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This paper details a partial order semantics for families of scenarios represented by

High-Level Message Sequence Charts (HMSCs): graph grammars generating event

structures are used to represent HMSCs. A decision procedure for HMSC equivalence is

then described. This can be considered as a first step towards the formal manipulation of

scenarios.

1. Introduction

1.1. Scenario-based languages

The supervision and formalisation of the very first phases of design in software devel-

opment are the objects of increasing attention. The passage from abstract to formal

descriptions appears to be a crucial stage. Formal techniques often neglect this aspect,

which has been marginalised by methodological aspects. The appearance of scenario-

based languages is a response to this deficiency, in particular, in the context of distributed

systems.

Scenarios consist of drawings, in which vertical lines model time elapsing on communi-

cating entities, and arrows model message exchanges. They have many advantages: they

are easily understood, even by the non-specialist; they bring a clear graphical representa-

tion of complex systems, and abstract most of the implementation details, concentrating

on causality and independence of events, the two cornerstones of distributed systems

modelling; and though informal, they are precise enough to contain information about

processes, message types, etc.

Scenarios are widely used in telecommunication standards, where they help document

a model, and provide a global understanding of distributed protocols. They are also used

† This paper is a complete and revised version of a lecture given at the workshop on Theory and Applications of

Graph Transformations (GRATRA 2000), which was a satellite event of ETAPS 2000 in Berlin, March 2000.
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to present simulation traces or to specify properties, as in the SDL tools SDT† or Object-

Géode‡, or in the verification tool SPIN (Holzmann 1997) for instance.

Several formal notations such as ‘Message Sequence Charts’ (MSCs) have been pro-

posed. MSCs are mostly used for describing the activities of communicating entities in

distributed systems. A closely related formalism called Sequence Diagrams can be found

in the Unified Modelling Language (OMG 1997) (a convergence between these two no-

tations is expected in the near future). An MSC graphically describes the communication

between processes (called Instances). MSCs give a very intuitive and visual representation

of system behaviours.

However, scenarios are not used at all stages of development, and their use is often

restricted to documentation purposes. The main reason is the lack of flexibility when

composing scenarios. The difficulty is introduced by the number of scenarios that have to

be combined so that a complete system specification can be obtained. A simple answer to

this problem is to build families of scenarios, using a kind of ‘scenario automaton’. The

most elaborate proposal for MSCs that follows this idea is called ‘High level MSC’ or

HMSC (Rudolph et al. 1996). HMSCs define MSC compositions with operators such as

sequencing, choice, environmental composition and hierarchical composition. An HMSC

is a graph, the nodes of which can be starting nodes, end nodes, choices, MSCs or

references to other HMSCs. In order to keep to the essential, this paper will only deal

with a subset of HMSCs, limited to choice and sequencing operators.

1.2. Why a partial order semantics?

The question of MSC semantics has been treated in many papers (Grabowski et al. 1993;

Reniers and Mauw 1994; Mauw 1996; Leue and Ladkin 1994a; Leue and Ladkin 1994b;

Leue and Ladkin 1994c; Kosiuczenko 1997), but the semantics for HMSCs is still in its

infancy. Providing a good semantics with enough expressiveness and computability for

infinite families of MSCs appeared a difficult challenge. A first interleaving semantics for

HMSCs was proposed in Reniers and Mauw (1996) and Reniers (1998), and is now con-

sidered as the ‘official’ semantics of HMSCs. More recently, Katoen and Lambert (1998)

and Heymer (1998) defined partial order semantics. Another vision of HMSCs was pro-

posed in Harel and Damm (1998), where some scenarios are ‘mandatory’, and some are

‘optional’.

One of the main advantages of MSCs is that the independence of events is represented

graphically. This can be the case between two events belonging to different instances or

when two events of the same instances are in the same coregion (depicted by a dashed

line in Figure 1b). A coregion releases the sequential order defined along an instance

axis, and describes a potential event independence. The interleaving semantics based on

the set of total orderings defined by the notation does not capture the independence

and does not distinguish between the two situations of Figure 1. In the leftmost figure,

† See http://www.telelogic.com/products/tau/languages/msc.cfm
‡ See http://www.telelogic.com/products/objectgeode/overview.cfm
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Fig. 1. Example MSCs: a) non-determinism b) potential parallel execution

two sequences a; b and b; a are allowed, while in the rightmost figure, a and b could be

executed concurrently. This is the usual argument for a partial order semantics.

A second aspect concerns the semantics of concatenation (sequential composition,

written M1;M2 from now on) of two MSCs M1 and M2. Many tools use a strong

sequential composition that, in contrast to the standard, considers that every event of

the first MSC M1 must precede every event of the second MSC M2. This implicitly

defines a synchronisation barrier between each pattern of behaviour as described by the

MSCs. This reduces HMSCs to finite state machines. This low expressive power is not

consistent with the goal of a high level specification language. We agree with the standard

that a weaker sequential composition, allowing the description of infinite behaviours

with possibly unbounded communication queues and asynchrony between events, should

be used. Problems of this kind are to be solved in a further step of the refinement of

the specification. We have in mind that HMSCs are intended to describe incomplete

specifications.

The semantics of choices is the third point. The representation of system behaviours by

MSCs allows for the introduction of non-local choices. For example, HMSC P0, presented

in Figure 3-a, includes an exclusive distributed choice between two scenarios M2 and M3.

To be consistent with the specification, an implementation will have to ensure that only

these two scenarios M1;M2 and M1;M3 can be performed, with the decision taken after

M1. As the decision to perform M2 or M3 is distributed, this cannot be done without

a synchronisation between A and B. HMSCs P0 in Figure 3-a and P1 in Figure 3-b are

different, as in P1, the choice to perform M1;M2 or M1;M3 is taken at the beginning of the

specification, and by a single instance, which is not the case in P0. A semantics of HMSCs

must help in the detection of such problems, and take into account the control structure

expressed within an HMSC, that is, where decisions take place when an alternative occurs.

Such a semantics should distinguish between the specifications given in Figure 3-a and

Figure 3-b.

Prime event structures (Winskel et al. 1981) are such a model that both uses a non-

interleaving semantics, and can help to underline choices. Of course, these models can be

infinite when representing an infinite state-space system, but we will show that a finite

representation of their covering graphs can be computed using a graph grammar.

