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Abstract of components, properties, and interactions. The objec-

tive of this paper is to go one step further by studying sys-

A contractallows to distinguish hypotheses made on a tems that combine non deterministic and stochastic aspects
system (the guarantees) from those made on its environmenklore precisely, we will propose : (1) a more complete set
(the assumptions). In this paper, we focus on models of As-0f component-based design operations, (2) more complex
sume/Guarantee contracts for (stochastic) systems. We conproperties than the classical safety/liveness propeittiats
sider contracts capable of capturing reliability and avail are usually considered in the literature, and (3) a composi-
ability properties of such systems. We also show that clas-tional reasoning framework for such systems.
sical notions of Satisfaction and Refinement can be checked
by effective methods thanks to a reduction to classical ver-
ification problems. Finally, theorems supporting composi-
tional reasoning and enabling the scalable analysis of com-
plex systems are also studied.

The semantics foundations presented in this paper con-
sistin a mathematical formalism designed to support a com-
ponent based design methodology and to offer modular and
scalable verification techniques. At its basis, the matltema
ical formalism is a language theoretic abstraction of sys-
tems behaviour calledontract[3]. Contracts allow to dis-
tinguish hypotheses on a componeqigrantee} from hy-

1 Introduction potheses made on its environmeasgumptions In the
paper we will focus on developing a contract-based com-
positional theory for two classes of systems, that are (1)

Several industrial sectors involving complex embedded tochasti d bl determinist i d
systems have recently experienced deep changes in their of0N stochastic and possibly non deterministic systems, an
(2) stochastic and possibly non deterministic systems. As

ganization, aerospace and automotive being the most promi- . o .
nent examples. In the past, they were organized around” classical non modular verification [8, 23], the satisfac-
vertically integr.ated compan’ies supporting in-house de- tion relation will be Boolean for non stochastic systems and
sign activities. These sectors héve now evolved into morequantitative therwise, h_ence Ie_ading to two notions othn
specialized, horizontally structured companiBguipment trac_ts. n add|t|or!, we wil cons@er_tyvo measures C.)f satls-
Suppliers (ESs) andOriginal Equipment Manufacturers faction, namelygl|ab|llty_andavgnablhty. Ava|Iat?|I|t_y isa
(OEMs). OEMs perform system design and integration by measure of the time dyrmg which a system satisfies a given
importing/combining/reusing entire subsystems (alskedal property, _for all possible runs of the system. In contrast,
components) provided by ESs, rellgblhty is a measure of the set of_ runs of a sy_stem that
In this context, techniques that allow to discover er- satisfy a given property. Both quantities play an important

rors at the early stage of the design are particularly ap- role when designing, for instance, mission-critical syste

pealing. Such technigues should be independent from theOur notion of satisfaction is assumption-dependant in the

. . . sense that runs that do not satisfy the assumptions are con-
way components are combined and must give strong confi-

: : ... sidered to be “correct”. This interpretation, which hasrbee
dence regarding the correctness of the entire system with- ; ) )
) . . suggested by many industrial partners, is needed to propose
out proceeding to a complete analysis. Developing these o . . . :
compositional design operations such as conjunction.

formal techniques pass by the study of a mathematical for-
malism characterizing both properties that must be verified We also propose mathematical definitions for crucial
and component behaviors/interactions. Results exist (seecomponent-based design operations including composition
[8] and [17] for illustrations), but only for limited classe  conjunction and refinement. It is known that most of indus-



trial requirementsfor component-based design translate to with contract theories. In a similar way, the probabilistic
those operations (see [5] for an argumentation). Compo-contract theory must be compared with stochastic process
sition between contracts, which mimics classical composi- algebras [16, 1]. In both cases, the main difference is
tion for systems, consists in taking the intersection betwe that compositional reasoning is possible only in contract
the assumptions and the intersection between the guarantheories thanks to the fact that contracts are implications
tees. Conjunction is a more intriguing operation that has nowhere an assumption implies a guarantee. A second major
translation at the level of systems; it consists in prodgicin difference with process algebras, is that contract theorie
a contract whose assumptions are the union of the origi-are general and can be instantiated in many different
nal ones and guarantees are the intersection of the originaéffective automata-based settings. This covers manydbgic
ones. Roughly speaking, the conjunction of two contracts frameworks (CTL, LTL, PCTL, PSL,..) for specifying
represents their common requirements. We say that a conproperties of components.

tract refines another contract if it guarantees more and as-

sumes less. The definition is Boolean for non determinis- Due to space limitation proofs of theorems are presented in
tic systems and quantitative otherwise. We also establishappendix.

a compositional reasoning theory for those operations and

the two notions of satisfiability we consiFjer. This methqd- 2 Preliminaries

ology allows to reason on the entire design by only looking
at individual components . The theory differs with the type
of contracts under consideration. As an example, we will
show that if a non stochastic systey reliably satisfiesa
contractC and a non stochastic systesp reliably satisfies

a contractCs, then the composition of the two systems re-
liably satisfies the composition of the two contracts. When
moving to stochastic systems, we will show thabif sat-
isfiesC'; with probability « and .S, satisfiesC; with proba-

In this section, we recap some definitions and concepts
related to automata theory. We then introduce some nota-
tions and concepts that will be used in the rest of the paper.

Let 3 be an alphabet. A finite word ov&ris a mapping
w: {0,...,n — 1} — 3. Aninfinite word(or w-word) w
overy is a mappingw : N — 3. An automaton is a tuple
A= (3,Q,Q0, 9, F), whereX is a finite alphabetq) is a

o : " i . set ofstates Qp € Q is the set ofnitial statesd : Q@ x ¥ —
bility 3, then their composition satisfies the composition of 22 is atransition function(d - O x & — @ if the automa-

C1 andC’ with probability atleast: + 5 = 1. ton is deterministic), and’ C Q is a set ofacceptingstates
The theory is fully general as it assumes that both sys—A finite runof A on a finite worduw - {0, n—1}—3

tems and contracts are represented by sets of runs. Our .
last contribution is to propose effective and symbolic rep- 'S a Iapellngp : {O’.' ot =@ sgch thai;o(()) .G.QO' and
resentations for contracts and systems. Those represente4~VO <1 S.n p 1)(p(.l +1) € 8(p(d), w.(z).)).' A finite run p
tions rely on an automata-based representation of possibl))S a_cc_eptmgfor w i p(n) c F. An 'F‘f”’"te runof A on
infinite sets of runs. Assuming that assumptions and guar—an infinite wordw : N_E. s a labelingp g NHQ such
antees are represented witlidhi automata (which allows .th"’.ltf)(o) < Q?’ and(vo_g D) (p(i +.1) < (5(pn(z),_w(z))._An
to specify assumptions and guarantees with logics such aénf}mte unp 1s acceptmgf(_)r v W!th the Bichi condition
LTL or PSL), we observe that checking if a (stochastic) sys- It inf(p) N I # 0, whereinf(p) is the set of states that

tem satisfies a reliability property can be done with classi- are visited infinitely often by. .V-Ve distinguish betwgen .
cal techniques implemented in tools such as SPIN [22] orflnlte—word automata that are finite automata accepting fi-
LIQUORT6]. In the paper, we show that satisfaction of nite words, and Bchi automata [4] that are finite automata

availability properties can be checked with an extension of :cf(_:e_t)(;ungz)lgfln!';ethv(\; ?(;dj At f|n|teéz\é(;rdt_iut?:1_$onr?;:;repts
the work presented in [12]. Finally, we also show that op- inite worduw I XISIS an pting finfte ru

erations between and on contracts can easily be performedn tf:jls gﬁ:ﬁ maton_. tA Behi aut(t).mayo? :.atccepts% an |trr1]f|n|te
on the automata-based representations. word w if there exists an accepting infinite run ferin this

automaton. The set of words accepted dys called the
language accepted hyt, and is denoted by.(A). Finite-
Related work In [2], Benveniste et al. have presented a word and Bichi automata are closed under intersection and
contract theory where availability, effective represéntes, union. Inclusion and emptiness are also decidable. Both
and stochastic aspects are not considered. Other defmitionfinite-word and Richi automata are closed under comple-
of contracts have been proposed in [15, 19]. Works on mentation and, in both cases, the construction is known to
behavioral types in process algebras bear commonalitieshbe exponential. However, the complementation operation
_ for Buchi automata requires intricate algorithms that not

