
Probabilistic Contracts : A Compositional Reasoning Methodology for the
Design of Stochastic Systems

Benôıt Delahaye
Universit́e de Rennes 1 / IRISA,

Rennes, France
benoit.delahaye@irisa.fr

Benôıt Caillaud
INRIA/IRISA,
Rennes, France

benoit.caillaud@irisa.fr

Axel Legay
INRIA/IRISA,
Rennes, France

axel.legay@irisa.fr

Abstract

A contractallows to distinguish hypotheses made on a
system (the guarantees) from those made on its environment
(the assumptions). In this paper, we focus on models of As-
sume/Guarantee contracts for (stochastic) systems. We con-
sider contracts capable of capturing reliability and avail-
ability properties of such systems. We also show that clas-
sical notions of Satisfaction and Refinement can be checked
by effective methods thanks to a reduction to classical ver-
ification problems. Finally, theorems supporting composi-
tional reasoning and enabling the scalable analysis of com-
plex systems are also studied.

1 Introduction

Several industrial sectors involving complex embedded
systems have recently experienced deep changes in their or-
ganization, aerospace and automotive being the most promi-
nent examples. In the past, they were organized around
vertically integrated companies, supporting in-house de-
sign activities. These sectors have now evolved into more
specialized, horizontally structured companies:Equipment
Suppliers (ESs) andOriginal Equipment Manufacturers
(OEMs). OEMs perform system design and integration by
importing/combining/reusing entire subsystems (also called
components) provided by ESs.

In this context, techniques that allow to discover er-
rors at the early stage of the design are particularly ap-
pealing. Such techniques should be independent from the
way components are combined and must give strong confi-
dence regarding the correctness of the entire system with-
out proceeding to a complete analysis. Developing these
formal techniques pass by the study of a mathematical for-
malism characterizing both properties that must be verified
and component behaviors/interactions. Results exist (see
[8] and [17] for illustrations), but only for limited classes

of components, properties, and interactions. The objec-
tive of this paper is to go one step further by studying sys-
tems that combine non deterministic and stochastic aspects.
More precisely, we will propose : (1) a more complete set
of component-based design operations, (2) more complex
properties than the classical safety/liveness propertiesthat
are usually considered in the literature, and (3) a composi-
tional reasoning framework for such systems.

The semantics foundations presented in this paper con-
sist in a mathematical formalism designed to support a com-
ponent based design methodology and to offer modular and
scalable verification techniques. At its basis, the mathemat-
ical formalism is a language theoretic abstraction of sys-
tems behaviour calledcontract[3]. Contracts allow to dis-
tinguish hypotheses on a component (guarantees), from hy-
potheses made on its environment (assumptions). In the
paper we will focus on developing a contract-based com-
positional theory for two classes of systems, that are (1)
non stochastic and possibly non deterministic systems, and
(2) stochastic and possibly non deterministic systems. As
in classical non modular verification [8, 23], the satisfac-
tion relation will be Boolean for non stochastic systems and
quantitative otherwise, hence leading to two notions of con-
tracts. In addition, we will consider two measures of satis-
faction, namelyreliability andavailability. Availability is a
measure of the time during which a system satisfies a given
property, for all possible runs of the system. In contrast,
reliability is a measure of the set of runs of a system that
satisfy a given property. Both quantities play an important
role when designing, for instance, mission-critical systems.
Our notion of satisfaction is assumption-dependant in the
sense that runs that do not satisfy the assumptions are con-
sidered to be “correct”. This interpretation, which has been
suggested by many industrial partners, is needed to propose
compositional design operations such as conjunction.

We also propose mathematical definitions for crucial
component-based design operations including composition,
conjunction and refinement. It is known that most of indus-