Language equality on HMSCs is reputed to be undecidable (Muscholl et al. 1998;

Caillaud et al. 2000). Nevertheless, this does not mean that there is no way of comparing

two specifications. Following this idea, we define an equivalence of HMSCs as the iso-

morphism of their event structure representation. This equivalence turns out to be strictly
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more discriminating than language equality. The decision procedure relies on existing

results, allowing us to decide in polynomial time whether two graphs are isomorphic or

not in the case of deterministic graph grammars generating finite branching connected

graphs (Caucal 1992). The hard technical point is to ensure the finite branching type of our

graphs. This is made through a grammar transformation that eliminates infinite branching

in graph grammars obtained from HMSCs, while preserving equivalence properties.

1.3. Outline of the paper

This paper is organised as follows. Section 2 introduces the Message Sequence Charts

notation, and their partial order semantics. Section 3 recalls basic notions about graph

grammars, and details the computation of a graph grammar generating an infinite event

structure from a HMSC. Section 4 proposes an equivalence decision algorithm based on

the semantics of Section 2.

2. bMSCs and HMSCs

Message Sequence Charts are used to give graphical definitions of distributed systems

and the communications between the components of these systems. The purpose of this

section is to describe just the features and vocabulary we will use in the rest of the paper,

rather than provide a complete description of MSCs, which can be found in the ITU

standard Z.120 (ITU 1996) and in Reniers (1998).

2.1. bMSCs

A bMSC (basic MSC) defines a simple scenario, for example, an abstraction of a system

behaviour. Within bMSCs, processes are called instances, and are represented by a vertical

axis along which events are put in a top-down order. An event can be an emission

(events e1 and e4 in Figure 2) or a reception of a message (e3 and e6) an operation (set,

reset, timeout) on a timer (e2 and e5), an atomic action (event e7). Message exchanges

are represented by arrows labelled by message names from the emitting to the receiving

instance. No assumption whatsoever is made about the communication medium. A bMSC

defines a precedence relation between events:

— The emission of a message precedes its reception.
— For any event e, all events situated above e on the same instance axis are predecessors

of e. The order on the axis can be relaxed in some parts of the instance called coregions.

These coregions are represented by dashed parts of the instance axis (as in Figure

1-b). Events situated in a coregion are not necessarily concurrent: their order is not

specified yet, or is not important for the specification.

The set of finite bMSCs is denoted by M.

2.2. HMSCs

A bMSC defines only one scenario. Extending bMSCs requires a higher-level notation,

allowing for the specification of a set of scenarios, made up of combinations of bMSCs.
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Fig. 2. An example bMSC.

An HMSC can be seen as a high level graph, the nodes of which are start nodes, end

nodes, bMSCs, connection symbols, or references to other HMSCs.

HMSCs allow for the use of alternatives, and therefore define sets of scenarios. HMSC

P0 in Figure 3-a defines two possible scenarios, represented in Figure 4. An HMSC can

also describe an infinite behaviour, as in Figure 5.
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Fig. 3. a) HMSC P0 (with non-local choice) b) HMSC P1
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Fig. 4. Scenarios defined by the HMSCs in Figure 3-a and Figure 3-b
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Fig. 5. HMSC P2

We now define a convenient notation for manipulating HMSCs. The structure of the

graph is expressed by means of regular expressions over bMSCs. To each HMSC, we

associate an expression: P ::= ε | M;P | ∑
k∈1..K

Mk;Pk | recX.(P ) | X, where M ∈ M is a

bMSC, ; is a sequence operator, ε denotes the end of an HMSC, X is a bound variable,∑
k∈1..K

Mk;Pk is a choice on a finite number of expressions of the kind M;P , and rec denotes

recursion. For a given k, Mk;Pk will be called a branch of the choice. An instance is said

to be active in a branch if it performs at least one action in this branch. The expression

associated to the HMSC in Figure 5 is P2 ::= recX.(M1;X +M2;M3;X).

2.3. Partial order semantics for MSCs

Let us consider a bMSC M describing the behaviour of a finite set of instances, hereafter

called I . Two events performed by the same instance are ordered according to their

coordinates on the instance axis, provided they are not in a coregion. If they are performed

by different instances, they are ordered if and only if they are separated by at least one

message exchange. So, a bMSC defines a partial order between events. In Figure 2, e1 and

e4 are ordered, but e1 and e2 are not. The semantics of a bMSC can be formalised by a

poset < E,6, α, A, I >, where E is a set of events, 6 is a partial order relation (reflexive,

transitive and antisymmetric binary relation) on E called the causal dependence relation,

α is a labelling function from E to A× I , and A is a set of atomic action names ( !m and

?m will denote sending and receiving of a message, set(T ), reset(T ) and timeout(T ) will

denote operations on a timer T , and atomic actions will be labelled by the action name

enclosed in the rectangular action symbol).

Given an event e ∈ E, we write φ(e) = i when ∃a ∈ A | α(e) = (a, i) (event e is performed

by instance i ∈ I). The partial ordering on events easily extends to sequences of bMSCs.

Let M1 =< E1,61, α1, A1, I1 > and M2 =< E2,62, α2, A2, I2 > be the partial orders

defined by two MSCs. The concatenation of M1 and M2, written M1 ◦M2 is defined by

M1 ◦M2 =< E1 ∪ E2,6M1◦M2
, α1 ∪ α2, A1 ∪ A2, I1 ∪ I2 >,
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where:

6M1◦M2
= 61 ∪ 62 ∪{(e1, e2) ∈ E1 × E2 |
∃(e′1, e′2) ∈ E1 × E2 ∧ φ1(e′1) = φ2(e′2) ∧ e1 61 e

′
1 ∧ e′2 62 e2}.

More intuitively, a concatenation ‘glues’ together two MSCs along their common

instance axis. This operation is similar to the local sequencing of orders defined by

Pratt (1986)†, and is often referred to in the MSC-related literature as the weak sequential

composition.

Thus, when the choice operator is included, it can be seen that an HMSC defines a set

of scenarios, which are the concatenations of bMSCs along all its paths. Such sets will be

called partial order families (POF for short) in the rest of this paper. POF semantics for

HMSCs have been defined by Katoen and Lambert (1998) and Heymer (1998). However,

the POF representation abstracts the branching information at choices, which can be a very

important characteristic of an HMSC, as shown previously. Furthermore, POFs cannot

be manipulated easily because they are infinite. We now define a finite representation of

an HMSC based on event structures and graph grammars that preserves both the partial

order semantics of bMSCs and the branching information of HMSCs. This representation

will be computed directly from an HMSC, and will allow for equivalence decision.

2.4. An event structure semantics for HMSCs

A prime event structure (Winskel et al. 1981), which we will abbreviate to ES, is a 6-tuple

< E,6, ], α, A, I >, where E, A , I, 6 and α have the same meaning as in Section 2.3, and

] is a symmetric anti-reflexive binary relation called conflict relation, such that

∀e ∈ E, ∀e′ ∈ E, e]e′ ⇔ ∀e′′ ∈ E, (e′ 6 e′′ ⇒ e]e′′)

(conflicts are inherited through the causality relation).