SPlEEEXE?gn[F;]e_]: those of the European projects COMBEST[10] and o)y are worst-case exponential, but are also hard to im-

2Reliably satisfy” means that all the runs that satisfy theumsption plement and optimize (See [24] fora Survey)-
must satisfy the guarantee Let N, = NU {w} be the closure of the set of natural




integers andN,, = [0...n — 1] the interval ranging frond
ton — 1. Let V be a finite set ofariablesthat takes val-
ues in adomainD. A stepo : V — D is a valuation of
variables oft’. A runonV is a sequence of valuations of
variables ofl”. More precisely, a finite or infinite run is a
mappingw : N,, — V — D, wheren € N, is the length
of w, also denotedw|. Lete be the run of lengtlo. Given
a variablev € V and atimei > 0, the value ofv at timei
is given byw(i)(v). Givenw a finite run onl” ando a step
on the same variables,.o is the run of lengthw| + 1 such
thatVi < |w|, (w.0)(i) = w(i) and(w.o)(Jw|) = o. The
set of all finite (respectively infinite) runs dri is denoted
by [V]* (respectively[V]*). The set of finite and infinite
runs onV is denotedV]™ = [V]" U [V]”. Denote[V]"
(respectivelyiV’]=") the set of all runs o of length ex-
actly n (respectively not greater thar). The complement
of Q C [V]* is given by—Q = [V]*\ Q. Theprojectionof
wonV’ C Vistherunw |y such thatw |v/| = |w| and
Yo e V/,Vn > 0,w |y (n)(v) = w(n)(v). Given arun
w’ onV’, theinverse-projectiomf w’ onV is the set of runs
defined byw’ V= {w € [V]™ | w |y/= w'}. A system
overV is a pair(V,Q), where(2 is a set of (finite and/or
infinite) runs onV. LetS = (V,Q) andS’ = (V',Y)
be two systems. Theompositionof S and S’, denoted
(V,Q) N (V', ), is given by (V U V', Q") with Q" =
Q 1V nQ 1YYV The complemenbf S, denoted
-5, is given by—S = (V,—=Q). The restriction of system
S = (V,Q) to runs of length not greater thanc N, (re-
spectively exactly:) is the systens|<" = (V, QN [V]=")
(respectivelyS|™ = (V,Q N [V]™)).In Section 4, it will be

assumed that systems can respond to every possible inpu|5
on a set of probabilistic variables. Such systems are said

to bereceptiveto those variables. Giveti C V, a set of
distinguished variables, systeth= (V) is U-receptive
if and only if for all finite runw € Q N [V]" and for all
inputp : U — D, there exists a step : V — D such
thato |y= p andw.c € Q. GivenU C V NV’ two
U-receptive system$s = (V,Q) and S’ = (V/, Q) are
U-compatible if and only ifS N S’ is U-receptive.

A symbolic transition systewverV is a tupleSymb =
(V,Qs,T,Qs0), whereV is a set of variables defined over

a finite domain D, @ is a set of states (a state is a map-

ping fromV to D), T' C Qs x Qs is the transition relation,
andQs C Q is the set of initial states. A run dymb
is a possibly infinite sequence of statgggs: ... such that
for eachi>0 (qsi,qsi+1)) € T andgs € Qso. A Sym-
bolic transition system for a syste(¥, () is a symbolic
transition system oveV whose set of runs i§). Opera-
tions of (inverse) projection and intersection easily edte

tonBBAXSymb = (®7QI7Q675/7F/)1 WhereQ/ = Qs x Q,
Q) = Qso X Qo, (a’,b") € §'((a,b),0) iff (a,a’) € T and
b e d(b,a), F' = {(a,b) € Q'|b € F}. Each state in the
product is a pair of states : one f8tymb and one for3 4.
If we do not take the information fror8 4 into account, a
run of the product corresponds to a runSafmb.

3 Non-Probabilistic Contracts

In this section, we introduce the concept of contract for
non stochastic systems. We also study compositional rea-
soning for such contracts. We will present the theory in
the most general case by assuming that contracts and sys-
tems are given by (pair of) possibly infinite sets of runs [3].

In practice, a finite representation of such sets is required
and there are many ways to instantiate our theory depend-
ing on this representation. At the end of the section, we will
give an example of such a representation. More precisely,
we will follow a successful trend in Model Checking and
use automata as a finite representation for systems and con-
tracts. We will also derive effective algorithms based ag th
symbolic representation.

3.1 Contracts

We first recap the concept abntract[2], a mathemat-
ical representation that allows to distinguish between as-
sumptions made on the environment and properties of the
system.

efinition 1 (Contract) A contract overl/ is a tupleC' =
(V, A, G), whereV is the set of variables af, systemd =
(V,Q.4) is theassumptiorand systentz = (V, Q¢) is the
guarantee

The ContracC is said to be ircanonical formif and only

if -A C G. As we shall see in Section 3.2, the canonical
form is needed to have uniform notions of composition and
conjunction between contracts.

We now turn to the problem of deciding whether a sys-
tem satisfies a contract. A system that satisfies a contract is
animplementatiorof the contract. There are two types of
implementation relations, depending on the property cap-
tured by a contract. A first possible interpretation is when
the contract represents properties that are defined on runs
of the system. This includes safety properties. In this con-
text, a system satisfies a contract if and only if all system
runs that satisfy the assumption are included in the guar-
antee. This applies to reliability properties, and a system

from systems to their symbolic representations (such frepre implementing a contract in this way is saidResatisfythe

sentation may not exist). L&, = (3,Q, Qo,d, F C Q)
be an automaton such thatis a mapping” — D. The
synchronous produdietweens 4, andSymdb is the automa-

contract. Another possible interpretation is when the con-
tract represents properties that are defined on finite peefixe
of the runs of the system and when one wants to evaluate



how often the system satisfies the contract. We will say that

a systemA-satisfiesa contract with leveln (0 < m < 1) if . r.d .

and only if for each of its runs, the proportion of prefixes of we(gf%r&vaCTUUV(w) Zm ifr<w
system runs that are either in the guarantee or in the com- . . t,d .

plement of the assumption is greater or equahto This we(SITnUfUVW liminf Dgqoov (w) 2m 7 =w.
concept can be used to cheskerage safenesy reliabil-

|ty’ i.e., to decide for each run whether the average numberlt is easy to see that the limit in Definition 3 converges, sinc

of positions of the run that do satisfy a local condition is D¢ = 0. In Section 3.3 we will propose techniques to
greater or equal to a given threshold. check satisfiability for contracts that are representedh wit

symbolic structures.

