LetΣ = (S, ŝ, V, τ, ◦→) be a weakly endochronousµSTS, lets ∈
S, and letϕi ∈ TracesΣ(s), i = 1, 2 such thatϕ1 ⊲⊳ ϕ2. Then:

1. If τ 6∈ supp(ϕi), i = 1, 2, thens.ϕ1(ϕ2 \ ϕ1) ands.ϕ2(ϕ1 \ ϕ2) are defined and equal.

2. If ϕi complete,i = 1, 2, thens.ϕ1(ϕ2 \ ϕ1) ands.ϕ2(ϕ1 \ ϕ2) are defined and equal.

Proof:
part 1:
Case a: When each of the two traces are reduced to one labelϕ1 = l1, ϕ2 = l2. Fromϕ1 ⊲⊳ ϕ2 we
havel1 ⊲⊳ l2. Then, from axiom GCTS2, we can decomposel2 into l2 \ l1 andl2 ⊓ l1. By applying
axiomµWE2 to l2 \ l1 and l1 in states, we obtain thats.l1(l2 \ l1) ands.(l2 ⊔ l1) exist and are
equal. Similarly,s.l2(l1 \ l2) exists, and is equal tos.(l2 ⊔ l1), which implies the needed result.
Case b: when onlyϕ2 is reduced to a single transition. We deduce that the desired result holds by
induction overlength(ϕ1), and by applying case (a).

75

Case c: the general case. Induction overlength(ϕ2) allows us to prove the first point of the lemma
in the general case.
part 2: We shall give here the proof for the case whereϕ1 andϕ2 comprise one step each. This will
prove that non-contradictory steps can be merged into confluent derivations. The general case is
proved by iterating this result. Assume thenϕ1 = Step0(ϕ1) < τ > andϕ2 = Step0(ϕ2) < τ >.
Let s′ = s.Step0(ϕ1).

Using the first point of the lemma,s.Step0(ϕ1)(Step0(ϕ2) \ Step0(ϕ1)) and
s.Step0(ϕ2)(Step0(ϕ1) \ Step0(ϕ2)) exist and are equal. From axiomµWE3.4,
s.Step0(ϕ1)(Step0(ϕ2) \ Step0(ϕ1)) < τ > exists, and then, by applying axiomµWE3.2 in state
s′ we obtain that

s.Step0(ϕ1) < τ > (Step0(ϕ2) \ Step0(ϕ1)) < τ > = s.Step0(ϕ1)(Step0(ϕ2) \ Step0(ϕ1)) < τ >

Similarly,

s.Step0(ϕ2) < τ > (Step0(ϕ1) \ Step0(ϕ2)) < τ > = s.Step0(ϕ2)(Step0(ϕ1) \ Step0(ϕ2)) < τ >

which impliess.ϕ1(ϕ2 \ ϕ1) = s.ϕ2(ϕ1 \ ϕ2). 2
Note that the proofs of lemma4.4.2(1) and lemma4.4.3(1) are only based on the axiomsµWE3

andµWE4.

Lemma 4.4.4 (completion)LetΣ = (S, ŝ, V, τ, T) be a weakly endochronousµSTS, and con-
sider a states ∈ S and two tracesϕ1, ϕ2 ∈ TracesΣ(s). If ϕ2 is complete andϕ1 ≤ ϕ2, then
there existsϕ3 complete such thats.ϕ1ϕ3 = s.ϕ2 andϕ1ϕ3 ∼ ϕ2. In addition, ifϕ1 is complete
then we can takeϕ3 = ϕ2 \ ϕ1.

Proof: The case whereϕ1 is complete is a mere corollary of lemma4.4.3(2). The case where
τ 6∈ ϕ1 is proved using axiomµWE3.4. The general case is a simple combination of the two
previous cases.2

Note that we do not require confluence for arbitrary (incomplete) traces. The intuition be-
hind this restriction is that the atomicity of reactions must be preserved, and therefore the clock
transitions cannot follow the simple commutation rule of axiomµWE2. In the following weakly
endochronousµSTS, for instance (initial states), s.< ?a > ands.< τ >< ?a > are different:

s
◦

τ

��

◦
?a // ◦ ?b // ◦ τ //

◦
?a // ◦ ?b // ◦

τ

@@��������

Also note how lemma4.4.2gives the classical independence (full commutation) results, for
the case wheresupp(ϕ1) andsupp(ϕ2) share no directed variable. However, the finer microstep
notion allows us to consider systems likeΣ3 where the classical macrostep independence does

76

not apply (in states0, the macrostep transitionsab andar do not commute, yet the system is I/O
deterministic).

The confluence properties of an endochronous system are even stronger, as stated by the fol-
lowing:

Theorem 4.4.5 (determinism)LetΣ = (S, ŝ, V, τ, T) be a weakly endochronousµSTS,s ∈ S,
and letϕ1, ϕ2 be traces ofTracesΣ(s) such thatϕ1 ∼ ϕ2. Then

1. if τ 6∈ supp(ϕi), i = 1, 2, thens.ϕ1 = s.ϕ2

2. if ϕ1, ϕ2 are complete, thens.ϕ1 = s.ϕ2.

Proof: Point 1 is a corollary of lemma4.4.3(1). Point 2 is a simple corollary of lemma4.4.4. 2
Note that the last lemma (point 1) tells us that we can non-ambiguously label the states reach-

able from a given state in one instant by the signals emitted or received to reach it.
In fact, these strong confluence properties allow us to put any trace of of a weakly endochronous

system innormal form, in which every transition is maximal and the number of reactions minimal.
The main result is:

Theorem 4.4.6 (maximal steps/normal form)LetΣ = (S, ŝ, V, τ, T) be a weakly endochronous
µSTS,s ∈ S, andϕ ∈ TracesΣ(s), complete. Then, there existsϕ ∈ TracesΣ(s), complete, with
ϕ ∼ ϕ and such that< Step0(ϕ) > is maximal (for label inclusion).

Proof: Let L be the set of all labelsl of non-clock transitions starting ins such thatl ≤ ϕ. Then,
for all l1, l2 ∈ L we havel1 ⊲⊳ l2. By using the same reasoning as in the proof of lemma4.4.3(1),
we obtainl1 ⊔ l2 ∈ L, for all l1, l2 ∈ L. The maximal transitionϕ[0] is the union of all the labels
in L.

This process can be iterated to construct maximal non-clock, non-void transitionsϕ[j], j ≥ 0,
until for a givenj0+1 no such transition can be built. The process is finite, for each variablev ∈ V
can be assigned at most once byϕ1 = ϕ[0 . . . j0].

From the maximality ofϕ1 and from lemma4.4.4, we deduce thatϕ = ϕ1 < τ > (ϕ\ϕ1) is a
trace ofTracesΣ(s) with ϕ ∼ ϕ. The maximality of< Step0(ϕ) > is easily proved byreduction
ad absurdum, which completes our proof.2

We conclude the presentation of weak endochrony by stating the very important composition-
ality result that allows to incrementally build complex weakly endochronous systems.

Theorem 4.4.7 (compositionality)LetΣi, i = 1, n be composable weakly endochronousµSTSs.
Then,|ni=1Σi is weakly endochronous.

Proof: Direct application of the previous results, by taking into account the definition of the syn-
chronous composition.2

Weak endochrony is illustrated by theµSTSsΣ2, Σ3, andΣ3 | Σ2 of section4.3.1, and by all
the examples of the sections4.3.2and4.3.3. TheµSTSΣ1 is not weakly endochronous because
the non-deterministic choice in states1 makesΣ1 unpredictable, so that other components, like

77

Σ4, cannot adjust their behavior to preserve the synchronous semantics.The transformation ofΣ1

in Σ′
1 illustrates the type of instrumentation required to transform a generalµSTS into a weakly

endochronous one.

4.4.2 Comparison with macrostep Weak Endochrony

The fundamental difference between macrostep Weak Endochrony andthis microstep version
is that the former can make decisions involving the value of several signals received during a
reaction. In our microstep framework, each decision is based on the valueof only one input signal.

It is easy to associate a macrostep synchronous representation – an LSTS in the spirit of [143]
– to any STS. More exactly, givenΣ = (S, ŝ, V, τ, T), we associate the LSTS[Σ] = (S, ŝ, T ′),
where:

s
l

[Σ]
// s′ ⇔ ∃ϕ :







s◦
ϕ +3 s′

ϕ = Step0(ϕ) < τ >

l =< Step0(ϕ) >

In other words, the macrostep version considers only transitions from a synchronizing state to
another synchronizing state, the other states being invisible at this level of abstraction.

Unfortunately, the relation between microstep and macrostep weak endochrony is not simple.
Given aµSTSΣ, such as the one below (at left) the fact that[Σ] (below, at right) is weakly en-
dochronous does not imply thatΣ is microstep weakly endochronous. In our case, it is not.

s1 ◦
c=1 // s2 ◦

τ
yy

s0
◦

τ

++ ◦

a
>>||||||||

◦
b

 B
BB

BB
BB

B

s3 ◦
c=2 // s4 ◦

τ
yy

s2

s0

a,c=1
>>||||||||

b,c=2

 B
BB

BB
BB

B

s4

At the same time, a microstep weakly endochronous systemΣ is not necessarily macrostep weakly
endochronous, as the following example shows:

s2
◦

b

 B
BB

BB
BB

B

◦

τ

��

s0 ◦
c //

◦
τ

%%
s1

◦

a
>>||||||||

◦
b

 B
BB

BB
BB

B
◦

ab // s4 ◦
τ

yy

s3
◦

a
>>||||||||

◦

τ

FF

s1
b

 B
BB

BB
BB

B

s0

ac
>>||||||||

bc

 B
BB

BB
BB

B

abc // s4

s2

a
>>||||||||

78

One extra problem is that there exist macrostep weakly endochronous systems that have no mi-
crostep weakly endochronous encoding. One of them is the following:

s2
BD=0

 B
BB

BB
BB

B

s1 s0
RC=D=1

oo

AC=0
>>||||||||

BD=0 B
BB

BB
BB

B

ABC=D=0 // s4

s3

AC=0

>>||||||||

It appears that for each macrostep weakly endochronous system there exists a microstep one over
the same variables and with the same asycnhronous traces. As explained, earlier, this is due to the
fact that macrostep weak endochrony can rely on tests involving several variables at a time, which
is impossible in our microstep framework.

4.4.3 Comparison with related models

Weak endochrony belongs to a family of properties whose goal is to preserve concurrency
while ensuring the correct operation of a system in an untimed asynchronous environment. We
refer here to the work of Keller [116]. In this paper, Keller shows that 3 properties –determinism,
commutativity, andpersistence– ensure global confluence in a very general form of asynchronous
transition system. The determinism requirement is quite common, but commutativity and persis-
tence are the key point of the approach. They roughly correspond to axiomsµWE2 andµWE3,
ensuring that independent labels in a given state are concurrent and non-interfering, and remain
available while not taken.

Weak endochrony follows the same principles, but in a much more specific setting:
– Our communication lines can transmit data, not mere arrival notifications. This allows us

to refine our correctness criteria to take into accountchoicein the system-environment syn-
chronization protocol (axiomµWE4).

– Weak endochrony deals withsynchronous systems. The most natural way of ensuring persis-
tency of transitions that are not taken is to ensure an intra-instance persistency, concerning
microstep transitions (µWE2), and a macrostep persistency, covering full reactions (µWE3
states that clock transitions cannot disable other transitions). It is interesting here to recall
that the macrostep weak endochrony of [143] needed only a macrostep persistency prop-
erty. But here we need the microstep aspect, as well. Macrostep persistency can be seen as
covering non-interfering transactions instead of elementary communications.

– Weak endochrony defines a normal, most compact form for system behaviors, something not
provided by the general confluence results of Keller. This allows reasoning on convergence
speed. For instance, if two synchronous reactions starting in a state are non-contradictory,
then convergence between them can be attained in at most one reaction.

79

– Finally, our systems are input/output systems, which are predictable, but not deterministic
as such (they are deterministic only if we forget about the direction of signals).

These supplementary aspects determine the complexity of the theory and the difficulty of the
proofs. A Major difference with Keller’s work is that he is interested in the confluence of a single
system (which corresponds, in our setting, to lemma4.4.4). Our work aims at finding conditions
under which the semantics of a system of components does not change when we replace a strongly
synchronized composition mechanism with a purely asynchronous one.

The work of Keller provides the link with two approaches used in asynchronous circuit design:
speed independence and delay insensitivity. Speed independence [136, 115, 116] (which usually
implies the hypothesis of semimodularity) ensures that the behavior of a circuitdoes not depend on
the speed of its basic computing elements. Delay insensitivity [173, 132] ensures that the behavior
of a circuit does not depend on the delays of its internal or external communication lines. These
two properties are important because they support the definition of circuitswhose functionality
remains unchanged when the fabrication process changes.

Like weak endochrony, speed independence and delay insensitivity support specializations of
Keller’s fundamental theorem (as noted, for instance, in [116]), but the hypothesis on the systems
and communication lines are different from those of weak endochrony.

A second important difference with Keller’s work is that our results are based on the assumption
that an underlying communication infrastructure provides a lossless message-passing mechanism.
Under this assumption, weak endochrony implies a very permissive persistency property. By com-
parison, speed independence and delay insensitivity ensure, among other things, that signals are
not lost (in a sense, they cover at the same time the correctness of the message-passing protocol
under given hypothesis4, and the persistency property).

Wires in speed independent or delay insensitive circuits can only transmit events, not values:
An event consist in the wire changing its value from 0 to 1, or from 1 to 0. Thus, value choices
(as found in weakly endochronous systems) cannot be directly expressed in Keller’s formalism, as
the only possible choices are among different events, occurring on different wires. Microstep weak
endochrony is not meant to express such choices, which depend on temporal assumptions on the
environment (no input is produced by the environment until the system is ready to read it). With an
appropriate introduction of clock transitions, weak endochrony should be able to directly represent
delay-insensitive systems with no choice (cf. axiomR′

3 in [173]).
More work is needed to understand the precise relation between weak endochrony, on one side,

and speed independence and delay insensitivity, on the other, particularly by defining a notion of
circuit realizationfor weakly endochronous systems, along the lines of [115].

Our work bears some relations with that of Yun and Dill on burst-mode circuits[179]. Their
goal is to deal with multiple-signal interactions, instead of single signal events. The approach is
oriented towards circuit synthesis, and strict operation conditions are required, which basically
exclude true concurrency.

4. such as the fact that forks are isochronic

80

4.4.4 Correctness results

Weak endochrony is compositional. However weak endochrony of all components does not
guarantee the correctness (non-blocking) of the global synchronous specification, nor the correct-
ness (semantics preservation) of the GALS implementation model. This can be easily checked on
the systems formed by composingΣ′

1 andΣ2 — defined in Sections4.3.1and4.3.2.
The most important result of this chapter is the following theorem, which states that the cor-

rectness of the synchronous composition implies the correctness of the GALS implementation.
In fact, the strong confluence and determinism properties of the weakly endochronous sys-

tems will allow to prove an even stronger result, that also insures state determinism in addition to
observational behavior equivalence:

Criterion 2 (correct desynchronization for weakly endochronoussystems)LetΣi, i = 1, n be
composableµSTSs. Then, we shall say that the GALS implementation‖ni=1Σi is correctw.r.t.
the synchronous specification|ni=1Σi if for all synchronizing states of |ni=1Σi and for all trace
ϕ ∈ Traces‖n

i=1
Σi
(ι(s)) there existϕ ∈ Traces|ni=1

Σi
(s) complete and̃ϕ ∈ Traces‖n

i=1
Σi
(ι(s))

such thatϕ � ϕ̃, ϕ̃ ∼ ι(ϕ), andι(s).ϕ̃ = ι(s).ι(ϕ).

Quite interestingly, Criterion2 implies Criterion1 (the former has extra requirements).

Theorem 4.4.8 (correctness)Let Σi, i = 1, n be composable weakly endochronousµSTSs. If
|ni=1Σi is non-blocking, then‖ni=1Σi is correctw.r.t. |ni=1Σi in the sense of criterion2.

Two technical lemmas are needed to prove the theorem.

Lemma 4.4.9 (completion, GALS)LetΣ1, . . . ,Σn be composable weakly endochronousµSTSs,
let s be a synchronizing state of|ni=1Σi, and letψ ∈ Traces|ni=1

Σi
(s), complete, andϕ ∈

Traces‖n
i=1

Σi
(ι(s)) such thatϕ ≤ ι(ψ). Then, there existsθ ∈ Traces‖n

i=1
Σi
(ι(s).ϕ) such

thatϕθ ∼ ι(ψ) andι(s).ϕθ = ι(s).ι(ψ)

Proof: We can assume, without losing generality, that all the labels ofψ are atomic (assign exactly
one variable). By projectingϕ andψ on the componentsΣi, we obtain:

παi (ϕ), π
σ
i (ψ) ∈ TracesΣi

(πσi (s)) with

{

πσi (ψ) complete

παi (ϕ) ≤ πσi (ψ)

We denote withϕi = παi (ϕ), ψi = πσi (ψ), si = πσi (s). By applying lemma4.4.4(2), we find a
complete traceθi such that the following holds inΣi:

si ◦
ϕi +3

◦
ψi

��

◦

θis{ ppp
pp
pp
pp
pp
pp

pp
pp
pp
pp
pp
pp
p

81

si ◦
ϕ1
i +3

◦
ψi

��

◦
ϕ2
i +3

◦

ψi\ϕ
1
i

��

◦

ψi\ϕi

��
◦

τi

��

◦
ϕ2
i \(ψi\ϕ

1
i) +3

◦
τi

��◦
ϕ1
i \ψi +3 ◦

ϕ2
i \(ψi\ϕ

1
i) +3

where

{

(ϕ1
i \ ψi)(ϕ2

i \ (ψ1 \ ϕ1
i)) = ϕi \ ψi

ϕ1
iϕ

2
i = ϕi

Figure 4.2: Diagram with the transitions used in the proof of lemma4.4.10

Now recall that the construction process used by lemma4.4.4(based on the constructions of lemma
4.4.3) insures that in eachθi the atomic communication operations (non-clock labels) are ordered
in the same fashion as they are inψi. More precisely, letri be the rank inψi of the non-clock label
that has ranki in θi. Wheneverri > rj , we havei > j. The same relation is preserved by the
projection ofψ ontoψi. Then, the ordering of the operations of theθi in ψ can be used to interleave
the labels of the tracesθi into θ, and our lemma is proved.2

Lemma 4.4.10 (technical)LetΣ1, . . . ,Σn be composable weakly endochronousµSTSs, lets be a
synchronizing state of|ni=1Σi, and letϕ, ψ < τ1 . . . τn >∈ Traces‖n

i=1
Σi
(ι(s)) such thatϕ ⊲⊳ ψ

and∀i : τi 6∈ supp(ψ). Then:

ϕ(ψ \ ϕ), ψ < τ1 . . . τn > (ϕ \ ψ) ∈ Traces‖n
i=1

Σi
(ι(s))

Proof: By projectingϕ andψ on the componentsΣi, we obtain:

παi (ϕ), π
α
i (ψ) < τi >∈ TracesΣi

(πσi (s)) with

{

παi (ϕ) ⊲⊳ π
α
i (ψ)

τi 6∈ supp(παi (ψ))

We denote withϕi = παi (ϕ), ψi = παi (ψ), si = πσi (s). Also letϕi = ϕ1
iϕ

2
i with ϕ1

i complete and
τi 6∈ supp(ϕ2

i). All these elements are pictured in fig.4.2, which also contains the other transitions
that will be constructed during this proof.

By applying lemma4.4.3(2), si.ϕ1
i (ψi \ ϕ1

i) < τi > andsi.ψi < τi > (ϕ1
i \ ψi) exist and are

equal.
By applying lemma4.4.3(1) in statesi.ϕ1

i and for the tracesϕ2
i andψi \ ϕ1

i , we conclude that
si.ϕ

1
iϕ

2
i (ψi \ ϕi) andsi.ϕ1

i (ψi \ ϕ1
i)(ϕ

2
i \ (ψi \ ϕ1

i)) exist and are equal.
The existence ofsi.ϕ1

iϕ
2
i (ψi \ ϕi) means thatϕi(ψi \ ϕi) ∈ TracesΣi

(si).
The existence ofsi.ϕ1

i (ψi \ ϕ1
i)(ϕ

2
i \ (ψi \ ϕ1

i)) means thatθi = ϕ2
i \ (ψi \ ϕ1

i) is a trace of
Σi starting insi.ϕ1

i (ψi \ ϕ1
i). Since< τi > is a trace starting in the same state, from axiomµWE1

82

we obtain thatθi is a trace ofΣi starting in statesi.ϕ1
i (ψi \ ϕ1

i) < τi >, and by the identity of
si.ϕ

1
i (ψi \ ϕ1

i) < τi > andsi.ψi < τi > (ϕ1
i \ ψi) we haveψi < τi > (ϕi \ ψi) ∈ TracesΣi

(si).
We proved that for all1 ≤ i ≤ n we haveϕi(ψi \ ϕi), ψi < τi > (ϕi \ ψi) ∈ TracesΣi

(si),
meaning that

∀i : παi (ϕ(ψ \ ϕ)), παi (ψ < τ1 . . . τn > (ϕ \ ψ)) ∈ TracesΣi
(πσi (s))

On each channel, the projection of any ofϕ(ψ\ϕ) orψ < τ1 . . . τn > (ϕ\ψ) is either a prefix of
the projection ofϕ, or a prefix of the projection ofψ, which are themselves consistent. Therefore,
tracesϕ(ψ \ ϕ) andψ < τ1 . . . τn > (ϕ \ ψ) are also consistent. According to lemma4.2.10, this
implies thatϕ(ψ \ ϕ), ψ < τ1 . . . τn > (ϕ \ ψ) is in Traces‖n

i=1
Σi
(ι(s)). 2

Thanks to these two technical lemmas, theorem4.4.8can now be proved.
Proof of theorem4.4.8: Lets be a synchronizing state of|ni=1Σi and letϕ ∈ Traces‖n

i=1
Σi
(ι(s)).

We prove the existence ofϕ andϕ̃ by induction over| ϕ | (the number of variable assignments in
ϕ). We can assume, without losing generality, that every label ofϕ assigns exactly one variable,
either clock or directed. The reduction to this case is straightforward.

If | ϕ |= 0, thenϕ̃ = ϕ andϕ =< τ > clearly satisfy the conditions of criterion2.
Consider nowϕ with | ϕ |≥ 1. If ϕ[0] =< τ >, then we have:

ι(s)◦
ϕ[0] // ι(s)◦

ϕ[1...length(ϕ)−1] +3

The induction hypothesis can be applied onϕ[1 . . . length(ϕ)− 1] to determinẽϕ andϕ.
From now on, we assume thatϕ[0] is not a clock transition.
To prove thatϕ̃ andϕ exist, we shall first constructψ ∈ Traces|ni=1

Σi
(s) such thatτ 6∈

supp(ψ), ψ < τ >∈ Traces|ni=1
Σi
(s), ψ[0] = ϕ[0], andι(ψ) ⊲⊳ ϕ.

Construction of ψ: Consider the projections ofϕ onto componentsπαj (ϕ), 1 ≤ j ≤ n. Sinceϕ[0]
is not the empty transition, nor a clock transition, then there exists at least anj such thatπαj (ϕ)[0]
is not a clock transition, nor a void transition. Note thatπαj (ϕ)[0] is fireable in stateπσj (s).

Then, we start the iterative construction ofψ by setting the iteration counteri to 0 and setting
ψ0 = ϕ[0]. The iteration step:

continuation test: If ψi < τ >∈ Traces|ni=1
Σi
(s), then we completed our construction.

construction step: If ψi < τ > 6∈ Traces|ni=1
Σi
(s), and since|ni=1Σi is non-blocking, there exists

a label< v = x > such thatψi < v = x >∈ Traces|ni=1
Σi
(s). If ψi < v = x > ⊲⊳ ϕ, then

considerψi+1 = ψi < v = x > and go to the continuation test.

If not, thenϕ = ϕ0 < v = y > ϕ1 with x 6= y andv 6∈ supp(ϕ0). However, by applying
axiomµWE4, we haveψi < v = y >∈ Traces|ni=1

Σi
(s). By consideringψi+1 = ϕi <

v = y >, we also haveψi+1 ⊲⊳ ϕ, and we go to the continuation test.

The previous algorithm is finite, bounded by the number of variables in|ni=1Σi. In the end we put
the lastψi in ψ.

83

Construction of ϕ̃ andϕ: Let s1 = s.ψ < τ >. According to lemma4.4.10we have

ϕ(ι(ψ) \ ϕ), ι(ψ) < τ1, . . . , τn >∈ Traces‖n
i=1

Σi
(ι(s))

Sinceϕ[0] = ι(ψ)[0], we have| ϕ \ ψ |<| ϕ |. Then, we can apply the induction hypothesis in the
synchronizing states1, and obtainθ ∈ Traces|ni=1

Σi
(s1), complete, and̃θ ∈ Traces‖n

i=1
Σi
(ι(s1))

such that: 





ϕ \ ι(ψ) � θ̃

ι(θ) ∼ θ̃

ι(s1).ι(θ) = ι(s1).θ̃

Let ϕ = φ < τ > θ. Given thatϕ ≤ ι(ψ) < τ1 . . . τn > (ϕ \ ι(ψ)) and thatϕ \ ι(ψ) ≤ ι(θ),
we deduceϕ ≤ ι(ϕ). Sinceϕ ∈ Traces|ni=1

Σi
(s) is complete, lemma4.4.9can be applied to

buildϕ′ ∈ Traces‖n
i=1

Σi
(ι(s).ϕ) such thatϕϕ′ ∼ ι(ϕ) andι(s).ϕϕ′ = ι(s).ι(ϕ). By considering

ϕ̃ = ϕϕ′, the proof is completed.2
Theorem4.4.8implies that for large classes of components for which simple wrappers exist,the

correctness of the GALS implementation is implied by the correctness of the global synchronous
specification. Thus, no extra signalization is needed to ensure semantics preservation (and no costly
synthesis algorithms). The GALS implementation is correct by construction.

4.5 Conclusion. Future work

We introduced a new model for the representation of asynchronous implementations of syn-
chronous specifications. The model covers implementations where a notion of global synchroniza-
tion is preserved by means of signaling, and GALS implementations, where global synchronization
is relaxed. The model takes into account computation and communication causality, and allows
us to reason about semantics-preservation and absence of deadlocksin the GALS deployment of
synchronous specifications. As the model captures the internal concurrency of the synchronous
specification, our correctness criteria support implementations that are less constrained and more
efficient than existing ones.

The results of section4.4suggest that our model offers a good abstraction level for reasoning
about desynchronization. In particular, the level of detail is essential inrevealing the intricate rela-
tion between (1) causal dependencies, concurrency and conflicts in the micro-step semantics of a
synchronous specification and (2) the correctness (semantics preservation) of its GALS implemen-
tation.

4.5.1 Future work

Thanks to this new model, we are exploring the development of GALS circuits made of syn-
chronous IPs. Our work aims at using asynchronous logic wrappers toencapsulate the components

84

of a modular synchronous circuit into delay insensitive components. Our model seems well-suited
to analyze designs involving both synchronous and asynchronous circuit specifications. Prelimi-
nary results are presented in [74], but we are only at the beginning of our work.

We are also considering symbolic analysis techniques that would allow us to translate the theory
detailed in this chapter to high-level synchronous languages like Signal orEsterel, instead of simple
finite state automata. The objective is to derive efficient algorithms transforming general high-level
specifications into weakly endochronous ones. Preliminary results in this direction are presented
in [169].

A third research direction concerns the (still not sufficiently clear) relations between classical,
macro-step synchronous models and more operational models like microstep synchronous transi-
tion systems (µSTS), or the ones covering the implementations of synchronous programminglan-
guages, especially when desynchronization is involved. For instance, itis important to understand
how the notions of correct desynchronization and endochrony can betransposed into a constructive
framework such as the one of Esterel [35].

Chapter 5

The Non-Standard Semantics of Hybrid
Systems

Résumé :La modélisation à l’aide de systèmes hybrides est devenue une pratique courante dans
de nombreuses industries. Pour preuve, les outils de modélisation et de simulation hybride (Mat-
lab/Simulink étant le plus connu d ’entre eux) sont utilisés par un très grandnombre d’ingénieurs.
D’autres formalismes connaissent également un essort rapide, en particulier le langage Modelica,
qui permet, en utilisant des systèmes d’équations algebro-différentielles, de definir des composants
avec des variables dont le rôle, entrée ou sortie, n’est pas figé, mais au contraire inféré á la com-
pilation, lorsque le composant est instancié dans un environnement connu.

Ces formalismes permettent de modéliser avec une grande facilité des systèmes complexes,
mélangeant des modèles de systèmes physiques et de logiciel. Toutefois,certaines difficultés de-
meurent non-résolues : la concurrence créée par la simultanéitd́e passages par zéro peut être
difficile à gérer et est source d’ambiguités. La sémantique des parties discrètes d’un modèle hy-
bride n’est pas toujours simple à comprendre, en particulier quand descascades de passages par
zéro se produisent. La question de la génération de code de simulation estelle même une ques-
tion délicate. Ainsi, la partition d’un programme hybride en deux parties, l’une hybride (devant
être exécutée par un solveur déquations différentielles) et l’autre discrète (servant à contrôler le
solveur d’équations différentielles), est un problème qui n’est pas totalement résolu.

Ce chapitre détaille nos travaux portant sur la définition d’un mini-langage flôts de données
hybride, reprennant les principes fondamentaux des langages flôts dedonnées synchrones, ainsi
que sa sémantique formelle. Nous avons repris une construction des nombres réels non-standard
pour définir cette sémantique hybride, qui nous permet de parler avecrigueur de variations in-
finitésimales et d’incréments de temps infinitésimaux. Le résultat est une sémantique constructive
(mais non effective) de notre mini-langage hybride, dans laquelle un comportement est une suite
trans-finie de transitions représentant soit l’exécution d’un pas discret du programme, soit une
évolution continue infinitésimale. Cette sémantique a l’avantage qu’elle permet de parler avec

85

86

précision des questions de causalité et de concurrence entre passages par zéro. Elle permet égale-
ment de mieux comprendre les programmes Zénon, en particulier ceuxqui définissent des modes
glissants.

5.1 Introduction

Over the last two decades, hybrid systems modelers have become the corner stone of complex
embedded system development, especially for computer controlled systems. Simulink 1 has be-
come the de facto standard for physical system modeling and simulation. Noticeably, by building
on the success of Simulink, The Mathworks was able to dominate several sectors of the market for
embedded systems design. This in itself demonstrates the importance of such tools. In this chap-
ter we focus on general modelers, aimed at modeling and simulating any type ofhybrid system
and we refer the reader to [60] for a more general overview of tools for hybrid systems analysis.
Besides Simulink and its state-based extension Stateflow, several other hybrid systems modelers
have been developed. Scicos2 is freely available software developed by Ramine Nikoukhah at
INRIA [58, 137]. Modelica3 is a non-proprietary, object-oriented, equation based language to
conveniently model complex multi-physics systems. In Modelica, equations have no pre-defined
causality. Hybrid systems modelers raise a number of difficult issues:

1. Zero-crossings, which trigger mode changes, can involve a combination of complex opera-
tions whose scheduling may be delicate.

2. How discrete is the semantics of the discrete part of a hybrid systems modeler? Can we ob-
tain a simulation engine using a purely discrete time language compiler (e.g. a synchronous
language engine) managing a bare ODE solver? Note, that, quite often, discrete and contin-
uous behaviours are not cleanly separated in hybrid systems modelers.

3. Since simulations use a single, global, solver, the choice and tuning of the integration method
affects the entire system. This may lead to undesirable interactions between sub-systems that
seemingly should not interact.

4. What are the consequences for the compilation of Modelica’s “acausal” approach?

In this chapter we focus on the first three issues. The case of Modelica and the handling of Differ-
ential Algebraic Equations (DAE) is not covered here.