A conflict between two events e and e′ is said to be minimal if it cannot be deduced from

the conflict inheritance property, that is, 6 ∃e′′ ∈ E | (e′′ 6 e′ ∧ e]e′′ ) ∨ (e
′′
6 e ∧ e′]e′′ ). An

event structure defines a domain of configurations, which can be seen as possible states of

the system. A configuration is a subset C of E that is conflict-free ( ∀e ∈ C, @e′ ∈ C | e]e′),
and causally downward-closed (∀e ∈ C, e′ 6 e ⇒ e′ ∈ C). A maximal configuration of an

ES S =< E,6, ], α, A, I > is a subset C of E such that

∀e ∈ E − C, ∃e′ ∈ C | e′]e
For example, C ∪ {e} is not a configuration.

The event structure defined by the application of the conflict operation to two ESs S1

and S2 is denoted S1]S2 and is the ES:

S1]S2 =< E1 ∪ E2,61 ∪ 62, ], α1 ∪ α2 >, such that ] = (E1 × E2) ∪ (E2 × E1) ∪ ]1 ∪ ]2.

We can now generalise the notation to an arbitrary number of ES with ]
i∈1..n

(Si). We also

† The same operation has been defined by Rensink and Wehrheim (1994) for process algebra
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extend the concatenation operator ◦ such that for a bMSC M and a structure S:

M ◦ S =< EM ∪ ES ,6M◦S , ]M, αM ∪ αS , AM ∪ AS , IM ∪ IS > .

Clearly, an event structure semantics can be associated to an HMSC, by constructing the

order relation with the sequence operator along all branches of the HMSC, and requiring

any pair of events on different branches to be conflicting. We can define inductively the

ES of index k associated to any HMSC P ∈ (M, ; ,Σ, rec, ε):

— ES0(P ) =< ∅, ∅, ∅, ∅, ∅ >
— ESk(M;P ) = M ◦ ESk−1(P )

— ESk( Σ
i∈1..n

Ei = ]
i∈1..n

(ESk−1(Ei))

— ESk(recX(P )) = ESk−1(P[X:=recX.(P )])

— ESk(ε) =< ∅, ∅, ∅, ∅, ∅ >
The potentially infinite event structure associated to an HMSC P is ESω(P ).

2.5. Covering graphs

An event structure is often represented by a graph that associates a vertex to each event,

an edge labelled with ] to each minimal conflict, and a directed edge to each pair in

the covering of the order relation. The other conflict and causality edges can be deduced

from the graph representation, using the conflict inheritance property and the transitivity

of the order relation. Furthermore, when no confusion can arise, we will represent events

by their action name.

Infinite behaviours lead to infinite graphs. Unfortunately, the resulting graph is not

necessarily a regular graph, as an event can be connected to an infinite number of events

via a conflict. Figure 7 shows the graphical representation of the event structure obtained

from the HMSC in Figure 6 (for clarity, all edges are represented, and a dashed line

leaving a node represents an infinite set of outgoing edges). By restricting this graph to

events labelled by a and conflict edges, we can extract the graph in Figure 8, which is a

well-known irregular graph.

a

A
M1

b

B
M2

Fig. 6. HMSC with an irregular ES representation

In order to solve the problem of regularity caused by conflict edges in the graph

representation of an event structure, we define a new type of edge, called a conflict
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Fig. 7. Irregular ES graph for HMSC of Figure 6

#a a # a # a #

# # #

#

Fig. 8. An irregular subgraph extracted from the graph in Figure 7

inheritance edge. This relation will allow an event e′ to inherit all conflicts from an event

e, without being causally dependent on e.

An ES can be represented by a covering graph: < E,−→, , ]c, α, A, I >, such that:

— −→= {(e, e′) ∈6| e 6= e′∧ 6 ∃e′′ ∈ E − {e, e′}, e 6 e′′ 6 e′} is the covering of 6,

—  is a conflict inheritance relation: e1  e2 if and only if ∀e′ ∈ E | e′]e1, then e′]e2,

— ]c = {(e, e′) |6 ∃e′′ ∈ E, ((e′′  e∨ e′′ 6 e)∧ e′′]e′)∨ ((e
′′
 e′ ∨ e′′ 6 e′)∧ e′′]e)} is the set

of minimal conflicts with respect to 6 and  .

The conflict inheritance relation allows us to generate covering graphs such that a finite

set of conflict edges starts from any event e ∈ E (∀e ∈ E, {e′ | e]ce′} is finite).

A covering graph of the event structure of Figure 7 is represented in Figure 9. The new

relation  is represented by dotted arrows, and other edges have the same meaning.

# #

# # # #

a b
#

a b a b

babababa

Fig. 9. Regular covering graph for HMSC Figure 6

Let M ∈ M be a bMSC, and Gr(M) =< E,−→, , ], α, A, I > be its (finite) covering

graph. We define the following operations:

— For all i ∈ I, Ei = {e ∈ E | φ(e) = i}.
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— Inf(Gr(M)) = {e ∈ E | ∀e′ ∈ E, (e′, e) 6∈−→} is the set of minimal events of Gr(M)

with respect to −→.

— Sup(Gr(M)) = {e ∈ E | ∀e′ ∈ E, (e, e′) 6∈−→} is the set of maximal events of Gr(M)

with respect to −→.

— For all i ∈ I, Infi(Gr(M)) = {e ∈ Ei | ∀e′ ∈ Ei, (e′, e) 6∈−→} is the set of minimal events

on instance i.

— For all i ∈ I, Supi(Gr(M)) = {e ∈ Ei | ∀e′ ∈ Ei, (e, e′) 6∈−→} is the set of maximal events

on instance i.

— Act(Gr(M)) = {i ∈ I | ∃e ∈ S, φ(e) = i}: is the set of instances that perform at least an

event within M.

We will also write EGr(M) and −→Gr(M)
for the vertices and causality edges of Gr(M). The

graphical representation of the covering graph of bMSC M1 in Figure 2 is represented in

Figure 10. For this example, we have the following sets:

— EA(Gr(M1)) = {e1, e6, e7}, EB(Gr(M1)) = {e2, e3, e4, e5},
— Inf(Gr(M1)) = {e1, e2},
— Sup(Gr(M1)) = {e5, e7},
— Act(Gr(M1)) = {A,B},
— InfA(Gr(M1)) = {e1}, InfB(Gr(M1)) = {e2},
— SupA(Gr(M1)) = {e7}, SupB(Gr(M1)) = {e5}.