Definition 2 (R-Satisfaction) SystemS = (U,Q) R- 3.2 Compositional reasoning
satisfies contracC = (V, A,G) up to timet € N, de-
notedS =" ¢, ifand only ifS|<* N A C G. In this section, we first define operations between and

on contracts and then propose a compositional reasoning
Discussion. In this paper, we assume that runs that do not framework for contracts. We start with the definition for
satisfy the assumptions are “good” runs, i.e., they do not cOmpositionand conjunction Composition between con-
need to satisfy the guarantee. In our theory, assumptiondracts mimics classical composition between systems at the
are thus used to distinguish runs that must satisfy theabstraction level. It consists in taking the intersectien b
property from those that are not forced to satisfy the tween the assumptions and the intersection between the
property. There are other interpretations of the paradigmguarantees. Conjunction is a more intriguing operation tha
of assume/guarantee in which the runs that do not satisfyhas no translation at the level of systems; its consists in
the assumptions are considered to be bad. We (and ouProducing a contract whose assumptions are the union of
industrial partners) believe that our definition is a more the original ones and guarantees are the intersection of the
natural interpretation as there is no reason to eliminate ru  ©riginal ones. Roughly speaking, the conjunction of two
on which no assumption is made. Another advantage ofcontracts represents their common requirements.
this approach, which will be made more explicit in Section _— o
4, is that this interpretation allows to define a conjunction Definition 4 Let C; = (Vi, A;, Gi) with i = 1,2 be two
operation in the stochastic case. contracts in canonical form. We define
e Theparallel compositiometweerC, andCs, denoted
(4 || Co, to be the contractV; UVa, A;NAsU—(G1N
The definition of A-satisfiability is more involved and G2),G1 N Go).
requires additional notations. The objective is to compute
an invariant measure of the amount of time during which
the system satisfies a contract. This relation can be com-
bined withdiscounting, which allows to give more Weight 1t js easy to see that both conjunction and composition
to fault_s_that arise in the early future. Let € [V] preserve canonicity.
be a (finite or infinite) run and’ = (V, A, G) be a con-

- onC -
tract. We define the functiopy, : Nj, — {0,1} such  piscussion. As pointed out in [2], the canonical form

e TheconjunctionbetweerC; andCs, denoted”; A Cs,
to be the contractV; U Vo, A1 U Ay, G1 N Ga).

C _ i . . . ..
thaty, (n) =1 < wyon € GU-A Ifwefixan s needed to have uniform notions of composition and
honzogdm tlmetl € Neo agd_ adiscount factortddgl, de-  conjunction between contracts. Indeed, consider two
fine Do (w) = 3 10 ¥w(i) if d = 1 and D" (w) = contractsC; = (V,0,[V]>®) andCy = (V,0, (). Suppose

oA S dieS ) if d < 1. Dgt(w) is the mean-  thatc is in canonical form and’, is not. Assume also that
availability until position t along the execution corresple any system can satisfy botf, andC5. The composition

ing to w with discount factorl. The concept is illustrated  betweenC; and C; is the contract(V,[V]>,0). This

in Figure 1. A-Satisfaction can now be defined. contract can only be satisfied by the empty system. Assume
now the contract, = (V, 0, [V]>°), which is the canonical
form for Cs. It is easy to see that the composition between
C, and C} is satisfied by any system. Non-canonical
contract can also be composed. Indeed, the composi-
tion of two non-canonical contracts; = (Vi, Ay, Gy)
andCy = (Va, Ay, Go) is given by the following formula
3Discounting is a concept largely used in many areas such aseto C ||ne C2 = (V1UVa, (A1 U-G1)N(AUGs), G1NGy).

Definition 3 (A-Satisfaction) A systemS = (U,Q) A-
satisfies at leveln contractC' = (V, A, G) until position
7 with discount factow/, denotedS ’:357:) C, iff:




Mean-availability until positiort
is computed for the runs of th
system w.rt a contract with ag
sumption {z,y}* and guarantee
the set of finite runs ovefz,y}

¥ ¥ such that in the final state # 1
G = {we {z.v}* |ww)(z) # 1V w(w)(y) # 1} ory # 1. Positions where the con
tract is satisfied are white.

[1]

Figure 1. lllustration of mean-availability.

Observe that this composition requires one more com- e S; ):252) C, andC; <=9 ¢, implies thatS; 257?
plementation operation, which may be computationally Cs.

intensive depending of the data-structure used to repre-

sentedd andG (see Section 3.3). The last item of each of the theorems also stand iénd

Cy are not in canonical form.

We now turn to the definition akfinementwhich leads 3.3 Effective algorithms/representations
to an order relation on contracts.

We proposesymbolicand effectiveautomata-based rep-

Definition 5 We say thaC; refinesC> up to timet € N, resentations for contracts and systems. Those representa-
denotedC; =<(=") Cy, if it guarantees more and assumes  tions are needed to handle possibly infinite sets of runs with
less, for all runs of length not greater than A, 1122 a finite memory. We will be working with variables defined
(Ag TVIUV2)[=F and (G TV19Y2)[SF C G TVIVY2, over afinite domainD. According to our theory, a sym-

bolic representation is effective for an assumption (resp.

Compositional Reasoning We now propose the follow-  guarantee) if inclusion is decidable and the represemtatio
ing results for compositional reasoning in a contract-dase is closed under complementation (needed for refinement),

setting. union, and intersection. A representation is effectiveaor
system (that is not an assumption or a guarantee) if it is

Theorem 1 ([2]) ConsiderS;, S, two systems and';, C5 closed under intersection and (inverse) projection, afid re

two contracts in canonical form. The following proposition ~ ability/availability are decidable.

hold for all ¢ € N: We assume that systems that are not assumptions or guar-

antees are represented wsfymbolic transition systenfsee
o 51 AW ¢y and Sy =R Oy implies that(Sy N Section 2 for properties) and that assumptions and guar-
Sp) =R (Cy || Ca); antees are represented with either finite-word octB au-
R(t) R(t) ) R(t) tomata. LetC' = (V, A, G) be a contract, aymbolic con-
e 5y FTY CrandS, ETY Gy iff 5 =Y (G A tract for C'is thus a tuplgV, B4, Bg), whereB4 and B¢
Ca); are automata witt.(B4) = A andL(Bg) = G. Observe
o S £ ¢, andCy <(S ¢ implies thats, =A®) that there are systems e_md contracts for which there exists
Oy, no s_ymbohc rep_re_sentatlon. o
Since both finite-word and i&hi automata are closed
under complementation, union and intersection, it is easy
to see that the composition and the conjunction of two
symbolic contracts is still a symbolic contract. Moreover,
since inclusion is decidable for those automata, we can
e S ):jgi)l ¢, and S, ':3(;32 Cs implies that(S; N always ch_eck Whether r_efinement hol_ds. _We now focus
) k on the satisfaction relations. We distinguish between R-

Theorem 2 ConsiderS; and S two systems and’y, Cs
two contracts in canonical form. Let < 1 be a discount
factor. The following propositions hold for alle N:

So) =AW (|| Cy); e e e . :
d;mitma—1 Satisfiability and A-Satisfiability. We consider a symbolic
contractC' = (V, B4, B ) and a symbolic transition system
e 5 g(n?l Cy, and S —25:32 Cy implies that Symb = (V. Q(s TAQS(S.) Y Y
S1 |:257?1+m271 (C1 N C9); Reliability. When considering R-satisfaction, we will



assume thaB, and Bg are Bichi automata. It is concep-
tually easy to decide whethélymb R-satisfies”. Indeed,
following results obtained for temporal logics [25, 26],-im
plemented in theSPINtoolset[22], this amounts to check
whether the Bichi automaton obtained by taking the syn-
chronous product betweefiymb and —(Bg U —B4) is

between contracts and implementations is to fix a set of
global probabilistic variable®. We consider a probabil-
ity distribution over[P]“ and extend it tdP]* as follows:

Yw € [P]*, P(w) = f{w,epw | w<w,}IE”(w’)dw’, where<

is the prefix order on runs.

empty. Observe that assumptions and guarantees can alsg 1 Probabilistic contracts

be represented by logical formalisms that have a translatio
to Buchi automata — this includdsTL[18] and ETL[27].
The theory generalizes to other classes of infinite word au-
tomata closed under negation and union and other logical
formalisms such a€TL[9] or PSL[13].