Issues raised by zero-crossingsThe following examples illustrate some of the subtleties of zero-
crossings. In them, the resetting mechanisms involve a tuple of zero-crossings. For instance, the
statement “reset [1,−1] every up[x,−x]” specifies that the signalsx and−x are monitored for

1. http://www.mathworks.com/products/simulink/
2. http://www-rocq.inria.fr/scicos/
3. http://www.modelica.org/

http://www.mathworks.com/products/simulink/
http://www-rocq.inria.fr/scicos/
http://www.modelica.org/

87

upward crossings of zero (from≤ 0 to > 0), and further that the signal is rest to1 when a zero-
crossing occurs onx, and to−1 when a zero-crossing occurs on−x, with priority to the former if
both events occur simultaneously.

ẏ = 0 init − 1 reset [1,−1] every up[x,−x]
ẋ = 0 init − 1 reset [−1, 1, 1] every up[y,−y, z]
ż = 1 init − 1

(5.1)

In (5.1), during the interval[0, 1), x andy remain steady (their slope is0 with initial value to−1)
while z increases at constant speed1. Right aftert = 1, z has a zero-crossing, which causesx to
be reset to1, which in turn causes a cascaded zero-crossing ofx, which causes the value ofy to
be reset to1, this causes a second cascaded zero-crossing onx, which then causes a second reset
of the value ofy to 1, and so on, unboundedly. All these cascaded zero-crossings occur while time
remains blocked att = 1. An attempt at illustrating this is depicted on Figure5.1. In this drawing,
ε > 0 is a “very small” step size, in that finitely manyε’s still sum up to≈ 0. Example (5.1) is

6εy

x

+1

−1
5ε1+ ε 2ε 3ε 4ε

Figure 5.1: Example (5.1); ε is infinitesimal; symbol1+ indicates that the considered event occurs
right after1.

|y0|+

+ε

−1

+1

ε 2ε 3ε 4ε 5ε 6ε

−ε

x

y

Figure 5.2: Example (5.2) with y0 < 0; ε is infinitesimal; symbol|y0|+ indicates that the consid-
ered event occurs right aftert = |y0|.

88

y
ε 2ε 3ε 4ε 5ε 6ε

x

1+

−1

+1

+2

+3

Figure 5.3: Example (5.3); z is not shown;ε is infinitesimal; symbol1+ indicates that the consid-
ered event occurs right after1.

certainly pathological. In contrast,

ẋ = 0 init − sgn(y0) reset [−1, 1] every up[y,−y]
ẏ = x init y0

(5.2)

is the simplest case ofsliding mode control[93]. Supposey0 < 0, and hencex0 > 0. Then,y
increases at constant speed until its first zero-crossing, just after timet = |y0|. From then on,
y chatters infinitesimally around0 as its speed alternates between−1 and+1 with infinitesimal
steps, as shown in Figure5.2. This simple example captures the behaviour of systems like ABS in
automobile brakes. An adequate interpretation of the behaviour ofy is averagingover time, thus
resulting in the mean dynamicsy, where:

ẏ =

{

−sgn(y0), for the interval[0, |y0|)
0 for [|y0|,∞),

see the thick shaded dynamics in Figure5.2.
For our last example, operatorlast (x), wherex is a signal, delivers at instantt the left-limit

limsրt xs:

ẋ = 0 init 0 reset [last (x) + 1, last (x) + 2]

ẋ = 0 init 0 every up[y, z]

ż = 1 init −1

ẏ = 0 init −1 reset [1] every up[z]

(5.3)

Signalz has a zero-crossing right aftert = 1, which causesy to have a cascaded zero-crossing.
In Figure5.3 we show the behaviour ofx that results if we consider the cascaded zero-crossings
of z andy as successive “micro-steps”:x has two successive jumps, of2 and then1. One could,
however, consider that the two zero-crossings occur simultaneously and then the zero-crossing of
y preempts that ofz (sincey is listed first), which yields a single jump of1 for x. Which semantics
is best?

89

In Section5.7we discuss a more physical example where two balls collide and show how the
three examples are simulated by Simulink in Section5.8. These examples raise a number of issues:

– Can we propose a semantic domain for these examples?
– Can we use it

– to identify (5.1) as pathological, but not (5.2)?
– to decide on the semantics of (5.3)?

– More generally, can we develop a semantic domain to serve as a mathematical basis for the
management of (possibly cascaded) zero-crossings?

We insist that engines of hybrid systems modelers cannot themselves perform sophisticated singu-
lar perturbation analyses involving averaging techniques [108]. We thus seek techniques based on
abstract analyses that compilers can support.

Our contribution In [25] we advocated the use ofnon-standard analysisas a semantics domain
for hybrid systems on the basis that it provides a semantics “as if it were step-based” but without
fixing an effective step size for the solvers; hence any scheme for the solvers is supported. In this
chapter we address issues1)–3) of the introduction.

The chapter is organized as follows. Some background on non-standard analysis is provided
in section5.2. Our mathematical formalism for hybrid systems specification is introduced in sec-
tion 5.3, we call it SIMPLEHYBRID. Section5.4is the core of the chapter; a denotational semantics
is given based on non-standard analysis; we use it in a non trivial way tostudy examples (5.1),
(5.2) and (5.3). The constructive semantics (see [36, 29] for this notion) of SIMPLEHYBRID is
provided in Section5.5; it provides a firm basis for the scheduling of actions at execution time. In
Section5.6we provide a structuring of SIMPLEHYBRID systems showing that an execution engine
can be obtained using an existing synchronous language engine that activates a generic ODE solver
at particular times. Related work is analysed in section5.9.

5.2 Non-standard analysis

Non-standard analysis was proposed by Abraham Robinson in the 1960s to allow explicit ma-
nipulations of “infinitesimals” [161, 87]. Robinson’s approach is axiomatic, in that he proposes
enriching the basic ZF (Zermelo-Fraenkel) framework with three more axioms.

To our surprise, the idea of using non-standard analysis for hybrid systems is indeed not new.
Iwasaki et al. [111] first proposed using non-standard analysis to discuss the nature of timein
hybrid systems. Bliudze and Krob [40, 39] used non-standard analysis as a mathematical support
for defining a system theory for hybrid systems. The formalization they propose closely mimics
that of Turing machines.

The introduction to non-standard analysis in [39] is very pleasant and we take the liberty to
borrow and adapt it. This presentation was originally due to Lindstrøm, see [126]. Its interest is
that it does not require any fancy axiomatic material but only makes use of the axiom of choice —

90

actually a weaker form of it.
The goal is to augmentR∪{±∞} by adding, to eachx in this set, a bunch of elements that are

“infinitesimally close” to it, call⋆R the resulting set. Another requirement is that all operations and
relations defined onR should extend to⋆R. A first idea is to represent such additional numbers
as convergent sequences of reals.4 For example, the sequencesun = 1/n, vn = 1/

√
n, and

wn = 1/n2 yield elements infinitesimally close to the real number < zero, observe that they can be
ordered:0 < wn < un < vn. In fact, this can be made systematic as we will now explain.

5.2.1 Construction of non-standard domains

For I an arbitrary set, afilter F overI is a family of subsets ofI such that:

1. the empty set does not belong toF ,

2. P,Q ∈ F impliesP ∩Q ∈ F , and

3. P ∈ F andP ⊂ Q ⊆ I impliesQ ∈ F .

Consequently,F cannot contain both a setP and its complementP c. A filter that contains at least
one of the two for any subsetP ⊆ I is called anultra-filter. At this point we recall Zorn’s lemma,
known to be equivalent to the axiom of choice:

Lemma 5.2.1 (Zorn’s lemma) Any partially ordered set(X,≤) such that any chain inX pos-
sesses an upper bound has a maximal element.

It is easily seen that a filterF over I is an ultra-filter if and only if it is maximal with respect to
set inclusion. By Zorn’s lemma, any filterF overI can be extended to an ultra-filter overI. Now,
if I is infinite, the family of setsF = {P ⊆ I | P c is finite} is a freefilter, meaning it contains no
finite set. It can thus be extended to a free ultra-filter overI:

Lemma 5.2.2 Any infinite set has a free ultra-filter.

Every free ultra-filterF overI uniquely defines, by settingµ(P) = 1 if P ∈ F and otherwise0,
a finitely additive measure5 µ : 2I 7→ {0, 1}, which satisfies

µ(I) = 1 and, ifP is finite, thenµ(P) = 0.

Now, fix an infinite setI and a finitely additive measureµ over I as above. LetX be a set and
consider the Cartesian productXI = (xi)i∈I . Say(xi) ≈ (x′i) iff µ{i ∈ I | xi 6= x′i} = 0. Relation
≈ is an equivalence relation whose equivalence classes are denoted by[xi] and we define

⋆X = XI/ ≈ (5.4)

4. Indeed, the proposed construction bears some resemblance with theconstruction ofR as the set of equivalence
classes of Cauchy sequences inQ modulo the equivalence relation(un) ≈ (vn) iff limn→∞(un − vn) = 0.

5. Observe that, as a consequence,µ cannot be sigma-additive (in contrast to probability measures or Radonmea-
sures) in that it isnot true thatµ(

⋃
n An) =

∑
n µ(An) holds for an infinite denumerable sequenceAn of pairwise

disjoint subsets ofN.

91

X is naturally embedded into⋆X by mapping everyx ∈ X to the constant tuple such thatxi = x
for everyi ∈ I. Any algebraic structure overX (group, ring, field) carries over to⋆X by almost
pointwise extension. In particular, if[xi] 6= 0, meaning thatµ{i | xi = 0} = 0 we can define
its inverse[xi]−1 by takingyi = x−1

i if xi 6= 0 andyi = 0 otherwise. This construction yields
µ{i | yixi = 1} = 1, whence[yi][xi] = 1 in ⋆X. The existence of an inverse for any non-zero
element of a ring is indeed stated by the following first order formula:∀x(x = 0 ∨ ∃y(xy = 1)).
More generally:

Lemma 5.2.3 (Transfer Principle) Every first order formula is true over⋆X iff it is true overX.

5.2.2 Non-standard reals and integers

We just apply the above general construction toX = R andI = N and denote the result by
⋆R, which is then a field according to the transfer principle. By the same principle, ⋆R is totally
ordered by[un] ≤ [vn] iff µ{n | vn > un} = 0. Foru, an arbitrary sequence of real numbers, let
lim(u) ⊆ R =def R ∪ {−∞,+∞} denote the (possibly empty) set of all limit points of sequence
u: for x ∈ lim(u), let vk = unk

be a subsequence ofu converging tox. If lim(u) 6= ∅, there
exists exactly one limit pointx ∈ lim(u) such thatµ{nk} = 1, and any other limit point yields a
µ-measure0 for the corresponding subsequence.6 Call x thestandard partof [xn] and we write
x = st([xn]). Infinitex ∈ ⋆R have no standard part inR.

It is also of interest to apply the general construction (5.4) to X = I = N, which results in the
set⋆N of non-standard integers. ⋆N differs fromN by the addition ofinfinite integers,which are
equivalence classes of sequences of integers whose essential limit is+∞.

5.2.3 Integrals and differential equations

Any sequence(gn) of functionsgn : R 7→ R pointwise defines a function[gn] : ⋆R 7→ ⋆R by
setting

[gn]([xn]) = [gn(xn)] (5.5)

A function ⋆R → ⋆R which can be obtained in this way is calledinternal. Properties of and opera-
tions on ordinary functions extend pointwise to internal functions of⋆R → ⋆R. Forg : R → R, its
non-standard versionis the internal function⋆g = [g, g, g, . . .]. The same notions apply to sets. An
internal setA = [An] is calledhyperfiniteif µ{n | An finite} = 1; thecardinal |A| of A is defined
as[|An|].

6. So far this was a bit of hand waving. To prove this, letx = sup{x ∈ R | [x] ≤ [xn]}, where[x] denotes the
constant sequence equal tox. Since[xn] is finite,x exists and we only need to show that[xn] − [x] is infinitesimal. If
not, then there existsy ∈ R, y > 0 such that either[y] < [xn]− [x] or [y] < [x]− [xn], a contradiction. The unicity of
x is clear.

92

b

guard:
dynamics:

a

∀b 6= a : gba(x) ≤ 0

⋆x(n+ 1) = ⋆x(n) + ∂.f(a, ⋆x(n), n)

guard:
dynamics:ẋ = f(a, x, t)

a

∀b 6= a : gba(x) ≤ 0

gba(x) > 0 / x := zb
b

gba(x) > 0 / x := zb

Figure 5.4: Hybrid system with mode switching, showing one transition. Top: standard, continuous
time form. Bottom: non-standard form. We write for short⋆x(n) instead of⋆x(tn) and⋆x(t) is the
piecewise constant, right continuous interpolation of⋆x(tn).

Now, consider an infinite numberN ∈ ⋆N and the set

T =
{
0, 1

N ,
2
N ,

3
N , . . .

N−1
N , 1

}
(5.6)

By definition, ifN = [Nn], thenT = [Tn] with

Tn =
{
0, 1

Nn
, 2
Nn
, 3
Nn
, . . . Nn−1

Nn
, 1
}

hence|T | = [|Tn|] = [Nn + 1] = N + 1. Next, consider an internal functiong = [gn] and a
hyperfinite setA = [An]. We can then define thesumof g overA by

∑

a∈A g(a) =def

[∑

a∈An
gn(a)

]

If t is as above andf : R → R is a standard function, we get

∑

t∈T
1
N
⋆f(t) =

[∑

t∈Tn
1
Nn
f(tn)

]
(5.7)

Now, f continuous implies
∑

t∈Tn
1
Nn
f(tn) →

∫ 1
0 f(t)dt, so,

∫ 1
0 f(t)dt = st

(∑

t∈T
1
N
⋆f(t)

)
(5.8)

Under the same assumptions, for anyt ∈ [0, 1],

∫ t
0 f(u)du = st

(∑

u∈T,u≤t
1
N
⋆f(t)

)
(5.9)

Now, consider the ODE with initial condition

ẋ = f(x, t), x(0) = x0 (5.10)

93

and assume it possesses a solution[0, 1] ∋ t 7→ x(t) such that functiont 7→ f(x(t), t) is continu-
ous. Rewriting (5.10) in integral formx(t) = x0 +

∫ t
0 f(x(u), u)du and using (5.9) yields

x(t) = st
(
x0 +

∑

u∈T,u≤t
1
N
⋆f(x(u), u)

)
(5.11)

Substitute in (5.11) ∂ = 1/N which is> 0 and infinitesimal, so thatT = {tn = n∂ | n =
0, . . . , N}. Then, the expression in parentheses at the right hand side of (5.11) is the piecewise-
constant right-continuous function⋆x(t), t ∈ [0, 1] such that, forn = 1, . . . , N :

⋆x(tn) = ⋆x(tn−1) + ∂ × ⋆f(⋆x(tn−1), tn−1)

⋆x(t0) = x0
(5.12)

Hence, the solutionx of ODE (5.10) on the one hand, and⋆x as computed by algorithm (5.12)
on the other, are related byx = st(⋆x). In other words, formula (5.12) can be seen as anon-
standard operational semanticsfor ODE (5.10). In particular, formula (5.11) has the remarkable
consequence that non-standard semantics are all equivalent whatever the particular choice for the
infinitesimal step∂ is.

We can push the above argument further by considering the (standard)hybrid system with mode
switching depicted on Figure5.4, top. In this figure, we show one transition of a system having
a finite setA ∋ a, b, etc of modes. While in modea ∈ A the dynamics of the system are given
by ẋ = f(a, x, t). Mode switching is triggered when the firstzero-crossingoccurs:gba(x) > 0,
which causes a switch to modeb and the reset ofx to the current value of some signalzb. Now,
suppose that this hybrid system possesses a solutionx(t), t ∈ R+ such that: (i)t 7→ f(a, x(t), t) is
continuous while the system stays within modea, and (ii) the sequence of zero-crossings is either
finite or diverging. Then the same reasoning as above can be used to rederivex = st(⋆x), for x and
⋆x solutions of the system shown at top and bottom, respectively, of Figure5.4. The above analysis
is summarized by the followingStandardisation Principle:

Principle 5.2.4 Non-standard dynamical system of Figure5.4, bottom, can always be considered,
for any non-standard functionsf, gba :

⋆R 7→ ⋆R. It possesses a well defined non-standard seman-
tics ⋆x. If, furthermore:

1) functionsf, gba are internal, and

2) the hybrid system at the top of Figure5.4possesses a unique solutionx such that

a) t 7→ f(a, x(t), t) is continuous within each mode, and

b) the sequence of zero-crossings is finite or diverging,

thenx = st(⋆x) holds, regardless of the choice of infinitesimal step∂. Thus, the non-standard
operational semantics is intrinsic in that it does not depend on a particular∂.

Note the “lazyness” of the argument justifying the non-standard semantics.It says: if the (standard)
system possesses a “nice” solution, then this solution is found by the non-standard semantics. This

94

argument does not tell you whether or not the standard system possesses such a nice solution. In
some sense, checking this is left for run time trial. The key point is that there isno need to check for
any condition prior to considering the non-standard semantics, as it always has its own meaning.
Non-standard semantics can be used in an assumption-agnostic way.

5.2.4 Semantic domain for hybrid systems

Using non-standard analysis has the following advantages:

1. Time setT is both densein R and discretein that each instant inT possesses a unique
previous and next instant.

2. SinceT is discrete, we can specify dynamical systems overT in full generality, without the
need for referring to any kind of smoothness condition—e.g., as in (5.12).

3. Did the problem with the smoothness condition miraculously disappear? Not quite so. But
it is postponed to the very end, at run time, thanks to Standardisation Principle5.2.4: if the
hybrid system under consideration has a unique solution in the usual mathematical sense,
then the standardisation of our operational semantics computes it.

5.3 The SimpleHybrid Formalism

In this section we develop a tiny “mathematical language” for hybrid systems, we call it SIM -
PLEHYBRID. By this we mean a formalism that has the essential features of a language (asmall
set of primitive entities and statements, plus a composition operator), but that isdesigned primarily
to facilitate mathematical manipulation. Primitive statements of SIMPLEHYBRID are equations of
the following form:

Eq1 : y = f([x])

Eq2 : y = last (x)

Eq3 : y = ẋ

Eq4 : ζ = up(z)

Eq5 : ẏ = x init y0 resetu

Eq6 : u = [v] every [ζ] init u0

Eq7 : y = pre (x) init y0

(5.13)

Note that, in a concrete programming language, equationsEq1–Eq4 andEq7 would appear as
expressions. The above choice of primitives is, however, equally powerful. It is close to a Static
Single Assignment (SSA) form with intermediate values stored in variables andis used to simplify
the mathematical developments.

95

In (5.13) symbolsu, x, y, v, z denotevariables, with respective domainsDu, Dx, etc., taken
from an underlying setX of variables and[x] = [x1, . . . , xn] is a tuple of variables. Symbolζ
denotes variables ofzero-crossingtaken from an underlying setT ⊂ X of clock variables (generi-
cally denoted by the symbolτ). Clock variables take their values from the set of allclocks, where
a clock is any subset ofR+. Symbolsy0 andu0 denote values. Finally, dotted variablesẋ and
ẏ indicate derivatives. EquationsEq1–Eq7 define dynamical systems, or, equivalently, sets of be-
haviours with time index setR+ = [0,+∞). For example,Eq3 means∀t ∈ R+ : yt = ẋt.
Hybrid systems are specified via sets of equations of the formEq1–Eq7, taken conjunctively. In
the following we give an informal explanation of the above primitives, withoutmaking explicit
the necessary continuity and smoothness assumptions for them to make sense. The corresponding
mathematical semantics will be given in the next section.

We identify any clockτ with the boolean predicate it defines (the same convention also applies
to zero-crossings):

τt = if t ∈ τ thenT elseF (5.14)

ForX ⊆ X finite, astateoverX is an elements ∈ DX whereDX =
∏

x∈X Dx and abehaviour
overX is an elementσ ∈ R+ → DX . Forx ∈ X, letσ(x) ∈ R+ → Dx be thex-coordinate ofσ,
we call it asignal. By abuse of notation, and since no confusion will result, we writext instead of
σ → σ(t)(x) andζt instead ofσ → σ(t)(ζ). We now briefly review the primitives listed in (5.13).

Eq1: means thatyt = f(x1t , . . . , x
n
t) holds for allt, wheref is a total function over its domain

and tuple[x] = [x1, . . . , xn];

Eq2: meansyt = xt− =def limsրt xs, i.e., yt is the left-limit of xs whens approachest from
below.

Eq3: means∀t ∈ R+ : yt = ẋt.

Eq4: defines the clockζ such that, using convention (5.14):

ζt = [zt− ≤ 0] ∧ [zt > 0]

Thusζ selects the instantst at whichzt crosses zero from below, we call such a clock a
zero-crossing.We will need to consider tuples[ζ1 . . . ζk] of zero-crossings, denoted by the
symbol[ζ].

Eq5: For y, x two signals,y0 a value, andu a discretesignal (see below),Eq5 states that ODE
ẏt = xt holds with initial conditiony0 and this ODE is reset to the value given byu at each
instant of the discrete clock ofu.

Eq6: For u a signal,u0 ∈ Rn a value, and[ζ] = [ζ1 . . . ζk] and[v] = [v1 . . . vk] two matching7

tuples of zero-crossings and signals,Eq6 states thatu has clockζ =
⋃k
i=1 ζi and, for every

t ∈ ⋃i
j=1 ζj , ut = vi,t holds, andut = u0 for t < t1, the first instant ofζ.

7. Say that two tuples[u1 . . . uk] and[v1 . . . vl] arematchingif they possess identical numbers of components: i.e.
k = l.

96

So far we have introduced the needed statements to define systems of ODE withmode changes and
reset conditions. The additional statementEq7 allows embedding discrete time systems. We first
need to clarify what “discrete time” means.

Signals are typed discrete or continuous

For each signalx, we assume a clockτx such thatx is guaranteed constant on the complement
of τx. We callτx theclock ofx. A signal is typeddiscreteif either it has been declared as such, or
if its clock is some zero-crossing. Otherwise it iscontinuous.For example,Eq4 defines a discrete
clock and signalu output byEq5 is discrete (note that it is not required byEq5 that inputv is
discrete).

Remark 5.3.1 Mathematically, a clock is discrete if its restriction to any bounded interval ofR+ is
finite, a property that cannot be statically checked in general. The rationale for defining “discrete”
as stated above is twofold: (i) it is a syntactic criterion and thus it can be staticallychecked; (ii) it
generally matches the mathematical definition of a discrete clock.

For instance, iff : R+ 7→ R is continuous, thenzero(f) =def {t ∈ R+ | f(t) = 0} is
a closed subset ofR+. If, furthermore, all instants belonging tozero(f) are isolated (i.e., are
pairwise separated by a non-empty interval), thenzero(f) is either a finite set or a diverging
sequence; in both cases it is discrete in the mathematical sense. Functionsf from which zero-
crossings are constructed would typically possess such properties.

Of course, property (ii) is not guaranteed in all cases; for tricky signals, sets of zero-crossings
may very well be Zeno or even a Cantor set (see example (5.2)). On the other hand, statically
checking that a clock is discrete in the pure mathematical sense is simply notpossible.

Some operators only apply to discrete signals. They define discrete signalsby specifying their
value at each instant of their clock. This by itself is not enough since it leaves the signal undefined
before the first instant of its clock. An explicit initial value must therefore be given.

Eq7: assumesx discreteand definesy as the delayed version ofx by settingτy = τx and setting
thenth new value fory equal to the(n− 1)th one ofx; an initial conditiony0 is provided.

As previously stated, hybrid systems are specified in SIMPLEHYBRID via sets of equations of
the formEq1–Eq7, taken conjunctively. As an illustration, composing ODEEq5 with statement
x = f(y, v) of the formEq1, and resetEq6, yields the ODE

ẏ = f(y, v) init y0 reset [v] every [ζ] (5.15)

which means that ODĖyt = f(xt) holds with initial conditiony0 and that this ODE is reset to a
value given byzi each time zero-crossingζi occurs (whereζi = up(zi)).

97

5.4 Non-standard semantics

Throughout this section we fix a basic infinitesimal base step∂ ≈ 0. Without loss of gener-
ality, we can assume that∂ = [εn] for some decreasing sequenceεn of reals converging to0, see
Section5.2.2. Following [40], as our universal time base we replaceR+ by the non-standard set

T = {tn = n∂ | n ∈ ⋆N}
For t ∈ T, define

•t = max{s | s ∈ T, s < t}
t• = min{s | s ∈ T, s > t}

(5.16)

We thus have•tn = tn−1 andt•n = tn+1. The key fact aboutT is that for everyu ∈ R+ there
exists a uniquet ∈ T such that•t < u ≤ t andt− u is infinitesimal. ThusT is, at the same time,
dense inR+, and can still be handled as if it were discrete and totally ordered.

5.4.1 The semantics

A hybrid systemis a tupleS = (X,T,Σ), whereX ⊆ X andT ⊆ T are finite andΣ is a set of
behaviours overX ∪T . ForY ⊇ X ∪T , we can liftΣ to Y , writtenΣ↑Y , by taking all behaviours
overY whose projection overX ∪ T are inΣ. Then, forSi = (Xi, Ti,Σi), i = 1, 2, we define the
parallel composition

S1 ‖S2 =
(

X,T,Σ1
↑X∪T ∩ Σ2

↑X∪T
)

, (5.17)

whereX = X1 ∪X2 andT = T1 ∪ T2.
For a systemS = (X,Σ), specified as the parallel composition of a finite set of statements of

one of the formsEq1–Eq7, letClocks(S) be the (finite) set of all discrete clock variables involved
in the specification ofS. Then aclock configurationfor S is a map

κ : Clocks(S) 7→ {F, T}, (5.18)

that assigns a truth value to each discrete clock variable ofS. Clock configurations are used to indi-
cate the presence or absence of each discrete clock ofS at a given instantt. A clock configuration
κ for S is calledreachableif there exists a behaviorσ and an instantt such thatσ(t)(T) = κ(T)
for everyT ∈ Clocks(S).

The non-standard semantics of SIMPLEHYBRID is given in the second column of Table5.4.
Note the semantics ofζ = up(z), which corresponds to a “weak preemption” in that the change
in the sign ofz at instantt results in the emission of a zero-crossing at the next instantt•.

The important fact about this semantics is that, unlike for a fixed step size (standard) semantics,
it does not suffer from overshoot problems for zero-crossings oreven zenoness, or any need of
mentioning continuity properties, since steps are infinitesimal but “discrete”.Yet the semantics is
still statically defined, as was desired.

98

5.4.2 Back to the examples

Observe that Figures5.1–5.3 plot the non-standard semantics of SIMPLEHYBRID systems
(5.1–5.3) according to the second column of Table5.4. We now discuss these examples in de-
tail.

Example (5.1) The mysteries regarding example (5.1) are now clarified: the first zero-crossing
occurs at timet = 1+ ∂ (corresponding to1+ of Figure5.1). Then, settingε = 2∂, zero-crossings
occur repeatedly with a period of4ε, forever, thus filling the time line until+∞. The non-standard
domain of timeT = {n∂ | n ∈ ⋆N} allows for having several successive zero-crossings each
of zero duration, with time still eventually diverging, since we can always find n infinitely large
enough so thatn∂ > t for t ∈ R+. Now, the key feature of example (5.1) is that, despite being
well defined within a non-standard analysis framework, there is no possible standardisation.

Example (5.2) In contrast, consider example (5.2). We claim that standardisationy = st(y)
exists and has theaverageddynamics given just before (5.3). To show this, we use a variation of
the argument developed in analysing formulas (5.6)–(5.8), see Sections5.2.2and5.2.3. Let (x, y)
be the non-standard semantics of (5.2), i.e., given by Figure5.2. Again, letε = 2∂ andεn be the
sequence of positive (standard) reals converging to0 such thatε = [εn]. Consider the following
sequence of (standard) dynamical systemsyn

ẋn = 0 init − sgn(y0)

reset [−1, 1] every up[yn − εn,−yn + εn]

ẏn = xn init y0

(5.19)

The behaviour ofyn can again be seen on Figure5.2, with, however,εn substituted forε. For any
k ∈ ⋆N, we havekε = [kεn] and thus, sincex alternates between−1 and+1 at multiples ofε
(see Figure5.2), it follows thatx(kε) = [xn(kεn)], expressing thatx = [xn], see (5.5). The same
reasoning shows thaty = [yn]. On the other hand, using elementary arguments from standard
analysis, (5.19) defines a sequence of functionsynt , t ≥ 0 that converges uniformly toy defined
just before (5.3) whennր +∞ — this part of the argument cannot be invoked for example (5.1).
The above analysis shows thaty = st(y) wherey is given by (5.2) andy is given just before (5.3).

Example (5.3) It is to some extent an intermediate case. While not “as pathological” as example
(5.1), its non-standard semantics is still not standardisable because of the double jump att = 1.
If we insist that only systems having a standardisable semantics are accepted, then this program
should be rejected. If, however, we still want to accept it, then its effective semantics must be based
on extra, somehow arbitrary, principles. Two alternative approaches can be considered:

99

1. The first one consists in staying with the non-standard semantics when collapsing∂ to zero,
thussuper-dense timefollowing [124, 125] is used. In particular, all zero-crossings remain
with the same scheduling. This requires being able to statically check that thereare only
finitely many cascaded zero-crossings at any given instant.

2. The other possibility is to adopt the policy of synchronous languages: the successive non-
standard micro-steps att = 1 are collapsed to be simultaneous and then the zero-crossing
of y has priority, giving rise to a single jump of size1 for x at t = 1. Super-dense time is
then not needed, but we must be able to statically check that no signal exhibits more than
one zero-crossing at any given instant.

We will see at the end of Section5.5 that such static checks are made possible by our constructive
semantics. To summarize: (i) any SIMPLEHYBRID system possesses a non-standard semantics;
(ii) the latter may or may not be standardisable, but it does capture subtle or even pathological
cases; (iii) sufficient, statically checkable conditions for being standardisable will be provided by
the constructive semantics.

Simultaneous zero-crossings In [156], R. Nikoukhah advocates rejecting simultaneous zero-
crossings, unless it can be statically checked that they should occur. Headvocates that, in case si-
multaneous zero-crossings do incidentally occur, they should be interleaved non-deterministically.
Numerical solvers (e.g., Sundials CVODE) do detect simultaneous zero-crossing, and so discard-
ing some or processing them sequentially would be a source of non-determinism. We prefer a
synchronous interpretation in which the programmer decides what happens when zero-crossings
occur simultaneously. Writing, for example, a handler

[0, 1,−1] every [up(x)&up(y),up(y),up(x)] ,

would mean that the value0 is returned when bothx andy cross zero,1 when it is onlyup(y), and
−1 when it is onlyup(x). Note that this synchronous interpretation conforms with the behaviour
of Simulink.

5.5 Constructive semantics

As for any synchronous language, theconstructive semantics[36] formalizes how a reaction
should be executed, that is, how the different actions should be scheduled at a given instant, given
a program’s underlying causality constraints. Different approaches have been proposed.

G. Berry [36] advocated using a Scott domain with an extra value “undefined”, to be interpreted
as “not executed yet”; the domain of values is made a flat partial order by setting “undefined< any
other value”. Undefined should not be confused with the special statusabsent, which is characteric
of synchronous languages and belongs to the domain of values. Using thisextra statusundefined,
Esterel reactions are encoded as sets of equations in this Scott domain andthe minimal fixpoint is

100

sought, by iterating from the configuration where all variables and signalsare undefined. If in the
fixpoint all variables are uniquely defined, then the program is deterministicand can be executed.
An earlier approach was proposed by F. Boussinot [43] based on micro-step automata, which are
automata describing the allowed schedules and decomposing a reaction into micro-steps of atomic
operations. These two approaches were indeed developed and shownequivalent for Signal [29].
Here we develop a Scott semantics.