!m2

timeout(timer1)

?m1

set(Timer1)!m1

?m2

a

Fig. 10. Gr(M1): covering graph of bMSC M1 in Figure 2

3. Graph grammar generation from an HMSC

An event structure semantics has been defined, but this representation of HMSCs may

be infinite. This section details how the infinite covering graph Gr(ESω(P )) of a Message

Sequence Chart P can be expressed finitely by a hyperedge replacement graph grammar.

First, a short introduction to hyperedge replacement grammars (Habel 1989) is given.

Then a method for generating graph grammars from an HMSC is described.

3.1. Graph grammars

Graph grammars can be considered as a generalisation of classical grammars in which

strings are replaced by graphs. Non-terminal elements are called hyperarcs, and terminal

elements are vertices and edges.
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S3

S1

S2

A

A

1 2 3 21 3

S3

S1

S2

S5S4 S6

S9S7 S8

A

Fig. 11 a) Hypergraph H b) rule R c) Hypergraph H ′:
derivation of H by R

A hyperarc is a word X = l.s1. · · · sn such that l is a letter from a finite alphabet L, and

s1. · · · sn is a list of vertices. Graphically, a hyperarc will be represented by a dashed line

linking vertices s1. · · · sn, and labelled by l. In the example of Figure 3.1-a, vertices s4, s5
and s6 are linked by a hyperarc labelled by A. This hyperarc will then be written A.s5.s6.s4.

A hypergraph is a pair G = (T ,H), where T is a finite graph (for instance a part of

a covering graph), and H is a set of hyperarcs linking vertices of T . Figure 3.1-a is an

example of a hypergraph containing one hyperarc.

A graph grammar G = (G0,R) consists of a hypergraph G0 called the axiom of the

grammar, and a set R of rewriting rules.

A rewriting rule is a pair r = (X,Y ), where X is a hyperarc called the left part of r, and

Y is a hypergraph called the right part of r. We shall often write this rule X . Y . Such

a rewriting rule indicates how a hyperarc X can be replaced by a pattern Y . In rule R

of Figure 3.1-b, a hyperarc labelled by A linking 3 vertices (1, 2 and 3) can be replaced

by a hypergraph with 6 vertices (including vertices 1, 2 and 3), 4 edges, and a hyperarc

labelled by A. The rewriting of a hyperarc X in a hypergraph M using a rule r = (X,Y )

can be performed in two steps:

— remove hyperarc X from M,

— replace vertices of X by the pattern defined by Y .

Note that this definition allows vertices of X to be deleted during the rewriting phase.

Let M and N be hypergraphs, and let r = (X,Y ) be a rule of a grammar G. We

will say that N is a direct derivation of M by rule (X,Y ) (written M −→G,(X,Y )
N if M

can be rewritten into N by replacing X by Y in M. A sequence of direct derivations

H −→G,(X1 ,Y1)
H1 −→G,(X2 ,Y2)

... −→G,(Xn,Yn)
Hn is called a derivation of length n. Hypergraph H ′ in

Figure 3.1-c shows the hypergraph obtained by derivation of hypergraph H of Figure

3.1-a by rule R of Figure 3.1- b.

Parallel derivation generalises direct derivation by enabling simultaneous hyperarc re-

placements. We write M =⇒G N (N is a parallel derivation of M by G) iff there exists a

set of rules P = (X1, Y1)...(Xn, Yn) of G, M comprises exactly n hyperarcs, and for any

permutation π on {1..n}, M −→G,(Xπ(1) ,Yπ(1))
... −→G,(Xπ(n) ,Yπ(n))

N.
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We will use [M] to denote the projection of a hypergraph M on its terminal edges.

Gω(M) denotes the possibly infinite graph generated from M, defined by Gω(M) =⋃
n∈IN

[Gn(M)], where G0(M) = M and Gn(M) =⇒G G
n+1(M).

3.2. Deriving graph grammars from an HMSC

Because we can use recursive definitions, HMSCs can define infinite event structures.

However, the covering graph of an HMSC can be represented finitely by a graph grammar.

Let P ∈ (M, ; ,Σ, rec, ε) be an HMSC, given as a regular expression on a set of bMSCs

B. The main role of a grammar construction algorithm is to associate a rewriting rule to

any sub-expression P ′ of P . Vertices and edges in the right parts of rules are produced

from the covering graphs of bMSCs in B, left parts and hyperarcs in right parts express

the structure of the HMSC P .

Furthermore, the rewriting rules associated to a subexpression P ′ have to take into

account how P ′ was derived from unfolding P , since this may affect the way vertices

in the right part of the rule are merged into an already unfolded graph. Consider for

example the graph grammar of Figure 13 obtained from HMSC P2 in Figure 5. This

grammar contains a hyperarc labelled by M1;X + M2;M3;X1, and another one by

M1;X+M2;M3;X2. These hyperarcs both link 3 vertices, and are both associated to the

same subexpression. However, in case 1, vertex 3 represents the last event performed by

instance C , while in case 2, the same vertex represents the last event performed by instance

D. Consequently, the rules associated to each case will be different. So, derivations of rules

have to take into account expressions, but also a context, for example, the set of active

instances, the branch of the choice that is evaluated, and so on. Note that here the word

‘context’ represents a kind of history of unfoldings performed before the application of

a rule, and does not mean that our grammars are context-sensitive. The alphabet L of

hyperarc labels is then composed of couples (P ′ = sub-expressions of the axiom, con =

context), which will be written as P ′con.
Let P ∈ (M, ; ,Σ, rec, ε) be a regular expression over partial orders, E be a set of vertices

from which a rule will be rewritten (and therefore that will be obtained in the left part of

a rule), LE(E) a predicate indicating if a vertex e corresponds to the last event performed

by instance φ(e), Her a predicate on E indicating if a vertex can be the origin of an

inheritance edge, Var be a set of pairs (X,Expr) where X is a variable name and Expr a

sub-expression of P , and let Br be a list of instances that performed at least an action in

the branch of the HMSC currently studied.

We will now define the function Rules(P , E, LE,Her, Br, Var) = {(Xj, Yj)}j∈1..J that

returns the rules that are associated to the HMSC P according to a specific context

{LE,Her, Br, Var}. Rules are of the form Xi = PiCon .Ei . Yi = (T ,H = {P ′k.E ′i}k∈1..K),

meaning that in the context Con, a hyperarc labelled by Pi linking events Ei rewrites

into a hypergraph Yi including K hyperarcs of the form Hk = P ′k.E ′k . For clarity, the

computation of A, I , or α is not defined, and the context is not indicated on the labels of

the rules. The rules associated to an HMSC are computed as follows:

— Rules(ε, E, LE,Her, Br, Var) = ε.E . (< E, ∅, ∅, ∅, α, A, I >, ∅)
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This rule suppresses hyperarcs labelled by ε, and is illustrated by Figure 12-b.