Availability with level m and discount factor d. In [12],

de Alfaro et al. propose®CTL, a quantitative version of
the CTL logic[9]. DCTL has the same syntax as CTL, but
its semantics differs : in DCTL, formulas and atomic propo-
sitions take values betweéghand1 rather than in{0, 1}.
Letp; andp, be two DCTL formulas, the value gf; A 5
(resp.p1 V p2) is the minimum (resp. maximum) between
the values ofp; andpy. The value ofVy; (resp. )

is the minimum (resp. maximum) valuation ¢f over all
the runs. In addition to its quantitative aspect, DCTL also
allows to discount on the value of the formula as well as
to compute its average’\; operator, wherel is the dis-
count : see the semantics with= 1 andd < 1 page

6 of [12]) on a possibly infinite run. We assume tit
and B¢ are completefinite-word automata and show how
to reduce A-satisfaction to the evaluation of a DCTL prop-
erty. Our first step is to computgymd’, the synchronous
product betweersymb and B U =B 4. The resulting au-

We will say that a contract = (V, A, G) is a prob-
abilistic contractiff P C V, i.e. iff its set of variables
contains all the probabilistic variables. We now turn to the
problem of deciding whether a systefn= (U, (2) satisfies
a probabilistic contracf = (V, A, G). As it was already
the case for non-probabilistic contracts, we will distirgiu
R-Satisfaction and A-Satisfaction.

Our first step is to introduce the definition of scheduler
that will be used to resolve non determinism in assumption
and guarantee of contracts. Given a systgém- (U, ),

a scheduley maps every finite rum on probabilistic vari-
ablesP to a runf(w) of S which coincides withu for every
probabilistic variable. In addition, it is assumed thatesth
ulers are causal, meaning that they resolve non-detenminis
on a step by step basis. This is ensured by a monotonicity
assumption of the schedulergw, w’ € [P]",w < w' =

flw) < f(w').

Definition 6 (Scheduler) A schedulerf of systemS =
(U, Q) is a monotonous mappind®]” — © such that for
all w € [P]", f(w) |p= w. The set of schedulers corre-
sponding to a syster$i is denoted byched(S).

tomaton can also be viewed as a symbolic transition system

whose states are labelled with a propositiowhich is true

if the state is accepting and false otherwise. In fact, finite
sequences of states 8fymb’ whose last state is accepting
are prefixes of runs dfymb that satisfyB; U—-154. Hence,
checking whethetymb A-satisfiesC' boils down to com-
pute the minimal average to see= 1 in Symb’. Our prob-

lem thus reduces to the one of checking for each initial state
of Symb’ whether the value of the DCTL property\, p

is greater or equal ton.

4 Probabilistic Contracts

We now extend the results of the previous section to sys-

In Section 3, R-Satisfaction was defined with respect to a
Boolean interpretation : either the system R-satisfies a con
tract or it does not. When moving to the probabilistic set-
ting, we can give gualitativedefinition for R-Satisfaction
that is : for any scheduler, is the probability to satisfy the
contract greater or equal to a certain threshold?

Definition 7 (P-R-Satisfaction) A systemS = (U,2) R-
satisfies a probabilistic contra@t = (V, A, G) for runs of
lengthk (k € N*°) with levela, denoteds |="* ¢, iff

P([f([P1")N(GU=A) 1] Ip) 2 .

inf
fESched(STUVV)

tems that mix stochastic and non deterministic aspects. As

for the previous section, all our results will be developed Observe that, as for the non probabilistic case, we consider

assuming that contracts and systems are represented by setisat runs that do not satisfy the assumption are good runs.

of runs and then an automata-based representation will bdn addition to the motivation given in Section 3.1, we will

proposed. see that using such an interpretation is needed when consid-
In the spirit of [16], we now consider that the valua- ering the conjunction operation (see the observation after

tions of some variables depend on a probability distribu- Theorem 3).

tion. This allows to model systems failures. The easiest Though A-Satisfaction was already qualitative, we now

way to describe probabilistic variables that will be shared have to take into account the probabilistic point of view:



instead of considering the minimal value of the mean- situations where this probability is strictly higher thén
availability for all runs of the system, we now consider those where there are runs that do not belondt@r A,.
the minimal expected valuef the mean-availability for all We now switch to the case of P-A-Satisfaction.

schedulers. ) ) )
Theorem 4 (P-A-Satisfaction) Consider three systems

Definition 8 (P-A-Satisfaction) A systemS = (U, Q) A- S = (U,Q), S1 = (U,) and Sy = (Us,2) and

satisfies a probabilistic contracf = (V, A,G) for runs ~ two probabilistic contractsC; = (V1,4;,G1) and
of lengthk (k € N*°) with levela and discount factot, Cy = (Va, Az, Go) that are in canonical form. We have the
denoteds |=; 1" ¢, iff following results:

1. Composition. Assume thatS; and S,

are P-compatible. If S ||:iff)(31 and

Sal=5Y) € then Sy 0 Sy ESYC || Co with
v > a+ B —1if a+ 3>1and 0 otherwise.

inf / P(w) - F(w)dw > «
fESched(STUVV) we [Pk

with
b . 2. Conjunction. Assume that is P-receptive. If
Flw) = 4 Peioor () Tk <w S=1% ¢, and 5 =% ¢,, then S =1 ¢, A ¢,
liminfy . Dejoov (f(w))  ifk =w. withy > a + 8 — 1if a 4+ $>1 and 0 otherwise.
4.2 Operations on probabilistic contracts 4.2.2 Refinement

and Compositional reasoning ] ] o
We consider refinement for probabilistic contracts. Cantra

ily to the case of non probabilistic contracts, we will disti

guish between R-Satisfaction and A-Satisfaction.
Following our move from R-Satisfaction to P-R-

Satisfaction, we propose the notion®fRefinementhat is

the quantitative version of the refinement we proposed in

Section 3. We have the following definition.

We now leverage the compositional reasoning results of
Section 3.2 to probabilistic contracts. We consider compo-
sition/conjunction and refinement separately.

4.2.1 Composition and Conjunction

dcgfﬁzgs:ggrinodnC?gﬁ;&ﬂggcfoﬁ;?:ggnggg ;gg:ﬁ;gﬁg Definition 9 (P-Refinement) A probabilistic  contract
b Cy = (V1,A1,G1) P-Refines a probabilistic contract