1

trial requirements1 for component-based design translate to
those operations (see [5] for an argumentation). Compo-
sition between contracts, which mimics classical composi-
tion for systems, consists in taking the intersection between
the assumptions and the intersection between the guaran-
tees. Conjunction is a more intriguing operation that has no
translation at the level of systems; it consists in producing
a contract whose assumptions are the union of the origi-
nal ones and guarantees are the intersection of the original
ones. Roughly speaking, the conjunction of two contracts
represents their common requirements. We say that a con-
tract refines another contract if it guarantees more and as-
sumes less. The definition is Boolean for non determinis-
tic systems and quantitative otherwise. We also establish
a compositional reasoning theory for those operations and
the two notions of satisfiability we consider. This method-
ology allows to reason on the entire design by only looking
at individual components . The theory differs with the type
of contracts under consideration. As an example, we will
show that if a non stochastic systemS1 reliably satisfies2 a
contractC1 and a non stochastic systemS2 reliably satisfies
a contractC2, then the composition of the two systems re-
liably satisfies the composition of the two contracts. When
moving to stochastic systems, we will show that ifS1 sat-
isfiesC1 with probabilityα andS2 satisfiesC2 with proba-
bility β, then their composition satisfies the composition of
C1 andC2 with probability at leastα + β − 1.

The theory is fully general as it assumes that both sys-
tems and contracts are represented by sets of runs. Our
last contribution is to propose effective and symbolic rep-
resentations for contracts and systems. Those representa-
tions rely on an automata-based representation of possibly
infinite sets of runs. Assuming that assumptions and guar-
antees are represented with Büchi automata (which allows
to specify assumptions and guarantees with logics such as
LTL or PSL), we observe that checking if a (stochastic) sys-
tem satisfies a reliability property can be done with classi-
cal techniques implemented in tools such as SPIN [22] or
LIQUOR [6]. In the paper, we show that satisfaction of
availability properties can be checked with an extension of
the work presented in [12]. Finally, we also show that op-
erations between and on contracts can easily be performed
on the automata-based representations.

Related work In [2], Benveniste et al. have presented a
contract theory where availability, effective representations,
and stochastic aspects are not considered. Other definitions
of contracts have been proposed in [15, 19]. Works on
behavioral types in process algebras bear commonalities

1Example: those of the European projects COMBEST [10] and
SPEEDS [21].

2“Reliably satisfy” means that all the runs that satisfy the assumption
must satisfy the guarantee

with contract theories. In a similar way, the probabilistic
contract theory must be compared with stochastic process
algebras [16, 1]. In both cases, the main difference is
that compositional reasoning is possible only in contract
theories thanks to the fact that contracts are implications
where an assumption implies a guarantee. A second major
difference with process algebras, is that contract theories
are general and can be instantiated in many different
effective automata-based settings. This covers many logical
frameworks (CTL, LTL, PCTL, PSL,. . .) for specifying
properties of components.

Due to space limitation proofs of theorems are presented in
appendix.

2 Preliminaries

In this section, we recap some definitions and concepts
related to automata theory. We then introduce some nota-
tions and concepts that will be used in the rest of the paper.

Let Σ be an alphabet. A finite word overΣ is a mapping
w : {0, . . . , n − 1} → Σ. An infinite word(or ω-word) w
overΣ is a mappingw : N → Σ. An automaton is a tuple
A = (Σ, Q,Q0, δ, F), whereΣ is a finite alphabet,Q is a
set ofstates, Q0 ∈ Q is the set ofinitial states, δ : Q×Σ →
2Q is a transition function(δ : Q × Σ → Q if the automa-
ton is deterministic), andF ⊆ Q is a set ofacceptingstates.
A finite run of A on a finite wordw : {0, . . ., n − 1}→Σ
is a labelingρ : {0, . . ., n}→Q such thatρ(0) ∈ Q0, and
(∀0≤ i≤n − 1)(ρ(i + 1) ∈ δ(ρ(i), w(i))). A finite runρ
is acceptingfor w if ρ(n) ∈ F . An infinite run of A on
an infinite wordw : N→Σ is a labelingρ : N→Q such
thatρ(0) ∈ Q0, and(∀0≤ i)(ρ(i + 1) ∈ δ(ρ(i), w(i)). An
infinite run ρ is acceptingfor w with the Büchi condition
if inf (ρ) ∩ F 6= ∅, where inf (ρ) is the set of states that
are visited infinitely often byρ. We distinguish between
finite-word automata that are finite automata accepting fi-
nite words, and B̈uchi automata [4] that are finite automata
accepting infinite words. A finite-word automaton accepts
a finite wordw if there exists an accepting finite run forw
in this automaton. A B̈uchi automaton accepts an infinite
wordw if there exists an accepting infinite run forw in this
automaton. The set of words accepted byA is called the
language accepted byA, and is denoted byL(A). Finite-
word and B̈uchi automata are closed under intersection and
union. Inclusion and emptiness are also decidable. Both
finite-word and B̈uchi automata are closed under comple-
mentation and, in both cases, the construction is known to
be exponential. However, the complementation operation
for Büchi automata requires intricate algorithms that not
only are worst-case exponential, but are also hard to im-
plement and optimize (see [24] for a survey).