— Rules(M;P , E, LE,Her, Br, Var) = M;P .E .
(
< EM;P ,−→

M;P
,  
M;P

, ∅, α, A, I >, P .E ′
)

∪ Rules(P , E ′, LE ′, Her′, Br ∪ Act(Gr(M)), Var)

where:

EM;P = E ∪ EGr(M)

−→
M;P

= {(e, Infi(Gr(M)) | e ∈ LE(E) ∧ φ(e) = i ∧ i ∈ Act(Gr(M))}∪ −→Gr(M)

 
M;P

= {(e, e′) | e ∈ E ∧Her(e) ∧ e′ ∈ Inf(Gr(M)) ∧ φ(e′) = i ∧ i 6∈ Br}
LE ′ = LE ∩ E ′ ∪ {Supi(Gr(M)) | i ∈ Act(Gr(M))}
E ′ = {e ∈ LE(E) | φ(e) 6∈ Act(Gr(M))} ∪ {Supi(Gr(M)) | i ∈ Act(Gr(M))}

∪{e ∈ E ∪ EGr(M) | e ∈ Her′}
Her′ = Her ∪ {e ∈ Inf(Gr(M)) | φ(e) = i ∧ i 6∈ Br}.

This rule prepares the order concatenation between M and the MSCs contained in P .

You can also note that any first action performed by an instance since the last choice

is added to the origins of inheritance edges. Figure 12-d shows the construction of a

rule from a sequence in a HMSC for an initially empty context.

— Rules(
∑

k∈1..K

Mk;Pk, E, LE,Her, Br, Var) =∑
k∈1..K

Mk;Pk.E .
(〈E∑ , −→∑ , ∑ , ]∑ , α, A, I〉, ⋃

k∈1..K

Pk.E
′
k

)
∪ ⋃
k∈1..K

Rules
(
Pk, E

′
k, LE

′
k, Her

′
k, Act(Gr(Mk)), Var

)
where:

E∑ = E ∪ ⋃
k∈1..K

EGr(Mk)

−→∑ =
⋃

k∈1..K

({(e, Infi(Gr(Mk))) |
e ∈ LE(E) ∧ φ(e) = i ∧ i ∈ Act(Gr(Mk))}∪ −→Gr(Mk)

)
 ∑ =

⋃
k∈1..K

{(e, e′) | e ∈ E ∧Her(e) ∧ e′ ∈ Inf(Gr(Mk)) ∧ φ(e) 6= φ(e′)}
]∑ = {(e, e′) | e ∈ Inf(Gr(Mm)) ∧ e′ ∈ Inf(Gr(Mn)) ∧ m 6= n}
E ′k = {e ∈ LE(E) | φ(e) 6∈ Act(Gr(Mk))}

∪{Supi(Gr(Mk)) | i ∈ Act(Gr(Mk))} ∪ {Inf(Gr(Mk))}
Her′k = Inf(Gr(Mk))

LE ′k = LE ∩ E ′k ∪ {Supi(Gr(Mk)) | i ∈ I}.
This rule produces the conflicts due to a choice in an HMSC. Note that predicate Her

is set to Inf(Gr(Mk)), for example, the minimal events of each branch. This ensures

that no infinite branching will be generated by inheritance edges. Figure 12-c shows the

construction of a rule from a choice in a HMSC, and Figure 12-e shows an example

of HMSC generating rules with conflict inheritance edges.
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— Rules(recX.(P ), E, LE,Her, BR, Var) = recX(P ).E .
(〈E, ∅, ∅, α, A, I〉, P .E)

∪ Rules(P , E, LE,Her, Br, Var ∪ {(X, P )})
The construction of a rule from an iterative HMSC is illustrated Figure 12-a.

— Rules(X,E, LE,Her, Br, Var) = X.E .
(〈E, ∅, ∅, α, A, I〉, P .E) with (X, P ) ∈ Var

∪ Rules(P , E, LE,Her, Br, Var).
Let P be an HMSC. The graph grammar generating the covering graph for P is:

GP =
(
P , Rules(P , ∅, ∅, ∅, ∅, ∅) ). It can be easily shown that the event structure calculated

from the covering graph GωP (P ) generated by the grammar is exactly the structure SEω
generated from the HMSC P .

The graph grammar generated for HMSC P2 in Figure 5 is represented in Figure 13.

Labels for rules are sub-expressions of recX.(M1;X + M2;M3;X), but, for clarity, we

have only indicated different contexts by different indexes.

We have now defined a semantics for HMSCs, based on event structures and graph

grammars. This semantics must allow for formal manipulations of HMSCs, such as

equivalence detection. The rest of the paper defines an equivalence calculus based on

covering graphs isomorphism.

4. HMSCs equivalence

It is shown in Caucal (1992) that a normal form of any graph grammar generating a

connected and finite degree graph can be calculated in polynomial space and time. A

graph grammar is said to be in normal form if all the vertices added by a rule are at

the same distance from a starting set of vertices. The distance can be the length of the

minimal path, but we can also associate a weight to each type of edge. When two graph

grammars have the same normal form (modulo a renaming of the rules), the graphs they

generate are said to be isomorphic.

Section 3 has shown how to express infinite ESs described by HMSCs using deterministic

graph grammars. Unfortunately, an event can have an infinite number of successors. This

infinite branching is due to the creation of multiple conflicting copies of the same event

with different histories (the nth occurrence of an action may be produced by more than

one path in the HMSC). This section first characterises the cases when infinite branching

is generated, and then shows that the isomorphism decision procedure can be brought

back to the isomorphism of connected graphs of finite degree.