Scheduling constraints Let ⊥ be a special value not belonging to any domainDx, to be inter-
preted as “not evaluated yet”.8 Define, for anyx ∈ X , D⊥

x = Dx ∪ {⊥}. Write x = ⊤ to mean
thatx 6= ⊥. Let � be thescheduling constraintthat relates any two variablesu andv, that have,
respectively, domainsD⊥

u andD⊥
v :

u� v =def [u = ⊤] ∨ [v = ⊥] (5.20)

i.e.,u�vmeans[v = ⊤] ⇒ [u = ⊤], which formalizes that “v cannot be evaluated strictly beforeu”.
In particular, for any clockτ ,

∀t ∈ τ ⇒ xt � yt =def [xt = ⊤] ∨ [yt = ⊥] ∨ [τt = F]

whereτt is defined in (5.14). Observe that statementv = f(u), wheref is a function, abstracts as
u� v sincev can be substituted by its evaluationf(u) everywhere. Relation� captures causality
constraints within a system of equations.

The constructive semantics is obtained by abstracting, in the non-standardsemantics (second
column of Table5.4), any statement of the formyt = exp where expressionexp involves variables
xs, us, τs for s = •t, t, t•, by the scheduling constraintsxs � yt, us � yt, or τs � yt, respectively.
For example,yt = f(xt) is abstracted asxt � yt.

Observe that the semantics ofζ = up(z) corresponds to a “weak preemption” in that the
change in the sign ofz at instantt results in emitting a zero-crossing at the next instantt•. Hence, no
clock occurs on any consequent part of a zero-time causality constraint. Therefore, preconditions
such as “t ∈ τ ⇒” in the mid column of Table5.4do not impair the validity of the above mentioned
abstractions.

Pre- and post-variables In writing the constructive semantics, we would like to abstract away
dummy time indext. To this end, for each variablex ∈ X of the considered systemS, we augment
X with the two auxiliary variables•x andx•, such that•xt = x•t andx•t = xt• hold for every
t. Using these auxiliary variables and clock variables, time indext can be abstracted away in the
constructive semantics. Using the above notations, the constructive semantics is given in the last
column of Table5.4.

8. This notation deviates from the historically established use of symbol⊥ in synchronous languages to denote
absence. Absence of a signal in a reaction is a well defined status that is the result of evaluating the considered reaction.
“Absence” and “not evaluated yet” should therefore not be confused.

101

It is indeed tempting to extend SIMPLEHYBRID with the statementx� y, seen as a statement
belonging to the generic family in row 1. Doing this makes it possible to express the causality
analysis of a SIMPLEHYBRID program, and even additional scheduling constraints that the pro-
grammer may want to enforce, in the language SIMPLEHYBRID itself. This trick is not new; it was
already used for the Signal synchronous language [32].

Causality circuits Using the above abstraction, for each given clock configuration ofS, the
transitive closure of relation� is apre-orderonX — by abuse of notation, we also call it�. If
S is such that� is a partial order for any reachable clock configuration (see (5.18) and below),
then no causality circuit occurs inS and the different variables can be evaluated according to any
order compatible with�. Since no clock occurs on any consequent part of a zero-time causality
constraint, the only possible cause of circuits in relation� is via sets of statements of the formEq1.
We thus formally justify here the rule that no delay-free, derivative-free, data flow circuit should
exist in the considered program.

Single assignment condition Say that systemS obeys the single assignment condition if no
variable ofS sits on the left hand side of two or more equations. The following holds:

Lemma 5.5.1 If S possesses no causality circuit and obeys the single assignment condition, then it
is deterministic and the partial order� at each clock configuration specifies all correct schedulings
for the execution ofS.

Interactions of sub-systems The constructive semantics conveys the necessary information to
identify when several ODE equations of typeEq5 must be jointly submitted to the same solver
because they are coupled in all directions — coupling may involve the ODEs and/or their associated
zero-crossings and resets. Example (5.2) is one such example. Of more interest is the ability
to identify the lack of interaction, for example when two sub-systems only communicate in a
unidirectional way. This addresses issue3) raised in the introduction.

Cascaded zero-crossings The constructive semantics of example (5.1) involves the following
scheduling constraints, whereζu denotes the zero-crossing induced by signalu:
•z � ζz � x, •x� (ζx, ζ−x)� y, and•y � (ζy, ζ−y)� x, thus statically showing that infinitely many
cascaded zero-crossings forx andy can occur.

On the other hand, the constructive semantics of example (5.2) involves the single scheduling
constraint•y� (ζy, ζ−y)�x, thus statically showing that at most one zero-crossing fory can occur
at any given time.

Finally, the constructive semantics of example (5.3) involves scheduling constraints•z � ζz �
(x, y) and•y � ζy � x, thus showing a risk of at most two cascaded zero-crossings forx.

To conclude, our constructive semantics is powerful enough to support the static checkings
required for cascaded zero-crossings, see the discussion of examples (5.1–5.3).

102

5.6 Off-the-shelf compilers

In this section we explain how to derive a SIMPLEHYBRID compiler by reusing a legacy syn-
chronous language engine in combination with a legacy ODE solver. The synchronous language
engine will regard ODE solutions between two successive zero-crossings as just another (big!)
step, regardless of the fact that this step is managed by an external entity,namely the solver. In the
chapter we only explain the principles, the detailed development of such a tool will be presented
elsewhere. The key idea is to structure SIMPLEHYBRID systems in a specific way. Decompose
every SIMPLEHYBRID systemS as

S = SODE ‖ SnoODE, where (5.21)

– SubsystemSODE collects all equations inS of the formEq1–Eq5;
– SubsystemSnoODE collects all equations inS of the formEq1,Eq2, Eq6 andEq7;
– Since equations of typesEq1 andEq2 appear in both subsystems and we want to preserve

the single-assignment condition ofS, if it does hold, we must guard these equations by clock
conditions. Thus, such equations are assigned toSnoODE at instants of zero-crossing, and
otherwise they are assigned toSODE.

One way to achieve the last type of separation would be to extend the expressiveness of SIM -
PLEHYBRID by allowing for equationsguarded by clocks. For instance,Eq1 would become
“on τ : y = f([x])”. This would be feasible but it would increase the complexity of the for-
malism while adding little value in the study of fundamental issues. Thus, we prefer to keep
SIMPLEHYBRID as it is.

So we instead propose a simple convention to acheive the necessary expressiveness. ForS,
a system, letζS be the union of all zero-crossings involved inS — there are only finitely many
of them, thusζS is a discrete clock too. While assigning an equation of typeEq1 to SnoODE, we
guard it byζS as the following equation of typeEq6:

y = f([x])
︸ ︷︷ ︸

original equation

every ζS
︸ ︷︷ ︸

added guard

(5.22)

We also do the same for equations of typeEq2. On the other hand, the sameEq1 andEq2 equations
are assigned toSODE and it is understood that these equations are preempted by corresponding
guarded equations(5.22) at instants ofζS . This trick avoids the duplication of equations at any
given instant and allows decomposition (5.21) to preserve the single-assignment condition if it was
satisfied byS.

Now, SnoODE is nothing but a synchronous program (it can be encoded in Lustre). On the
other hand,SODE is exactly what a state-of-the-art ODE solver (such as Sundials9) can compute,
namely solving ODEs with given initial conditions and resetting values, and halting when some
specified variables are subject to zero-crossings.

9. https://computation.llnl.gov/casc/sundials/main.html

103

A prototype tool has been developed based on these principles using the Sundials solver. In
Section5.8we report some experiments on the examples of the introduction, showing theirbehav-
ior in Simulink and with the tool.

5.7 Hitting balls example

We consider the case of two balls hitting each other along a wall as shown on Figure5.5. The
figure shows the initial conditiond1 < d2 = w2 = 0 andw1 > 0, meaning that ball2 sits steady
on contact of the wall, whereas ball1 is going to hit it. To simplify, these are ideal balls of zero
diameter. For convenience, the system is activated at initial timet = −d1/w1, so that the first hit
occurs right aftert = 0 (formally, at timet = ∂).

d1

1 2
w1

Figure 5.5: The hitting balls example: initial condition.

Corresponding equations are:

ẋ1 = v1 init d1

ẋ2 = v2 init d2

v̇1 = 0 init w1 reset last (v2)

0 init w1 every up[x1 − x2]

v̇2 = 0 init w2 reset [last (v1) ,−last (v2)]

0 init w2 every up[x1 − x2, x2]

(5.23)

The non-standard semantics yields:

1. att = ∂, x1 = ∂.w1 > 0, which causesx1 − x2 to have a zero-crossing.

2. As a result, att = 2∂ the two balls exchange their velocities:v1 = 0 andv2 = w1.

3. At t = 3∂, x1 = 2∂.w1 andx2 = ∂.w1, which causesx2 to have a zero-crossing.

4. Hence att = 4∂, x1 = x2 = 2∂.w1, v1 = 0 andv2 = −w1.

5. At t = 5∂, x1 = 2∂.w1 andx2 = ∂.w1, which causesx1 − x2 to have a zero-crossing.

6. Hence at att = 6∂, x1 = 2∂.w1, x2 = 0, v1 = −w1 andv2 = 0.

Then, ball1 moves to−∞ and no more zero-crossing occurs. Observe that this non-standard
semantics is not standardisable. For this example, the super-dense time interpretation1) at the end
of Section5.4.2is preferred.

104

5.8 Experimental results

We have modelled examples (5.1) to (5.3) in both Simulink (version 7.7.0.471, R2008b) and a
prototype based on the Sundials (version 2.4.0) CVODE library [105].

5.8.1 Using Simulink

0 1 2 3 4 5 6 7 8 9 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y

Time offset: 0

Figure 5.6: Example (5.1) in Simulink

105

Example (5.1) The Simulink model corresponds to the following set of equations10:

y = 1/s(iy, updown(lx), 0)

x, lx = 1/s(ix, up(zx), 0)

z = 1/s(−1, 1)

iy = switchup(lx, 1, switchup(−lx,−1,−1))

ix = switchup(y,−1, switchup(−y, 1, switchup(z, 1,−1)))

zx = switchup(y, 1, switchup(−y, 1, switchup(z, 1,−1)))

We write 1/s(init, zero, input) for the integration of a signalinput with initial value init and
reset given by a zero-crossing conditionzero. The integration operator may return a second output
(the so-called state port which corresponds to the left limit of signalx). We write it lx in the
equations above.updown(r) means that a zero-crossing is detected whenr crosses zero in any
direction; up(r) when r crosses zero from a negative to a positive value.switchup(x, e1, e2)
returns the value ofe1 whenx crosses zero, the value ofe2 otherwise11. The zero-crossing handler
[−1, 1, 1] every [y,−y, z] is encoded with two equations: the equationix defines the initial value
for x whereaszx is true wheny or−y or z cross zero. This is encoded by the integer expression

switchup(y, 1, switchup(−y, 1, switchup(z, 1,−1)))

A simulation is given in Figure5.6. It shows that Simulink does not introduce a delay in the effect
of a zero-crossing. The numerical solver runs and stops at timet = 1 with the first zero-crossing
up(z). This implies several zero-crossings:

– zx = 1 asy depends onlx and thus did not cross zero.
– As a consequence,x is reset with the value ofix which equals1.
– At time t+ ǫ, y is reset toiy = 1.
– Then, no more zero-crossing occurs and the two signalx andy remain constant.

This effect is a direct consequence of the priority between zero-crossing made explicit by the
programmer.

Example (5.2) The Simulink model is depicted in Figure5.7with the corresponding outputs for
x andy. In normal mode, the simulation fails because of too many zero-crossing at instantt = 1 12.

10. For lack of space, we do not show the corresponding block-diagram. We show a systematic encoding here with
no simpliciation of the code.

11. In Simulink,switchup(x, e1, e2) is implemented with a switch operator and a hit-crossing operator applied tox.
12. Simulink stops with the error: At time 1.000000000019998, simulation hits (1000) consecutive zero crossings.

Consecutive zero crossings will slow down the simulation or cause the simulation to hang. To continue the simulation,
you may 1) Try using Adaptive zero-crossing detection algorithm or 2) Disable the zero crossing of the blocks shown in
the following table.

106

We output the result of a simulation using adaptive zero-crossing detection. We takey0 = −1.

x = 1/s(ix, updown(y), 0)

y = 1/s(y0, x)

ix = switchup(y,−1, switchup(−y, 1,−y0))

Results in Figure5.7 show thaty stick to zero (more or less a threshold parameter used by the
adaptive algorithm) whereasx alternate from1 to−1. Note that because of the use of the adaptive
algorithm, the signalx may stay some time at1 or−1 before changing.

Example (5.3) The corresponding Simulink model is given below as a set of equations. This
time, the first integration block returns bothx and the state portlx.

x, lx = 1/s(ix, up(zx), 0)

z = 1/s(−1, 1)

y = 1/s(iy, up(z), 0)

ix = switchup(y, lx+ 1, switchup(z, lx+ 2, 0))

zx = switchup(y, 1, switchup(z, 1,−1))

iy = switchup(z, 1,−1)

A run of the example is given in Figure5.8. It shows that Simulink does not introduce a delay in
the effect of a zero-crossing:

– The numerical solver runs an stops at timet = 1 with the first zero-crossingup(z).
– This implies a second zero-crossing for the equation ofy with value1. As a consequence,
y crosses zero (going from−1 to 1). Time dit not progress, i.e., the zero-crossingup(y) is
synchronous withup(z).

– As a consequence, the equation forx is reset with valuelx + 1, that is,1 sinceup(y) is
treated beforeup(z) in the handlerswitchup(y, lx+ 1, switchup(z, lx+ 2, 0)).

This confirms that a cascade of zero-crossing is instantaneous in Simulink.That is, Simulink takes
the following interpretation for a zero-crossing:

up(x)t = [x•t ≤ 0] ∧ [xt > 0]

which means that the effect of a zero-crossing is instantaneous. This hilight the main benefit of
non-standard analysis as a model for reasonning on hybrid systems andthe treatment of zero-
crossing. Choosing the Simulink interpretation would only change the definitionof up(.) in the
non-standard semantics.

107

phase time x y z

I 0.000000e+00 -1.000000e+00 -1.000000e+00 -1.000000e+00

C 1.000000e-01 -1.000000e+00 -1.000000e+00 -9.000000e-01

C 2.000000e-01 -1.000000e+00 -1.000000e+00 -8.000000e-01

C 3.000000e-01 -1.000000e+00 -1.000000e+00 -7.000000e-01

C 4.000000e-01 -1.000000e+00 -1.000000e+00 -6.000000e-01

C 5.000000e-01 -1.000000e+00 -1.000000e+00 -5.000000e-01

C 6.000000e-01 -1.000000e+00 -1.000000e+00 -4.000000e-01

C 7.000000e-01 -1.000000e+00 -1.000000e+00 -3.000000e-01

C 8.000000e-01 -1.000000e+00 -1.000000e+00 -2.000000e-01

C 9.000000e-01 -1.000000e+00 -1.000000e+00 -1.000000e-01

C 1.000000e+00 -1.000000e+00 -1.000000e+00 -2.235451e-14

C′ 1.000000e+00 -1.000000e+00 -1.000000e+00 7.786350e-14

Z 1.000000e+00 up(z)

D 1.000000e+00 1.000000e+00 -1.000000e+00 7.786350e-14

Z 1.000000e+00 up(x)

D 1.000000e+00 1.000000e+00 1.000000e+00 7.786350e-14

Z 1.000000e+00 up(y)

D 1.000000e+00 -1.000000e+00 1.000000e+00 7.786350e-14

Z 1.000000e+00 up(-x)

D 1.000000e+00 -1.000000e+00 -1.000000e+00 7.786350e-14

Z 1.000000e+00 up(-y)

D 1.000000e+00 1.000000e+00 -1.000000e+00 7.786350e-14

Table 5.1: Log of example (5.1) (prototype tool)

5.8.2 Using the Sundials-based Prototype

We have developed a prototype implementation of our language in Ocaml, which comprises a
generic interface to the CVODE library (using serial vectors), and an implementation of the algo-
rithm that alternates between continuous phases and discrete phases in response to zero-crossings.
Each example was manually translated into a single Ocaml function that is called bySundials
during continuous phases, and by the algorithm directly during discrete phases.

Example (5.1) The results of running the prototype tool on example (5.1) are shown in Table5.1.
The first row (‘I’) shows the initial state values, it is followed by a series of executions of the
CVODE solver (‘C’) during which the states evolve according to their derivatives, and then just
after 1.0, a zero-crossing is detected (‘Z’). The values of the continuous states at the time of the
zero-crossing (‘C′’), becomelast values during the subsequent discrete phase (‘D’). The first zero-
crossing occurs forup(z). It triggers an unbounded cascade of discrete phases, after each of which
another (single and non-simultaneous) zero-crossing is detected. The sequenceup(x), up(y),
up(−x), up(−y) is repeated indefinitely without the continuous solver ever being reinvoked.

Example (5.2) The results for example (5.2) are shown in Table5.2. The value ofy exceeds
zero and triggers the zero-crossingup(y) just aftert = 1.0. Then, the value ofx is changed
from1.0 to−1.0 during the discrete phase, but as there are no further zero-crossings the continuous
solver is called again. Another zero-crossing,up(−y), is discovered almost immediately and

108

phase time x y

I 0.000000000000000e+00 1.000000e+00 -1.000000e+00

C 1.000000000000000e-01 1.000000e+00 -9.000000e-01

C 2.000000000000000e-01 1.000000e+00 -8.000000e-01

C 3.000000000000000e-01 1.000000e+00 -7.000000e-01

C 4.000000000000000e-01 1.000000e+00 -6.000000e-01

C 5.000000000000000e-01 1.000000e+00 -5.000000e-01

C 6.000000000000000e-01 1.000000e+00 -4.000000e-01

C 7.000000000000000e-01 1.000000e+00 -3.000000e-01

C 7.999999999999999e-01 1.000000e+00 -2.000000e-01

C 8.999999999999999e-01 1.000000e+00 -1.000000e-01

C 9.999999999999999e-01 1.000000e+00 -4.464441e-14

C′ 1.000000000000100e+00 1.000000e+00 5.557360e-14

Z 1.000000000000100e+00 up(y)

D 1.000000000000100e+00 -1.000000e+00 5.557360e-14

C′ 1.000000000000175e+00 -1.000000e+00 -1.974954e-14

Z 1.000000000000175e+00 up(-y)

D 1.000000000000175e+00 1.000000e+00 -1.974954e-14

C′ 1.000000000000195e+00 1.000000e+00 9.288416e-18

Z 1.000000000000195e+00 up(y)

D 1.000000000000195e+00 -1.000000e+00 9.288416e-18

C′ 1.000000000000215e+00 -1.000000e+00 -1.972025e-14

Z 1.000000000000215e+00 up(-y)

D 1.000000000000215e+00 1.000000e+00 -1.972025e-14

C′ 1.000000000000234e+00 1.000000e+00 3.853879e-17

Z 1.000000000000234e+00 up(y)

D 1.000000000000234e+00 -1.000000e+00 3.853879e-17

C′ 1.000000000000254e+00 -1.000000e+00 -1.969104e-14

Z 1.000000000000254e+00 up(-y)

D 1.000000000000254e+00 1.000000e+00 -1.969104e-14

C′ 1.000000000000274e+00 1.000000e+00 6.770241e-17

Table 5.2: Log of example (5.2) (prototype tool)

another discrete phase is triggered during whichx is changed back to1.0. This process is repeated
indefinitely; time is advanced in small increments by the continuous solver, and the value ofx
is alternated between1.0 and−1.0 by intervening discrete phases. The observed behaviour thus
approximates the ideal behaviour; a small overshoot, which is proportional to step size chosen by
the continuous solver, effectively simulates theε of the non-standard semantics. Note that the time
column is given with a greater precision than in the other examples. Without the extra significant
figures, it appears as if the simulation iterates without bound att = 1.0. As it is, time barely
advances just as is in Simulink when the adaptive zero-crossing detection algorithm is not used.

Example (5.3) The results for example (5.3) are shown in Table5.3. Both x andy are con-
stant throughout the initial continuous phases, butz increases steadily from−1.0. The first zero-
crossing,up(z), is triggered just afterz crosses0.0. The ensuing discrete phase seesx incremented
by 2.0 andy set to1.0. The latter update triggers the zero-crossingup(y), which causes another
discrete phase to be executed at the same instant of time. During this second discrete phase,x is in-
cremented by1.0. The simulation then continues with an unbounded number of continuous phases.
Note that, during a discrete phase, the effects of changes to variables onzero-crossing expressions

109

phase time x y z

I 0.000000e+00 0.000000e+00 -1.000000e+00 -1.000000e+00

C 1.000000e-01 0.000000e+00 -1.000000e+00 -9.000000e-01

C 2.000000e-01 0.000000e+00 -1.000000e+00 -8.000000e-01

C 3.000000e-01 0.000000e+00 -1.000000e+00 -7.000000e-01

C 4.000000e-01 0.000000e+00 -1.000000e+00 -6.000000e-01

C 5.000000e-01 0.000000e+00 -1.000000e+00 -5.000000e-01

C 6.000000e-01 0.000000e+00 -1.000000e+00 -4.000000e-01

C 7.000000e-01 0.000000e+00 -1.000000e+00 -3.000000e-01

C 8.000000e-01 0.000000e+00 -1.000000e+00 -2.000000e-01

C 9.000000e-01 0.000000e+00 -1.000000e+00 -1.000000e-01

C 1.000000e+00 0.000000e+00 -1.000000e+00 -1.500536e-16

C′ 1.000000e+00 0.000000e+00 -1.000000e+00 1.000680e-13

Z 1.000000e+00 up(z)

D 1.000000e+00 2.000000e+00 1.000000e+00 1.000680e-13

Z 1.000000e+00 up(y)

D 1.000000e+00 3.000000e+00 1.000000e+00 1.000680e-13

C 1.100000e+00 3.000000e+00 1.000000e+00 1.000000e-01

C 1.200000e+00 3.000000e+00 1.000000e+00 2.000000e-01

Table 5.3: Log of example (5.3) (prototype tool)

are not detected immediately, rather any new zero-crossings are detectedafter the discrete phase,
i.e. after variables have been reset as necessary, when the last values of zero-crossing expressions
are compared with their new values. There is thus no question of priority in thisexample:up(x)
occurs strictly beforeup(y), even though no simulation time elapses between them.

5.9 Related work

Studies on hybrid systems modelers from a semantics point of view are not sonumerous. We
discuss the few we consider relevant for comparison. First of all, we recall previous work [27]. In
fact, the agenda presented in that paper closely resembles the one we develop here. Except that,
in [27] the tool of non-standard analysis was not used. Consequently, [27] suffers from some hand
waving, as careful readers will notice.

Perhaps the attempt most similar to ours is the work of the Ptolemy group, by E. Lee and
H. Zheng [124, 125], which studies the handling of discontinuities in hybrid systems modelers.
They apply the model oftagged signals[123]. Events are tagged with an extended time index
taken from the setR+ × N with its associated lexicographic order. This set is referred to by
the authors assuper-densetime. This type of multi-dimensional time set was considered earlier
for discrete time systems models in the area of synchronous languages [32, 33]. Our approach
avoids using super-dense time because the non-standard index setT is both discrete and dense.
The existence of a previous instant•t and a next instantt• was used in Table5.4, replacing the
multi-dimensional instants(t, 0) and(t, 1) of [124, 125]. On another aspect, the approach [124,
125] is made complicated by issues of smoothness, Lipschitzness, existence anduniqueness of
solutions, Zenoness, etc (see section 6 of [124] on “Ideal Sover Semantics” and section 7 of [125]
on “Continuous Time Models”). These issues do not simply dissappear in our approach, instead

110

they are more or less postponed to run time. Finally, we do not see how our firest two examples
could be analyzed within the framework of [124, 125].

The work described by P. Mosterman and his co-workers at The Mathworks [134] is also very
interesting. It attempts to establish the Simulink modeler on a solid semantic basis. Thecon-
tribution of the paper is to show how (a restricted class of) variable step solvers can be given a
functionalstreamsemantics [62]. To achieve this, the class of solvers is first restricted to those
relying onexplicit schemes,asimplicit ones cannot be put in explicit functional form. While this
indeed provides a hybrid systems modeler with a stream semantics, the semanticsis extremely
complex since it the discretization method is made explicit — in particular, changingthe method
changes the semantics. This approach precludes using implicit schemes, although they are valuable
from the point of view of numerical analysis.

In [156], R. Nikoukhah discusses cascaded zero-crossings. He advocates rejecting the “syn-
chronous” interpretation of them, see the interpretation2) of Example (5.3) in Section5.5. He
favors instead a micro-step style of interpretation, where cascaded zero-crossings interleave non-
deterministically. We prefer a synchronous interpretation in which the programmer makes ex-
plicit what to do when two zero-crossings occur. Then non-determinism arises solely in numerical
solvers, and not from the semantics of a program. Because the effect of up(e) is delayed by one
cycle ofT, a cascade of zero-crossing can last for several successive instants ofT. Note that the
synchronous interpretation coincides with that of Simulink (see discussion inSection5.8) where
zero-crossings have an immediate effect.

5.10 Conclusion

We have proposed a novel approach to the semantics of hybrid systems modelers. In doing so,
we wanted:

1) To leave the choice of integration method unconstrained;

2) To ensure that hybrid systems are a conservative extension of discrete time systems;

3) To provide semantic support for:

a) Statically analyzing and scheduling the actions triggered by cascaded zero-crossings;

b) Separating discrete and continuous behaviours, and treating them bothby combining exist-
ing ODE solvers with existing synchronous language compilers;

c) Rejecting programs with causality circuits;

d) Allowing for the use of several local solvers instead of a single, global one, with the ob-
jective of limiting side effects between non-interacting sub-systems, due to step size adjust-
ments.

Achieving these objectives was made possible thanks to the use of non-standard analysis as a
semantic domain. We believe that non-standard semantics is not a fancy thing for math addicts.

111

It is rather a very natural way of viewing continuous time and hybrid systemsfrom the syntactic
side, as is usually preferred by computer scientists. Our study of cascaded zero-crossings benefits
greatly from the semantics. The non-standard semantics allowed for the rapid development of a
prototype by combining an off-the-shelf ODE solver with an of-the-shelf synchronous language
compiler.

ACKNOWLEDGEMENT The authors are indebted to Ramine Nikoukhah and Sébastien Furic for
detailed discussions regarding Modelica, and to Daniel Krob and Simon Bliudze for comments on
their work.

112

Switch1

Switch

Scope

Integrator1

1
s

Integrator

1
s

xo

Hit Crossing1

Hit CrossingGain

−1

Constant3

1

Constant2

1

Constant1

−1

Constant

0

x y

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5
y

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

Time offset: 0

Figure 5.7: Example (5.2) in Simulink

113

0 1 2 3 4 5 6 7 8 9 10
−10

−5

0

5

10
z

−1

−0.5

0

0.5

1

y

−0.2

0

0.2

0.4

0.6

0.8

1

x

Time offset: 0

Figure 5.8: Example (5.3) in Simulink

114

statement non-standard semantics constructive semantics

Eq
1

y = f([x]) yt = f([xt]) [x]� y

Eq
2

y = last (x) yt = x•t
•x� y

Eq
3

y = ẋ yt =
1

∂
(xt − x•t) x� y

Eq
4

ζ = up(z)
ζt• = [z•t ≤ 0] ∧ [zt > 0]

ζ is discrete

z � ζ•

ζ is discrete

Eq
5

ẏ = x

init y0

reset u

τu discrete

t ∈ τ \ τu ⇒ yt = y•t + ∂ × x•t

t ∈ τu ⇒ yt = ut

τu� y
•x� y init y0 �

y resetu �y

Eq
6

u = [v]

every [ζ]

init u0

discrete τu =
⋃

i ζi

t < min(
⋃

i ζi) ⇒ ut = u0

t ∈ ζi \ (
⋃

j<i ζj) ⇒ ut = vi,t

discreteτu =
⋃

i ζi

[ζ]� u

[v]� u every [ζ]

init u0 �u

Eq
7

y = pre (x)

init y0

τy = τx discrete

t < min(τy) ⇒ yt = y0

t ∈ τy ⇒ yt = x•t

τy = τx discrete

τx � y

•x� y init y0 � y

Eq
8

S1 ‖S2

S1 = (X1,Σ1)

S2 = (X2,Σ2)

(

X,Σ1
↑X ∩ Σ2

↑X
)

, X = X1 ∪X2 [[S1]] ‖ [[S2]]

Table 5.4: Non-standard semantics (mid column) and constructive semantics (right column) of
SIMPLEHYBRID. Time t is universally quantified.

Part III

Synthesis and Control of Concurrent
Systems

115

Chapter 6

Distributing finite automata through
Petri net synthesis

Résumé :La programmation des systèmes communicants est une activité délicate, demandant du
programmeur des compétences spécifiques aux systèmes répartis etaux modèles de la concurrence.
Il est donc souhaitable de pouvoir offrir aux concepteurs un modèle deprogrammation qui fasse
abstraction de la communication. Ceci suppose bien entendu que des méthodes de synthèse de
protocoles communicants puissent être utilisées et que celles-ci produisent des protocoles corrects,
efficaces et economes en messages échangés.

Les techniques de synthèse de réseaux de Petri permettent de transformer un modèle dans
lequel la concurrence entre événements n’est pas explicite, en un modèle concurrent. Ces tech-
niques sont intéressantes pour des applications aussi variées que la synthèse de circuits matériels
asynchrones ou la construction de modèles à partir de traces d’exécution.

Ce chapitre, repris de [9], présente une spécialisation d’un algorithme de synthèse de réseaux
de Petri généraux pour ne produire que des réseaux pouvant être facilement transformés en sys-
tèmes communicants : les réseaux distribuables. les réseaux distribuables forment une classe
syntaxique de réseaux dont les places et transitions sont réparties surun ensemble de sites, et
qui ne permettent pas d’exprimer des propriétés de conflit entre deuxsites distincts. L’algorithme
de synthèse en temps polynomial repose sur la résolution dans les nombres rationnels de systèmes
d’inéquations linéaires, les contraintes de distribution apparaissant comme des conditions de signe
de certaines variables.

Une fois obtenu un réseau distribuable (si il en existe), il est aisé de transformer le réseau dis-
tribuable en processus communicants. L’intérêt de cet algorithme est que le problème de synthèse
d’un système communicant est décomposé en trois étapes, la premèreétant la transformation de
la spécification de manière à ce qu’elle admette comme solution un réseau distribuable. Une fois
cette première étape franchie, le calcul d’un réseau distribuable et sa transformation en processus

117

118

communicants est automatique. Cet algorithme a été mis en œuvre dans l’outil Synet1.

6.1 Introduction

The synthesis problemfor Petri nets is the question whether a given automaton (or a given
language) on alphabetE is isomorphic to the state graph (or equal to the set of behaviours) of
a Petri net to be discovered, with set of events identical toE. We will address this question
for finite automata defined on an enriched alphabet(E, λ) whereλ : E → Λ maps each event
e ∈ E to alocationλ(e) ∈ Λ. Considering these automata as specifications of distributed systems,
we search for realizing them bydistributablenets [107], such that two transitions with different
locations are never in conflict. A distributable net translates easily to an equivalent family of finite
communicating automata which, plugged in at separate locations in an asynchronous network,
provide the desired implementation. We give in this chapter the description of analgorithm for
distributed net synthesis and report on a few case studies where it supplies an assistance for the
engineering of distributed protocols. Our goal is to attract engineers to a technique which may yield
unexpected but effective solutions to practical distribution problems, relying in a totally hidden
way on linear algebra that often beats intuition. A few case studies in distributed net synthesis
would suffice to make the point, but we prefer to give a thorough presentation of the algorithm, yet
unpublished, in order to allow users try different implementations. The material of the chapter is
mainly assembled from [9], preliminary studies ([12],[50]) and research reports ([10],[49]).