We thus propose an extension of Theorems 1 and 2 which,~ ooy
takes the probabilistic aspects into account. Ca = (V2, A3, G3) for runs of lengthk (k € N*°) with level

a, denotedz; <5™ ¢, iff
Theorem 3 (P-R-Satisfaction) Consider three systems

S = (U, Q), ST = (Ul,Ql) and Sy = (UQ,QQ) and Vf c Sched((Gl U ﬁ141) TV1UV2>
two probabilistic contractsC; = (Vi1,A4:,G1) and . VOV ’
Co = (Va, Ay, G) that are in canonical form. We have the P([f([P]") N (G2U—A) 17%2] |p) > a.
following results: Quantitative refinement is compatible with the definition of
1. Composition. Assume thatS; and S, P-R-Satisfaction, which brings the following result.
. R(k
are RPk-compatlbIe. If RS; =& and  Theorem 5 Consider aP-receptive systens = (U,Q)
So \%ﬁ( )¢y, then Sy N S, ||:7( e || Co with and two probabilistic contracts; = (V;, A;, G;) for i =
v > a+p—1if a4+ >1and 0 otherwise. 1,2. If (G; U—A,) is P-receptive and prefix-closed, then
2. Conjunction. Assume that is P-receptive. If S”:R(k) CyAC <BEW e, o S”:R(k) Co.
SI=R0 ¢y and S =50 ¢,, then s =M ¢, A ¢ . ’ et
withy > a+ 8 — 1if @ + >1 and 0 otherwise. P-A-satisfaction and quantitative refinement are orthogo-

nal measures. Indeed, P-A-satisfaction measures the infima
Consider two contract$A;,G1) and (As, G3) such that expected availability of a system for all schedulers, while
Ap C Gy, Ay C Go and(A4; U Ay) N (G1 N Ge) = 0. quantitative refinement measures the infimal set of traces of
It is easy to see that any system will reliably satisfy both a probabilistic contract that corresponds to another proba
contracts with probability. According to an interpretation  bilistic contract. In such context, the minimal schedulers
where one considers that runs that do not satisfy assumpfor the two notions may differ. We propose the following
tions are bad runs, the probability that a system satisfees th result, which links P-A-Satisfaction with the definition of
conjunction is alway$. With our interpretation, there are refinement proposed for non-probabilistic contracts.



Theorem 6 Consider aP-receptive systeny = (U, () Example 1 The split is illustrated in Figure 3. Consider
and two probabilistic contracts; = (V;, A;, G;) for i = the stateX = {a = 1,b = 0,¢ = 1} in the system given
1,2.1f S |#jgf) ¢, andC; <(£h) ¢, thenS #ﬁf) Co. in Figure (a). This state can be split into two statels =
’ ’ {a =1,c=1}andE = {b = 0}. The state’ = {a =
1,b=1,c =1} can be splitintoB = {a = 1,¢ = 1} and
4.2.3 Anillustration F = {b = 1}. In the split, there will be transitions from

) ) o to £ and fromB to F'. Any transition fromX (resp.Y’) to
Consider the systems and contracts given in Figure 2. As-y (resp. X) will now be fromE (resp. F) to B (respA).

sume that?i € N, P(fi(i) = 1) = 1077 ar}gg’;gfg(i) = SinceA and B have the same label and successors, they
1) = 2.107*. Itis easy to show thaf; I= 1" 10-3)50 C1 can be merged, which gives the split in Figure (b).
andSs |):g(f’g?w,3)50 C». Itis however more difficult to de-

It is easy to see that we can use the Markov Chain that
represents the probability distribution in order to “trans
form” the transitions from a non deterministic variablesta
of Symb” into a probability distribution over the proba-
bilistic variable states simply by synchronizing the twg-sy
tems. By doing soSymb” becomes aurn-based Markov

duce the probability for whicls; N S, satisfies the contract
C1 || C2. Thanks to Theorem 3, we know that this probabil-
ity is at least0.999)°° +(0.998)°° — 1 = 0.86. Considering
Cs = ({f1, f2,a,c,d},7true” ,"0(d = ((a A= f1) Ve) A
~f2)"), itis clear thatC; || C; < ¢;, which implies

thatS, N Sy =iy Cs. Decision Proces§MDP). Recall that a turn-based MDPs
mixes both non-determinism and probability. In our set-
4.3 Effective algorithms/representations ting, non-determinism thus comes from the choice of the

values for the non-probabilistic variables, while prolbabi
ity arises when evaluating variables in The transitions

The constructions are similar to those given in Section ., states that are labeled with probability variables are
3.3. We assume the reader to be familiar with the conceptsih s non-deterministic (since one has to pick up the next

of (discrete) Markov Chain and turn-based Markov Deci- \ 51 es for the non-probabilistic variables). Transitinasn

sion Pr_ocesses._ Roughly speaking, a Markov Chain is_ 8states that are labeled with non-probabilistic variabbemf
symbolic transition system whose states are labeled with

. . - - . a probability distribution on the possible values of thelpro
valuations for variables i? and transitions by probabil-

. . . - abilistic variables. In this context, a run for the MDP is
ities. The labelling by probabilities follows a probaljlit  giyny an alternance of valuations of the non-probabdisti
distribution, i.e., for a given state, the sum of the probabi

) ; " and the probabilistic variables.
ity values for all outgoing transitions must be less or equal

to one. In a given state, one picks up the next valuation xample 2 The concept of turn-based Markov Decision
for the probability variables, i.e., the next state. Thebaro  process resulting from the product of a split and a Markov
bility to pick up a valuation is the value given on the tran- chain for P is illustrated in Figure 4. Observe that the state
sition that links the current state to the next chosen one.f;, — 1 . = 1} has been duplicated. Indeed, according to
There is a special state callééhit” from where one hasto  the Markov Chain in Figure 5.(a), the probability to select

chose the first value. The concept of representgitha 1, — 0} in the first step is not the same as the one to select
Markov Chain is illustrated in Figure 4(a), wheRe= {b} it after the first step.

andD = {0,1}. In this example, the probability that a

run starts withb = 0 is 1/2. The probability that a run Assuming that the combination of the system with the

starts with the prefiXb = 0)(b = 1)(b = 0) is given by distribution can be represented with a MDP, we now briefly

(1/2) x (1/4) x (1/3) =1/24. discuss P-R-Satisfaction and P-A-Satisfactiorscheduler
Let C = (V,Ba,Bg) be a symbolic contract and for a Markov Decision Process[7] is a mechanism that, in

Symb = (V,Qs, T, Qo) be a symbolic transition system. anon deterministic state, selects the successor stateuwith
We consider a seP C V of probabilistic variables. We  taking predecessors into account. This definition matches
assume that the distribution ovéris symbolically repre-  the one we proposed in Definition 6. In this context, we
sented with a Markov Chain. At each state, we have a prob-have the following methodology.

ability distribution over the possible set of valuationstioe P-R-Satisfaction Assuming that34 and B are Hichi
variables. The Markov chain is finitely-branchingiass fi- automata, P-R-Satisfaction can be checked with the tech-
nite. Observe that each state$jmb can be splitinto two  nique introduced in [23, 11] (which requires a determiniza-
states, one for the valuations of the non-probabilisti¢-var tion step from Bichi to deterministic Rabin [20]) and imple-
ables followed by one for the valuations of the probabilis- mented in theLIQUOR toolset[6]. Indeed, this technique
tic variables. The result is a new symbolic syst8gmb” allows to compute the minimal probability for a Markov
where one first evaluafé \ P and thenP. decision process to satisfy a property which is represétab
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(a) Systemss; andSs and probabilistic contracts; andCs.

d=[((a A=f1)Ve)
—fa

< V= {f17f27aabvc7d}
2 A: true
N S1 b r b=an-f G: O((b=aAn—f)
Ad = (bVc)A~f2))
f1

(b) SystemsS; N Sz and probabilistic contracd; || Ca.
Figure 2. Reliability : Example

@)

(@) A symbolic transition systerfiymb for V.= {a, b, ¢}, where the

(=
B
domain ofa, cis {1} and the domain df is {0, 1}, b is the probabilis-

tic input and the set of runsis givenBfp = 1,b = 1,c = 1)U (a = (b) The splitSymb'’ for Symb.
1,b=0,c=1))~.

Figure 3. A symbolic transition system and its split.

with a Blchi automaton. We can thus consider assumptionsover MDPs can be found in Section 2.2 of [12]. The overall
and guarantees represented with logical formalism that hav formula we model check i§E[A,; p], where E states for
a translation to Bchi automata, e.g., ETL [27]. “expected value”.