4.1. Infinite branching

The covering graph of an HMSC P contains infinite branching if and only if:

— there exists a loop in P ,

— this loop includes at least a choice C = Σ
i=1..K

Mi;Pi,

— there are two branches Mp;Pp and Mn;Pn (n, p ∈ 1..K) such that n 6= p, and an

instance A performing at least an action in Mp;Pp, but not in Mn;Pn,

— it is possible to get back to choice C by choosing the branch Mn;Pn.
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Fig. 12. Illustration of graph grammar calculus from HMSCs

An example of such a specification is given in Figure 5 (instance A is active in M1,

but not in M2;M3), so that an event labelled by ?m1 may have an infinite number

of successors labelled with ?m1. A graph grammar calculated from an HMSC can be

modified in order to obtain finite branching covering graphs. For any rule (X,Y ), let us

compute AppX = {(rule, red)}, where rule is an applicable rule from X, and red is the set

of vertices of X kept until rule is applied. Rule (X,Y ) is said to loop if a hyperarc labelled

by X can be found after applying a finite length derivation to Y (∃(X, red) ∈ AppX).
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Fig. 13. Graph grammar calculated from HMSC P2 in Figure 5
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4.2. Redundancy elimination

The unfolding of loops will now be eliminated. (X,Y ) is said to be redundant with

(X ′, Y ′) ∈ G if and only if:

∃m, n ∈ IN, [Gm(Y )] = [Gn(Y ′)] ∧X ′ ∈ Gm(Y ) ∧X ′ loops ∧X = X ′ (up to renaming of rule).

We suppress (X,Y ) redundant with (X ′, Y ′) by removing (X,Y ) in the grammar, and

replacing any occurrence of X in the right part of every rule by X ′. For instance, rule B

of the grammar in Figure 14-a is redundant with rule C .

B

C

B

C

A

C

1

1

1
1

#
a b

#
a b

#
a b

#
a bA

C

#
a b

C

1

1

C

a) Grammar with redundancy b) Equivalent grammar without redundancy

Fig. 14. Redundancy elimination

4.3. Removing infinite branching

This subsection shows how a grammar FBGP generating a graph with finite branching

can be computed from a grammar GP .

For any looping rule (X,Y ) of GP , if there is a vertex v kept throughout the successive

rewritings of Y (∃(X, red) ∈ AppX | red 6= ∅), then any edge originating from v creates an

infinite branching. Therefore, edges leaving v must be deleted from R, and vertex v can

be removed from any hyperarc labelled by X in the grammar, (since no edge will ever

be connected to v, it becomes useless). Such a vertex will be called an infinite branching

vertex (or ib-vertex, for short).

For the example in Figure 15-a, the App relation is:

AppA = {(B, ∅); (C, ∅)}AppB = {(C, {1})}AppC = {(C, {2})}
As a causality edge starts from vertex 2 of rule C , there is an infinite branching. The

grammar of Figure 15-b is obtained by removing this vertex.

Theorem 4.1. Removing all ib-vertices for a grammar G suppresses all infinite branchings

in the covering graph Gω .

Proof. From the definitions of Section 4.1, we know that infinite branching appears in

the graph if there is a loop (X ∈ AppX), and an instance that is active in one branch of

the choice and inactive in another. As long as an instance performs no action, the vertex
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a) Grammar with infinite branching b) Grammar without infinite branching

Fig. 15. Removing infinite branching

corresponding to its last action is kept by rewritings, and so ∃(X, red) ∈ AppX | red 6= ∅.

Theorem 4.2. Removing ib-vertices only affects infinite branchings (inheritance edges are

not modified).

Proof. By construction, inheritance edges do not generate infinite branching (a vertex

can be used only once as the origin of inheritance edges). So, the edges connected to an

ib-vertex can only be causality edges.

4.4. Removing end-vertices from hyperarcs

An end-vertex in a rule r = (X,Y ) is a vertex v such that ∀n ∈ IN, 6 ∃(v, v′) ∈ Gn(X).

An end-vertex represents the last action performed by an instance in a specification.

Therefore, this instance must not be taken into account in the rest of the grammar, and

can be removed from the rules.

For each rule r = (Pcon.E, G) ∈ G, let E ′ be a set of end-vertices of E. A rule

r′ = (Pcon.E
′, G/E−E′) is generated from r. Let us call RE(G) the grammar G from which

all end-vertices have been removed. It is obvious that RE(G)ω = Gω .

4.5. Connection preservation

Removing ib-vertices does not create new connected components in the graph. Infinite

branching takes place between an origin vertex so, and an infinite set of successors,

{s′oi}, i ∈ IN, located on the same instance (∀i ∈ IN, φ(so) = φ(s′oi)).
The causality relation between so and one of its successors s′oi cannot be due to a

message. Effectively, standard Z.120 specifies that a message must be sent and received

within the same bMSC (unless constructs like gates are used, but these are not considered

within our approach). Consequently, we cannot have a message sent once only but with

multiple receptions.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 23 Mar 2012 IP address: 131.254.11.11

An event structure based semantics for high-level message sequence charts 395

Figure 16 illustrates a typical shape of covering graph containing infinite branching.

Let (ci−1, ci+1) be an edge removed by the transformation such that ci and ci+1 are events

involved in minimal conflicts. According to the definition of infinite branching, there is

loop, in which a branch enables an event ci such that φ(ci) = φ(ci−1) and another branch

in which φ(ci) is inactive. Therefore, there exists an event di such that φ(di) 6= φ(c).

di becomes a minimal event for the inheritance relation, and any event e such that

φ(di) 6= φ(e) that is minimal at the occurrence i+ 1 of the choice is connected to di by an

inheritance edge. As event ci can also be chosen at occurrence i of the choice, there is a

conflict edge between ci and di, and there is a causality edge from ci−1 to ci. Therefore,

even after removing the edge (ci−1, ci+1) , ci−1 and ci+1, remain connected.

Now, consider an edge (si−1, si+1) such that si and si+1 are not minimal events for

conflicts. Then si and si+1 are connected to minimal events ci and ci+1, and remain

attached to the rest of the graph.

Thanks to inheritance and conflict edges, any successor of a vertex remains connected

after the infinite branching is removed. In Figure 16, it is easy to see that the graph

remains connected even if causality edges originating from infinite branching vertices are

discarded.

di
bi c i

s i

di+1 bi+1
c i+1

s i+1

#

#

##

#

#

#

##

ci-1

c i+1 c i+1bi+1bi+1di+1 di+1

s i+1 s i+1

s i-1

#

##

#

Causality

Conflict Inheritance

Conflict

Removed causality

Fig. 16. Connexity preservation

Origin vertices of infinite branchings also remain connected after removing the incrim-

inated edges. Such a vertex can be:
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— a vertex generated inside the loop, in which case, it is also a successor vertex, and is

connected to preceding vertices by the reasoning developed above.

— a vertex that appears outside the looping rule. In this case, the first occurrence of a

choice is described by a non-looping set of rules {(Xi, Yi)} without inheritance edges

(see for example rule B in Figure 15). The next occurrences of that choice are expressed

by a set of looping rules {(Bi, Si)}, which might be modified. As the rules {(Xi, Yi)} do

not loop, they will not be modified, and any vertex generated by one of these rules

will remain connected to the rest of the graph.