Let N∞ = N ∪ {ω} be the closure of the set of natural

2

integers andNn = [0 . . . n − 1] the interval ranging from0
to n − 1. Let V be a finite set ofvariablesthat takes val-
ues in adomainD. A stepσ : V → D is a valuation of
variables ofV . A run on V is a sequence of valuations of
variables ofV . More precisely, a finite or infinite run is a
mappingw : Nn → V → D, wheren ∈ N∞ is the length
of w, also denoted|w|. Let ε be the run of length0. Given
a variablev ∈ V and a timei ≥ 0, the value ofv at timei
is given byw(i)(v). Givenw a finite run onV andσ a step
on the same variables,w.σ is the run of length|w|+ 1 such
that∀i < |w|, (w.σ)(i) = w(i) and(w.σ)(|w|) = σ. The
set of all finite (respectively infinite) runs onV is denoted
by [V]

∗ (respectively[V]
ω). The set of finite and infinite

runs onV is denoted[V]
∞

= [V]
∗ ∪ [V]

ω. Denote[V]
n

(respectively[V]
≤n) the set of all runs onV of length ex-

actly n (respectively not greater thann). Thecomplement
of Ω ⊆ [V]

∞ is given by¬Ω = [V]
∞\Ω. Theprojectionof

w onV ′ ⊆ V is the runw ↓V ′ such that|w ↓V ′ | = |w| and
∀v ∈ V ′, ∀n ≥ 0, w ↓V ′ (n)(v) = w(n)(v). Given a run
w′ onV ′, theinverse-projectionof w′ onV is the set of runs
defined byw′ ↑V = {w ∈ [V]

∞ | w ↓V ′= w′}. A system
over V is a pair(V,Ω), whereΩ is a set of (finite and/or
infinite) runs onV . Let S = (V,Ω) andS′ = (V ′,Ω′)
be two systems. Thecompositionof S and S′, denoted
(V,Ω) ∩ (V ′,Ω′), is given by(V ∪ V ′,Ω′′) with Ω′′ =
Ω ↑V ∪V ′

∩Ω′ ↑V ∪V ′

. The complementof S, denoted
¬S, is given by¬S = (V,¬Ω). The restriction of system
S = (V,Ω) to runs of length not greater thann ∈ N∞ (re-
spectively exactlyn) is the systemS|≤n = (V,Ω ∩ [V]

≤n
)

(respectivelyS|n = (V,Ω ∩ [V]
n
)).In Section 4, it will be

assumed that systems can respond to every possible input
on a set of probabilistic variables. Such systems are said
to bereceptiveto those variables. GivenU ⊆ V , a set of
distinguished variables, systemS = (V,Ω) is U -receptive
if and only if for all finite runw ∈ Ω ∩ [V]

∗ and for all
input ρ : U → D, there exists a stepσ : V → D such
that σ ↓U= ρ andw.σ ∈ Ω. Given U ⊆ V ∩ V ′, two
U -receptive systemsS = (V,Ω) and S′ = (V ′,Ω′) are
U -compatible if and only ifS ∩ S′ is U -receptive.

A symbolic transition systemoverV is a tupleSymb =
(V,Qs, T,Qs0), whereV is a set of variables defined over
a finite domainD, Qs is a set of states (a state is a map-
ping fromV to D), T ⊆ Qs × Qs is the transition relation,
andQs0 ⊆ Qs is the set of initial states. A run ofSymb
is a possibly infinite sequence of statesqs0qs1 . . . such that
for eachi≥0 (qsi, qs(i+1)) ∈ T andqs0 ∈ Qs0. A sym-
bolic transition system for a system(V,Ω) is a symbolic
transition system overV whose set of runs isΩ. Opera-
tions of (inverse) projection and intersection easily extend
from systems to their symbolic representations (such repre-
sentation may not exist). LetBA = (Σ, Q,Q0, δ, F ⊆ Q)
be an automaton such thatΣ is a mappingV → D. The
synchronous productbetweenBA andSymb is the automa-

tonBBA×Symb = (∅, Q′, Q′
0, δ

′, F ′), whereQ′ = Qs × Q,
Q′

0 = Qs0 × Q0, (a′, b′) ∈ δ′((a, b), ∅) iff (a, a′) ∈ T and
b′ ∈ δ(b, a), F ′ = {(a, b) ∈ Q′|b ∈ F}. Each state in the
product is a pair of states : one forSymb and one forBA.
If we do not take the information fromBA into account, a
run of the product corresponds to a run ofSymb.