A-Satisfaction with level m and discount factor d The

DCTL logic can also be interpreted over MDPs. The def- 5 Conclusion

inition of synchronous product easily extends to MDPs.

The product between a MDP and an automaton can be in- We have proposed a new theory for (probabilistic) con-
terpreted as a MDP. We can thus use the labelling tech-tracts. Our contributions are : (1) a theory for reliabibtyd
nigue with propositions that was proposed for the non- availability, (2) a treatment of the stochastic aspects(&hd
probabilistic case (assuming that the states of the automat a discussion on effective symbolic representations. We are
have also been split (see the split for transition system)).currently implementing the non probabilistic approach in
For a given scheduler (which transforms the MDP into a the SPIN toolset [22] and we plan to implement the proba-
Markov chain), we can compute tlegpected valuéor the bilistic approach in the LIQUOR toolset [6].

formula/ 4 p. We then compute the minimum between the In addition to implementation, there are various other di-
expected values for all schedulers and check whether it isrections for future research. A first direction is to devedop
greater thamn. More details about model checking DCTL notion of quantitative refinement that is compatible with A-



3/4

(a) A Markov Chain for the distribution
over variables in P.

(b) A MDP for the product between the Markov chain in Figure
4(a) and the transition system in Figure 3(b).

Figure 4. The product of a split symbolic transition system with a Markov Chain.

satisfaction. We also plan to consider other symbolic repre [12] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and

sentations such as visibly pushdown systems [14]. Consid-

ering such representations will require new DCTL model

checking algorithms. We also plan to extend our results to

the timed setting. Finally, it would be worth considering th
case of dependent probability distributions.
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A Proofs of the Theorems

A.1 Properties common to all proofs

andVi € N,Vo € V. f(w)(i)(v) = w"(i)(v). More-
over, because’ andw” are both projections of (w), Vi €
N,Yo € VNV, f(w)(i)(v) = w'(i)(v) = w’(i)(v).

Now, considetwy € f v/ (w) N f ly» (w). Sincew, €
(f Ly (w)) 1V, we havewy |v/= w'. ThusVi € N, Vv €

In this section, we present properties and Lemmas thatV’> wo(i)(v) = w'()(v) = f(w)(i)(v).

will be used in all proofs.

Property 1 Let F; and E be two sets of runs ove?r. We
have:

P(~(Ey N Ey)) < P(—E;) + P(—Ey)
= 1-P(E,NEy) < (1-P(E)) + (1 - P(Ey))

Property 2 ConsiderV C V’ C V" three sets of variables
and F and E” two sets of runs over and V"’ respectively.
We have:

(BT =1 @)
(BT vy =E1Y; €)
(E" lv/) lv =E |v; 4)
weE =w|ye B |y; (5)
weE=wtVCcE . (6)

Lemma 1 ConsiderS = (U, ?) a P-receptive systentf,
Sched(S) a scheduler ofS and U’ a set of variables. If
P C U’ CU,thenwe have:

flUu{ [P

Proof :

Let f/ = f |uy.. By definition,f’ : [P]* — S |y/. Non-
sider noww € [P]* andw’ < w. Sincew’ < w, we have
f(w") < f(w). As a consequencg; (w') < f'(w). More-
over, f(w) |p= wand P C U’, thus by (4),(f(w) |y

) Lp=w.

— S lU/

— f(w) Lo } € Sched(S [y/).

O

Lemma 2 ConsiderS = (U,Q2) a P-receptive system,
f € Sched(S) a scheduler ofs andU’ andU"” two sets of
variables. IfP CU' C U, P CU” CUandU'UU" = U,
then

Vw e (P)>™, f o (w) 0 f lur (w) = {f(w)}.

Proof :

Letw' = f |y (w) andw” = f |y (w). w, w" and
w' are such thati € N,Vo € V', f(w)(i)(v) = w'(¢)(v)

"(@)(

11

Similarly, sincewy € (f ly» (w)) TV, we havevi €
N, Vv € V', wo(i)(v) = w"(i)(v) = f(w)(i)(v).
Finally, Vi € N,Vo € V. = VU V", w"(i)(v) =
f@w)(@)(v), thusw” = f(w).

O

Lemma 3 ConsiderS = (U,Q) and S’ = (U,) two
systems over the same set of variablés If S and S’
are P-receptive and i§” is prefix-closed, then for alf €
Sched(SS), there existg’ € Sched(S”) such that

Vw € [P]", f(w) € 8" = f'(w) = f(w).

Proof :
Considerf € Sched(S) and letf’ : [P]* — S’ such that :

fle)=¢
f(w.o) = f(w.o)if f(w.o) e S
fw.o) = f(w).o' st f'(w).c' € S ando’ |p= 0.

First of all, sinceS’ is prefix-closed, iff (w) € S’, then for
all w' < w, f(w') € 8, and as a consequengéd(w’) =
fw'). Moreover, sinceS’ is P-receptive, iff’(w) € S’,
then for allo € P — D, there exists’ € U — D such
thato’ | p= o and f'(w).c’ € S’. This ensures that the
definition of f” is coherent.

We will now prove by induction thagt € Sched(S").

e f'(e) = ¢ satisfies the prefix property.

e Letw € [P]* andw’ < w. Suppose that’(v') <
f'(w). Leto € P — D.

- If f(w.o) € S, then f'(w.oc) = f(w.o) and
Yw” <w, f'(w") = f(w"). Sincef is a sched-
uler, we havef (w') < f(w.o).

— Else,f’(w.0) = f'(w).0’" and as a consequence,

<

flw') < f(w) < fl(w).o’.
O

A.2 Proof of Theorem 2

For the sake of simplicity, we will consider that =
w. The proofs fork < w are simpler versions of those
presented here.



1. Proof:

LetS = (U,Q) = S1nSyandC = (V,A,G) =
C4 || Co. SinceC; and C, are contracts in canonical
form, we have?; = G; U —A4; andGy = Go U —As.

Similarly, since composition preserves canonicity, we

haveG = G U —A.
Considerw € ((S; TV1902 NGy (U1LV2) ULV |k,

Let w = w J,Ulu\/l and Wy = W »LU’_)UVQ' By (5),
we have
wy € (((Sy 17972) 1Y9Y)F 1y,ov,. By (2) and

(3), this implies thaty; € (S; TUY"1)|k. Similarly,
we also haveuv, € (Sy TV2VV2) |k,

Considert < k and: < t. By definition, if
eC177" (i) = 0, thenw[o‘A ¢ G 1YYV By (6), we de-
ducef(wifp ;) & G1 TV"9V)V (wg)g ;1 ¢ G2 TV29V2)].
As a consequence,

CTUUV

ST () > @S (@) + LT (i) — 1

(t,d)

=Vt S ka DC%UUV( ) D(Ct ?Lluvl (wl)

+D(t (?UQUVZ (w2) 1

= ligrii]?f Dgﬁj)uv( ) > hrtll}l?f D ‘?Uluvl (wy)

+ hm 1nf Dé T)U2UV2 (ws)

- 1.
By hypothesis, we have
llgrillglf Dé ?Uluvl (w1) > my

e (hd)
llgllllglf D) juauv, (W2) = ma.
As a consequence,

hm mf pd)

CTUUV( ) Z may +m2 -1

Finally,

Yw e (S TYYY)|F, 11m 1nfD(tTUUV( ) >my + mo
—1

= inf hm 1nf DgTdU)UV( ) >mq +mo

we(STUY)|*
~ 1

12

2. Proof:

LetC = (V, A,G) = C; A Cs. SinceC; andCs are
contracts in canonical form, we have, = G U—A4;
and G, = G2 U —A,. Similarly, since conjunction
preserves canonicity, we hate= G U - A.