So, if a covering graph is connected, it remains connected after removing infinite

branchings, and a normal form computation can be performed. If a covering graph is

not connected, it means that at least two subsets of instances run concurrently without

exchanging a message. They can be treated separately.

4.6. Properties of the covering graphs

The covering graph generated from an HMSC contains redundant information. Thanks

to the inheritance and conflict edges, the structure of the HMSC can still be deduced after

removing infinite branching. Therefore, the full covering graph can be reconstructed.

Let CG =< E,−→, , ] > be a covering graph. A link from an event e0 to an event en
is a word w = e0...en ∈ En such that ∀(i 6= j)ei 6= ej ∧ (ei, ei+1) ∈ (−→ ∪ ∪]).

More intuitively, a link is an acyclic directed path of the covering graph CG (cycles

may be introduced if a conflict is used as an edge in both directions).

A causal link of CG is a link w = e0...en ∈ En such that:

— φ(e0) = φ(en),

— (e0, e1) 6∈ ],

— ∀ei, i ∈ 1..n− 1, φ(ei) = φ(e0) =⇒ (ei, ei+1) ∈ ].

A causal link defines a path in the covering graph of the form {{−→ + }+{]}∗}∗

Theorem 4.3. Let CG =< E,−→, , ] > be a covering graph. If w = e0...en ∈ En is a

causal link of CG, then e0 −→ en.

Proof. From the structure of HMSCs, we know that if e
∗
 e′, then e, e′ and any event

ei situated between them are connected by a causality or inheritance edge belonging to a

common scenario. If e]e′, the conflict extends to successors but predecessors of e and e′
are not in conflict, either with e and its successors or e′ and its successors. Furthermore,

if for each ei, i ∈ 1..n− 1, we have φ(ei) = φ(e0) =⇒ ei]ei+1, then en is the first event

contained in the same scenario as e0 such that φ(en) = φ(e0). So, e0 −→ en.

Let Brsucc(e) be the set of events causally dependent on e up to the next choice.

Brsucc(e) = {e′ | e = e1 −→ e2... −→ en = e′ ∧ ∀i ∈ 2..n, 6 ∃x, x]ei}.
Theorem 4.4. Let e and e′ be two events from Gw(Axiom) such that:

— there is a causal link w = e.e1...en.e
′ from e to e′.

— e and e′ are minimal events for a conflict.
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Then ∀v ∈ Brsucc(e), ∀v′ ∈ Brsucc(e′), φ(v) = φ(v′) =⇒ v 6 v′

Proof. The statement is obvious from the structure of the HMSC. e and e′ are minimal

events for branches of a choice, and, furthermore, as there is a causal link from e to e′,
we have that e and all the events on the same branch precede e′ and Brsucc(e′) in a path

of the HMSC.

Theorem 4.5. Any causality edge (s, s′) removed by the infinite branching reduction can

be reconstructed from the causal links of the graph.

Proof. If (s, s′) is removed by infinite branching reduction, there is a choice between n

branches B1..Bn such that φ(s) is not active in B1..Bn and a branch B such that φ(s) is

active in B. Two cases can appear:

— s and s′ are minimal events for the choice (consider edge (ci−1, ci+1) in Figure 16).

Then there is a causal link from s to s′, which can be replaced by a causality edge

(Theorem 4.3).

— s or s′ is not minimal for the choice (consider edge (si−1, si+1) in Figure 16). It is obvious

that there are events x and x′ minimal for the choice, and such that s ∈ Brsucc(x) and

s′ ∈ Brsucc(x′). As s and s′ must remain connected, there is a link from x to x′. From

Theorem 4.4, we know that 6 can be reconstructed, and therefore −→ can also be

reconstructed.

4.7. Isomorphism preservation

We will now show that removing infinite-branching vertices does not affect the isomor-

phism decision.

Proof. Let G1 and G2 be two graph grammars without redundancies calculated from

HMSCs. We want to show that Gω1 ≡ Gω2 ⇐⇒FBGω1 ≡ FBGω2 .

— Gω1 ≡ Gω2 =⇒FBGω1 ≡ FBGω2 ?

We know that infinite branching suppression does not affect vertices, conflicts, or

inheritance edges on a covering graph. So, if FBGω1 6≡ FBGω2 , then there exists a

causality edge within FBGω1 that does not belong to FBGω2 (or conversely). Such

a causality edge is generated by a rule (X1, Y1) that does not loop in G1, and by a

rule (X2, Y2) that loops within G2. As Gω1 ≡ Gω2 , and as (X2, Y2) loops, we know that

(X1, Y1) and (X2, Y2) represent the same part of a recursion in an HMSC. But as

(X1, Y1) does not loop, either this rule adds a new active instance within the HMSC,

or it is the first occurrence of a choice.

– If (X1, Y1) adds a new active instance to the HMSC, then, as (X2, Y2) loops, no

instance is added to the HMSC at this time, so Gω1 ≡ Gω2 cannot hold.

– If (X1, Y1) is the first occurrence of a choice, then the next occurrences of this

choice will have to include inheritance edges. As (X2, Y2) loops, it cannot represent

the same pattern as (X1, Y1), and we cannot have Gω1 ≡ Gω2 .
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This proves Gω1 ≡ Gω2 =⇒FBGω1 ≡ FBGω2 .

— Gω1 ≡ Gω2 ⇐=FBGω1 ≡ FBGω2 ?

From Theorem 4.5, we know that any removed causality edge can be reconstructed

using causal links. It follows that FBGω1 ≡ FBGω2 =⇒ Gω1 ≡ Gω2 .

4.8. A normal form for HMSCs

This section describes a normal form calculus for a deterministic finite branching graph

grammar.

4.8.1. Standard form grammars The normalisation algorithm first transforms a determin-

istic finite branching graph grammar into a standard form grammar. This section first

recalls the definition of standard form, and shows that a finite branching grammar ob-

tained from an HMSC can be transformed into a standard form grammar by unfolding

rules.

A grammar G is proper if, ∀(X,Y ) ∈ R, no event of X is removed by rewriting.

A grammar G is normal if, ∀(X,Y ) ∈ R, we have ∀h hyperarc of Y , X and h have no

common vertices.

A grammar G is separated if, ∀(X,Y ) ∈ R, we have ∀h1, h2 hyperarcs of Y , h1 and h2

have no common vertices.

A grammar G is said to be in standard form if it is proper, normal and separated.

Let G = (Axiom,R) be a graph grammar calculated from an HMSC with infinite

branching and end-vertices removed.