The problem of synthesizing nets equivalent to a given finite automaton wasaddressed first
by Ehrenfeucht and Rozenberg, who showed in [88] and [89] how deciding on the feasability of
this problem for elementary nets, using the crucial concept ofregions. A (boolean) region in an
automaton is a subset of states such that this set is entered or exited uniformlyby all transitions
with a common label (exactly as if it were the set of reachable cases of a netthat hold a fixed
condition or place). Regions may be interpreted as and give rise toatomicnets with a single place,
filled by incoming transitions and emptied by outgoing transitions. By consideringthe finitely
many different subsets of regions of a finite automaton, and gluing atomic netson transitions, a
finite number of nets may be derived in this way from a finite automaton, but it maywell occur that
none of them has a case graph isomorphic to the given automaton. Those automata which are iso-
morphic to reachable case graphs of elementary nets are characterized by two separation axioms,
one expressing that any two different states are separated by some region containing exactly one
of them, and the other expressing that for any evente, each state disablinge can be separated from
all states enablinge by some region exited bye. When these axioms are satisfied, the automaton
is isomorphic to the reachable case graph of the elementary net assembled from the whole set of
regions (viewed as atomic subnets). The same holds of any smaller net assembled from a subset of
regions large enough to witness the satisfaction of both separation axioms [84].

The concept of regions was extended next by Mukund [135], who defined regions modelling

1. http://www.irisa.fr/s4/tools/synet/

119

extensions of places in state graphs of general Petri nets with the step firing rule. Mukund’s ex-
tended regions may again be interpreted as one-place Petri nets, with flow arcs now weighted by
non negative integers. Using these (integral) regions, Mukund established an abstract correspon-
dence (namely a co-reflection) between separatedstepautomata and Petri nets, where separated
step automata satisfy an adapted version of Ehrenfeucht and Rozenberg’s separation axioms. The
separation axioms served also (albeit with slightly different regions) to characterize up to isomor-
phism automata which may be realized by pure Petri nets with the sequential firing rule [34], and
automatawith concurrency relationwhich may be realized by general Petri nets [86]. The afore
mentioned results do not directly entail the decidability of the Petri net realization problem for
finite automata, since the set of integral regions of a finite automaton is infinite: contrary to the set
of boolean regions, this set cannot be inspected exhaustively in a finite amount of time for stating
validity or invalidity of the separation axioms. It was shown in [12] that the synthesis problem for
purePetri nets is nevertheless decidable, because the set of integral regions of a finite automaton
forms a free module and one may actually compute a finite set of generators ofthis module. The
decision was extended later on to general Petri nets, possibly accomodating self-loops[10]. In both
cases, deciding on the synthesis problem for Petri nets (or on the net realization problem for finite
automata) takes time polynomial in the size of automata.

In contrast, the synthesis problem for elementary nets is anNP-complete problem [13]. The
jump of complexity may be explained as follows. Integral regions, considered as maps from states
to non-negative integers, are stable under addition of maps, hence they are suited for linear rea-
soning. On the contrary, regions, considered as maps from states toZZ/2ZZ, are not stable under
addition of maps, hence they are suited only for (non-linear) combinatorialreasoning. This did
not prevent practically efficient algorithms based on binary decision diagrams and graph traversal
to be constructed and used for deriving elementary nets from large automata [72, 70]. The tool
PETRIFY in which these algorithms are integrated shows convincing applications of netsynthesis
to asynchronous circuits [69]. Elementary net synthesis finds there a privileged field of application,
where it brings in a new technology.

The potential fields of application of general Petri net synthesis have not been investigated to
a comparable degree. Following the path shown in [158], applications may be found in supervi-
sory control of discrete event systems, but the most critical issue of distributed and asynchronous
control has not yet been considered at depth. More positively, the work presented in ([49], [50])
brings the elements of an emerging technology for distributing finite reactive automata. Successful
experiments have been conducted on simple communication protocols using the tool SYNET which
has the nice feature to accomodate distribution constraints on the nets it is able tosynthesize from
automata.

The rest of the chapter presents the principles of the synthesis of general Petri nets (section
2), a proof that the synthesis problem can be solved in polynomial time for finite automata (sec-
tion 3), an adaptation of the synthesis algorithm to distributable nets (section 4), a translation of
distributable nets to asynchronously communicating automata (section 5), two case studies in dis-
tributing reactive automata using SYNET (section 6), and a few conclusions (section 7).

120

6.2 The Petri Net Synthesis Problem

The purpose of the section is to give an axiomatic characterization of the subfamily of finite
automata which are isomorphic to reachable state graphs of unlabelled Petri nets. This charac-
terization is based on Ehrenfeucht and Rozenberg’s separation axiomsfor elementary transition
systems, adapted to general Petri nets through an adequate extension ofthe concept of regions.
The extended regions we propose are similar in spirit to those considered by Mukund [135] and by
Droste and Shortt [86].

Before stating the definition of regions, let us fix terminology and notations. We assume a finite
setE of events. A (finite) automatonoverE is an initialized transition systemA = (S,E, T, s0)
with a (finite) nonempty set ofstatesS, a (possibly empty) set oftransitionsT ⊆ S ×E × S, and
an initial states0 ∈ S. For convenience,s

e→ s′ is an equivalent of(s, e, s′) ∈ T , ands
e→ and

s
e
6→ are respective abbreviations for∃s′ ∈ S (s

e→ s′) and∀s′ ∈ S ¬(s e→ s′). An automaton
A is deterministicif for any states ∈ S and for any evente ∈ E, (s

e→ s′) ∧ (s
e→ s′′) ⇒

s′ = s′′. An automatonA is co-deterministicif for any states ∈ S and for any evente ∈ E,
(s′

e→ s) ∧ (s′′
e→ s) ⇒ s′ = s′′. On the one hand, the automata we consider are not always

deterministic or co-deterministic, on the other hand, they are alwaysreachable, i.e. such that
S = {s | s0 ∗−→ s} where

∗−→ is the reflexive and inductive closure of the unlabelled transition
relation→= ∪{ e→ | e ∈ E}. An automaton isevent-reducedif it is reachable and every event
e ∈ E occurs on at least one transition(s, e, s′) ∈ T . We recall hereafter the definition of marked
Petri nets and their sequential state graphs (see, e.g., [157]).

Definition 6.2.1 (Petri nets) A (finite) Petri net is a tripleN = (P,E, F) whereP andE are
(finite) disjoint sets ofplacesandevents, andF is a function,F : (P×E) ∪ (E×P) → IN. The net
is pureif F (p, e) = 0 or F (e, p) = 0 for every placep and for every evente; it is impureotherwise.
A markingof N is a mapM : P → IN. An evente hasconcessionat M if M(p) ≥ F (p, e) for
every placep ∈ P . An evente which has concession atM may befired, resulting in a transition
M [e > M ′ whereM ′ is the marking such thatM ′(p) = M(p) − F (p, e) + F (e, p) for every
placep ∈ P .

Definition 6.2.2 (Marked nets and state graphs)A marked Petri net is a quadrupleN = (P,E, F,M0)
whereM0 is a marking of the underlying net(P,E, F), called theinitial marking. The marked net
is place simpleif it is never the case thatM0(p) = M0(p

′) for different placesp andp′ such that
[F (p, e) = F (p′, e) ∧ F (e, p) = F (e, p′)] for every evente ∈ E. Thereachable markingsof N
are the markingsM : P → IN such thatM0 [∗ > M , where[∗ > is the reflexive and transitive
closure of the unlabelled transition relation of the underlying net(P,E, F). The sequential state
graph ofN is the automatonN ∗ = (RM(N), E, T,M0) whereRM(N) is the set of reachable
markings ofN andT = {M e→M ′ |M,M ′ ∈ RM(N) ∧ M [e > M ′ }.

From this definition, the sequential state graph of a marked Petri net is a deterministic, co-deterministic

121

and reachable automaton, but it is generally not finite. Nets considered in the sequel are place sim-
ple but not necessarily pure.

6.2.1 Regions

We come now to the definition of regions, which does not depend upon the finiteness of au-
tomata; still, we are mostly interested in regions of finite automata, for the axiomatic characteriza-
tion given in Section6.2.2is valid only for finite automata.

Definition 6.2.3 (Regions)A region of the automatonA = (S,E, T, s0) is a tuple(σ, •η, η•)
whereσ : S → IN, •η andη• : E → IN are maps such that:
(a) s e→ ⇒ σ(s) ≥ •η(e) and
(b) s

e→ s′ ⇒ σ(s′) = σ(s)− •η(e) + η•(e)
A region(σ, •η, η•) is pureif •η(e) = 0 or η•(e) = 0 for every evente ∈ E.

It is readily observed that every placep of a netN = (P,E, F,M0) determines an associated
region(σ, •η, η•) of the sequential state graphN ∗, such thatσ(M) = M(p) for every reachable
markingM ∈ RM(N), and•η(e) = F (p, e) andη•(e) = F (e, p) for every evente.

Conversely, every regionp = (σ, •η, η•) ofA determines an atomic netN ′ = ({p}, E, F ′,M ′
0),

such thatF ′(p, e) = •η(e), F ′(e, p) = η•(e), andM ′
0(p) = σ(s0). In case whenA = N ∗ and

regionp derives from a homonymic placep of N , the atomic netN ′ is actually isomorphic to the
atomic subnet ofN with the unique placep.

Before investigating the structure of the set of regions of an automaton, letus introduce nota-
tions and terminology based on an analogy with electricity specific topure regions. In this partic-
ular case, the mapη = η• − •η provides the same information as the pair of maps(•η, η•). The
mapη measures the variations ofσ along the paths of the automaton as a function of the events
that occur, since

s
e→ s′ ⇒ σ(s′)− σ(s) = η(e) (6.1)

on account of Condition(b) in Def. 6.2.3. Thus, if the automaton is reachable, the mapσ is totally
determined fromσ(s0) andη; and the following condition is satisfied for every evente ∈ E:

[s1
e→ s′

1
∧ s2

e→ s′
2
] ⇒ σ(s′1)− σ(s1) = σ(s′2)− σ(s2) (6.2)

Given a region(σ, •η, η•) of an automatonA, one may look atA as the model of an electric
circuit, where each transitions e→ s′ represents a component of typee, with nominaltensionη(e),
plugged in between nodess ands′. The mapσ may thus be seen as a distribution ofpotential.
Conversely, a mapσ : S → IN satisfying Condition6.2defines a distribution of potential that can
be realized by connecting components with adequate tensionsη(e), induced from differences of
potentialσ(s′) − σ(s) uniformly attached to transitionss e→ s′. It will be assumed from now on
thatA is an event-reduced automaton, hence the mapη = η•− •η may be derived fromσ for every
region ofA. For clarity, let us turn this into a formal definition.

122

Definition 6.2.4 Let A = (S,E, T, s0) be an event-reduced automaton. A mapσ : S → IN
satisfying Condition6.2is called adistribution (of potential)over the nodes ofA. Thederivedmap
η : E → ZZ such thatσ andη satisfy together Condition6.1 is called adistribution (of tension)
over the events ofA.

Leading further the analogy, we will show that ifη derives fromσ thenσ(s) = σ(s0) +
∫ s
s0
η

for every states (where integration follows any path froms0 to s in A) and that
∫

C η = 0 along
every cycleC of A. For precision, let us state a few definitions.

Definition 6.2.5 Theunderlying graphof the automatonA = (S,E, T, s0) is the oriented multi-
graphG(A) = (S,U, ∂0, ∂1) with components as follows.
– S, the set ofnodes, is the set of states ofA.
– U , the set ofarcs, is the disjoint union of two copies ofT , U = T+ ∪ T− where·+ and ·−
are respective injections fromT to U . Arcsu ∈ T+ are forward transitions. Arcsu ∈ T− are
backwardtransitions.
– Thesource map∂0 : U → S (resp. thetarget map∂1 : U → S) is defined with∂0(t+) = s and
∂0(t−) = s′ for t = (s

e→ s′) ∈ T (resp. with∂1(t+) = s′ and∂1(t−) = s).

Definition 6.2.6 A path in A or in G(A) is a non-empty sequence of arcsP = u1 . . . un such
that ∂1(ui) = ∂0(ui+1) for all i < n. Thesourceand targetof pathP are the respective nodes
∂0(P) = ∂0(u1) and∂1(P) = ∂1(un). Thereverseof pathP is the pathP−1 = un

−1 . . . u1
−1

whereui−1 = ti
− if ui = ti

+ andui−1 = ti
+ if ui = ti

−. PathP is elementaryif ∂0(ui) 6= ∂0(uj)
and∂1(ui) 6= ∂1(uj) for all i 6= j. PathP is a cycle if ∂1(P) = ∂0(P).

In the sequel, path and cycle will always be used to mean elementary path and elementary
cycle.

Now for any mapη : E → ZZ, let
∫

P η =
∫ +
P η −

∫ −
P η where

∫ +
P η is defined as the sum

of η ◦ ℓ(ti) for forward transitionsti+ on pathP and
∫ −
P η is defined as the sum ofη ◦ ℓ(ti) for

backward transitionsti− on pathP ; let
∫

C η be defined similarly for a cycleC. It should thus
be clear from conditions6.1 and6.2 that wheneverσ : S → IN andη : E → ZZ are compatible
distributions of potential and of tension, the following identities do hold for every pathP and for
every cycleC:

∫

P
η = σ(∂1(P))− σ(∂0(P)) (6.3)

∫

C
η = 0 (6.4)

This suggests the following alternative to Def.6.2.4.

123

Definition 6.2.7 A mapη : E → ZZ satisfying equation6.4 for every cycleC of the automatonA
is adistribution (of tension)over the events ofA.

A simple reasoning shows that the two definitions of distributions of tension given in Def.6.2.4and
Def. 6.2.7are equivalent forfinite event-reduced automata. Suppose that

∫

C η = 0 for every cycle
C. It is easily seen that two pathsP andP ′ such that both∂0(P) = ∂0(P ′) and∂1(P) = ∂1(P ′)
can always be cut into finitely many slicesPi andP ′

i such thatPi = P ′
i or Pi(P ′

i)
−1 is a cycle. It

follows from the hypothesis onη that
∫

Pi
η =

∫

P ′
i
η for all i, whence

∫

P η =
∫

P ′ η. Therefore, there

is nothing ambiguous if we let
∫ s
s′ η be defined as

∫

P η for any pathP from s′ to s. It should now
appear thatη must derive from some distribution of potential: the adequate distributionsσ : S → IN
are obtained by integratingη according to

σ(s) = σ(s0) +

∫ s

s0

η (6.5)

The resulting distributionsσ are defined up to an additive constant, since any value ofσ(s0) greater
than or equal to the opposite of

∫ s
s0
η for all s (and in particular fors0) may be chosen (recall that

S has been assumed finite).
Now the opposite of

∫ s′

s0
η is

∫ s0
s′ η and

∫ s0
s′ η +

∫ s
s0
η equals

∫ s
s′ η. We may therefore sum up as

follows.

Proposition 6.2.8 Thepure regions(σ, •η, η•) of a finite event-reduced automatonA are in bi-
jection with the pairs(η, k) such thatk ∈ IN andη satisfies equation6.4 for every cycleC. The
bijection is given byη = η• − •η andk = min{σ(s) | s ∈ S}. The reciprocal bijection is given by

•η(e) = max{0,−η(e)}
η•(e) = max{0, η(e)}
σ(s) = max{

∫ s
s′ η | s′ ∈ S}+ k

We will now extend this characterization from pure regions toarbitrary regionsof A.

Proposition 6.2.9 The regions(σ, •η, η•) of a finite event-reduced automatonA are in bijection
with the triples(η, k, δ) such thatk ∈ IN, η satisfies equation6.4for every cycleC, andδ : E → IN
is a map such that

δ(e) ≤ k + min{0, η(e)}+ min{
∫ s

s0

η | s e→} − min{
∫ s

s0

η | s ∈ S} (6.6)

The bijection is given byη = η• − •η, k = min{σ(s) | s ∈ S}, andδ(e) = •η(e) if η(e) ≥ 0,
δ(e) = η•(e) otherwise. The reciprocal bijection is given by

•η(e) = δ(e) + max{0,−η(e)}
η•(e) = δ(e) + max{0, η(e)}
σ(s) = max{

∫ s
s′ η | s′ ∈ S}+ k

124

Proof: Let (σ, •η, η•) be an arbitrary region ofA. For every evente ∈ E, define:

η(e) = η•(e)− •η(e) ◦η(e) = max{0,−η(e)} η◦(e) = max{0, η(e)}

From Def.6.2.3, (σ, ◦η, η◦) is a pure region ofA, hence there existsk ∈ IN such that, for alls ∈ S,
σ(s) = max{

∫ s
s′ η | s′ ∈ S}+ k.

Observe thatη(e) = η◦(e) − ◦η(e). Therefore,η•(e) − η◦(e) = •η(e) − ◦η(e), and if δ(e)
denotes this difference thenδ(e) ≥ 0, for on the one hand,η(e) ≥ 0 entails◦η(e) = 0 and
δ(e) = •η(e) − ◦η(e) = •η(e), and on the other hand,η(e) < 0 entails◦η(e) = −η(e) and
δ(e) = •η(e) + η(e) = •η(e) + (η•(e)− •η(e)) = η•(e).
From condition (a) in Def.6.2.3, •η(e) ≤ σ(s) whenevers e→, or yet equivalently◦η(e) + δ(e) ≤
max{

∫ s
s′ η | s′ ∈ S}+ k.

Now δ(e) satisfies relation6.6, establishing half of the proposition, since

max{
∫ s

s′
η | s′ ∈ S} =

∫ s

s0

η − min{
∫ s′

s0

η | s′ ∈ S}

In order to establish the other half, considerη, k, andδ satisfying the conditions of the proposition,
and letσ, •η andη• be the maps defined by the correspondence. We will show that(σ, •η, η•) is
a region ofA. From Prop.6.2.8, the mapσ is a distribution of potential over the states ofA, and
η is the derived distribution of tension over the events ofA. Sinceη(e) = η•(e) − •η(e) for all e,
condition (b) in Def.6.2.3is satisfied. Now, condition (a) in Def.6.2.3may be rewritten into the
implication

s
e→ ⇒ δ(e)− min{0, η(e)} ≤ k +

∫ s

s0

η − min{
∫ s′

s0

η | s′ ∈ S}

which follows directly from relation6.6.

The reader may observe that one shifts from pure regions to impure regions by adding simultane-
ously someδ(e) satisfying relation6.6 to •η(e) and toη•(e) for each evente. Conversely, one
returns from general regions to pure regions by subtracting simultaneously from •η(e) and from
η•(e) the maximalδ(e) satisfying relation6.6for each evente.

Definition 6.2.10 LetRη,k,δ denote the region ofA fixed by the correspondence given in Prop.6.2.9.
In case whenk = 0 andδ takes for eache the maximal value allowed by relation6.6, the region
Rη,k,δ is said to becanonicaland it is given the simpler notationRη. ThusRη = (σ, •η, η•) is
defined by

σ(s) = σ(s0) +
∫ s
s0
η where σ(s0) = max{

∫ s0
s η | s ∈ S}

•η(e) = σ(s0) + min{
∫ s
s0
η | s e→} = min{σ(s) | s e→}

η•(e) = η(e) + •η(e)

125

Observe thatRη may be computed fromη using time polynomial in|S| and|E|, which are both
bounded by|T |+ 1 (sinceA is reachable and event reduced). Canonical regions will play a major
role in the sequel.

6.2.2 Representation Theorem

We come now to the logical laws explaining the structure of the sequential state graph of a net
in terms of the regions that derive from its places.

Definition 6.2.11 (Separated automaton)An automatonA = (S,E, T, s0) is separatedif and
only if the following axioms hold for all statess, s′ ∈ S and for every evente ∈ E:

(SSA) s 6= s′ ⇒ σ(s) 6= σ(s′) for some regionR = (σ, •η, η•)
- R solves thestates separationproblem at(s, s′) -

(ESSA) s
e
6→ ⇒ σ(s) < •η(e) for some regionR = (σ, •η, η•)

- R solves theevent/state separationproblem at(s, e) -

A subset of regions with enough elements to witness the satisfaction of both axioms is called an
admissiblesubset of regions.

Let us explain the motivations under the definition of separated automata. If one observes
the sequential state graphN ∗ of a marked Petri netN , one may remark that it is a separated
automaton: on the one hand, if markingsM andM ′ are different,M(p) 6= M ′(p) for some place
p, and the region that derives fromp solves the states separation problem at(M,M ′); on the other
hand, if evente cannot be fired atM , M(p) < F (p, e) for some placep, and the region that
derives fromp solves the event / state separation problem at(M, e). Thus, the regions ofN ∗ that
derive from the places ofN form an admissible subset of regions, and axiomsSSA andESSA
are valid in every automaton isomorphic to the sequential state graph of a marked Petri net. Now
reverting the analysis, consider a separated automatonA. Axiom SSA means that states ofA
may be represented injectively as markings of a netN , whose placesp are defined from regions
(σ, •η, η•) as one may expect: states is mapped to markingM such thatM(p) = σ(s). In the
considered representation, the contraposed version of axiomESSA means that an evente which
has concession at markingM in N is necessarily enabled ats in A. As σ(s) evolves through a
transitions e→ s′ in A in the same way asM(p) evolves through a transitionM [e〉M ′ in N , A
andN ∗ cannot differ that much. We will show that the separation axioms characterize actually the
variety offinite event reducedautomata isomorphic to sequential state graphs of marked Petri nets.
Recall that in an event-reduced automatonA = (S,E, T, s0), each evente ∈ E labels at least one
transition inT .

Lemma 6.2.12 A separated automaton is deterministic and co-deterministic.

Proof: Let A = (S,E, T, s0) be a separated automaton where(s
e→ s′) and(s

e→ s′′). Then for
any region(σ, •η, η•) of A, σ(s′) = σ(s) + η(e) = σ(s′′) with η = η• − •η. Therefore,s′ = s′′

126

follows by axiomSSA. Co-determinism is shown in a similar way.

Definition 6.2.13 (Net synthesized from a finite subset of regions)
Given an event reduced automatonA = (S,E, T, s0) and a finite subsetP of regions ofA, with
typical regionp = (σ, •η, η•), let A∗[P] = (P,E, F,M0) be the marked Petri net such that
F (p, e) = •η(e), F (e, p) = η•(e), andM0(p) = σ(s0).

Theorem 6.2.14 (Characterization result)A finite event reduced automaton is isomorphic to the
sequential state graph of some marked Petri net if and only if it satisfies the separation axioms
SSAandESSA. A finite event reduced and separated automatonA is actually isomorphic to the
sequential state graph ofA∗[P] for any finite admissible subsetP of regions ofA.

Proof: LetA = (S,E, T, s0) be a finite event reduced automaton. If this automaton is separated,
it follows from finiteness that one can extract a finite admissible subsetP from its infinite set of
regions. It suffices to show thatA is then isomorphic to the sequential state graph ofN = A∗[P].
Let N = (P,E, F,M0) then by definitionN ∗ = (RM(N), E, T,M0) whereRM(N) is the set
of reachable markings ofN and∀M,M ′ ∈ RM(N), (M

e→M ′) ∈ T if and only ifM [e > M ′

in N . Define∼ ⊆ (S × RM(N)) such thats ∼ M if and only if for all regionsp ∈ P :
p = (σ, •η, η•) ⇒ M(p) = σ(s). From this definition,∼ is a functional relation. From the
axiomSSA and the assumption thatP is an admissible subset of regions ofA, ∼ is an injective
relation. We will show that∼ is an isomorphism of automata. Observing on the one hand that
s0 ∼ M0, and on the other hand that bothA andN ∗ are deterministic and reachable, it suffices
to establish the following transfer property: ifs ∼ M then for anye ∈ E, s

e→ in A if and
only if M [e > in N , and thens′ ∼ M ′ wheres

e→ s′ andM [e > M ′. So lets ∼ M .
Supposes

e→ in A, then for every placep ∈ P : p = (σ, •η, η•) ⇒ σ(s) ≥ •η(e) by definition
of regions and henceM(p) ≥ F (p, e), showing thatM [e > in N . SupposeM [e > in N
and assume for contradiction thats

e
6→ in A. From the axiomESSA and the assumption that

P is an admissible subset of regions ofA, there exists inP some regionp = (σ, •η, η•) such
thatσ(s) < •η(e), henceM(p) < F (p, e) contradictingM [e > . Suppose finally thats

e→ s′

in A andM [e > M ′ in N . We should prove that for any placep ∈ P : p = (σ, •η, η•) ⇒
M ′(p) = σ(s′). From the sequential firing rule,M ′(p) = M(p) − F (p, e) + F (e, p). From
the definition of the netN = A∗[P], F (p, e) = •η(e) andF (e, p) = η•(e). From s ∼ M ,
M(p) = σ(s). From the definition of regions,(s

e→ s′) ⇒ σ(s) − •η(e) + η•(e) = σ(s′).
Altogether,M ′(p) =M(p)−F (p, e)+F (e, p) = σ(s)− •η(e)+η•(e) = σ(s′), ands′ ∼M ′.

Definition 6.2.15 Given an automatonA, a subsetR of regions ofA is logically completeif all
instances inA of the separation problems solved by regions ofA are equally solved by regions in
R.

127

Beware of that logically complete sets of regions are generally not admissible. To explain this,
consider for instance the automatonA = (S,E, T, s0) defined withS = {s0, s1}, E = {e},
andT = {s0 e→ s1, s1

e→ s0}. This automaton is not isomorphic to the sequential state graph of any
marked Petri net: statess0 ands1 cannot be separated by any region ofA. Thus the set of all regions
of A is not admissible, but it is logically complete by trivial application of the definition.Another,
more conclusive, example of a logically complete set of regions is, in any automaton, the subset of
all regions(σ, •η, η•) such that•η(e) 6= 0 andη•(e) 6= 0 may hold simultaneously forat most one
evente: whenever two statess ands′ are separated by a region, they are separated as well by a pure
region; whenever a region solves the event / state separation problem at (s, e), the problem may be
solved as well by a region such that•η(e′) = 0 or η•(e′) = 0 for every evente′ 6= e. The point
is that, for deciding on separation, it suffices to search for admissible subsets of some logically
complete set of regions. This is the common principle of all net synthesis algorithms known so far,
differing one from another on the choice of the logically complete set of regions. This set must be
finite, or at least finitely generated, in order to support effective algorithms. The algorithm defined
in the next section uses the fact that the set ofcanonicalregions is logically complete.

6.3 A Polynomial Time Synthesis Algorithm

We describe in this section an algorithm for the synthesis of Petri nets from finite automata
taking time polynomial in the size of the automata, thus establishing the following:

Theorem 6.3.1 Deciding whether a finite event-reduced automaton is isomorphic to the sequen-
tial state graph of some marked Petri net, and producing then a minimal Petri net realizing the
automaton, takes time polynomial in the number of transitions of the automaton.

The algorithm stems from the observation that the set of canonical regionsis logically complete.

Proposition 6.3.2 In any finite event-reduced automatonA, the set of canonical regionsRη is
logically complete, and a subset of canonical regions{Rη | η ∈ H} is admissible if and only if:

i) s 6= s′ ⇒ ∃η ∈ H
∫ s
s0
η 6=

∫ s′

s0
η,

ii) s′
e
6→ ⇒ ∃η ∈ H

∫ s′

s0
η < min{

∫ s
s0
η | s e→}.

Proof: By definition, a region(σ, •η, η•) solves the states separation problem at(s, s′) if and only

if σ(s) = σ(s0) +
∫ s
s0
η 6= σ(s0) +

∫ s′

s0
η = σ(s′) whereη = η• − •η. The separation ofs from s′

by the canonical regionRη is expressed by an identical condition, and this condition holds if and

only if
∫ s
s0
η 6=

∫ s′

s0
η .

By definition, a region(σ, •η, η•) solves the event/state separation problem at(s′, e) if and only

if σ(s′) = σ(s0)+
∫ s′

s0
η < •η(e) whereη = η• − •η. Now by Prop.6.2.9, (σ, •η, η•) = Rη,k,δ for

somek ∈ IN andδ : E → IN such that
•η(e) = δ(e) + max{0,−η(e)} and

128

•η(e) ≤ k + min{
∫ s
s0
η | s e→} − min{

∫ s
s0
η | s ∈ S}.

As σ(s0) = k − min{
∫ s
s0
η | s ∈ S} it comes that•η(e) ≤ σ(s0) + min{

∫ s
s0
η | s e→}.

To sum up, if the considered regionRη,k,δ separatess′ from e, then necessarily
∫ s′

s0
η < min{

∫ s
s0
η | s e→}. By the definition of separation and Prop.6.2.8, the canonical

regionRη defined byη = η• − •η separatess′ from e if and only if σ(s0) +
∫ s′

s0
η < σ(s0) +

min{
∫ s
s0
η | s e→} and this relation holds if and only if

∫ s′

s0
η < min{

∫ s
s0
η | s e→}.

The proof of Theo.6.3.1proceeds in two stages, described in separate subsections. We compute
first a finite set of mapsη generating all distributions of tension as linear combinations. We then use
this finite presentation to check the separation conditions of Prop.6.3.2. We are thus looking for an
admissiblefamily of distributions, containing enough elements to witness the satisfaction of both
separation axioms. By Prop.6.3.2, every admissible family of distributionsH induces actually an
admissible family of regions{Rη | η ∈ H} (whereRη is computed fromη in polynomial time).

6.3.1 Computing Tensions

From now on,A = (S,E, T, s0) is a fixed automaton, finite and event-reduced.

Notation 6.3.3 Let ZZ[E] denote the set of mapsu : E → ZZ equipped with addition of maps
and multiplication of maps by integers. Each mapu : E → ZZ may thus be written as a linear
combination

∑

e∈E u(e) × ē, whereē : E → ZZ is the map̄e(e′) = 1 if e = e′, 0 otherwise. For
instance,u = a− 2b is the mapu(a) = 1, u(b) = −2, andu(e) = 0 for e /∈ {a, b}. Alternatively,
a mapu : E → ZZ may be seen as anE-vector with entriesu(e) ∈ ZZ. The scalar product ofu and
v in ZZ[E] is the integeru · v =

∑

e∈E u(e) · v(e).

Definition 6.3.4 TheParikh imageof a pathP (of the automatonA) is the mapψ(P) : E → ZZ
such thatψ(P)(e) =

∫

P ē. The Parikh image of a cycleC is the mapψ(C) : E → ZZ such that
ψ(C)(e) =

∫

C ē.

Example 6.3.5 The Parikh image of the cycleC going through statess0, s3, s5, s2, s4, s0 in the
automaton of Fig.6.1 isψ(C) = −a+ a′ + a+ b′ + a′ = 2a′ + b′

a

a’

a’

b

a

a

b’

a’

a
s6

s2
s1

s5

s3

s0

s4

Figure 6.1: an automaton

129

Proposition 6.3.6 A mapη ∈ ZZ[E] defines a distribution of tension over the events ofA if and
only if η · ψ(C) = 0 for every cycleC ofA.

Proof: From Def.6.2.7, η represents a distribution of tension over the events ofA if and only if
∫

C η = 0 for every cycleC. For eache ∈ E, defineηe : E → ZZ such thatηe(e′) = η(e) if e′ = e,
0 otherwise. Now

∫

C η =
∑

e∈E (
∫

C ηe) =
∑

e∈E (η(e)× ψ(C)(e)) = η · ψ(C).

Corollary 6.3.7 The mapsη ∈ ZZ[E] that define distributions of tension over the events ofA are
the solutions of a linear systemM ·η = 0 whereM is an integral matrix whose rows are all Parikh
images of (elementary) cycles ofA.

As the number of (elementary) cycles ofA is finite, the matrixM of the above corollary is
well defined. At this stage, the classical algorithm of von zur Gathen and Sieveking (see [163])
may be employed to compute (using time polynomial in the size ofM) a finite set of solutions
{η1, . . . , ηk} ofM ·η = 0 such that every solution of this system writes in a unique way as a linear
combinationz1η1+ . . .+zkηk with integer coefficientszi ∈ ZZ (and any such combination yields a
solution). Distributions of tension form therefore afreely generatedinteger module (see [131] for
a definition). Note thatk ≤ |E| (since generatorsηi are linearly independent) and hencek ≤ |T |
(since|E| ≤ |T | by the hypothesis of event reducedness).