3 Non-Probabilistic Contracts

In this section, we introduce the concept of contract for
non stochastic systems. We also study compositional rea-
soning for such contracts. We will present the theory in
the most general case by assuming that contracts and sys-
tems are given by (pair of) possibly infinite sets of runs [3].
In practice, a finite representation of such sets is required
and there are many ways to instantiate our theory depend-
ing on this representation. At the end of the section, we will
give an example of such a representation. More precisely,
we will follow a successful trend in Model Checking and
use automata as a finite representation for systems and con-
tracts. We will also derive effective algorithms based on this
symbolic representation.

3.1 Contracts

We first recap the concept ofcontract[2], a mathemat-
ical representation that allows to distinguish between as-
sumptions made on the environment and properties of the
system.

Definition 1 (Contract) A contract overV is a tupleC =
(V,A,G), whereV is the set of variables ofC, systemA =
(V,ΩA) is theassumptionand systemG = (V,ΩG) is the
guarantee.

The ContractC is said to be incanonical formif and only
if ¬A ⊆ G. As we shall see in Section 3.2, the canonical
form is needed to have uniform notions of composition and
conjunction between contracts.

We now turn to the problem of deciding whether a sys-
tem satisfies a contract. A system that satisfies a contract is
an implementationof the contract. There are two types of
implementation relations, depending on the property cap-
tured by a contract. A first possible interpretation is when
the contract represents properties that are defined on runs
of the system. This includes safety properties. In this con-
text, a system satisfies a contract if and only if all system
runs that satisfy the assumption are included in the guar-
antee. This applies to reliability properties, and a system
implementing a contract in this way is said toR-satisfythe
contract. Another possible interpretation is when the con-
tract represents properties that are defined on finite prefixes
of the runs of the system and when one wants to evaluate

3

how often the system satisfies the contract. We will say that
a systemA-satisfiesa contract with levelm (0 ≤ m ≤ 1) if
and only if for each of its runs, the proportion of prefixes of
system runs that are either in the guarantee or in the com-
plement of the assumption is greater or equal tom. This
concept can be used to checkaverage safenessor reliabil-
ity, i.e., to decide for each run whether the average number
of positions of the run that do satisfy a local condition is
greater or equal to a given threshold.

Definition 2 (R-Satisfaction) SystemS = (U,Ω) R-
satisfies contractC = (V,A,G) up to timet ∈ N∞, de-
notedS |=R(t) C, if and only ifS|≤t ∩ A ⊆ G.

Discussion. In this paper, we assume that runs that do not
satisfy the assumptions are “good” runs, i.e., they do not
need to satisfy the guarantee. In our theory, assumptions
are thus used to distinguish runs that must satisfy the
property from those that are not forced to satisfy the
property. There are other interpretations of the paradigm
of assume/guarantee in which the runs that do not satisfy
the assumptions are considered to be bad. We (and our
industrial partners) believe that our definition is a more
natural interpretation as there is no reason to eliminate runs
on which no assumption is made. Another advantage of
this approach, which will be made more explicit in Section
4, is that this interpretation allows to define a conjunction
operation in the stochastic case.

The definition of A-satisfiability is more involved and
requires additional notations. The objective is to compute
an invariant measure of the amount of time during which
the system satisfies a contract. This relation can be com-
bined withdiscounting3, which allows to give more weight
to faults that arise in the early future. Letw ∈ [V]

∞

be a (finite or infinite) run andC = (V,A,G) be a con-
tract. We define the functionϕC

w : N|w| → {0, 1} such
that ϕC

w(n) = 1 ⇐⇒ w[0,n] ∈ G ∪ ¬A. If we fix an
horizon in timet ∈ N∞ and adiscount factord≤1, de-
fine Dt,d

C (w) = 1
t

∑t
i=O ϕC

w(i) if d = 1 andDt,d
C (w) =

1−d
1−dt+1

∑t
i=0 diϕC

w(i) if d < 1. Dt,d
C (w) is the mean-

availability until position t along the execution correspond-
ing to w with discount factord. The concept is illustrated
in Figure 1. A-Satisfaction can now be defined.