Theorem 4.6. G is proper.

Proof. The statement is obvious from the construction method, since every vertex added

is a terminal one.

Theorem 4.7. ∀r = (X,Y ) ∈ R, r can be transformed into a normal rule by a finite

number of rewritings of Y .

Proof. As infinite branching and end vertices have been removed, any vertex kept in

a rule will eventually have a successor. So, for each rule (X,Y ) of G, there is a minimal

number of unfoldings n such that (X,Gn(Y )) is a normal rule.

Theorem 4.8. ∀r = (X,Y ) ∈ R, r can be transformed into a separated rule by a finite

number of rewritings of Y .

Proof. A rule containing two hyperarcs h1, h2 such that h1 ∩ h2 6= ∅ represents a choice

in the HMSC. The common vertices of h1 and h2 are also vertices of X. As we have

seen that vertices that are kept all along a loop are removed (infinite branching and end

vertices are discarded), if such a vertex is kept, it cannot be a looping vertex, and therefore

must have a successor after a finite number of rewritings.

The computation of a standard form for our grammar is straightforward: it consists of

unfolding the rules until they are normal and separated. Because of the tree-like structure
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of our covering graphs, the algorithm is simpler than Caucal’s algorithm (Caucal 1992).

As the standard form calculus is performed by rewritings, it is obvious that the standard

grammar generates the same covering graph as the non-standard one.

4.8.2. Normalised grammars A grammar G = (Axiom,R) is said to be normalised if and

only if:

— it is in standard form,

— it is uniform: ∀(X,Y ) ∈ R, any vertex of Y added by rewriting is connected to a vertex

of X by an edge.

A uniformisation algorithm is provided in Caucal (1992), the proposal being to generate

uniform rules from connected sets situated at the same distance. Let us define a metric

on the covering graph Gω(Axiom). The root of a covering graph is the set of minimal

events for the relation (−→ ∪  ). The distance d(v) of a vertex v is the least number of

edges connecting v to any vertex of the root. We will use Gn to denote the covering graph

restricted to vertices of distance strictly less than n.

Gn = Gω(Axiom)/{s|dist(s)<n}.

For a given set S of vertices, let Conn(S, G) be set of vertices connected to S in G.

Conn(S, G) = {v ∈ G|∃v′ ∈ S ∧ ((v, v′) ∈ (−→ ∪ – –−> ∪ ]) ∨ ∃(v′, v) ∈ (−→ ∪ – –−> ∪ ])
)}

Given a standard form, deterministic and finite branching grammar G, we can compute

a normalised grammar. The normalisation algorithm consists of generating from G a

uniform grammar G′ = (root,R′), that is, a grammar such that R′ = {ri = (Xi, Ri)}, and:

— ∀i, Xi is a set of vertices that are situated at the same distance n and connected in

Gω(Axiom)− Gn.
— ∀i, Ri is the restriction of Gω(Axiom)− Gn to Xi ∪ Conn(Xi,Gω(Axiom)− Gn).
— G′ω(root) = Gω(axiom).

The main idea of the algorithm is to find the set {Xi} on a limited unfolding of the

grammar, since {Ri} is calculated from {Xi}. The complete uniformisation algorithm and

a termination proof can be found in Caucal (1992).

4.9. A decision procedure for HMSC equivalence

Section 3 showed that it is possible to generate a graph grammar defining a unique event

structure from an HMSC. This graph grammar may contain infinite branchings. Section 4

has shown that a modification of this grammar allows infinite branching to be eliminated

while preserving isomorphism. In Section 4.8 we described an algorithm for calculating a

normal form from a finite branching deterministic graph grammar. This provides us with

a decision algorithm for the equivalence of two HMSCs, called P1 and P2 hereafter:

— Compute GP1
and GP2

, the graph grammars of P1 and P2, using the predicate Rule.

— Compute G′P1
and G′P2

by replacing the inheritance edges that are not made from

choice to choice by the corresponding conflicts within GP1
and GP2

.

— Compute G′′P1
and G′′P2

, by eliminating redundancies.
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— ComputeFBG1 andFBG2 by eliminating infinite branchings and end-vertices within

G′′P1
and G′′P2

.

— Compute FNGP1
and FNGP2

, the normal forms of FBGP1
and FBGP2

, by un-

folding rules.

— Compute NGP1
and NGP2

, the normalised grammars for FNGP1
and FNGP2

.

If P1 and P2 have the same normalised forms up to a renaming, then they are equivalent.

Let us compare HMSC P3 in Figure 17 with HMSC P2 in Figure 5. The normal forms of

GP1
and GP2

are the same, and generate the covering graph of Figure 18. Therefore, we

can state that P3 is isomorphic to P2.
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Fig. 17. HMSC P3
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Fig. 18. Covering graph generated by the normal form

5. Conclusion

We have given a prime event structure semantics of HMSCs, and then defined rules for

computing a graph grammar that generates a covering graph of this structure.
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This formal representation of HMSCs has several advantages. First, it preserves the

partial order semantics described in specifications (event independence, as well as weak

sequential composition of bMSCs), which appears to be the main advantage of the

notation. By contrast, an interleaving semantics would fail to preserve event independence.

Then, the semantics defined in this paper places emphasis on conflicts. Choices in an

HMSC define important control points in the specification, and should be implemented

as a consensus, or a synchronisation for the case of a distributed choice. Finally, using a

graph semantics for HMSCs allows us to maintain a visual and intuitive representation.

Furthermore, a set of well-known algorithms on graphs is made available for HMSCs,

among these a graph isomorphism decision for regular graphs.

A covering graph isomorphism defines the equivalence between two partial order

families described by means of HMSCs, and can be decided through the computation

of a normal form for graph grammars. This equivalence is very discriminating, as it

takes into account the control structure expressed by choices in an HMSC. Therefore, it

differentiates specifications in Figure 3-a and Figure 3-b, detecting that the choice of a

scenario is not performed at the same moment.

A weaker equivalence can be defined from the same model. By determinising the

grammar (reporting conflicts e]e′ such that e and e′ have equal predecessor sets and

α(e) = α(e′) to successors of e and e′) before applying the normal form calculus. After

determinising, information about the location of choices is not considered, and the

equivalence corresponds to the isomorphism of partial order families. The identification

of classes of MSCs that can be determinised, and of a determinisation algorithm based

on rule unfolding and conflict merging is currently under study.

The representation of HMSCs by means of graph grammars and event structures makes

it possible to treat very abstract specifications of distributed systems formally. It can be

considered as another argument for the use of formal methods even on incomplete models

at early stages of specification.
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