We have not paid much attention to algorithmic complexity in the above. As the numberof (el-
ementary) cycles of a finite automaton is not polynomial in the number of transitions, the situation
is problematic: one cannot set any bound polynomial in|T | on the number of rows ofM (whose
number of columns is bounded by|T | asA is event-reduced). Fortunately, a standard result of ap-
plied graph theory (seee.g.[66] or [96]) tells us that one needs not consider all cycles: it suffices to
take as rows ofM the Parikh images of|T |−|S|+1 fundamentalcycles ofA (see Def.6.3.8below).

Let us recall briefly this result. An elementary cycle ofA, C = u1 . . . un, may be represented
by a mapC : T → {−1, 0, 1} as follows: ifC = t+t− or C = t−t+ for some transitiont,
then letC(t) = 0 for all t ∈ T , else, for allt ∈ T , let C(t) = +1 if ui = t+ for somei,
C(t) = −1 if ui = t− for somei, andC(t) = 0 in any other case. The result is the following:
everyspanning treeof A (see Def.6.3.8below) determines a family ofβ = |T |− |S|+1 cycles of
A, let {C1, . . . , Cβ}, such that any cycle ofA writes as a linear combinationC =

∑β
j=1 xj × Cj

with coefficientsxj ∈ {−1, 0, 1}. Thus, for any mapη : E → ZZ:

∫

C
η =

β
∑

j=1

xj ×
(
∫

Cj

η

)

As
∫

C η = η · ψ(C) for every cycleC (see the proof of Prop.6.3.6), it follows thatη defines a
distribution of tension over the events ofA if and only ifM ′ ·η = 0 whereM ′ is the integral matrix

130

a’

a

a

a’

a’

b

a

a

b’

s6

s2
s1

s5

s3

s0

s4

Figure 6.2: an automaton with one of its spanning trees (in solid lines)

whose rows are the Parikh images of the fundamental cyclesC1 . . . Cβ . Therefore, computing a
set of generating distributions{η1, . . . , ηk} takes time polynomial in the number of transitions|T |.
It remains to give a precise definition of spanning trees and fundamental cycles, and to show an
example.

Definition 6.3.8 Given a finite reachable automatonA = (S,E, T, s0), aspanning treeis a reach-
able automatonB = (S,E, T ′, s0) with an identical set of states, such thatT ′ ⊆ T and all ele-
mentary cycles ofB have formC = t+t− or C = t−t+ (henceB is a tree). The|T | − |S| + 1
transitionst ∈ T \ T ′ are calledchords. For each chordt, there exists a unique cycleCt such that
Ct(t) = 1 andCt(t′) = 0 for every chordt′ 6= t (thusCt(t′) 6= 0 ⇒ t′ = t ∨ t′ ∈ T ′). The
fundamental cyclesofA are the cyclesCt defined from the chordst ∈ T \ T ′.

Note thatloopss e→ s are special cycles, which appear as fundamental cycles under any choice
of the spanning treeB. Note also that for each spanning treeB and for each states 6= s0 there
exists a unique path froms0 to s in B, denoted byPs (hence,Ps is also a path froms0 to s in
A). Abusing the notations, letPs0 denote the subgraph ofA with the unique nodes0 and with the
Parikh imageψ(Ps0) = 0. Thus, for any states and for any mapη ∈ ZZ[E]:

∫

Ps

η =
∑

e∈E

(∫

Ps

ηe

)

=
∑

e∈E

(η(e)× ψ(Ps)(e)) = η · ψ(Ps)

Example 6.3.9 The Parikh images of the fundamental cycles defined by the spanning treeindicated
in solid lines in Fig.6.2 are 2a + b and2a + 2a′ + b + b′. Thus,η ∈ ZZ[E] is a distribution of
tension if and only if2η(a) + η(b) = 0 and2η(a′) + η(b′) = 0. The distributions of tension are
therefore generated byη1 = a− 2b andη2 = a′ − 2b′.

From now on,Ps is the path froms0 to s in a fixed spanning tree, and{η1, . . . , ηk} is a fixed
set of generators for distributions of tension.

6.3.2 Solving the Separation Problems

Deciding upon separation ofA comprises two subproblems, since two axioms must be satisfied.
We consider first the states separation axiomSSA which is the easier one to check. This axiom is

131

Table 6.1

ψ(Psi) s0 s1 s2 s3 s4 s5 s6

a 0 1 2 1 2 1 3

b 0 0 1 1 1 1 1

a′ 0 0 1 0 1 1 1

b′ 0 0 0 0 1 0 1

Table 6.2

ηj · ψ(Psi) s0 s1 s2 s3 s4 s5 s6

η1 0 1 0 -1 0 -1 1

η2 0 0 1 0 -1 1 -1

valid inA if each pair of distinct statess ands′ is separatedby a distribution of tensionη such that
∫ s
s0
η 6=

∫ s′

s0
η. As

∫ s
s0
η = η · ψ(Ps) and thus depends linearly onη, s ands′ are separated if and

only if they are separated by some distribution in the generating set{η1, . . . , ηk}. In order to check
this, it suffices to construct a table as follows: rows are indexed by generatorsηi ∈ {η1, . . . , ηk},
columns are indexed by statess ∈ S, and the contents of each entry(ηi, s) is the scalar product
ηi ·ψ(Ps). The axiomSSA is satisfied if and only if the columns of the table are all different (hence
the distributions{η1, . . . , ηk} form an admissible set w.r.t. state separation). In the converse case,
the Petri net synthesis problem has no solution forA. As |S| ≤ |T |+1 (for all states are reachable),
k ≤ |T |, and there exist|S| × (|S| − 1)/2 pairs of distinct states, checking states separation takes
time polynomial in|T |.

Example 6.3.10The Parikh imagesψ(Ps) of the paths froms0 to s in the spanning tree of the
automaton shown in Fig.6.2 are shown in Table6.1. The scalar productsηj · ψ(Psi), where
η1 = a − 2b andη2 = a′ − 2b′, are shown in Table6.2. As all columns are different, the states
separation axiomSSA is satisfied. Thus, the family of distributions{η1, η2} is admissible w.r.t.
state separation.

Let us consider now the event/state separation axiomESSA. This axiom is valid inA if each pair
(s′, e) made of a states′ and an evente disabled ats′ is separatedby a distribution (of tension)η

such that
∫ s′

s0
η < min{

∫ s
s0
η | s e→}.

Defineβi (s′, s) = ηi ·ψ(Ps′)−ηi ·ψ(Ps) for i ∈ {1, . . . , k} ands ∈ S, and setη =
∑k

i=1 zi×ηi.
The question is to decide whether one can findzi ∈ ZZ solving the system of linear homogeneous

132

inequalities
{

k∑

i=1

βi (s
′, s)× zi < 0

∣
∣ s

e→
}

(6.7)

The constantsβi (s′, s) may be computed in time polynomial in|T |. The number of the inequalities
and the number of the unknownzi are bounded by polynomials in|T |. Moreover, there are less
than|S| × |E| instances of the event/state separation problem. Therefore, if (6.7) may be solved
or proved unfeasible using time polynomial in the number of inequalities and in thenumber of the
unknown then event/state separation may also be decided in polynomial time.

Now (6.7) is ahomogeneoussystem of linear inequalities, hence it has an integral solution (in
ZZk) if and only if it has a rational solution (inlQ k), and the integral solutions are the integer multi-
ples of the rational solutions. Khachiyan’s method of ellipsoids (see [163]) may therefore be used
to decide on the feasability of (6.7) and to compute a solution, if it exists, in polynomial time.

By collecting the distributionsη =
∑

k
i=1 zi × ηi that result from the solutions of (6.7) for all

instances ofESSA, one obtains from{η1, . . . , ηk} new distributions{ηk+1, . . . , η l} which form
an admissible set w.r.t. event/state separation.

Example 6.3.11 In our running example, the homogeneous system of linear inequalities that ex-
press event/state separation at(s1, a) is the following:

s
∑

i βi(s1, s)× zi < 0

s0 z1 < 0

s3 2z1 < 0

s4 z1 + z2 < 0

s5 2z1 − z2 < 0

This system, amounting toz1 < 0 and 2z1 < z2 < −z1, is solvable. A solution is for instance
z1 = −2 andz2 = −3. This solution determines a distribution of tensionη3 = −2η1 − 3η2 given
by the mapη3 = −2a + 4b − 3a′ + 6b′. The canonical regionRη3 derived fromη3 according to
Def.6.2.10separatesa froms1 as desired. The maps{η3, η4, η5}, whereη4 = 2a− 4b+3a′ − 6b′

andη5 = −a+ 2b, form an admissible set w.r.t. event/state separation.

Summary The separation axioms may be checked within time polynomial in the number of tran-
sitions, yielding an admissible set of distributions{η1, . . . , η l}. An admissible set of canonical
regionsP = {Rη1, . . . , Rη l} derives according to Def.6.2.10. A is then isomorphic to the se-
quential state graph ofA∗[P] (Def.6.2.13). A minimal admissible subsetP ′ may be extracted from
P using time polynomial in|T |, providing a minimal net realizationA∗[P ′] of A. Theo.6.3.1is

133

6

2

3

4

2

2

5

5
p4 p5p3

6

a

b b’

a’

Figure 6.3: net synthesized from canonical regions

therefore proved.

Let us add one comment. When we callA∗[P ′] a minimal realization ofA, we mean that no place
can be suppressed while keeping a sequential state graph isomorphic toA; we donot mean that
|P ′| is the minimal number of places needed for realizingA.

Example 6.3.12 In the automaton of Fig.6.2, all instances of the state separation problem, solved
either byη1 or by η2 as we saw, are solved as well byη3. The canonical regions{Rη3 , Rη4 , Rη5}
which derive fromη3 = −2a+ 4b− 3a′ + 6b′, η4 = 2a− 4b+ 3a′ − 6b′, andη5 = −a+ 2b form
therefore an admissible set of regions. Applying Def.6.2.10to produce canonical regionsRη =
(σ, •η, η•) from distributions of tensionη, and using relationsF (p, e) = •η(e), F (e, p) = η•(e),
andM0(p) = σ(s0) to derine places from regionsRη, one obtains the placesp3, p4, andp5 of
the net displayed in Fig.6.3. The sequential state graph of this net is actually isomorphic to the
automaton of Fig.6.1.

6.4 Adding Distribution Constraints

In order to show the principles of the application of net synthesis to the distribution of finite
reactive automata, we introduce a special class of labelled Petri nets, called distributablenets. The
label of an event indicates the location of its host in a network of automata which communicate by
asynchronous message passing. The goal of distributable nets is to avoiddistributed conflicts. This
discipline is enforced by imposing common locations on conflicting events. The rest of the section
deals with the synthesis of distributable nets from finite automata with fixed locations of events.
This extended realization problem can still be solved in polynomial time. An adapted synthesis
algorithm has been implemented inSYNET.

Definition 6.4.1 (Distributable net system)A distributablenet system with set oflocationsΛ is a
quintupleN = (P,E, F,M0, λ) where(P,E, F,M0) is a marked Petri net andλ : (P ∪E) → Λ

134

is a placementmap such thatF (p, e) 6= 0 ⇒ λ(p) = λ(e) for every placep ∈ P and for every
evente ∈ E.

Our definition of distributable nets differs notably from Hopkins’s definitiongiven in [107], since
we impose from start on placement maps a constraint strong enough to ensure the existence of
distributed implementations. We postpone the discussion about distributed implementations to
section6.5, and come now to the synthesis of distributable nets.

Definition 6.4.2 (Automata with set of locations)An automaton with set oflocationsΛ is a quin-
tupleA = (S,E, T, s0, κ) where(S,E, T, s0) is an automaton andκ : E → Λ is a placement
map.

The synthesis problem for distributable nets (or the net realization problemfor automata with
locations) consists in deciding from an automaton(S,E, T, s0, κ) with set of locationsΛ, given as
input, whether the underlying automaton(S,E, T, s0) is isomorphic to the sequential state graph
of a distributable net(P,E, F,M0, λ), to be constructed, with an identical set of locationsΛ and
such thatλ extendsκ. We shall produce a decision algorithm for this extended realization problem
by restricting the algorithm defined in section6.3 to a special class of regions, calledlocalizable
regions, such that conflict occurs exclusively between events with the same location in the induced
atomic nets.

Definition 6.4.3 (Localizable regions)In an automaton with locationsA = (S,E, T, s0, κ), a
region(σ, •η, η•) of (S,E, T, s0) is localizable w.r.t. κ if (∀e′, e′′ ∈ E) •η(e′) 6= 0 ∧ •η(e′′) 6= 0
⇒ κ(e′) = κ(e′′).

From Def.6.4.1and Def.6.4.3, each place of a distributable netN with placement mapλ :
(P ∪ E) → Λ determines a region of the sequential state graphN ∗ which is localizable with
respect toλ⌈E. A placep and the region(σ, •η, η•) which it determines are in fact linked by the
relationF (p, e) = •η(e), hence•η(e) 6= 0 entailsλ(e) = λ(p), and•η(e′) 6= 0 ∧ •η(e′′) 6= 0 ⇒
λ(e′) = λ(e′′). Therefore, the sequential state graph of a distributable net has always an admissible
subset of localizable regions. Conversely, ifP is an admissible subset of regions of the automaton
A = (S,E, T, s0) and all regions inP are localizable with respect toκ : E → Λ, the netA∗[P]
synthesized fromP can be lifted to a distributable net. From Def.6.4.3, one may actually extend
κ to a placement mapλ : (P ∪ E) → Λ conform to Def.6.4.1by settingλ(e) = κ(e) for e ∈ E,
λ(p) = κ(e) for placesp ∈ P such thatp = (σ, •η, η•) and•η(e) 6= 0 for somee, and by choosing
arbitrarilyλ(p) for the remaining placesp ∈ P which do not fit this condition. To sum up:

Proposition 6.4.4 An automaton with locationsA = (S,E, T, s0, κ) may be realized by a dis-
tributable net if and only if the underlying automaton(S,E, T, s0) has an admissible subsetP
of localizable regions, in which case the netA∗[P] synthesized fromP may always be lifted to a
distributable net.

135

Therefore, in order to decide on the net realization problem for automata with locations, it suf-
fices to decide on the restricted validity of the separation axioms with respect tolocalizable regions.
Restricting validity of the separation axioms increases notably the complexity of the decision. It
may therefore be wise, before deriving a distributable net from an automaton with locations, to
derive first a Petri net from the underlying automaton. If this is not possible, the synthesis of the
distributable net will certainly fail!

Henceforth,A = (S,E, T, s0) is a fixed automaton, finite, reachable and event reduced,
κ : E → Λ is a surjective placement map with codomainΛ = {1, . . . ,m}, and{η1, . . . , ηk}
is a generating set of distributions of tension overE (see (6.3.1)). We examine successively for the
axiomsSSA andESSA the conditions of their restricted validity with respect to theκ-localizable
regions. The canonical regions which were used in section6.3 are not likely to fit in with distri-
bution constraints. We shall consider here another logically complete set ofregions, namely the
regions ofAwhich reach value0 at some states ∈ S and that may therefore be calledstrict regions
of A. These are all regionsRη,0,δ whereη is a linear combination of the generators{η1, . . . , ηk}
andδ : E → IN satisfies condition6.6of Prop.6.2.9. As a result, we establish the following:

Theorem 6.4.5 Deciding whether a finite reachable and event reduced automaton with locations
is isomorphic to the sequential state graph of a distributable net system and producing this net
when it exists takes time polynomial in the number of transitions of the automaton.

6.4.1 Re-examining states separation

Consider a pair of distinct statess′ and s′′ and suppose thatσ(s′) 6= σ(s′′) for someκ-
localizable region(σ, •η, η•). Let η = η• − •η. Fromσ(s′) 6= σ(s′′) follows the assertion(i)
thatη · (ψ(Ps′) − ψ(Ps′′)) 6= 0. From the assumption that(σ, •η, η•) is κ-localizable, and since
η(e)+•η(e) ≥ 0 for all e, follows the assertion(ii) that there is at most one locationι ∈ {1, . . . ,m}
such thatη(e) < 0 for some event with locationκ(e) = ι. Conversely, if a distribution of tension
η satisfies(i) and (ii) , one may easily produce fromη a κ-localizable region separatings′ from
s′′: one may choose e.g. the regionRη,0,0 (both strict and pure). Deciding on the existence of a
κ-localizable region separatings′ from s′′ thus reduces to deciding whether(i) and(ii) are satisfied
for some distribution of tensionη.

Sinceη writes as a linear combination
∑

i zi ηi with coefficientszi ∈ ZZ, this can be done by
solving or showing unfeasible each system in the indexed familyΣ⋉,ι of 2(m + 1) homogeneous
systems of linear inequalities in thezi’s defined as follows, with⋉ ∈ {<, > } andι ∈ {0, . . . ,m}.
Each systemΣ⋉,ι has one strict inequality expressing condition(i), namely

∑

i zi (ηi · (ψ(Ps′) −
ψ(Ps′′))) ⋉ 0, plus inequalities enforcing(ii) , namely one inequality

∑

i zi · ηi(e) ≥ 0 for each
evente such thatκ(e) 6= ι.

Becauseκ is a surjective map,m is bounded by|E| and hence by|T |. As each systemΣ⋉,ι

has size polynomial in|T |, the indexed familyΣ⋉,ι has size polynomial in|T |. Because all in-
equalities are homogeneous,Σ⋉,ι has a solution inZZk if and only if it has a solution inlQ k. Thus

136

each system in the indexed familyΣ⋉,ι may be solved up to a multiplicative factor or be shown
unfeasible within time polynomial in|T | following the ellipsoid method. Deciding whether the
states separation axiom is valid with respect toκ-localizable regions and computingκ-localizable
regions that witness its validity takes therefore time polynomial in|T |.

6.4.2 Re-examining event/state separation

Consider a states′ ∈ S and an evente′ ∈ E disabled ats′. Supposeσ(s′) < •η(e′) for some
κ-localizable region(σ, •η, η•). Then•η(e′) > 0, hence•η(e) = 0 for every evente such that
κ(e) 6= κ(e′). Therefore, ifη = η• − •η, it holds(iii) thatκ(e) 6= κ(e′) ⇒ η(e) ≥ 0 for all e ∈ E.
Moreover, it holds(iv) thatη · (ψ(Ps) − ψ(Ps′)) > 0 for every states enablinge′. Conversely, if
a distribution of tensionη satisfies(iii) and(iv), one may always compute fromη a κ-localizable
region separatinge′ from s′: one may choosee.g. the strict regionR η,0,δ with δ : E → IN defined
by

δ(e′) = min{0, η(e′)}+ min{
∫ s

s0

η | s e′→} − min{
∫ s

s0

η | s ∈ S}

andδ(e) = 0 for e 6= e′. Deciding upon the existence of aκ-localizable region separatinge′ from
s′ reduces therefore to deciding whether(iii) and(iv) are satisfied for some distribution of tension
η.

Now lettingη =
∑

i zi ·ηi with zi ∈ ZZ, consider the system of homogeneous linear inequalities
in the unknownzi’s defined as follows:Σ has a first series of inequalities reflecting(iii) , namely
one inequality

∑

i zi · ηi(e) ≥ 0 for each evente such thatκ(e) 6= κ(e′), and a second series of
inequalities reflecting(iv), namely one inequality

∑

i zi (ηi · (ψ(Ps)−ψ(Ps′))) > 0 for each state
s enablinge′. All inequalities are homogeneous, henceΣ may be solved or shown unfeasible using
time polynomial in|T |. Deciding whether the event/state separation axiom is valid with respect to
κ-localizable regions and computingκ-localizable regions that witness its validity can therefore be
done in polynomial time.

6.5 From Distributable Nets to Distributed Automata

6.5.1 Simple Distribution Scheme

As yet, we have shown how constructing from a finite automaton with locations,when this
is possible, a distributable net with the specified locations for events and with asequential state
graph isomorphic to the given automaton. This net is obviouslybounded: each placep has a least
upper boundp in the reachable markings. In order to complete the machinery for distributing finite
automata, it remains to show that a bounded distributable net withm locations may always be
implemented bym finite automataA1, . . . , Am communicating with each other by asynchronous
message passing.

137

From now on,N = (P,E, F,M0, λ) is a bounded distributable net with set of locations
{1, . . . ,m}, henceλ : (P ∪ E) → {1, . . . ,m}. In order to produce a distributed implementa-
tion {A1, . . . , Am} of N , we proceed in two stages. In the first stage, we extendN to a larger
netN ′ in which i) each placep of N is split tom + 1 places: onelocal place(p, i) for each
locationi ∈ {1, . . . ,m}, and oneglobal place(p, 0) whose tokens represent messages in transit,
andii) silentevents are supplied forsendingtokens i.e. for moving them from(p, i) to (p, 0) when
λ(p) 6= i, or for receivingtokens i.e. for moving them from(p, 0) to (p, i) whenλ(p) = i. We show
thatN ′ is divergence freeandbranching bisimilartoN under the assumption that silent events are
unobservable. In the second stage, we remove the global places. The effect of the removal is to
disconnectN ′ and to producem component netsNi. The finite automataAi are obtained from the
state graphs of the netsNi by cutting out every marking in which some place(p, i) exceedsp (the
least upper bound ofp in N).

We describe now the construction ofN ′ = (P ′, E′, F ′,M ′
0). An illustration is given in Fig.6.4

(where locations are indicated as subscripts). Each place ofN is replicatedm + 1 times inN ′,

p1

p2

e1 e2

(p1, 1)
1?p1 (p1, 0)

2!p1
(p1, 2)

e1 e2

(p2, 1) 1!p2
(p2, 0) (p2, 2)2?p2

N ′

N

Figure 6.4: ConstructingN ′

thusP ′ = P × {0, . . . ,m}. The initial marking is determined from the initial marking ofN

138

by the relationM ′
0((p, i)) = M0(p) if λ(p) = i and0 otherwise, suggesting the privileged role

of the place(p, λ(p)) among the representatives ofp. E′ is the unionE ∪ S ∪ R of the set of
events ofN and two new sets of eventsS (for sending) andR (for receiving). The flow of tokens
attached to the events inE reproduces the flow of tokens inN up to the following adjustments.
Let F ′((p, i), e) = F (p, e) if λ(e) = i and0 otherwise, and similarly letF ′(e, (p, i)) = F (e, p)
if λ(e) = i and0 otherwise. AsN is a distributable net,F ′((p, i), e) 6= 0 ⇒ λ(p) = i, thus
input and output are in fact dealt with asymmetrically. Let us come next to silent events. For each
placep of N and for each locationi 6= λ(p), an eventi!p is supplied for sending tokens from the
local place(p, i) to the global place(p, 0). ThusS = { i!p | 1 ≤ i ≤ m ∧ p ∈ P ∧ i 6= λ(p)},
and the flow of tokens attached toi!p is defined byF ′((p, i), i!p) = F ′(i!p, (p, 0)) = 1 and
F ′(x, i!p) = F ′(i!p, x) = 0 for any other placex ∈ P ′. Last, for each placep of N with location
λ(p) = i, an eventi?p is supplied for receiving tokens into the local place(p, λ(p)) from the global
place(p, 0). ThusR = {i?p | p ∈ P ∧ i = λ(p)}, and the flow of tokens attached toi?p is defined
by F ′((p, 0), i?p) = F ′(i?p, (p, i)) = 1 andF ′(x, i?p) = F ′(i?p, x) = 0 for any other place
x ∈ P ′. This completes the definition ofN ′.

We want to show thatN and N ′ are equivalent up to an abstraction of the silent events
r ∈ R and s ∈ S. In order to define precisely this equivalence, let us relabel by some new
symbol τ /∈ E all the transitions labelled byr ∈ R or s ∈ S in the sequential state graph
N ′ ∗ = (RM(N ′), E′, T ′,M ′

0). Next let ∼⊆ RM(N) × RM(N ′) be the relation between
the reachable markings of the respective netsN and N ′ such thatM ∼ M ′ if and only if
M(p) =

∑{M ′((p, i)) | 0 ≤ i ≤ m} for everyp ∈ P . We shall prove the following facts:

1. N ′∗ is divergence freewhich means that no infinite sequence ofτ -labelled transitions takes
place in this graph,

2. different markings ofN have disjoint images under∼, i.e., relation∼−1 acts functionally
onRM(N ′),

3. ∼ is a branching bisimulation[174], which means in our specific case that the following
assertions are valid, withe ranging overE, and with the subscriptedM andM ′ ranging
respectively overRM(N) andRM(N ′).

a) M0 ∼M ′
0,

b) M1 ∼M ′
1 ∧M ′

1
τ→M ′

2 ⇒M1 ∼M ′
2,

c) M1 ∼M ′
1 ∧M ′

1
e→M ′

2 ⇒ ∃M2 ·M1
e→M2 ∧M2 ∼M ′

2,

d) M1 ∼M ′
1 ∧M1

e→M2 ⇒ ∃M ′
2 ·M ′

1 (
τ→) ∗

e→M ′
2 ∧M2 ∼M ′

2.

Relations(a) and(b) follow directly from the definitions ofM ′, F ′ and∼. The considered defini-
tions also entail the following:

e) M1 ∼M ′
1 ∧M1

e→M2 ∧M ′
1

e→M ′
2 ⇒M2 ∼M ′

2,

f) M1 ∼M ′
1 ∧M ′

1
e→ ⇒M1

e→,

g) M1 ∼M ′
1 ∧M1

e→ ∧ ∀p ·M1(p) =M ′
1(p, λ(p)) ⇒M ′

1
e→ .

139

Now e∧ f ⇒ c, andb ∧ e∧ g ⇒ d provided that inN ′ ∗ all maximal sequences ofτ -labelled
transitions originated fromM ′

1 lead to a markingM ′ such thatM ′(p, λ(p)) =
∑{M ′

1((p, i)) | 0 ≤
i ≤ m} for everyp ∈ P .

For p ∈ P , let δp(M ′
1) =

∑{M ′
1((p, i)) | 1 ≤ i ≤ m ∧ i 6= λ(p)} and ∆p(M

′
1) =

∑{M ′
1((p, i)) | 0 ≤ i ≤ m ∧ i 6= λ(p)}. With these definitions, any maximal sequence ofτ -

labelled transitions originated fromM ′
1 includes exactlyδp(M ′

1) occurrences of sending eventsi!p
and∆p(M

′
1) occurrences of receiving eventsi?p for eachp ∈ P . Thus, all maximal sequences of

τ -labelled transitions originated fromM ′
1 have the same bounded length

∑

p(δp(M
′
1) +∆p(M

′
1)),

which establishes fact1. Moreover, by(b), any maximal sequence ofτ -labelled transitions origi-
nated fromM ′

1 reaches the indicated markingM ′, which establishes fact2. Therefore,N andN ′

behave in the same way up to an abstraction of the silent events; moreover, this simulation pre-
serves distinctions between markings: separate markings ofN have disjoint sets of images under
relation∼.

It remains to derive fromN ′ finite communicating automataA1, . . . , Am . For this purpose, we
remove fromN ′ the global places(p, 0) . What is left is a family of netsN ′

i, i ∈ {1, . . . ,m}, as
follows: N ′

i = (P ′
i , E

′
i, F

′
i ,M

′
i,0),P

′
i is the set of local places with locationi,E′

i is the set of events
or silent events with locationi, andF ′

i andM ′
i,0 are the induced restrictions ofF ′ andM ′

0. Thus
P ′
i = P×{i} andE′

i = {e ∈ E | i = λ(e)}∪{ i!p | p ∈ P ∧ i 6= λ(p)}∪{ i?p | p ∈ P ∧ i = λ(p)}.
For eachi ∈ {1, . . . ,m}, letAi be the finite automaton that derives from the state graph ofN ′

i by
cutting out all markings where some place(p, i) exceedsp (the least upper bound ofp in N). The
resulting family{A1, . . . , Am} is a distributed implementation ofN ′, and therefore ofN . Each
automatonAi is installed in the associated locationi. An eventi!p (hencei 6= λ(p)) is interpreted
by sending messagep to the destinationλ(p). An eventi?p (hencei = λ(p)) is interpreted by
looking for messagep in the mailbox at the addressλ(p). Each message is supposed to reach its
destination. No other assumption is made on synchronization.

The markings ofN ′ are thus represented by tuples(s0, s1, . . . , sm) wheresj : {(p, j) | p ∈
P} → IN : for j = 0, sj represents the global state of the communication medium; forj ∈
{1, . . . ,m}, sj is the local state of automatonAj . This representation is injective; therefore, dis-
tinctions between markings are preserved by the distributed implementation ofN .

6.5.2 Optimized Distribution Scheme

We propose here two independent optimizations of the distribution scheme explained in sec-
tion 6.5.1, aiming to decrease the flow of messages on the communication medium (6.5.2) or to
decrease the size of the communicating automata (6.5.2).

Aggregating Messages

The distribution scheme specified above leads to inefficient communication scenarios. For
instance, two messages are needed for implementing a transition that produces tokens for two

140

remote places even though they are mapped on the same location. A refined distribution scheme,
producing automata with less communications, is presented now. It is based essentially on the
same ideas, but less places are added and less tokens flow through the communication medium
(see figure6.5).

3

p

q

r

s
e

2

f

medium

1 3

4

?(ξ2)

!(1,ξ1)

!(2,ξ1)

!(2,ξ2)

α(1,ξ1)

α(2,ξ1)

α(2,ξ2)

?(ξ1)β(ξ1)

β(ξ2)

2

3e

f

1

2

p

q

r

s

3

4

2

2

Figure 6.5: Communications between locations

From now on, letN = (P,E, F,M0, λ) be a distributable net system over set of locationsΛ.
Each evente ∈ E has an output flowe• : P → IN such thate•(p) = F (e, p). This output flow may
be decomposed thus into alocal parte•local : P → IN and aremoteparte•remote: P → IN:

e•local(p) =

∣
∣
∣
∣
∣

e•(p) if λ(e) = λ(p)

0 otherwise

e•remote(p) =

∣
∣
∣
∣
∣

e•(p) if λ(e) 6= λ(p)

0 otherwise

The latter part may be further decomposed ase•remote= Σ l∈Λ e
•
l wheree•l : P → IN is the

map such that:

e•l (p) =

∣
∣
∣
∣
∣

e•(p) if l = λ(p) 6= λ(e)

0 otherwise

Fore ∈ E andl ∈ Λ, define:

Re = {e•l | l ∈ Λ, e•l 6= 0}

Rl =
⋃

e∈λ−1(l)

Re

141

R =
⋃

l∈Λ

Rl

The distributable net systemN ′ = (P ′, E′, F ′,M ′
0, λ

′) may be re-defined as follows. A new
location, representing the communication medium, is added:Λ′ = Λ ⊎ {medium}. Two types
of communication places are added: on the one hand placesα(l, ξ) used as output buffers, where
each packetξ ∈ Rl is represented by a single token, and on the other hand placesβ(ξ) used as
communication buffers, where each token represents a packet in transitthrough the communication
medium. This results in the set of placesP ′ = P ⊎ {α(l, ξ) | l ∈ Λ, ξ ∈ Rl } ⊎ {β(ξ) | ξ ∈
R }. Silent events!(l, ξ) are supplied for moving packetsξ ∈ Rl from output buffersα(l, ξ) to
the communication bufferβ(ξ); silent events?(ξ) are supplied for picking packetsξ from the
communication medium and dispatching them on arrival. This results in the set ofeventsE′ =
E ⊎ { !(l, ξ) | l ∈ Λ, ξ ∈ Rl } ⊎ { ?(ξ) | ξ ∈ R }. Let the locations of the new places and events as
follows:

λ′(α(l, ξ)) = l

λ′(β(ξ)) = medium

λ′(!(l, ξ)) = l

λ′(?(e•l)) = l

The other locations are like inN . For placesp ∈ P and eventse ∈ E inherited fromN ,
the flow relationF ′ is defined thus:F ′(x, y) = F (x, y) if λ(x) = λ(y), 0 otherwise. The flow
relationF ′ is extended as follows to the new places or events, withF ′(x, y) = 0 in all cases left
unspecified:

(e ∈ E, ξ ∈ Re) F ′(e, α(λ(e), ξ)) = 1

(e ∈ E, ξ ∈ Re) F ′(α(λ(e), ξ), !(λ(e), ξ)) = 1

(l ∈ Λ, ξ ∈ Rl) F ′(!(l, ξ), β(ξ)) = 1

(ξ ∈ R) F ′(β(ξ), ?(ξ)) = 1

(ξ ∈ R, p ∈ P) F ′(?(ξ), p) = ξ(p)

One proves thatN ′∗ is divergence free and branching bisimilar toN ∗ in the same way as in
section 6.1, but using now the alternative relationM ∼ M ′ if and only if ∀p ∈ P, M(p) =
M ′(p) + Σ ξ∈R ξ(p)×M ′(β(ξ)) + Σi∈Λ, ξ∈R ξ(p)×M ′(α(i, ξ)).