Considerw € (S; TUYV) k. Letw; = w |y,uv,
and we = w |y,uv,- By (5), we havew; €
(S TYYNIF lu,uv,- By (3), this implies that
wy € (51 TVPV1)|k. Similarly, we also havev, €
(Sl TU1UV2)‘/€_

Considert < k andi < t. By definition, if
ST (i) = 0, thenwy ;) ¢ G T91VY. By (6), we
deduce(wi,; ¢ G TUlUVl) V(wapq & Go 1V19V2
)]. As a consequence,

U uv 1UVy U UV
ST ) > oG ) + 052 T () -1

w w2

=Vt<k D tT‘f}luv( ) ZDgii)uluvl (w1)
+ D(t7d) ('[UQ

C2TU1UV2

)1

(t,d)

CTUIUV( w) >hm1nfDC fU1on (wq)

= liminf D
t—k
+ hm mf D(C T)UIUV2 (w2)

—1.

By hypothesis, we have

hm 1nf pid (w

Cq TUIUVI

1) >my

lim inf D(

ey Ca1U1UV2 (w2) > mea.

As a consequence,

hm 1nf D(75 d)

CTUlUV

(w) > mq +mg — 1.

Finally,

Yw € (S; TVYV)|F, lign i]?f Dgﬁ,)luv(w) >mq + mo

-1

ey R D Dhov (w) Zma +m
~1.

O



3. Proof:

Considerw € (S; V1Y) |k, Letw’ € w TV1VVIVV2
andw; = w’ |y,uv,- By (2) and (3), we have, €
(Sl TU]UV1)|]€

Consider nowt < k and i < ¢t By

definition, %) = 1 —
wiey € (G U -A) UL By
hypothesis,  ((Gy U—A;) TV1VVe)|<k <
((G2U=Az) 1V10V2)|<k, Thus, by
(6), ((G1U=Ay) TUVO2) <k <

((G2 U —~Ay) (PaCVILV2) Sk,
If 117 (i) = 1, then

Wi, € ((GrU—Ap) 19 OV)=F
= wy[0, 4] 1OV C (G U —A;) TVOVIVV) <k
= w1[0, 1] TVHOVIIV2C ((Gg U —A,) TV1UVIVV2) <k
= wfo,i] € (Ga U—A4y) TU1UVIUY,

= wip 1 Lo € (G2 U=Ag) 119192 1y Gy, by (5)

= W) € (G2 U~-4y) (V19" by (3)
= 17 () = 1,
Thus,

Vit <k, Vi < t, 01T () > o0 (5

w1
=Vt <k, D- (w) > D&4 (wy)

CzTU1UV2 CITUluvl
P t,d P t,d
= hl;ILl]?f DCQTU1UV2 (w) > llItIl)l]?f DCITU1UV1 (wy).
By hypothesis,

o t,d
h?l,l;?f DclTUluvl (wy) > m.

As a consequence,

Vw € (S 179, Timinf DES v, (w) > m

. . t,d
= inf lim inf DC2TU1UV2

w) > m.
we(S1TV1VV2) [k t—k (w)2

A.3 Proof of Theorem 3

1. Proof:

LetS = (U,Q) = S1nSyandC = (VA G) =
Ci1 || C2. SinceC; and(C, are in canonical form and
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since composition preserves canonicity, we will con-
sider thatG1 =G U _‘Al, Gy = Gy U _‘A2 and
G =GU-A.

Consider f € Sched(S 1Y“V). SincesS; and S,
are P-compatiblef is defined over all runs inP]*.
Moreover, sinceS = (S; TV1VV2) N (G, V1WU2)
we have(f € Sched((S; TVVYV2) VUV A (f €
Sched((S, TV1VU2) 1ULVY)) By (2), we obtain

(f € Sched(S; 1Y) A (f € Sched(Ss 1V°V)).

Letfi = f lu,uv, and fo = f ly,uv,. By Lemma 1,
we have

(f1 € Sched((S1 TV°Y) lu,un))
A\
(f2 € Sched((S2 VYY) lu,uws))

Thus, by (3),
(f1 € Sched(Sy TV*°V1) A (fy € Sched(S, 1V2V72)).

Consider noww € [P]*. If f1(w) € Gy V1YY, then
by (6) and (2).f: (w) 17°VC G4 1U9Y. Similarly, if
f2(w) € Gy TY29V2 then fo(w) TVPVC G, VYV,
As a consequencef; (w) TUYY Nfy(w) 1YYV C
(G1 N Gg) 1YYV, and, by Lemma 2f (w) € (G1 N
G») 1YYV, As a consequence,

[A1([P1F) NGy 199 | p 0 [f2([P)F) NG 1929V2] |
CH(P)NG 17 Lp.

E

This implies, by (1), thab(E) > P(E;) + P(Es) — 1.
Moreover, by hypothesis,

P(Ey)
P(Es)

ThusP(E) > a+ 3 —1and

(0%
3.

(AVARYS

Vf € Sched(S 1Y),
P((f(PI)NG 1Y) Ip) 2 a+ 5~ 1.

= P([f([P*) NG 17V Lp) 2

inf
fESched(STUVY)
a+ 6 —1.



A.4 Proof of Theorem 4

2. Proof:
We will useC = (V, A, G) = C; ACq. SinceC; andCs
are in canonical form and since conjunction preserves
canonicity, we will consider thatz, = G; U —Aq,
Gy = Gy U—Ay andG = G U —A.

For the sake of simplicity, we will consider that =
w. The proofs fork < w are simpler versions of the ones
presented here.

Considerf € Sched(S 1Y"V). SinceS is P-receptive, 1. Proof:
f is defined over all runs ifiP]*. LetS = (U,2) = S1N S andC = (V,A,G) =
C1 || C5.SinceC; and Cy are in canonical form and
Letfi = f louw, andfz = f luuy,. By Lemma 1, since composition preserves canonicity, we will con-
we have sider thatG; = G1 U —A;, Gy = G5 U —A5 and
G=GU-A.
A(f1 € Sched((S 17%Y) luuw)) Considerf € Sched(S 1V“V). SinceS; and S, are
(f2 € Sched((S 1Y) luuw,)) P-compatiblef is defined over all runs ifi]*. More-
over, sinceS = (S; TV1Y02) N (Sy 1U1U02) it is
Thus, by (3), clear that(f € Sched((S; 1Y1902) (USV) A (f €

Sched((S, TV1VWUz) 1UUVY)) Thus, by (2),
(f1 € Sched(S TUUVl) A (f2 € Sched(S TUQUVQ))-

Consider noww € [P)*. If fi(w) € Gy VY"1, then = (f € Sched(S1 TV°Y)) A (f € Sched(S2 TV2Y)).

by (6) and (2).f1(w) TV°VC Gy 1V°V. Similarly, if Lot — 4 - .
folw) € Go UV, then fo(w) TV9VC Gy 1UOV. Wee ﬁiﬂvef lu,uv, and fo = f lu,uv,. By Lemma 1,
As a consequencef; (w) TUYY nfy(w) TYVVC

o) 107 TUUV’ e A (G { (f1 € Sched((51 TUUV) lonow))

G>) 1YYV, As a consequence,
(f2 € SChed((SQ TUUV) lUQUVQ))

B B Thus, by (3),
LAPIF) NG 179 L N [f2([P]F) N G 1797 Lp
C [f([P]k) naG TUUV] lp. (f1 S Sched(51 TUIUVI) AN (f2 S Sched(Sg TUzUVz)).
o Considerw € [P]¥,t < kandi < t. If (p%;z;v(i) =
SR B 0, thenf(w)p s ¢ G TYYV. By (6) and (3), we de-
This implies, by (1), thab(E) > P(E,) + P(F3) — 1. [0,d]
Moreover, by hypothesis, duce that[(fl(w)w] ¢ G 1) v (fo(w)o) &
G5 1Y2YV2)]. As a consequence,
P(E;) > «
P(Ez) = B. @?(Tu,) (i) = ‘Pil(Tw)l 1( )+ @zz(Tw)Q ’ (1) -1