A distributed implementation ofN ′ follows along the same lines as in section6.5.1 : the
automataAi are obtained by expanding the state graphs of the sub-netsN ′

〉 of N ′, with boundsp
set on places(p, i) ∈ P ′

i .

142

Pruning Automata

A drawback of the distribution schemes described so far is to produce automata bigger than
needed: the automataAi may be ready to accept inputs from the communication medium at states
where no input will ever come! One may remedy this drawback by computing directly theAi from
the state graph ofN ′. The stages of the computation are as follows. For eachi ∈ {1, . . . ,m}, letA′

i

be the automaton obtained fromN ′∗ by renaming withτ (/∈ E′) all transitionsM
e→M ′ such that

e ∈ E′\E′
i (E′

i is defined as in section6.5.1). Next letA′′
i be the finite non-deterministic automaton

whose transitionsM
e→ M ′ are derived from the sequences of transitionsM = M1

τ→ M2 . . .
τ→

Mn
e→M ′ inA′

i such thate 6= τ . Finally letAi be the finite deterministic automaton which derives
from A′′

i according to the traditional subset construction. Since the subset of eventsE′ \ E′
i thus

abstracted from is precisely the subset of events which do not affect the places inP ′
i , the automaton

Ai is isomorphic to the induced restriction ofN ′∗
i on the subset of markings ofN ′

i which occur
as sub-markings of reachable markings ofN ′. Therefore, the system of communicating automata
{A1, . . . , Am} has a state graph isomorphic toN ′∗. Since the bisimulation∼−1 betweenN ′∗ and
N ∗ acts functionally onRM(N ′), {A1, . . . , Am} is a distributed implementation ofN , and this
implementation preserves distinctions between markings.

Remark 6.5.1 If one does not insist on realizingN ′∗ up to isomorphism, one can go one step
further by minimizing the automataAi. The language ofN then coincides with the set of sequences
of events inE performed by the communicating automata.

Remark 6.5.2 In order to abstract from a subset of eventsE ⊆ E, it suffices to redefineA′
i as the

copy ofN ′∗ in which all events in(E′\E′
i)∪E have been replaced withτ . If N = A∗[P], the set of

sequences of events inE \ E that may be performed by the communicating automataAi coincides
now with the language of theE-collapse ofA (the automaton obtained by collapsing every pair of
statess ands′ such thats

e→ s′ ande ∈ E).

6.6 Case Studies in Distributing Reactive Automata

This section details two applications of distributable Petri net synthesis. The first case is the
systematic derivation of two distributed protocols for mutual exclusion. The second case is the
synthesis of a simplified transport level communication protocol derived from the INRES proto-
col [106]. Both examples illustrate a new methodology for distributed program synthesis, based
on the algorithms for distributable Petri net synthesis presented in the previous sections : a dis-
tributable Petri net is first synthesized and then turned into a collection of communicating finite
state automata, each of which defines the behaviour of the sequential process located at a spe-
cific site of the distributed architecture. We could have contented ourselveswith distributing the
sytnhesized Petri net over the distributed architecture without going to sequential machines. This
would fit nicely if the goal was to implement protocols in hardware, since concurrency at each

143

site could then be exploited within circuit synthesis. However, this would not meet the customary
requirements for software implementations of low-level protocols : each site isone processor, and
emulating concurrency would be too inefficient.

6.6.1 Mutual Exclusion

r1

6

e2

r2

7

3

5

0

1

e1

r1

r2

x1 x2

42

r2

x1

e1 e2

x2

r1

Figure 6.6: Specification of the mutual exclusion service

Introduction

Mutual exclusion is one of the basic services that are often present in distributed operating
systems. We focus on the possible ways of achieving mutual exclusion on anasynchronous network
of processors in which communication is performed by message passing andsuch that no message
shall be lost or replicated.

The specification of mutual exclusion between two usersU1 andU2 is given in figure6.6.
Eventri, i ∈ {1, 2} corresponds to a request by userUi to enter critical section. The meaning of
eventei, i ∈ {1, 2} is that userUi is allowed to enter critical section while eventxi, i ∈ {1, 2}
corresponds to the exit of userUi from critical section. Mutual exclusion is ensured whenever both
agents cannot be in critical section at the same time.

A distributed implementation of mutual exclusion consists in a pair of sequential processes
P1, P2 where processPi, i ∈ {1, 2} controls userUi and both processes communicate only by
asynchronous message passing.

We wish to apply the method sketched in sections6.4 and6.5 to the derivation of processes
P1 andP2. Unfortunately, the automaton in figure6.6 is not isomorphic to the reachability graph
of any distributable Petri net. This is due to the conflict between eventse1 ande2 in state4 while
these two events are mapped to distinct locations.

144

r2

r2

4

5

0

1

r1

x1

x1

x2

x2

7

e1

3

e1

r2

τ1

2

τ1

r2

10

e2

11

e2 r1

8

τ2

9

τ2 r1

6

r1

Figure 6.7: Mutual exclusion: a first refinement

The next sections describe two ways of inserting silent events in the automaton of figure6.6so
that distributable Petri net synthesis becomes feasible. The process of inserting silent transitions
is manual and does rely solely on designer’s intuition. In this respect, it doesn’t differ in any way
from silent transition insertion in [177].

A monitor-based solution

A first solution consists in refining eventei, i ∈ {1, 2} by τiei whereτi is located on a third
processM . This leads to the automaton in figure6.7which is comformant to the original automaton
with respect to theioco testing equivalence [172]. The refined automaton is isomorphic to the
reachability graph of the distributable Petri net in figure6.8.

Communicating automata can then be produced from the distributable Petri net, following
the method described in sections6.5.1and6.5.2. By abstracting from the subset of eventsE =
{τ1, τ2}, and by applying minimization, one obtains the automata shown in figure6.9. The process
at locationM acts as a monitor for the two other processesPi, i = 1 . . . 2, which in turn act
as interfaces between user processesUi and the monitorM . It follows from the method that
the implementation is behaviorally correct, hence all and only the sequences of events which are
compatible with the service specifications in figure6.6can occur. In spite of the minimization, the
automaton in figure6.6can moreover be reconstructed from the distributed implementation.

145

P1::

e1

x1

r1

τ1

grant1

req1

e2

x2

r2

τ2

grant2

req2

exit

M:: P2::

Figure 6.8: Mutual exclusion: distributable Petri net generated from the first refinement

A token-based solution

A second solution to the mutual exclusion protocol synthesis problem is to splitstates0, 1,
3 and 4 and to insert converse transitions labelled by silent eventsτ1 and τ2 as represented in
figure 6.10. Event τi, i ∈ {1, 2} is located on processPi therefore no distributed conflict is
created and more importantly, the distributed conflict between eventse1 ande2 is alleviated. Not
surprisingly, the reachability graph of the synthesized Petri net shown infigure6.11is isomorphic
to the refined automaton.

Two communicating automata may be derived from the distributable Petri net, following the
method described in sections6.5.1 and 6.5.2. By abstracting from the subset of eventsE =
{τ1, τ2}, one obtains the automata shown in figure6.12; mutual exclusion is thus achieved by
circulating a token between processesP1 andP2. Minimization has not been used: the automata
produced by determinization are already minimal. It follows therefore from the method that the
automaton in figure6.6can be reconstructed from this distributed implementation.

6.6.2 A Simplified INRES Protocol

In this section, we consider a simplified version of the INRES communication protocol [106].
The specifications of service of the INRES protocol are given in figure6.13. For the sake of the
exposition, we consider the simplified service described in figure6.14. The simplified protocol
defines the transmission of data between two usersuser − A anduser − B linked to respective
protocol entitiesA andB. Eventsmeans that entityA is given byuser−A some data to transmit;
eventr means that entityB delivers some data touser − B; eventd is a disconnection request
(located onB); eventa is the notification of the disconnection (located onA). With this protocol,
data exchanges (words in(sr)⋆) may take place until a disconnection is requested.

We aim at synthesizing a distributed implementation of this protocol: two processesA andB,
communicating with one another through a reliable communication medium. Eventss anda are
located on processA, while eventsr andd are located onB. This is defined by the location map
λ: λ(s) = λ(a) = A andλ(r) = λ(d) = B.

146

?exit?exit

?exit

?exit

!grant1 !grant2

!grant1!grant2

?req1 ?req2

?req2 ?req1

?req2 ?req1
?req2?req1

M::

!exit

r1

!req1

!req1

!exit

r1

!exit

e1

?grant1

P1::

x1

r2

!exit !req2

!req2 !exit

!exit

r2

?grant2

e2

x2

P2::

Figure 6.9: Mutual exclusion: communicating automata generated from the first refinement

We wish to usedistributablePetri net synthesis to produce a Petri net implementation of the
communication protocol: thus, for every placep of the net, the flow relationF must satisfy:

F (p, s) = F (p, a) = 0 or F (p, r) = F (p, d) = 0

Unfortunately the automaton specifying the service (shown on the left handof figure 6.14)
is not isomorphic to the marking graph of any distributable Petri net: eventa and state2 cannot
be separated. However this can be alleviated by refining the automaton into a weakly bisimilar
automaton which is actually the marking graph of a distribuable Petri net.

In [72, 70], is advocated an event splitting heuristics for refining non separated automata into
separated automata. In our case, the two occurrences ofs may be replaced bys1 and s2, and
similarly for d, leading to three different refinements. However, none of the refined automata is
separated with respect to the restricted set oflocalizableregions, compatible with the distribution
constraints. Even though in the non distributed case event splitting is a systematic method for
refining automata into separated automata, it is potentially useless in the distributedcase.

As an alternative resort, refinement can be done by inserting silent transitions while keeping
weak bisimilarity. This has been used in [177] for a similar purpose. In our case, the adequate
refinement step consists in replacing transition3

a→ 4 by two transitions:3
τ→ 4

a→ 5 (see the
automaton on the right hand side of figure6.14), with silent eventτ located on processB. The
refined automaton is then isomorphic to the reachable marking graph of the Petri net shown in
figure6.15. Places and transitions are sorted according to their locations:A on the left andB on
the right.

The distributable Petri net is then expanded into the Petri net shown in figure 6.16by making

147

τ1

r2

3

5

0

1

e1

r1

r2

x1

42

r2

x1

e1

r1

τ2τ1 10

e2

r2

11

8

6

7

r1

x2

9

r2

e2

x2

r1

r1

τ2τ1

τ2τ1 τ2

Figure 6.10: Mutual exclusion: a second refinement

P2::

m1

e1

x1

r1

τ1 x2

m2

τ2 e2

r2

P1::

Figure 6.11: Mutual exclusion: distributable Petri net generated from thesecond refinement

communications between processes explicit. By distributing its reachable state graph as indicated
in section6.5.2, with an abstraction fromE = {τ} and with minimization, one obtains the au-
tomata shown in figure6.17. It follows from the method that this distributed implementation is
behaviorally correct. In spite of the minimization, the automaton on the left hand side of fig-
ure 6.14 can moreover be reconstructed from this distributed implementation. The full INRES
protocol can be dealt with in much the same way, however with an increased complexity.

Another solution consists in a partial unfolding of the service automaton suchthat (i) in every
directed cycle, the number of occurrences of each state is congruent tozero modulo two and (ii)
concurrency is preserved. This means that the cycles.r is unfolded into a cycles1.r1.s2.r2 and
that the concurrent diamonds|d is preserved in the unfolding as two concurrent diamondss1|d1
ands2|d2, as shown on the left-hand side of figure6.18. This unfolding is a correct refinement of
the service since it is bisimilar to the service automaton. Interestingly, the unfolded automaton is
isomorphic to the marking graph of a distributable net, shown on the right-handside of figure6.18.
This gives another implementation of the protocol, without silent transition.

148

P2::6

7

r1

0

1

e1

r1

x1

2

!m1

?m2

?m2

!m1

r2

3

0

10

e2

r2

8

6

x2

?m1

!m2

?m1

!m2

P1::

Figure 6.12: Mutual exclusion: communicating automata generated from the second refinement

Disreq

Conconf Conconf

Datreq DatreqDatind

ConreqDisreqConresp

Disind

Disind

Conind

Disind

Disreq

Disreq

Figure 6.13: The INRES protocol: specification of service

Remark that unfolding the service automaton is by no means a general method.The counter-
example is given figure6.19(left-hand side), where labela is mapped to locationA, b to B, c to
C, x andy toD. Consider an unfolding of this automaton such that concurrent diamondsa|x and
a|y are preserved (see for instance figure6.19, right-hand side). Event-state separation problems
remain unsolvable in every state precedingai.bi (resp.ai.ci) whenever this state can be reached by
a word of the formu.cj .xi (resp.u.bj .yi). Consider for instance the unfolding given figure6.19.

6.7 Conclusion

A novel method for producing distributed implementations of finite reactive automata was
presented in this chapter, based on the synthesis of general Petri nets,that relies in turn on linear

149

r

0 2

1 3 4

d

d a

s s

τ

0 2

1 3 5

d

d

s sr

a
4

Figure 6.14: Simple protocol: specification of service and its refinement

r

A:: B::

d

a

s

τ

Figure 6.15: Simple protocol: synthesized Petri net

algebra. A tool calledSYNET was built to this effect, integrating elementary algorithms on graphs
and standard algorithms of linear algebra. Our limited experience with the application of this tool
to the synthesis of distributed protocols makes us rather confident in the practical usefulness of the
method. Nevertheless, different approaches to the distributed realizationof finite reactive automata
may emerge, and we do not claim that the method based on distributable Petri nets will always
give the best results. Notwithstanding this fact, two major problems remain still to be solved in
the framework of distributable Petri net synthesis. The first problem, touched upon in section 7,
is to define techniques for transforming arbitrary automata into synthesizableautomata. We saw
that event splitting is not the right answer in the context of distribution. Morepromising is the
investigation of silent event insertions, started by W. Vogler in the simpler context of one-safe nets
and with a view at independence rather than distribution [175]. The second problem, more general,
is to re-examine Petri net synthesis for transition systems given by computational rules rather than
by extension (i.e., as sets of states and transitions). One may take as examplesnon expanded
products of finite automata, or guarded expressions in some logical language, and more generally
symbolic transition systems. Dealing with both types of problems would open largeperspectives
to the ideas exposed here.

150

B::

d

τ

!2?2

!1?1

A::

a

s

r

?0!0

Communication
medium

Figure 6.16: Simple protocol: Petri-net with communications

0

5

3

?0 ?0

d

d

d

0

2 3 4

?2

!0

a

s

?1

1

1 4 6
!1

!2

r

!2

2

A::

B::

Figure 6.17: Simple protocol: communicating automata

d1
0 2

1 3 4
d1 a1

s1 s1

0’ 2’

1’ 3’ 4’

d2

d2 a2

s2 s2

r1 r2

A:: B::

s1

s2

r1

r2

d1

d2

a1

a2

Figure 6.18: Simple protocol: unfolding modulo 2 and resulting distributable net

151

cb

0

1 2

3

4 5

a

a

a

x

x

y

y

a2

0

1 2

3

4 5

a0

a0

a0

x0

x0

y0

y0

0’

1’ 2’

3’

4’ 5’

a1

a1

a1

x1

x1

y1

y1

0’’

1’’ 2’’

3’’

4’’ 5’’

a2 a2

x2

x2

y2

y2

b0 c0

b1 b2 c1 c2

Figure 6.19: Counter-example proving unfolding lacks generality and onepossible unfoldingcd fig

tb

6

tc

7

0

1 2

3

4 5

a

a

a

x

x

y

yb c

tc ctb

a

b

x y

A::

B:: C::

D::

Figure 6.20: Insertion ofτ -transitions and resulting distributable net

152

Chapter 7

Concurrent secrets

Résumé : Il arrive fréquemment que les médias révèlent l’exploitation frauduleused’une faille
dans le système d’information d’une compagnie ou d’un organisme public. Ceci n’est pas une
surprise quand on connait la complexité de ces systèmes. De fait, l’analyse et le contrôle des
flux d’information dans les systèmes de ce type est un sujet de grande importance. En effet, il est
souhaitable de pouvoir empêcher toute fuite d’information confidentielle, avant même qu’elle ait
eu lieu.

Reprenant la propriété d’opacité proposée par Mazaré et al. [133, 47], ce chapitre, repris
de [11], aborde la question de la synthèse de contrôle de supervision, pour assurer l’absence
de fuite d’informations dites secrètes, quand le système est exposé à un environnement constitué
d’un ensemble d’agents pouvant être pernicieux. L’existence d’un contrôle maximal permissif est
démontrée. Ce contrôle peut être calculé dans plusieurs cas particuliers, en fonction des ensembles
d’actions observables par chacun des agents et des langages secrets.

7.1 Introduction

This work is an attempt to import supervisory control into the area of computersecurity. Given
an automaton, or plant, and given specifications of the desired behaviourof the plant, Ramadge and
Wonham’s theory presented in [155, 154] yields a finite, non blocking, and maximal permissive
control of the plant enforcing this behaviour (in the normal case or whenunobservable events are
uncontrolable). Controller synthesis is a desirable complement to model checking, for it allows
curing the problems that model checkers can reveal. Supervisory control has found applications in
manufacturing systems, in embedded systems, and more generally in safety critical systems. We
feel it could find applications as well in computer security, and we shall strive to support this thesis.

With the above goal in mind, we have searched for a class of security problems likely to be
dealt with as control problems. We model an interactive computer system andits users as a closed
entity in which the users observe their own interactions with the system. The closed entity is

153

154

represented with a finite automaton over an alphabetΣ. The synchronous interactions between
each useri and the system are figured by the elements of a corresponding sub-alphabetΣi ⊆ Σ
(users may synchronize when their sub-alphabets intersect). Usually in supervisory control, the
control objective is a predicate on the runs of the plant, specifying some combination of safety and
liveness properties, and the observers act as sensors,i.e. they supply informations on the status of
the plant, used by the controller to produce an adequate feedback enabling or disabling events in
the plant. Here, the game is different: the observers are not on the side ofthe controller but they are
opponents. As for the control objective, there are still predicates (Si) on the runs of the system, but
the interpretation is again different: an observeri should never find out that the actual trajectory of
the system belongs to the secret (Si) he has been assigned.

One reason why we believe the model sketched above is worth investigating isthat, in the
case of a single observer, it has already been introduced independently in [133] and studied further
in [47]. What we callsecretshere was called thereopaque predicates, albeit with larger families of
predicates (sets of runs) and observation functions. It was shown in [47] that anonymity problems
and non-interference problems may be reduced to opacity problems, usingsuitable observation
functions. It was shownibidem that model-checking a system for opacity is undecidable in the
general case where an opaque predicate may refer to the visited states ormay be any recursive
predicate on sequences of event labels. Nonetheless, techniques based on abstract interpretation
were proposed in [47] for checking opacity in unbounded Petri nets.

In this chapter, we limit ourselves to deal with finite state systems and with regularpredi-
cates defined on sequences of transition labels. We have thus all cards inhands to decide opacity,
even though several pairs(observer, secret)are taken into simultaneous account. Now differing
from [47], we want to be able toenforceopacity by supervisory control when the result of the
decision is negative. In other terms, we want to disable the least possible family of trajectories
such that no observer can ever find out that the system’s actual trajectory belongs to some secret.
At first sight, this looks like a simple problem, all the more when it is assumed that all events are
controllable as we do in this chapter (we leave the uncontrollable events to further consideration).
The problem is in fact not that simple, for the observers have full knowledge of the system, hence
any control device that may be added to the system is known to them. We will nevertheless show
that there exists always an optimal control for enforcing the concurrent secrets on opponents, fully
aware of this control. We will also provide techniques for computing this optimalcontrol under
assumptions that fit at least with some applications.

The rest of the chapter is organized as follows. The notation and the problem are introduced in
section7.2. Section7.3shows that a unique optimal solution always exists, but it is generally not
regular. Using the fixpoint characterization of the optimal control, proofsof control enabledness
of trajectories are presented as infinite trees in section7.4; conditions on proof trees entailing the
regularity of the optimal control are also stated there. Section7.5 produces closely connected
conditions on concurrent secrets. An application is sketched in section7.6, where directions for
further work are also suggested.

155

7.2 Secrets, concurrent secrets, and the control problem

To begin with, let us fix the notation.Σ is a finite alphabet,Σ∗ is the free monoid generated
byΣ, andRat(Σ∗) is the family of rational subsets ofΣ∗ i.e. the family of regular languages over
Σ. Let uv denote the concatenation product of the wordsu andv, thusu is a prefix ofuv and
the empty wordε is a prefix of every word. The length ofu is denoted by|u|. For l ≤ |u|, u[l]
denotes the prefix ofu with the lengthl, and for0 < l ≤ |u|, u(l) denotes thelth letter occurring
in u. For any sub-alphabetΣi ⊆ Σ, let πi : Σ∗ → Σ∗

i be the unique monoid morphism extending
the mapπi(σ) = σ if σ ∈ Σi elseε (lettersσ ∈ Σ are mapped to words by the usual embedding
of Σ into Σ∗). Foru, v ∈ Σ∗, let u ≃i v if πi(u) = πi(v). Throughout the chapter,L is a non-
empty prefix-closed language inRat(Σ∗) and for alli ∈ {1, · · · , n}, Σi ⊆ Σ, Si ∈ Rat(Σ∗), and
Si ⊆ L.

The languageL represents the behaviour of a system withn users. Fori ∈ {1, · · · , n}, the
sub-alphabetΣi represents the set of the interactions that may take place between the systemand
the useri. Users observe the system by interacting with it. If the system’s trajectory is represented
by w ∈ L, then the induced observation for the useri is πi(w). Two users can communicate only
by jointly interacting with the system,e.g. σ ∈ Σi ∩ Σj is an interaction of the system with the
usersi andj.

For eachi ∈ {1, · · · , n}, the membership of the actual system’s trajectory to the subsetSi ⊆ L
is intended to be keptsecretfrom the useri. In the terminology of [133] and [47], the predicateSi
should beopaquew.r.t. the observation functionπi and the languageL.

Definition 7.2.1 Si is opaquew.r.t. πi (andL) if (∀w ∈ Si) (∃w′ ∈ L \ Si) w ≃i w
′

When the predicateSi coincides with its prefix closureSi, non-opacity is the same as normality
which may be expressed as∀w ∈ Si ∀w′ ∈ L w ≃i w

′ ⇒ w′ ∈ Si . However, opacity is not the
opposite of normality, as the following example shows. GivenL = (ab)∗ + (ab)∗a let Σi = {b}
andSi = (ab)∗a thenSi is both opaque and normal.

As we explained in the introduction, we use here a strongly restricted form of the original
definition of opacity where the observation functions may be state and historydependent. On the
other hand, we consider a concurrent version of opacity.

Definition 7.2.2 (Si)i is concurrently opaque(w.r.t. L) if for all i, Si is opaque w.r.t.πi.

Dealing with concurrent opacity does not make a big change for checkingopacity, which is
easy in our case (although not necessarily computationally simple) since we consider exclusively
regular systems and secrets.

Proposition 1 It is decidable whether(Si)i is concurrently opaque.

156

Proof: By definition, it suffices to decide for eachi ∈ {1, . . . , n} whetherSi is opaque w.r.t.πi.
The considered property holds if and only ifπi(Si) ⊆ πi(L \ Si). AsL andSi are regular,L \ Si
is regular, and since morphic images of regular languages are regular, this relation can be decided.
2

Example 7.2.3 Let Σ = {a, b, c} andL be the set of prefixes of words in(a + b) c. Let Σ1 =
Σ2 = {c}, and letS1 andS2 be the intersections ofL with Σ∗ aΣ∗ andΣ∗ bΣ∗, respectively. The
concurrent secret(S1, S2) is opaque. From the observation of the eventc, one is indeed unable to
infer whether it was preceded with ana or with a b.

In the sequel,S = {(Σ1, S1), . . . , (Σn, Sn)} denotes a concurrent secret upon a fixed language
L ⊆ Σ∗ (Σi ⊆ Σ andSi ⊆ L ⊆ Σ∗ for all i). We say thatS is opaque if(Si)i is concurrently
opaque. A control is any non-empty prefix-closed languageL′ ⊆ L (we assume here that all events
σ ∈ Σ are controllable). We say thatS is opaque under the controlL′ ⊆ L if the induced secret
(S′
i)i defined withS′

i = Si ∩ L′ is concurrently opaque w.r.t.L′.
Our purpose is to solve the concurrent opacity control problem stated asfollows.

Problem 1 Show that the set of controls enforcing the opacity ofS either is empty or has a greatest
element, and compute this maximal permissive control.

Enforcing concurrent opacity (n > 1) requires, as we shall see, significantly more efforts than
enforcing opacity.

7.3 Maximal permissive control enforcing concurrent opacity

In this section, we show that the concurrent opacity control problem hasa unique maximal
solution that we characterize as a greatest fixpoint. We propose two counter-examples in which
this maximal permissive control either is not regular or cannot be computed within a finite number
of fixpoint iterations.

Definition 7.3.1 For any prefix-closed subsetL′ of L, the safe kernelof L′ w.r.t. the secretS,
notationK(L′,S), is the subset of all wordsw ∈ L′ such thatw = uv ⇒ (∀i)(∃u′ ∈ L′ \Si) u ≃i

u′.

Thus,S is opaque under the controlL′ ⊆ L if and only if L′ = K(L′,S), i.e. L′ is a fixpoint
of K(•,S). It is immediately observed thatK(L′,S) is continuous in the first argument (w.r.t. set
inclusion). As the prefix-closed subsets ofL form a complete sub-lattice ofP(Σ∗), it follows from
Knaster-Tarski’s theorem [171] thatK(•,S) has a greatest fixpoint in this sub-lattice.

Definition 7.3.2 LetSupK(L,S) be the greatest fixed point of the operatorK(•,S).
Proposition 2 SupK(L,S) is the union of all controls enforcing the opacity ofS. If SupK(L,S) 6=
∅, then it is the maximal permissive control enforcing the opacity ofS, otherwise no such control
can exist.

157

e

a f
c

d

a

b

f

Figure 7.1: An automaton

Proof: This is a direct application of the Knaster-Tarski’s fixpoint theorem. 2

Remark 7.3.3 The conditionL′ ⊆ SupK(L,S) is necessarybut not sufficientfor some non-
empty controlL′ to enforce the opacity ofS. For instance, in Example7.2.3, SupK(L,S) = L,
but the secretS1 is not opaque w.r.t.L′ = ε+ a+ ac.

The fixpoint characterization of the optimal control enforcing opacity does not show that
SupK(L,S) can be computed, nor that the control can be implemented with a finite device.
Whenn = 1, i.e. whenS = {(Σ1, S1)}, this is not a problem because in this particular case,
SupK(L,S) is equal toK(L,S) and it may be shown thatK(L,S) is the set of words with all
prefixes inL∩π−1

1 (L\S1). Therefore,SupK(L,S) = Σ∗ \((Σ∗ \(L∩π−1
1 (L\S1)) Σ∗) which is

regular. Whenn > 1, two situations contrast. The nice situation is whenSupK(L,S) can be com-
puted fromL by a finite number of iterated applications of the operatorK(•,S). Actually, when
L′ is a regular subset ofL, the same holds forK(L′,S), hence in the considered caseSupK(L,S)
is regular. The rest of the section illustrates the converse situation.

7.3.1 A case where the closure ordinal ofK(•,S) is transfinite

Let Σ = {a, b, c, d, e, f} and letL be the prefix-closed language accepted by the finite au-
tomaton of Figure7.1 (where all states are accepting states). DefineS = {(Σ1, S1), (Σ2, S2)}
with Σ1 = {c, f}, S1 = Σ∗afc (Σ \ {c})∗ (this secret is safe if, by observing onlyc andf , one
cannot find out in any run that the last occurrence ofc was preceded byaf), andΣ2 = {b, e},
S2 = Σ∗deb (Σ \ {b})∗ (this secret is safe if, by observing onlyb ande, one cannot find out in any
run that the last occurrence ofb was preceded byde). LetL1 = K(L,S) be the first language en-
countered in the greatest fixpoint iteration converging toSupK(L,S), thenL1 = L \ afcΣ∗

(the runafc reveals the secretS1 and the runs inafdΣ∗ reveal nothing). The second item
L2 = K(L1,S) is the languageL1 \ afdebΣ∗ (relatively toL1, the runafdeb reveals the se-
cret S2, and the runs inafdeaΣ∗ reveal nothing). Afterafc andafdeb have been eliminated,
the initial situation reproduces up to the prefixafdea. Therefore, the fixpoint iteration produces a
strictly decreasing and infinite sequence of languagesLj . The limitSupK(L,S) of this decreasing
chain is the set of all prefixes of words in the regular setLω = (afde)∗, hence it is regular. The op-
timal control enforcing the opacity ofS may be implemented by any finite automaton recognizing
Lω.

158

Let us now extend the concurrent secret intoS = {(Σ1, S1), (Σ2, S2), (Σ3, S3)} with (Σ1, S1)
and(Σ2, S2) as above,Σ3 = ∅ andS3 = Σ∗ \ (Σ∗cΣ∗). Then, the closure ordinal ofK(•,S)
increases fromω to ω + 1. To see this observe that, sinceΣ3 is empty, the secretS3 is safe
relatively to any languageL′ ⊆ L containing at least one word containing at least one occurrence
of c. The greatest fixpoint iteration forSupK(L,S) starts with the same decreasing sequenceLj
as before, butK(Lω,S) differs now fromLω becauseLω contains no word containingc (differing
in that form allLj). In fact,Lω+1 = K(Lω,S) = ∅ and this is a fixpoint. Opacity can therefore
not be enforced.

7.3.2 A case whereSupK(L,S) is not regular

Let Σ = {a, b, x, y} andL be the set of prefixes of words in(ax)∗ (ε+ ab) (yb)∗. Define
S = {(Σi, Si) | 1 ≤ i ≤ 3} as follows (letting¬L′ = L \ L′ for L′ ⊆ L):

1. Σ1 = {a, b}, ¬S1 = ε+ (ax)∗ ab (yb)∗ + (Σ \ {b})∗

2. Σ2 = {x, y}, ¬S2 = (ax)∗ (yb)∗

3. Σ3 = {a, b, x, y}, ¬S3 = ε+ aΣ∗

We claim thatSupK(L,S) is not a regular language and worse, the family of regular controls
enforcing the opacity ofS has no largest element. Recall that the subset of maximal words in
a regular language is regular. In order to establish the first part of the claim, one can show
that SupK(L,S) is equal to the setL′ of all prefixes of words in the non regular language
∪n∈IN (ax)n (ε+ ab) (yb)n. A detailed proof of this fact may be found in [7].

To show that the family of regular controls enforcing the opacity ofS has no largest ele-
ment, one assumes the opposite. LetR be the largest prefix-closed regular subset ofL such
thatS is opaque w.r.t.R. Necessarily,(ax)n (yb)n 6∈ R for somen. If it were otherwise, be-
cause(ax)n−1 (yb)n−1 is the sole wordw′ ∈ L′ \ S1 such thatw ≃1 w

′ for w = (ax)n (yb)n,
R would coincide withL′, which is not possible (L′ is not regular). Letn be the least in-
teger such that(ax)n (yb)n 6∈ R, and letR′ be R augmented with all prefixes of words in
{(ax)n (yb)n , (ax)n−1 ab (yb)n−1} not already inR. The languageR′ is prefix-closed and regular,
and one can verify thatS is opaque w.r.t.R′. Thus, a contradiction has been reached.

7.4 Control enabling andω-trees

Warning 1 From now on,SiΣ∗ ⊆ Si is imposed on all setsSi in S = {(Σ1, S1), . . . , (Σn, Sn)}.

This section serves as a bridge between the general problem and the practical solutions that we
shall propose in specific cases. The working assumption that secrets are suffix-closed is motivated
by its convenience (if not its necessity) for enforcing opacity with finite control. Although this
working assumption was not satisfied in the examples from sections7.3.1and7.3.2, it is quite
natural since it amounts to strengthening the secrecy requirement as follows: an observeri should

159

never have the knowledge that the trajectory of the system is inSi or was in Si at some instant
in the past. We give below a simpler definition of the operatorK(•,S), which is equivalent to
the earlier definition when secrets are suffix-closed. Then we considerω-trees that may be seen as
proofs of control enabledness of trajectories. Finally, we propose conditions on sets of proof trees
entailing the regularity ofSupK(L,S), thus paving the way for section7.5.

Definition 7.4.1 (modified form of Def.7.3.1) For any prefix-closed subsetL′ of L, thesafe ker-
nelofL′ w.r.t. the secretS, notationK(L′,S), is the largest subset ofL′ such thatw ∈ K(L′,S) ⇒
(∀i)(∃w′ ∈ L′ \ Si) w ≃i w

′.

Proposition 3 Definitions7.3.1and7.4.1are equivalent.

Proof: For the duration of this proof, letK(•,S) andK ′(•,S) be the two operators from Def.7.3.1
and Def.7.4.1, respectively. Clearly,K(L′,S) ⊆ K ′(L′,S) for anyL′. We show the converse re-
lation. Consider any wordw ∈ K ′(L′,S) and letw = uv be any decomposition of this word
into two factors. We should prove that for alli ∈ {1, . . . , n}, u ≃i u

′ for someu′ ∈ L′ \ Si. As
w ∈ K ′(L′,S) and by definition,w ≃i w

′ for somew′ ∈ L′\Si. Noww′ ≃i uv, hence there exists
at least one decompositionw′ = u′v′ such thatu ≃i u

′. Finally, u′ ∈ L′ by prefix-closedness of
L′, andu′ /∈ Si by suffix-closedness ofSi. Therefore,w ∈ K(L′,S). 2

Definition 7.4.2 Givenw ∈ L, a proof of enablednessof w is a mapf : {1, . . . , n}∗ → L such
thatf(ε) = w and for all τ ∈ {1, . . . , n}∗ andj ∈ {1, . . . , n}, f(τ) ≃j f(τj) andf(τj) /∈ Sj .

The mapf in the above definition is just a completen-ary ordered tree labelled on nodes, thus
in particular it is an infinite tree. The next proposition follows immediately from theco-inductive
definition ofSupK(L,S).

Proposition 4 For anyw ∈ L, w ∈ SupK(L,S) if and only if there exists a proof of the control
enabledness ofw.

A nice situation is when the control enabledness of a trajectory may be proved with a regular
tree. Let us recall the definition.

Definition 7.4.3 Let f : {1, . . . , n}∗ → L be a (completen-ary ordered labelled) tree. For any
τ ∈ {1, . . . , n}∗, the sub-tree off rooted atτ , in notationf/τ , is the (completen-ary ordered
labelled) tree defined with(f/τ)(τ ′) = f(ττ ′) for all τ ′ ∈ {1, . . . , n}∗. The treef is regular if it
has a finite number of sub-treesf/τ .

Any regular treef may be folded to a finite rooted graph. When the control enabledness
of the (good) trajectories may be proved using regular trees exclusively, this predicate is therefore
recursively enumerable. This condition is necessary and sufficient for being able to enforce control,

160

but not efficiently. In the rest of the section, we search for additional conditions entailing the
regularity of the controlSupK(L,S).

A first attempt towards this goal is to impose an upper bound on the number of (different)
subtrees of a regular proof tree. Equivalently, one may require that allproof trees conform to a
finite collection of finite patterns as follows.

Definition 7.4.4 A finite pattern for proofs(of enabledness of trajectories) is a finite, deterministic
and complete automaton(Q, {1, . . . , n}, q0) (thus q0 ∈ Q and anyi ∈ {1, . . . , n} mapsQ to
itself). A proof treef : {1, . . . , n}∗ → L conforms toa finite pattern if there exists a labelling map
λ : Q → L such thatf(τ) = λ(q0 · τ) for all τ ∈ {1, . . . , n}∗ letting q · τ be defined inductively
with q · ε = q andq · (τ1τ2) = (q · τ1) · τ2 for all q ∈ Q.

The idea behind this definition is that proof trees contain bounded informationup to the choice
of a bounded number of words inL.

Example 7.4.5 Let Σ = {a, b} andL = Σ∗. Let S = {(Σ1, S1), (Σ2, S2)} with Σ1 = {a},
¬S1 = b∗a∗ and Σ2 = {b}, ¬S2 = a∗b∗. The finite pattern shown on Figure7.2 supplies

2

1

2

1

2

1
q2q1

q0

Figure 7.2

proofs of control enabledness for all trajectories. For any wordw with n occurrences ofa andm
occurrences ofb, the labelling map defined withλ(q0) = w, λ(q1) = bman, andλ(q2) = anbm

induces in fact anω-tree witnessing thatw ∈ SupK(L,S).

There are two sources of problems with the proof patterns from Def.7.4.4. The first difficulty
is that, givenL, S and (Q, {1, . . . , n}, q0), the set of the labelling mapsλ : Q → L consid-
ered in this definition is generally not regular,i.e. it cannot be defined with a finite automaton
on (Σ∗)|Q|. For instance, if the labelling maps considered in example7.4.5did form a regular
set, then the set of all pairs(bman, anbm) would be regular, but the iteration lemma for rational
sets [37] entails the opposite (if the set is regular, for someN > 1 and for large enoughn andm,
(bman, anbm) could be written as(x, x′)(y, y′)(z, z′)where0 < |y|+|y′|, |x|+|x′|+|y|+|y′| ≤ N ,
and (x, x′)(y, y′)∗(z, z′) is included in the set). The second difficulty is that, givenL, S and
(Q, {1, . . . , n}, q0), the set of values taken atq = q0 by the labelling maps from Def.7.4.4 is
sometimes not regular. An example is shown hereafter.

161

Example 7.4.6 Let Σ = {a, b} andL = Σ∗. Let S = {(Σ1, S1), (Σ2, S2)} whereΣ1 = {a},
Σ2 = {b}, and¬S1 = ¬S2 = (ε + b)(ab)∗(ε + a). Consider the set of all maps labelling
adequately the finite proof pattern from Figure7.3. The set of values taken by these maps atq = q0
is the set of all words in which the numbers of occurrencesa andb differ by at most one, hence it
is not regular.

1 2

1 2

q0

q1

Figure 7.3

Note that in both examples7.4.5and7.4.6, SupK(L,S) = Σ∗, and proofs of enabledness may
be obtained for allw ∈ Σ∗ by labelling the finite proof pattern shown in Figure7.4.

1 2

1 2

1 2
q2q1

q0

Figure 7.4

In order to dodge the problems, one may concentrate on restricted proof patterns as follows.

Definition 7.4.7 A type (of proof of enabledness) is a finite patternT = (Q, {1, . . . , n}, q0) with
a prefix-closed subsetT ⊆ {1, . . . , n}∗ such that(∀q ∈ Q) (∃! τ ∈ T) (q = q0 · τ) and for any
mapλ : Q→ L,
(∀τ) (∀j) (τj ∈ T ∧ λ(q0 · τ) ≃j λ(q0 · τj) ∧ λ(q0 · τj) /∈ Sj) ⇒ (∀q) (∀j) (λ(q) ≃j λ(q · j)
∧ λ(q · j) /∈ Sj)
whereτ and j range over{1, . . . , n}∗ resp. over{1, . . . , n}. A proof treef : {1, . . . , n}∗ → L
has typeT if it conforms to this pattern (see Def.7.4.4).

The setT in Def.7.4.7induces a (finite) tree, rooted atq0, that spans the automaton(Q, {1, . . . , n}, q0).
The point is that for any mapλ : Q→ L, if (λ(q) ≃j λ(q · j) ∧ λ(q · j) /∈ Sj) for all arcs(q, q · j)

162

in the spanning tree, then it holds also for all chords,i.e. for all remaining edges of (the underlying
graph of)(Q, {1, . . . , n}, q0).

Theorem 7.4.8 If there exists a finite number of types of proofs of enabledness for all trajectories
w ∈ SupK(L,S), thenSupK(L,S) is a regular language.

Proof: It suffices to show that when typeT = (Q, {1, . . . , n}, q0, T) has been fixed, the set of
trajectoriesw ∈ L with proofs of enabledness of typeT is regular. In view of the definitions
7.4.4and7.4.7, a wordw belongs to the considered set if and only ifλ(q0) = w for some map
λ : Q → L satisfyingλ(q0 · τ) ≃j λ(q0 · τj) andλ(q0 · τj) /∈ Sj wheneverτj ∈ T and
j ∈ {1, . . . , n}. In order to show that this is a regular set, we construct the Arnold-Nivat product [4]
of a family of automataA τ indexed withτ ∈ T , as follows. LetA ε be a (finite deterministic)
partial automaton recognizingL, and for each sequenceτj in T with j ∈ {1, . . . , n}, let A τj be
a (finite deterministic) partial automaton recognizingL \ Sj . This defines the components of the
product. As for the synchronizations, letV be the set ofT -vectors~v : T → (Σ ∪ {ε}) such that
(~v(τ) ∈ Σj ∨ ~v(τj) ∈ Σj) ⇒ ~v(τ) = ~v(τj) wheneverτj in T andj ∈ {1, . . . , n}. The induced
product is a (finite deterministic) partial automatonA = (Q,V , ~q0) defined as follows:
- the set of statesQ is a set ofT -vectors,
- for eachτ ∈ T , ~q0(τ) is the initial state ofA τ ,
- for all ~q ∈ Q andτ ∈ T , ~q(τ) is a state ofA τ ,
- for all ~q ∈ Q, ~v ∈ V andτ ∈ T , (~q · ~v) (τ) = ~q(τ) · ~v(τ).
Therefore,~q · ~v is defined if and only if~q(τ) · ~v(τ) = ~q′(τ) is defined for allτ .

Let ~v1 . . . ~vm be a word overV accepted byA. An associatedT -vector ~w : T → L may be
defined by setting~w(τ) = ~v1(τ) . . . ~vm(τ) for all τ ∈ T . It follows directly from the construction
that the mapλ : Q → L such thatλ(q0 · τ) = ~w(τ) for all τ ∈ T satisfiesλ(q0 · τ) ≃j λ(q0 · τj)
andλ(q0 · τj) /∈ Sj for τj ∈ T andj ∈ {1, . . . , n}, hence~w(ε) ∈ SupK(L,S).

As A is a finite automaton, the projection of the language ofA alongε is a regular language.
In order to complete the proof, it suffices therefore to show that for anymapλ : Q→ L satisfying
λ(q0 · τ) ≃j λ(q0 · τj) andλ(q0 · τj) /∈ Sj for all τj ∈ T , the vector~w : T → L defined
with ~w(τ) = λ(q0 · τ) for all τ ∈ T may be written as a word~v1 . . . ~vm recognized byA. Given
the construction of this automaton, it suffices to exhibit a sequence~v1 . . . ~vm ∈ V∗ such that
~w(τ) = ~v1(τ) . . . ~vm(τ) for all τ ∈ T . This is the contribution of the lemma7.4.9. 2

Lemma 7.4.9 Let ~w : T → Σ∗ whereT is a prefix-closed subset of{1, . . . , n}∗ and ~w(τ) ≃j

~w(τj) for all τj ∈ T with j ∈ {1, . . . , n}. Then~w(τ) = ~v1(τ) . . . ~vm(τ) for all τ ∈ T for some
sequence of vectors~vk : T → Σ ∪ {ε} such that for allτj ∈ T , (~vk(τ) ∈ Σj ∨ ~vk(τj) ∈ Σj) ⇒
~vk(τ) = ~vk(τj).

Proof: Let E be the set of all pairs(τ, i) such thatτ ∈ T and0 < i ≤ |~w(τ)|. Let < be the
partial order onE defined with(τ, i) < (τ ′, i′) if τ = τ ′ andi < i′. For eachj ∈ {1, . . . , n}, let

163

(τ, i) �j (τj, k) if πj(~w(τ)[i])) = πj(~w(τj)[k])), ~w(τ)(i) = ~w(τj)(k), and this letter is inΣj .
Let ≡ denote the equivalence onE generated from the union of the relations�j . We claim that
this equivalence does not intersect and is compatible with the partial order<. Let us establish this
double claim.

i) Suppose for a contradiction that(τ, i) < (τ, i′) and(τ, i) ≡ (τ, i′). Then, by definition of≡
and the relations�j , the words~w(τ)[i] and~w(τ)[i′] end with a common letter~w(τ)(i) = ~w(τ)(i′),
and this letter occurs the same number of times in both words. Asi < i′, this is clearly not possible.

ii) Suppose for a contradiction that(τ, i) < (τ, i′) and(τ ′, j) < (τ ′, j′) while (τ, i) ≡ (τ ′, j′)
and(τ, i′) ≡ (τ ′, j). Then, by definition of≡ and the relations�j , ~w(τ)(i) = ~w(τ ′)(j′) and this
letterσ occurs the same number of times in both words~w(τ)[i] and ~w(τ ′)[j′]. In the same way,
~w(τ)(i′) = ~w(τ ′)(j) and this letterσ′ occurs the same number of times in both words~w(τ)[i′] and
~w(τ ′)[j]. Sincei < i′ andj < j′, it follows thatσ andσ′ are different letters (see Figure7.5).

Now let τ = ρx1 . . . xk andτ ′ = ρy1 . . . yl whereρ is the longest common prefix ofτ and
τ ′ andxh, yh ∈ {1, . . . , n}. Then by definition of≡ and the relations�j , (τ, i) ≡ (τ ′, j′) and
(τ, i′) ≡ (τ ′, j) entail thatσ andσ′ belong jointly to all the alphabetsΣxh (1 ≤ h ≤ k) and
Σyh (1 ≤ h ≤ l). On the other hand, by thei part of the proof,(τ, i) ≡ (τ ′, j′) entails that
necessarily~w(τ)[i] �−1

xk
◦ . . . ◦ �

−1
x1 ◦ �y1 ◦ . . . ◦ �yl ~w(τ

′)[j′]. Therefore the words~w(τ)[i]
and ~w(τ ′)[j′] must have the same number of occurrences of the letterσ′, which is obviously not
possible.

Let C = (E/ ≡). Since< is compatible and does not intersect with≡, the binary relation
(< ∪ ≡)∗/ ≡ is a strict partial order onC. LetC1 . . . Cm be an enumeration ofC compatible with
this order. Each equivalence classC ∈ C induces naturally a vector~v ∈ V , viz. ~v(τ) = ~w(τ)(i)
if (τ, i) ∈ C for somei, or ε otherwise. Let~v1 . . . ~vm be the vectors associated withC1 . . . Cm,
respectively. Then for anyτ ∈ T , ~w(τ) = ~v1(τ) . . . ~vm(τ) as desired. 2

σ

~w(τ ′)

~w(τ)

j

i

j′

i′

σ′

Figure 7.5

Theorem7.4.8opens the way to the practical synthesis of supervisory control for concurrent
opacity. The conditions for its application are examined further in section7.5.

164

7.5 Concurrent secrets with regular opacity control

We propose here conditions on concurrent secretsS = {(Σ1, S1), . . . , (Σn, Sn)} ensuring that
the maximal permissive opacity controlSupK(L,S) is the language of a finite automaton, that
may effectively be constructed from finite automata accepting the languageL and the secretsSi.
We examine first the case where the alphabetsΣi form a chain for the inclusion, second the case
where the secretsSi form a chain for the inclusion, third the case where every secretSi is saturated
by any equivalence≃j such thati 6= j (a set issaturatedby an equivalence if it is a union of
equivalence classes). We consider finally the combinations of the three cases for the different pairs
(i, j).

Proposition 5 If the alphabetsΣi form a chain for the inclusion, then the enabledness of all tra-
jectoriesw ∈ SupK(L,S) may be shown with a single type of proofsT1.

Proof: Given the chainΣ1 ⊆ Σ2 ⊆ . . . ⊆ Σn, we construct a typeT1 = (Q, {1, . . . , n}, q0, T)
as follows.T is the set of strictly increasing sequences of numbers in{1, . . . , n} (T is drawn with
solid arcs in Figure7.6), Q = T andq0 = ε. For anyτ in T and i ∈ {1, . . . , n}, τ · i = τ ′i
whereτ ′ is the largest prefix ofτ formed of integers strictly smaller thani (see again Figure7.6).
As (≃j ◦ ≃i) ⊆≃i for i ≤ j, T1 conforms to Def.7.4.7. Finally, for anyw ∈ SupK(L,S), by
Prop.7.4.8, there must exist a mapλ : Q → L, i.e. λ : T → L, such thatλ(ε) = w and for all
τj ∈ T , λ(τ) ≃j λ(τj) ∧ λ(τj) /∈ Sj . 2

Proposition 6 If the secretsSi form a chain for the inclusion, then the enabledness of all trajecto-
riesw ∈ SupK(L,S) may be shown with a single type of proofsT2.

Proof: Given the chainS1 ⊆ S2 ⊆ . . . ⊆ Sn, we construct a typeT2 = (Q, {1, . . . , n}, q0, T)
as follows.T is the set of strictly increasing sequences of numbers in{1, . . . , n} (T is drawn with
solid arcs in Figure7.7), Q = T andq0 = ε. For anyτ in T andi ∈ {1, . . . , n}, τ · i = τi if
τi ∈ T andτ · i = τ otherwise (see again Figure7.7). If i ≤ j, then for anyτj in T (= Q), and
for any mapλ : Q → L, λ(τj) /∈ Sj ⇒ λ(τj · i) /∈ Si sinceSi ⊆ Sj . Therefore,T2 conforms to
Def. 7.4.7, and the desired conclusion follows from Prop.7.4.8. 2

Proposition 7 If for all distinct i, j ∈ {1, . . . , n}, the secretSi is saturated by the equivalence
relation≃j , then the enabledness of all trajectoriesw ∈ SupK(L,S) may be shown with a type
of proofsT3.

Proof: We construct a typeT3 = (Q, {1, . . . , n}, q0, T) as follows.T is the set of sequences in
{1, . . . , n}∗ with at most one occurrence of each number (T is drawn with solid arcs in Figure7.8),
Q = T andq0 = ε. For anyτ in T andi ∈ {1, . . . , n}, τ · i = τi if τi ∈ T andτ · i = τ otherwise
(see again Figure7.8). Let λ : Q → L be any map such thatλ(τ) ≃j λ(τj) ∧ λ(τj) /∈ Sj)

165

wheneverτj ∈ T . One may show by induction onτ that λ(τ) /∈ Si for any i ∈ {1, . . . , n}
occurring inτ . Indeed, if this property holds forτ , it must hold forτj becauseλ(τ) ≃j λ(τj) and
≃j saturatesSi andL \ Si for all i occurring inτ . Therefore,T3 conforms to Def.7.4.7, and the
desired conclusion follows from Prop.7.4.8. 2

1

3

1
1

2

2

2

2

1

3

3

31 2

3

3
3

1

1

1

2

32

2

Figure 7.6:T1 for n = 3

3

3

32

3

21

123
123

123

21

12

3
1

2

1

Figure 7.7:T2 for n = 3

2

21321321321 321 321

21 21

31 31

32 32

1 2 3

2 1 3

1 2 3

3 1

3 32 1 12

3

Figure 7.8:T3 for n = 3

166

3

1

21

21

21

21

21

1 2 3

2 3

1 3

3
3

31

2 3

1 2

3

3

2 3

1 2
3

2

Figure 7.9:T4

One can deal similarly with many other situations whereΣi ⊆ Σj or Si ⊆ Sj or ≃i saturates
Sj , or conversely withi and j, for all distinct i, j ∈ {1, . . . , n}. For instance, letn = 3, and
supposeS1 ⊆ S2, Σ3 ⊆ Σ2, and≃1 saturatesS3. Then the enabledness of allw ∈ SupK(L,S)
may be proved using the typeT4 (see Figure7.9).

Unfortunately, we cannot extend propositions5,6, and7 into a general proposition, for we do
not know whetherSupK(L,S) is regular in three particular cases:
- S1 ⊆ S2, Σ2 ⊆ Σ3, and≃1 saturatesS3,
- S1 ⊆ S2, ≃2 saturatesS3, andΣ3 ⊆ Σ1,
- ≃1 saturatesS2, ≃2 saturatesS3, and≃3 saturatesS1.
The best we can do is therefore to propose an algorithm that constructs aunique type for all proofs
of enabledness in all cases where this is possible. In this perspective, we introduce rewrite rules
on labelled graphs. In each rule, one vertex of the left member is droppedand the edges that were
incident to this vertex are redirected to other vertices. The vertices and edges present on both sides
of a rule serve as an application context (indicated by the labels put on the concerned vertices). The
rewrite rules are displayed in Figure7.10(wherei 6= j andsat is an abbreviation for “saturates”).

Proposition 8 GivenS = {(Σ1, S1), . . . , (Σn, Sn)}, let R be the set of the rewrite rules that
correspond to predicates true inS. Whenever the completen-ary tree rewrites to some finite
graph, any such graph yields a uniform typeT for proving the enabledness of all trajectories. The
spanning tree ofT is the subset of edges of the completen-ary tree that have been preserved by
the rewriting.

Proof: In view of Def. 7.4.7it is enough to show, for each graphG on the right hand side of a
rewrite rule (see Figure7.10), that any mapλ : {x, y} → L or λ : {x, y, z} → L compatible
with the rigid edges ofG is compatible also with the dashed edge ofG, whereλ is compatible

167

xx y yi
j

j i

x y x y

z z

x y z x y z

j j
j

j

i j

j i

i

j i

xx y yi
i

i i

j
≃i sat Sj

Sj ⊆ Si

Σj ⊆ Σi

True

Figure 7.10: Four rules

with x
i→ y if λ(x) ≃i λ(y) andλ(y) /∈ Si. Considering the predicates defining the application

conditions of the rewrite rules, this verification is immediate. 2

When proposition8 can be applied, the construction proposed in the proof of proposition7.4.8
may be used to produce a finite automaton realizing the maximal permissive opacitycontrol, but
Prop.8 is not immediately effective. We remedy now this deficiency.

Proposition 9 It is decidable whether some finite graph may be derived from the completen-ary
tree using the rules inR and such graphs can be computed when they exist.

Proof: As a preliminary remark, note that the rewrite rules inR are not necessarily confluent,
hence the finite graph we compute is just one among a set of possible proof skeletons.

Let I = {1, . . . , n} and letF ⊆ I∗ be the set of all wordsii, or ij, or iji such thatTrue, or
(Sj ⊆ Si ∨ Σj ⊆ Σi), or ≃i satSj , respectively. If the words inF are considered as forbidden
factors for words inI∗, the remaining words form a regular languageT = I∗ \ (I∗FI∗).

If T is infinite, the rewrite systemR cannot terminate on the completen-ary tree and it cannot
produce any finite graph. IfT is finite, let(Q, {1, . . . , n}, q0) be the partial automaton defined with
Q = T , q0 = ε, andτ · i = τi for τi in T .

To obtain a type(Q, {1, . . . , n}, q0, T) conforming Def.7.4.7, it suffices now to complete the
partial automaton(Q, {1, . . . , n}, q0) as follows: for all wordsτ in T , and by increasing lengths of
wordsτ ,
- setτi · j = τi if τi · j is undefined andSj ⊆ Si or≃i satSj andτ = τ ′ · j,
- setτi · j = τ · j if τi · j is still undefined andΣj ⊆ Σi. 2

168

Example 7.5.1 Let Σ = {a, b, c} and letL be a prefix-closed regular language overΣ. Define
S = {(Σ1, S1), . . . , (Σ3, S3)} such thatΣ1 = {a, c}, Σ2 = {b, c}, Σ3 = {b}, andSi = SiΣ

∗ for
all i ∈ {1, . . . , 3}. The construction sketched in the proof of proposition9 yields the typeT4 and
the spanning treeT displayed in Figure7.9.

SupK(L,S) may be computed by stages following the structure ofT . One computes first
SupK(L,S) \ S3, using the type that appears inT4 at the end of both paths13 and3. Next, one
computesSupK(L,S) \ S1 fromSupK(L,S) \ S3, using the type at the end of the path1 in T4.
Finally, one computesSupK(L,S) fromSupK(L,S) \ S1 andSupK(L,S) \ S3.

7.6 conclusion

We shall try first in this section to illustrate the possible applications of the work we have
presented. Consider a computer system that provides services ton usersU1, . . . , Un with disjoint
alphabetsΣ1, . . . ,Σn. Let L ⊆ Σ∗ be the language of the system, whereΣ ⊇ Σi for all i. One
wants to give every userUi the guarantee that no coalition of other users can ever be sure that he
has started working. The problem is therefore to enforce the opacity of the concurrent secretS =
{(Σ′

1, S1), . . . , (Σ
′
n, Sn)} where for eachi, Si = L ∩ Σ∗ΣiΣ

∗ andΣ′
i = ∪j 6=iΣj . As≃j saturates

Si for j 6= i, one can construct a finite automaton acceptingSupK(L,S). We feel this example is
typical of many practical security problems.

Some limitations of this work are voluntary,e.g.we restricted ourselves on purpose to regular
languages and to regular control, but some other limitations could hopefully belifted in continua-
tions of this work. A list follows.

From the beginning of section7.4, we worked with open secrets,i.e. secretsSi such that
SiΣ

∗ ⊆ Si. The goal was to make Def.7.3.1 equivalent to the simpler definition Def.7.4.1.
Another way to obtain this equivalence is to impose on each secretSi the following condition,
where≤ is the order prefix:
(∀w ∈ L \ Si) πi(w) = uσ ⇒ (∃v ∈ L \ Si) (v ≤ w ∧ πi(v) = u). Such secrets maye.g.carry
the information that some system processis in a critical section.

As regards the control objective, we focussed our efforts on opacity, but we did not take the
deadlock freeness or the liveness of the controlled system into consideration and this is a shortcom-
ing. Another valuable extension would be to work with boolean combinations ofopacity predicates,
e.g. if S1 is opaque w.r.t.Σ1 thenS2 is not opaque w.r.t.Σ2.

We end with a few words on observability and controlability. On the side of the observation
functions, we have restricted our attention to projections on subalphabets,but it would be more
adequate to accomodate also all alphabetic morphisms. As regards control, we dealt with all events
as controlable events, but it would be more realistic to accomodate also uncontrolable events.

Bibliography

[1] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic.
J. ACM, 49(5):672–713, 2002.

[2] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y.Vardi. Alternating
refinement relations. InProc. of the 9th International Conference on Concurrency The-
ory (CONCUR’98), volume 1466 ofLecture Notes in Computer Science, pages 163–178.
Springer, 1998.

[3] S. Andova. Process algebra with probabilistic choice. InARTS, volume 1601 ofLNCS,
pages 111–129. Springer, 1999.

[4] A. Arnold and M. Nivat. Comportements de processus. InActes du Colloque AFCET “Les
mathématiques de l’informatique”, pages 35–68, 1982.

[5] André Arnold. Finite transition systems. Prentice Hall, 1994.

[6] André Arnold and Maurice Nivat. Metric interpretations of infinite treesand semantics of
non deterministic recursive programs.Theoretical Computer Science, 11, 1980.

[7] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, andP. Darondeau. Concurrent
secrets. Rapport de recherche 5771, INRIA, nov 2005.

[8] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, andP. Darondeau. Concurrent
secrets. In S. Lafortune, F. Lin, and D. Tilbury, editors,8th Workshop on Discrete Event
Systems, WODES’06, Ann Arbor, Michigan, USA, jul 2006.

[9] E. Badouel, B. Caillaud, and P. Darondeau. Distributing finite automata through petri net
synthesis.Journal on Formal Aspects of Computing, 13:447–470, 2002.

[10] E. Badouel and Ph. Darondeau. On the synthesis of general petri nets. Research Report
3025, Inria, 1996.

[11] Eric Badouel, Marek Bednarczyk, Andrje Borzyszkowski, Benoît Caillaud, and Philippe
Darondeau. Concurrent secrets.Discrete Event Dynamic Systems, 17(4):425–446, dec 2007.

[12] Eric Badouel, Luca Bernardinello, and Philippe Darondeau. Polynomial algorithms for
the synthesis of bounded nets. InProceedings Caap 95, volume 915 ofLecture Notes in
Computer Science, 1995.

169

170

[13] Eric Badouel, Luca Bernardinello, and Philippe Darondeau. The synthesis problem for
elementary net systems is np-complete.Theor. Comput. Sci., 186(1–2):107–134, 1997.

[14] S. Basu. New results on quantifier elimination over real closed fields and applications to
constraint databases.Journal of the ACM, 46(4):537–555, July 1999.

[15] M. A. Bednarczyk, L. Bernardinello, B. Caillaud, W. Pawlowski, and L. Pomello. Modular
system development with pullbacks. InApplications and Theory of Petri Nets 2003, volume
2679 ofLecture Notes in Computer Science, pages 140–160. Springer, jun 2003.

[16] Nikola Benes, Jan Kretinsky, Kim G. Larsen, and Jiri Srba. On determinism in modal
transition systems.Theoretical Computer Science, 410(41):4026–2043, 2009.

[17] A. Benveniste, B. Caillaud, L. Carloni, P. Caspi, and A. Sangiovanni-Vincentelli. Causality
and scheduling constraints in heterogeneous reactive systems modeling. In FMCO 2003,
Proceedings of the Second International Symposium on Formal Methods for Components
and Objects, volume 3188 ofLecture Notes in Computer Science, pages 1–16. Springer,
2004.

[18] A. Benveniste, B. Caillaud, L. Carloni, P. Caspi, and A. Sangiovanni-Vincentelli. Heteroge-
neous reactive systems modeling: Capturing causality and the correctnessof loosely time-
triggered architectures (ltta). InProceedings of the Fourth ACM International Conference
on Embedded Software, EMSOFT’04. ACM Press, sep 2004.

[19] A. Benveniste, B. Caillaud, L. Carloni, P. Caspi, and A. Sangiovanni-Vincentelli. Communi-
cation by sampling in time-sensitive distributed systems. InProceedings of the Sixth Annual
ACM Conference on Embedded Software, EMSOFT’06, pages 152–160. ACM Press, 2006.

[20] A. Benveniste, B. Caillaud, L. P. Carloni, and A. L. Sangiovanni-Vincentelli. Tag machines.
In Proceedings of the fifth ACM International Conference on Embedded Software (Emsoft),
pages 255–263, Jersey City, NJ, USA, sep 2005. ACM Press.

[21] A. Benveniste, B. Caillaud, and P. Le Guernic. From synchrony toasynchrony. In J.C.M.
Baeten and S. Mauw, editors,CONCUR’99, Concurrency Theory, 10th International Con-
ference, volume 1664 ofLecture Notes in Computer Science, pages 162–177. Springer, aug
1999.

[22] A. Benveniste, B. Caillaud, and P. Le Guernic. From synchrony toasynchrony. Research
report 3641, INRIA Rennes, mar 1999. Also published as IRISA Research Report PI-1233.

[23] A. Benveniste, B. Caillaud, and P. Le Guernic. Compositionality in dataflow synchronous
languages: specification and distributed code generation.Information and Computation,
163:125–171, 2000.

[24] A. Benveniste, B. Caillaud, and R. Passerone. A generic model of contracts for embedded
systems. Research report 6214, INRIA Rennes, jun 2007.

[25] A. Benveniste, B. Caillaud, and M. Pouzet. The fundamentals of hybrid systems modelers.
In IEEE Conf. on Decision and Control, CDC, 2010.

171

[26] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The
Synchronous Languages Twelve Years Later.Proceedings of the IEEE, 91(1):64–83, 2003.