ThusP(E) > a+ [ —1and

=Vt <k, DéT@UV(f(w)) >Dcf ?)Uluvl (f1(w))

Vf € Sched(S 1YY,

+ Do, (f
P(f((P*)NGT"Y] |p) > a+pB—1 B caquaovs (f2(w))
= feScheidr(lgTUUV)P([f([P]k) NG 1YY |p) > = hm mf D(CTU)UV(f(w)) > ligrl)i’?f D(cfﬁ)Uluvl (f1(w))
a+pB-1. + lim inf D&Y, v, (F2(w))

(| -1
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As a consequencew € [P]*,

cruuv Ci1lv Cy1UYV2

(t,d) .
hmlnf DCTqu(f( w)) > hmlnf Dc 1U1UV (f1(w)) Sﬁf(Tw) (i) = C'Ofl(w) (i) + SDfQ(w) (i) —1

+ h?ilz?f DC;TUQUVQ (fa(w))

—1 (t,d) t (t.d)
:>Vt§ k7 DCTUUV(f(w)) 2 C UYL (fl( ))
+ D%
N i D s (fa(w)
we [Pk !
/E[P]k hmlnf Dg U1 (f1(w))dw
- d . d
o[ Bw) it DY, (o)) du = liminf D0y (f(w) > liminf DY gm (fa(w)
we[P]k
= +hm1nch (o, (f2(w))

— 1.
By hypothesis, we have

As a consequenceyw € [P]*,

/ P(w) - hmlnfD( )Uluvl(f1< ))dw > « (t,d)
we[P]F Gut

t—k h?iii?f Dejooy (f(w)) = hm 1nf Dg TUUVl (f1(w))
P(w) - lim inf DG v, (F2(w))dw > B. + hmme Yrovy (F2(w))
we[P]F T C T
—1

Thus,¥f € Sched(S 1U4Y),

d
/ P(w)-lim inf D! ngw(f(w))dw >a+4-1 é/ hm 1nf Déﬂ?uv(f(“’))dw >
we[ Pk t—k we [Pk
0 / hmlnfD( ciuun (f1(w))dw
wE[P]’C t—k
2. Proof: _ +/ hmlnfD( TUUVQ(fQ( w))dw
LetC = (V,A,G) = C; A C2.SinceC, and Cy are we[P
in canonical form and since conjunction preserves —1.

canonicity, we will consider thatz;, = G; U —Aq,
Gy = GoU—-AsandG = G U —A.

Considerf € Sched(S 1Y“V). SinceS is P-receptive,
f is defined over all runs ifiP]*. Letf; = f lvuw,

By hypothesis, we have

and f, = f |yuy,. By Lemma 1, we have / P(uw) - hmmf pltd) (Fu(w))dw > a
Ch Tqul -
we[Pk
[ U € Sehed(8 17°Y) L) - »
<f2 e SChed((S TUUV) lUUVg)) ,/we[P]k IP)( ) hmlnfDC TUUV (f2( ))dw 2 ﬁ

Thus, by (3)

Vi v Thus,Vf € Sched(S TVVY),
(f1 € Sched(S TUU 1) A (f2 € Sched(S TUU 2)).

P(w )hmlnfD(td) (f(w))dw > a+p—1

PR cruuv

Considerw € [P]¥,t < kandi < ¢. If <pf( ) (z') = /
0, then f(w)o,; ¢ G 1YY, By (6) and (3), we de- weP)*
duce that[(fi(w)y; ¢ G1 TV9Y1) V (fa(w) ;) ¢

G T1VY"2)]. As a consequence, O
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A.5 Proof of Theorem 5

Proof :
Considerf € Sched(S 1YV"2). By Lemma 1, there exists
f' € Sched(S TUVV1UYe) such thatf’ |y, = f. Letf, =
" lvuv,. By Lemma 1, we hav§ € Sched(S 1YW
). Lemma 3 states that there exigts € Sched((G; U
—Ap) 1YYV sych thatvw € [P)*, f'(w) € (Gy U
Ay) TV frw) = f'(w). Letfy = 3 Lyyuva-
By Lemma 1, we havg € Sched((G; U —Ay) TV1VV2,
Considerw € [P]*. If fi(w) € (Gy U—-A4;) 1YV, then
by (6), f'(w) € (G1U—A;y) 1YY= fi(w) = f'(w).
Moreover, if fo(w) € (G2 U —As) 1 Vi U V3, then by (6),
Fo(w) € (Ga U—Ay) 1V9V1UV2 Thus,

f'(w) € (G2 U—Az) 171
= f(w) € (GyU—A4,) 1V9Y2 by (5)
As a consequence, let
=[A(P) N
=[f([P]*) N
E =[f([P]*)n
We havel; N Ey C E.

This implies, by (1), thaP(E) > P(Fy) + P(E;) — 1.
Moreover, by hypothesis,

{

Thus,P(E) > a + 3 — 1 andVf € Sched(S TVV"2),

(G1U=A4y) 1Y) | p
(G2 U—43) 1V1°%2] | p
N (G2 U=As) 1V9%2] |p

]P(El) 2 «
P(E;) > B.

P([f([P]F) N (G2 U=45) 1V9%2] |p) > a+ B~ 1

O

A.6 Proof of Theorem 6

For the sake of simplicity, we will consider that =
w. The proof fork < w is a simpler version of the one
presented here.

Proof :

Consider f & Sched(S 1Y“"2). By Lemma 1,
there exists f/ € Sched(S 1YYV1YV2) such that
" lvow= f. Letfi = f luuy,. By Lemma 1

again, we havef; € Sched(S 1Y“V1). Consider

noww € [P]*, t+ < kandi < t. By definition,
Uuv,

pily @) =1 = fi(w)p, € (GrU=Ay) V9%,
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By hypothesis,

((Gl U —|A1) TVlUVz)‘Sk: C ((G2 U —|A2) TVluVQ)‘gk:.
Thus, by (6),
((G1 U ~Ayp) VUV [Sk C ((Gy U —Ay) TUUVIVV2) <k,

i1V

If P w) (1) =1, then

fi(w) 5 € ((G1U-4y) VA <k

= fl(w)w[O,i] TUUVIUVzg ((Gl U —|A1) TUUV1UV2)|§k

= fi(w)w[0,i] TYUVIPVEC ((Gy U —A4y) TVVIVY2) <K

F (W) € (G2 U—Ay) TVIVIVV2

(w)[o,i] Lo € (G2 U=A4y) TV2V19Y2 11y, by (5)
= f( )0, € (G2 U—Ay) 1V°V2 by (3)
=S ( )=1
Thus,

W<k Vi<t o2 ) 2 o0 ()

=Vt <k, DElvow, (F(w) > DElvow, (fi(w))

= hmmf DC 1oUvs (f(w)) > h?i»i]?f DclT,JU‘/1 (f1(w)).
By hypothesis,
li?ii]?f Dngqul (fi(w)) > a.

As a consequence,

Yw € [P ]k lim inf D%

t—k
= / P(w) -
we[P]F

Finally, Vf € Sched(S 1VV"2),

/we[P} Plw)-

L v (F() > m

lim inf D%

t—k

(f(w))dw = m.

Cy TUUV2

lim inf D,
t—k

(f (w))dw = m

Coy TUUVZ