[27] Albert Benveniste. Compositional and uniform modelling of hybrid systems. IEEE Trans.
on Automatic Control, 43(4):579–584, April 1998.

[28] Albert Benveniste, Benoît Caillaud, Alberto Ferrari, Leonardo Mangeruca, Roberto
Passerone, and Christos Sofronis. Multiple viewpoint contract-based specification and de-
sign. InProceedings of the Software Technology Concertation on Formal Methods for Com-
ponents and Objects (FMCO’07), volume 5382 ofRevised Lectures, Lecture Notes in Com-
puter Science, Amsterdam, The Netherlands, oct 2008. Springer.

[29] Albert Benveniste, Benoît Caillaud, and Paul Le Guernic. Compositionality in dataflow
synchronous languages: Specification and distributed code generation. Inf. Comput.,
163(1):125–171, 2000.

[30] Albert Benveniste, Benoît Caillaud, Luca P. Carloni, Paul Caspi, and Alberto L.
Sangiovanni-Vincentelli. Composing heterogeneous reactive systems.ACM Trans. Em-
bedded Comput. Syst., 7(4), 2008.

[31] Albert Benveniste, Benoît Caillaud, and Roberto Passerone. Multi-viewpoint state machines
for rich component models. In Pieter Mosterman and Gabriela Nicolescu, editors, Model-
Based Design of Heterogeneous Embedded Systems. CRC Press, 2009.

[32] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le Guernic,
and Robert de Simone. The synchronous languages 12 years later.Proceedings of the IEEE,
91(1):64–83, 2003.

[33] Albert Benveniste, Paul Le Guernic, Yves Sorel, and Michel Sorine. A denotational theory
of synchronous reactive systems.Inf. Comput., 99(2):192–230, 1992.

[34] L. Bernardinello, G. De Michelis, K. Petruni, and S. Vigna. On the synchronic structure
of transition systems. In J. Desel, editor,Structures in Concurrency Theory, pages 11–31.
Springer-Verlag, 1996.

[35] G. Berry. The constructive semantics of pure Esterel. Draft book available at
http://www.esterel-technologies.com/, July 1999.

[36] Gérard Berry. Constructive Semantics of Esterel: From Theory toPractice (Abstract). In
AMAST ’96: Proceedings of the 5th International Conference on Algebraic Methodology
and Software Technology, page 225, London, UK, 1996. Springer-Verlag.

[37] J. Berstel.Transductions and Context-Free Languages. Teubner Verlag, 1978.

[38] Nathalie Bertrand, Sophie Pinchinat, and Jean-Baptiste Raclet. Refinement and consistency
of timed modal specifications. InProc. of the 3rd International Conference on Language and
Automata Theory and Applications (LATA’09), volume 5457 ofLecture Notes in Computer
Science, pages 152–163, Tarragona, Spain, 2009. Springer.

172

[39] Simon Bliudze.Un cadre formel pour l’étude des systèmes industriels complexes: un exem-
ple basé sur l’infrastructure de l’UMTS. PhD thesis, Ecole Polytechnique, 2006.

[40] Simon Bliudze and Daniel Krob. Modelling of complex systems: Systems asdataflow
machines.Fundam. Inform., 91(2):251–274, 2009.

[41] Simon Bliudze and Joseph Sifakis. A notion of glue expressivenessfor component-based
systems. InProc. of the 19th International Conference on Concurrency Theory (CON-
CUR’08), volume 5201 ofLecture Notes in Computer Science, pages 508–522. Springer,
2008.

[42] I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and C. Sotiriou. Handshake
protocols for de-synchronization. InProceedings Async04, pages 149–158, Crete, Greece,
2004.

[43] F. Boussinot. Une sémantique du langage Esterel . Technical Report 577, INRIA, 1986.

[44] Thomas Brihaye, François Laroussinie, Nicolas Markey, and Ghassan Oreiby. Timed con-
current game structures. InProc. of the 18th International Conference on Concurrency The-
ory (CONCUR’07), volume 4703 ofLecture Notes in Computer Science, pages 445–459.
Springer, 2007.

[45] C. W. Brown. Simple cad construction and its applications.Journal of Symbolic Computa-
tion, 31(5):521–547, May 2001.

[46] C. W. Brown and J. H. Davenport. The complexity of quantifier elimination and cylindrical
algeraic decomposition. InProceedings of the 2007 international symposium on Symbolic
and algebraic computation (ISSAC’07), pages 54–60, Waterloo, ON, Canada, 2007.

[47] J.W. Bryans, M. Koutny, L. Mazaré, and P.Y.A. Ryan. Opacity generalised to transition
systems. InProc. of the Workshop on Formal Aspects in Security and Trust (FAST2005),
2005.

[48] J. F. M. Burg.Linguistic instruments in requirements engineering. IOS Press, 1997.

[49] B. Caillaud. SYNET : un outil de synthèse de réseaux de petri bornés, applications. Rapport
de recherche 3155, INRIA, avril 1997.

[50] B. Caillaud. Bounded petri-net synthesis techniques and their applications to the distribution
of reactive automata.JESA, European Journal on Automated Systems, 33(8–9):925–942,
1999.

[51] B. Caillaud, P. Caspi, A. Girault, and C. Jard. Distributing automata for asynchronous
networks of processors.European Journal on Automated Systems (JESA), 31(3):503–524,
1997.

[52] B. Caillaud, P. Darondeau, L. Hélouët, and G. Lesventes. Hmscs as specifications... with pn
as completions. In F. Cassez, C. Jard, B. Rozoy, and M. Ryan, editors, Proceedings of the
summer school MOVEP’2k: Modelling and verification of parallel processes, pages 87–103,
Nantes, jun 2000.

173

[53] B. Caillaud, P. Darondeau, L. Hélouët, and G. Lesventes. Hmscs as specifications... with pn
as completions. Research report 3970, INRIA Rennes, jul 2000.

[54] B. Caillaud, P. Darondeau, L. Hélouët, and G. Lesventes.HMSCs as specifications... with
PN as completions, volume 2067 ofLecture Notes in Computer Science, pages 125–152.
Springer, 2001.

[55] B. Caillaud, P. Darondeau, L. Lavagno, and X. Xie (eds.).Synthesis and Control of Discrete
Event Systems. Kluwer Academic Press, 2002.

[56] Benoît Caillaud, Benoît Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, and
Andrzej Wasowski. Compositional Design Methodology with Constraint Markov Chains.
Research Report RR-6993, INRIA, 2009.

[57] Benoît Caillaud, Benoit Delahaye, Kim G. Larsen, Axel Legay, Mikkel Larsen Pedersen,
and Andrzej Wasowski. Compositional design methodology with constraint markov chains.
In Proceedings of the 7th International Conference on Quantitative Evaluationof SysTems
(QEST) 2010. IEEE Computer Society, 2010.

[58] Stephen L. Campbell, Jean-Philippe Chancelier, and Ramine Nikoukhah. Modeling and
Simulation in Scilab/Scicos. Springer, 2006. ISBN 0-387-27802-8.

[59] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli. The theory of latency-insensitive
design.IEEE Transactions on Computer-Aided Design of Integrated Circuits andSystems,
20(9):1059–1076, 2001.

[60] Luca P. Carloni, Roberto Passerone, Alessandro Pinto, and Alberto L. Sangiovanni-
Vincentelli. Languages and tools for hybrid systems design.Foundations and Trends in
Electronic Design Automation, 1(1/2), 2006.

[61] P. Caspi, A. Girault, and D. Pilaud. Automatic distribution of reactive systems for asyn-
chronous networks of processors.IEEE Trans. on Software Engineering, 25(3):416–427,
1999.

[62] Paul Caspi and Marc Pouzet. A co-iterative characterization of synchronous stream func-
tions. Electr. Notes Theor. Comput. Sci., 11, 1998.

[63] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, andFreddy Y. C. Mang. Syn-
chronous and bidirectional component interfaces. InProc. of the 14th International Confer-
ence on Computer Aided Verification (CAV’02), volume 2404 ofLecture Notes in Computer
Science, pages 414–427, 2002.

[64] Thomas Chatain, Alexandre David, and Kim G. Larsen. Playing gameswith timed
games. Research Report LSV-08-34, Laboratoire Spécification et Vérification, ENS Cachan,
France, December 2008. 15 pages.

[65] K. Chatterjee, K. Sen, and T. A. Henzinger. Model-checking omega-regular properties of
interval Markov chains. InFoSSaCS, volume 4962 ofLNCS, pages 302–317. Springer, 2008.

[66] W.K. Chen.Applied Graph Theory. North Holland, 1971.

174

[67] F. Ciesinski and M. Größer. On probabilistic computation tree logic. InValidation of
Stochastic Systems, volume 2925 ofLNCS, pages 147–188. Springer, 2004.

[68] The SPEEDS Consortium. Speeds methodology - a white paper, 2008.

[69] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, andA. Yakovlev. Complete state
encoding based on the theory of regions. InProc. 2nd Int. Symposium on Advanced Research
on Asynchronous Circuits and Systems, pages 36–47. IEEE Computer Society Press, 1996.

[70] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, andA. Yakovlev. Deriving petri
nets from finite transition systems.IEEE Transactions on Computers, 47(8):859–882, 1998.

[71] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, andA. Yakovlev.Logic Synthesis
of Asynchronous Controllers and Interfaces. Springer, 2002.

[72] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Synthesizing petri nets from
state-based models. InProceedings of ICCAD’95, pages 164–173. IEEE Computer Society
Press, 1995.

[73] Werner Damm and David Harel. LSCs: Breathing life into message sequence charts.Formal
Methods in System Design, 19(1):45–80, 2001.

[74] S. Dasgupta, D. Potop-Butucaru, B. Caillaud, and A. Yakovlev. From weakly endochronous
systems to delay-insensitive circuits. InProceedings of the second international workshop
on formal methods for globally asynchronous locally synchronous design (FMGALS 2005),
2005.

[75] Luca de Alfaro. Game models for open systems. InVerification: Theory and Practice,
volume 2772 ofLecture Notes in Computer Science, pages 269–289. Springer, 2003.

[76] Luca de Alfaro, Leandro Dias da Silva, Marco Faella, Axel Legay, Pritam Roy, and Maria
Sorea. Sociable interfaces. In5th International Workshop on Frontiers of Combining
Systems (FroCos’05), volume 3717 ofLecture Notes in Computer Science, pages 81–105.
Springer, 2005.

[77] Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Rupak Majumdar, and Mariëlle
Stoelinga. The element of surprise in timed games. InProc. of the 14th International Con-
ference on Concurrency Theory (CONCUR’03), volume 2761 ofLecture Notes in Computer
Science, pages 142–156. Springer, 2003.

[78] Luca de Alfaro and Thomas A. Henzinger. Interface automata. InProceedings of the Ninth
Annual Symposium on Foundations of Software Engineering, pages 109–120. ACM Press,
2001.

[79] Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga. Timed interfaces. InProc.
of the 2nd Workshop on Embedded Software (EMSOFT’02), volume 2491 ofLecture Notes
in Computer Science, pages 108–122. Springer, 2002.

[80] Benoît Delahaye, Benoît Caillaud, and Axel Legay. Compositional Reasoning on (Proba-
bilistic) Contracts. Research Report RR-6970, INRIA, 2009.

175

[81] Benoît Delahaye, Benoît Caillaud, and Axel Legay. Probabilistic contracts : A com-
positional reasoning methodology for the design of systems with stochastic and/or non-
deterministic aspects.Formal Methods in System Design, 2011. to appear.

[82] Benoît Delahaye and Benoît Caillaud. A model for probabilistic reasoning on assume/guar-
antee contracts. Research Report 6719, INRIA, 2008.

[83] Benoît Delahaye, Benoît Caillaud, and Axel Legay. Probabilistic contracts: A composi-
tional reasoning methodology for the design of stochastic systems. InProc. of the 10th In-
ternational Conference on Application of Concurrency to System Design (ACSD’10), Braga,
Portugal, June 2010.

[84] Jörg Desel and Wolfgang Reisig. The synthesis problem of petri nets.Acta Inf., 33(4):297–
315, 1996.

[85] Laurent Doyen, Thomas A. Henzinger, Barbara Jobstmann, andTatjana Petrov. Interface
theories with component reuse. In L. de Alfaro and J. Palsberg, editors, Proc. of the 8th
International Conference on Embedded Software (EMSOFT’08), pages 79–88. ACM Press,
2008.

[86] M. Droste and R.M. Shortt. Petri nets and automata with concurrency relations - an ad-
junction. In M. Droste and Y. Gurevich, editors,Semantics of Programming Languages and
Model Theory, pages 69–87, 1993.

[87] N. Cutland (ed.).Nonstandard analysis and its applications. Cambridge Univ. Press, 1988.

[88] Andrzej Ehrenfeucht and Grzegorz Rozenberg. Theory of2-structures, part i: Clans, basic
subclasses, and morphisms.Theor. Comput. Sci., 70(3):277–303, 1990.

[89] Andrzej Ehrenfeucht and Grzegorz Rozenberg. Theory of2-structures, part ii: Representa-
tion through labeled tree families.Theor. Comput. Sci., 70(3):305–342, 1990.

[90] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, Stephen
Neuendorffer, S. Sachs, and Yuhong Xiong. Taming heterogeneity - the ptolemy approach.
Proc. of the IEEE, 91(1):127–144, 2003.

[91] H. Fecher, M. Leucker, and V. Wolf. Don’t Know in probabilistic systems. InSPIN, volume
3925 ofLNCS, pages 71–88. Springer, 2006.

[92] G. Feuillade. Modal specifications are a syntactic fragment of the mu-calculus. Research
Report RR-5612, INRIA, June 2005.

[93] A.F. Filippov. Differential Equations with Discontinuous Right-hand Sides. Wiley, 1988.
ISBN 978-9027726995.

[94] Cédric Fournet, C. A. R. Hoare, Sriram K. Rajamani, and Jakob Rehof. Stuck-free con-
formance. InProc. of the 16th International Conference on Computer Aided Verification
(CAV’04), volume 3114 ofLecture Notes in Computer Science, pages 242–254. Springer,
2004.

176

[95] Angelo Gargantini, Dino Mandrioli, and Angelo Morzenti. Dealing with zero-time transi-
tions in axiom systems.Information and Computation, 150(2):119–131, 1999.

[96] M. Gondran and M. Minoux.Graphs and Algorithms. John Wiley, 1984.

[97] T. Grandpierre and Y. Sorel. From algorithm and architecture specifications to automatic
generation of distributed real-time executives: a seamless flow of graphs transformations. In
Proceedings MEMOCODE’03, Mont Saint-Michel, France, 2003.

[98] N. Halbwachs.Synchronous programming of reactive systems. Kluwer Academic Publish-
ers, 1993.

[99] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Asp.
Comput., 6(5):512–535, 1994.

[100] Thomas A. Henzinger and Joseph Sifakis. The embedded systems design challenge. In
Proc. of the 14th International Symposium on Formal Methods (FM’06), volume 4085 of
Lecture Notes in Computer Science, pages 1–15. Springer, 2006.

[101] H. Hermanns, U. Herzog, and J. Katoen. Process algebra forperformance evaluation.Theor.
Comput. Sci., 274(1-2):43–87, 2002.

[102] H. Hermanns, B. Wachter, and L. Zhang. Probabilistic CEGAR. InCAV, volume 5123 of
LNCS, pages 162–175. Springer, 2008.

[103] H. Hermans.Interactive Markov Chains. springer, 2002.

[104] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University
Press, 1996.

[105] Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L. Lee,Radu Serban, Dan E.
Shumaker, and Carol S. Woodward. SUNDIALS: Suite of nonlinear anddifferential/al-
gebraic equation solvers.ACM Transactions on Mathematical Software, 31(3):363–396,
September 2005.

[106] D. Hogrefe. OSI formal specification case study: the INRES protocol and service. Technical
Report 91-012, University of Bern, 1991.

[107] Richard P. Hopkins. Distributable nets. In Grzegorz Rozenberg,editor,Advances in Petri
Nets 1991, Papers from the 11th International Conference on Applicationsand Theory of
Petri Nets, volume 524 ofLecture Notes in Computer Science, pages 161–187. Springer,
1991.

[108] F. Hoppensteadt. Properties of solutions of ordinary differential equations with small pa-
rameters.Comm. on Pure and Applied Math., 24:807–840, 1971.

[109] INRIA Rennes.Proceedings of the Symposium on the Supervisory Control of Discrete Event
Systems, SCODES’2001, Paris, France, jul 2001.

[110] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS,
Geneva, September 1999.

177

[111] Yumi Iwasaki, Adam Farquhar, Vijay A. Saraswat, Daniel G. Bobrow, and Vineet Gupta.
Modeling time in hybrid systems: How fast is “instantaneous”? InIJCAI, pages 1773–
1781, 1995.

[112] D. Klink J. Katoen and M. R. Neuhauser. Compositional abstractionfor stochastic systems.
In Proceedings of the 7th International Conference on Formal Modeling and Analysis of
Timed Systems (FORMATS’09), LNCS, pages 195–211. Springer, 2009.

[113] B. Jonsson and K. G. Larsen. Specification and refinement of probabilistic processes. In
LICS, pages 266–277. IEEE Computer Society, 1991.

[114] J. Katoen, D. Klink, M. Leucker, and V. Wolf. Three-valued abstraction for continuous-time
Markov chains. InCAV, volume 4590 ofLNCS, pages 311–324. Springer, 2007.

[115] Robert Keller. Towards a theory of speed-independent modules. IEEE Transactions on
Computers, C-23(1):21–33, January 1974.

[116] Robert Keller. A fundamental theorem of asynchronous parallel computation.Lecture Notes
in Computer Science, 24:103–112, 1975.

[117] J. Klein, B. Caillaud, and L. Hélouët. Merging scenarios. InProceedings of the Ninth Inter-
national Workshop on Formal Methods for Industrial Critical Systems, FMICS’04, volume
133 of Electronic Notes in Theoretical Computer Science, pages 193–215, Linz, Austria,
2005.

[118] H. Kopetz. Real-Time Systems, Design Principles for Distributed Embedded Applications.
Kluwer Academic Publishers, 1997.

[119] K. G. Larsen. Modal specifications. InAVMS, volume 407 ofLNCS, pages 232–246.
Springer, 1989.

[120] K. G. Larsen and A. Skou. Compositional verification of probabilistic processes. InCON-
CUR, volume 630 ofLNCS, pages 456–471. Springer, 1992.

[121] K. Guldstrand Larsen, U. Nyman, and A. Wasowski. On modal refinement and consistency.
In CONCUR, volume 4703 ofLNCS, pages 105–119. Springer, 2007.

[122] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. Modal I/O automata for
interface and product line theories. InProgramming languages and systems, 16th European
Symposium on Programming, ESOP 2007, pages 64–79, 2007.

[123] Edward A. Lee and Alberto L. Sangiovanni-Vincentelli. A framework for comparing models
of computation. IEEE Trans. on CAD of Integrated Circuits and Systems, 17(12):1217–
1229, 1998.

[124] Edward A. Lee and Haiyang Zheng. Operational semantics of hybrid systems. InHSCC,
pages 25–53, 2005.

[125] Edward A. Lee and Haiyang Zheng. Leveraging synchronouslanguage principles for het-
erogeneous modeling and design of embedded systems. InEMSOFT, pages 114–123, 2007.

178

[126] T. Lindstrøm. An invitation to nonstandard analysis. In N.J. Cutland, editor, Nonstandard
Analysis and its Applications, pages 1–105. Cambridge Univ. Press, 1988.

[127] N. López and M. Núñez. An overview of probabilistic process algebras and their equiva-
lences. InValidation of Stochastic Systems, volume 2925 ofLNCS, pages 89–123. Springer,
2004.

[128] G. Lüttgen and W. Vogler. Conjunction on processes: Full abstraction via ready-tree seman-
tics. Theoretical Computer Science, 373:19–40, 2007.

[129] N. Lynch and E. Stark. A proof of the Kahn principle for input/output automata.Information
and Computation, 82(1):81–92, 7 1989.

[130] Nancy Lynch and Mark R. Tuttle. An introduction to Input/Output automata.CWI-quarterly,
2(3), 1989.

[131] S. Mac Lane and G. Birkhoff.Algebra. Chelsea Publishing Company, 1967.

[132] Alain Martin. The limitations of delay-insensitivity in asynchronous circuits. technical
report CS-TR-90-02, Caltech, 1990.

[133] L. Mazaré. Using unification for opacity properties. InProc. of the Workshop on Issues in
the Theory of Security (WITS’04), 2004.

[134] Pieter J. Mosterman, Justyna Zander, Gregoire Hamon, and Ben Denckla. Towards Com-
putational Hybrid System Semantics for Time-Based Block Diagrams. In3rd IFAC Con-
ference on Analysis and Design of Hybrid Systems (ADHS’09), pages 376–385, Zaragoza,
Spain, September 2009. keynote paper.

[135] Madhavan Mukund. Petri nets and step transition systems.Int. J. Found. Comput. Sci.,
3(4):443–478, 1992.

[136] David E. Muller and W. S. Bartky. A theory of asynchronous circuits. InProceedings of an
International Symposium on the Theory of Switching, pages 204–243. Harvard University
Press, 1959.

[137] M. Najafi and R. Nikoukhah. Implementation of Hybrid Automata in Scicos. In IEEE
Multi-conference on Systems and Control, 2007.

[138] Ulrik Nyman. Modal Transition Systems as the Basis for Interface Theories and Product
Lines. PhD thesis, Aalborg University, Department of Computer Science, September 2008.

[139] Julien Ouy, Jean-Pierre Talpin, Loïc Besnard, and Paul Le Guernic. Separate compilation of
polychronous specifications.Electr. Notes Theor. Comput. Sci., 200(1):51–70, 2008.

[140] D. Potop-Butucaru and B. Caillaud. Correct-by-construction asynchronous implementation
of modular synchronous specifications. InProceedings of the Fifth International Conference
on Application of Concurrency to System Design, ACSD 2005, 2005.

[141] D. Potop-Butucaru, B. Caillaud, and A. Benveniste. Concurrency in synchronous systems.
In Proceedings of the International Conference on Application of Concurrency to System
Design, ACSD 2004, 2004.

179

[142] D. Potop-Butucaru, B. Caillaud, and A. Benveniste. Concurrency in synchronous systems.
Research Report 5110, INRIA, feb 2004. Also published as IRISA Internal Publication
PI-1605.

[143] D. Potop-Butucaru, B. Caillaud, and A. Benveniste. Concurrency in synchronous systems.
Formal Methods in System Design, 28(2), mar 2006.

[144] D. Potop-Butucaru, R. de Simone, and J.-P. Talpin. The synchronous hypothesis and syn-
chronous languages. In R. Zurawski, editor,The Embedded Systems Handbook, 2005. CRC
Press.

[145] Dumitru Potop-Butucaru, Robert de Simone, and Yves Sorel. Necessary and sufficient con-
ditions for deterministic desynchronization. InProceedings of the 7th ACM & IEEE inter-
national conference on embedded software, EMSOFT 2007, pages 124–133, 2007.

[146] Dumitru Potop-Butucaru, Robert de Simone, Yves Sorel, and Jean-Pierre Talpin. From
concurrent multi-clock programs to deterministic asynchronous implementations. In Proc.
of the ninth international conference on application of concurrency to system design, ACSD
2009, pages 42–51, 2009.

[147] P. Potop-Butucaru and B. Caillaud. Correct-by-construction asynchronous implementation
of modular synchronous specifications.Fundamenta Informaticae, 78(1):131–159, 2007.

[148] J-B. Raclet. Residual for component specifications. InFACS, 2007.

[149] Jean-Baptiste Raclet.Quotient de spécifications pour la réutilisation de composants. PhD
thesis, Université de Rennes I, december 2007. (In French).

[150] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoit Caillaud, and Roberto
Passerone. Why are modalities good for interface theories? InProc. of the 9th International
Conference on Application of Concurrency to System Design (ACSD’09), pages 119–127.
IEEE Computer Society Press, 2009.

[151] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoit Caillaud, and Roberto
Passerone. Why are modalities good for interface theories? Research Report 6899, IN-
RIA, 2009.

[152] Jean-Baptiste Raclet, Albert Benveniste, Benoît Caillaud, Axel Legay, and Roberto
Passerone. Modal interfaces: Unifying interface automata and modal specifications. In
Proc. 9th International Conference on Embedded Software (EMSOFT 2009), pages 87–96.
IEEE Computer Society, oct 2009.

[153] Jean-Baptiste Raclet, Albert Benveniste, Benoît Caillaud, Axel Legay, and Roberto
Passerone. A modal interface theory for component-based design.Fundamenta Informati-
cae, 107:1–32, 2011.

[154] P.J. Ramadge and W.M. Wonham. On the supremal controllable language of a given lan-
guage.SIAM Journal of Control and Optimization, 25:637–659, 1987.

180

[155] P.J. Ramadge and W.M. Wonham. Supervisory control of a class ofdiscrete event processes.
SIAM Journal of Control and Optimization, 25:206–230, 1987.

[156] Ramine Nikoukhah. Hybrid dynamics in Modelica: Should all events beconsidered syn-
chronous? InFirst Internation Workshop on Equation-Based Object Oriented Languages
and Tools (EOOLT 2007), pages 37–48, Berlin, Germany, 2007.

[157] W. Reisig. Petri nets. InEATCS Monographs on Theoretical Computer Science, volume 4.
Springer, 1985.

[158] N. Rezg, X. Xie, and A. Ghaffari. Supervisory control in discrete event systems using the
theory of regions. In R. Boel and G. Stremersch, editors,Discrete Event Systems: Analysis
and Control, pages 391–398. Kluwer Academic Publishers, 2000.

[159] Laurie Ricker and Benoiît Caillaud. Revisiting state-baed models for synthesizing optimal
communicating decentralized discrete-event controllers. InEuropean Control Conference
2009 (ECC’09), Budapest, Hungary, aug 2009.

[160] Laurie Ricker and Benoît Caillaud. Mind the gap: Expanding communication options in
decentralized discrete-event control. In46th IEEE Conference on Decision and Control,
New Orleans, LA, USA, 2007.

[161] A. Robinson.Non-Standard Analysis. Princeton Landmarks in Mathematics, 1996. ISBN
0-691-04490-2.

[162] Heinrich Rust.Operational semantics for timed systems: a non-standard approach to uni-
form modeling of timed and hybrid systems, volume 3456 ofLecture notes in computer
science. Springer, 2005.

[163] A. Schrijver.Theory of linear and integer programming. Wiley, April 1998.

[164] K. Sen, M. Viswanathan, and G. Agha. Model-checking Markovchains in the presence of
uncertainties. InTACAS, volume 3920 ofLNCS, pages 394–410. Springer, 2006.

[165] M. Singh and M. Theobald. Generalized latency insensitive systemsfor gals architectures.
In Proceedings FMGALS2003, Pisa, Italy, 2003.

[166] E. Stark. Concurrent transition systems.Theoretical Computer Science, 64(3):221–269,
1989.

[167] J.-P. Talpin, P. Le Guernic, S. K. Shukla, R. Gupta, and F. Doucet. Formal refinement
checking in a system-level design methodology.Fundamenta Informaticae, 62(2):243–273,
2004.

[168] J.-P. Talpin, D. Potop-Butucaru, J. Ouy, and B. Caillaud. Compositional synthesis of latency-
insensitive systems from multi-clocked synchronous specifications. Research report 1730,
IRISA, jun 2005.

[169] J.-P. Talpin, D. Potop-Butucaru, J. Ouy, and B. Caillaud. From multi-clocked synchronous
processes to latency-insensitive modules (short paper). InProceedings of the fifth ACM

181

International Conference on Embedded Software (Emsoft), pages 282–285, Jersey City, NJ,
USA, sep 2005. ACM Press.

[170] A. Tarski.A Decision Method for Elementary Algebra and Geometry. RAND Corp., 1948.

[171] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.Pacific Journal of
Mathematics, 5:285–309, 1955.

[172] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Journal on
Software — Concepts and Tools, 17(3):103–120, 1996.

[173] Jan Tijmen Udding. A formal model for defining and classifying delay-insensitive circuits
and systems.Distributed Computing, 1(4):197–204, 1986.

[174] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction inbisimulation se-
mantics. InProc. IFIP Congress, pages 613–618. North Holland / IFIP, 1989.

[175] W. Vogler. Concurrent implementation of asynchronous transition systems. InProceedings
of ICATPN’99, volume 1639 ofLNCS, pages 284–303. Springer-Verlag, 1999.

[176] Michael Winokur, Susanne Graf, and Bernhard Josko. Contract-based system design - the
speeds approach. InProceedings of the 2008 INCOSE International Symposium, 2008.

[177] A. Yakovlev. Designing control logic for counterflow pipeline processor using petri nets.
Formal Methods in System Design, 12:39–71, 1998.

[178] Hitoshi Yanami and Hirokazu Anai. Synrac: a maple toolbox for solving real algebraic
constraints.ACM Communications in Computer Algebra, 41(3):112–113, September 2007.

[179] K. Yun and D. Dill. Automatic synthesis of extended burst-mode circuits. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 18(2):101–132, feb. 1999.

	Introduction
	Introduction
	Modular design of embedded systems with interface theories
	Introduction
	A quick review of industry needs
	Anatomy of an interface theory
	A variety of interface theories

	Analysis and design of heterogeneous systems
	Synthesis and control of concurrent systems
	organization of the document

	I Interface Theories for System Design
	Modal interfaces
	Introduction
	Modal specifications
	The Framework
	Multiple Alphabets
	Implementation and refinement
	Operations on modal specifications

	Interface Automata
	On modal Interfaces
	Profiles
	The framework of modal interfaces
	Operations on modal interfaces
	On compatibility for modal interfaces

	Conclusion and future work

	Constraint Markov Chains
	Introduction
	Constraint Markov Chains
	Consistency, Refinement and Conjunction
	Consistency
	Refinement
	Conjunction

	Compositional Reasoning
	Deterministic CMCs
	Constraints and Decidability
	Related Work and Concluding Remarks

	II Heterogeneous Systems
	Asynchronous Implementation of Synchronous Specifications
	Introduction
	Informal discussion of the issues
	Previous work
	Contribution
	Outline

	The model
	Variables and labels
	Traces
	Generalized concurrent transition systems
	I/O causality. Channels and clocks
	Synchronous transition systems
	Synchronous and asynchronous composition
	Product states and product traces
	Projection operators. Traces of a GALS system

	Modelling and correctness of GALS implementations
	Examples
	Formal correctness criterion
	Modeling issues

	Correct desynchronization criteria
	Microstep weak endochrony
	Comparison with macrostep Weak Endochrony
	Comparison with related models
	Correctness results

	Conclusion. Future work
	Future work

	The Non-Standard Semantics of Hybrid Systems
	Introduction
	Non-standard analysis
	Construction of non-standard domains
	Non-standard reals and integers
	Integrals and differential equations
	Semantic domain for hybrid systems

	The SimpleHybrid Formalism
	Non-standard semantics
	The semantics
	Back to the examples

	Constructive semantics
	Off-the-shelf compilers
	Hitting balls example
	Experimental results
	Using Simulink
	Using the Sundials-based Prototype

	Related work
	Conclusion

	III Synthesis and Control of Concurrent Systems
	Distributing finite automata through Petri net synthesis
	Introduction
	The Petri Net Synthesis Problem
	Regions
	Representation Theorem

	A Polynomial Time Synthesis Algorithm
	Computing Tensions
	Solving the Separation Problems

	Adding Distribution Constraints
	Re-examining states separation
	Re-examining event/state separation

	From Distributable Nets to Distributed Automata
	Simple Distribution Scheme
	Optimized Distribution Scheme

	Case Studies in Distributing Reactive Automata
	Mutual Exclusion
	A Simplified INRES Protocol

	Conclusion

	Concurrent secrets
	Introduction
	Secrets, concurrent secrets, and the control problem
	Maximal permissive control enforcing concurrent opacity
	A case where the closure ordinal of K(,S) is transfinite
	A case where Sup K(L,S) is not regular

	Control enabling and -trees
	Concurrent secrets with regular opacity control
	conclusion