Definition 3 (A-Satisfaction) A systemS = (U,Ω) A-
satisfies at levelm contractC = (V,A,G) until position

τ with discount factord, denotedS |=
A(τ)
d,m C, iff:

3Discounting is a concept largely used in many areas such as economy.

min
w∈(S↑U∪V)|τ

Dτ,d

C↑U∪V (w) ≥ m if τ < ω

inf
w∈(S↑U∪V)|τ

lim inf
t→τ

Dt,d

C↑U∪V (w) ≥ m if τ = ω.

It is easy to see that the limit in Definition 3 converges, since
Dt,d

C ≥ 0. In Section 3.3 we will propose techniques to
check satisfiability for contracts that are represented with
symbolic structures.

3.2 Compositional reasoning

In this section, we first define operations between and
on contracts and then propose a compositional reasoning
framework for contracts. We start with the definition for
compositionand conjunction. Composition between con-
tracts mimics classical composition between systems at the
abstraction level. It consists in taking the intersection be-
tween the assumptions and the intersection between the
guarantees. Conjunction is a more intriguing operation that
has no translation at the level of systems; its consists in
producing a contract whose assumptions are the union of
the original ones and guarantees are the intersection of the
original ones. Roughly speaking, the conjunction of two
contracts represents their common requirements.

Definition 4 Let Ci = (Vi, Ai, Gi) with i = 1, 2 be two
contracts in canonical form. We define

• Theparallel compositionbetweenC1 andC2, denoted
C1 ‖ C2, to be the contract(V1∪V2, A1∩A2∪¬(G1∩
G2), G1 ∩ G2).

• TheconjunctionbetweenC1 andC2, denotedC1∧C2,
to be the contract(V1 ∪ V2, A1 ∪ A2, G1 ∩ G2).

It is easy to see that both conjunction and composition
preserve canonicity.

Discussion. As pointed out in [2], the canonical form
is needed to have uniform notions of composition and
conjunction between contracts. Indeed, consider two
contractsC1 = (V, ∅, [V]∞) andC2 = (V, ∅, ∅). Suppose
thatC1 is in canonical form andC2 is not. Assume also that
any system can satisfy bothC1 andC2. The composition
betweenC1 and C2 is the contract(V, [V]∞, ∅). This
contract can only be satisfied by the empty system. Assume
now the contractC ′

2 = (V, ∅, [V]∞), which is the canonical
form for C2. It is easy to see that the composition between
C1 and C ′

2 is satisfied by any system. Non-canonical
contract can also be composed. Indeed, the composi-
tion of two non-canonical contractsC1 = (V1, A1, G1)
andC2 = (V2, A2, G2) is given by the following formula
C1 ‖nc C2 = (V1∪V2, (A1∪¬G1)∩(A2∪¬G2), G1∩G2).

4

x : 0
y : 0

x : 1
y : 0

x : 0
y : 0

x : 1
y : 0

x : 0
y : 0

x : 1
y : 0

x : 0
y : 1

G = {w ∈ {x, y}∗ | w(|w|)(x) 6= 1 ∨ w(|w|)(y) 6= 1}

D
6,1
C

= 2
3

D
6,1
C

= 1

D
6,1
C

= 1
2

x : 1
y : 0

x : 0
y : 1

x : 1
y : 1

x : 1
y : 1

x : 1
y : 1

y : 1
x : 1

Mean-availability until position6
is computed for the runs of the
system w.r.t a contract with as-
sumption {x, y}∗ and guarantee
the set of finite runs over{x, y}
such that in the final statex 6= 1
ory 6= 1. Positions where the con-
tract is satisfied are white.

Figure 1. Illustration of mean-availability.

Observe that this composition requires one more com-
plementation operation, which may be computationally
intensive depending of the data-structure used to repre-
sentedA andG (see Section 3.3).

We now turn to the definition ofrefinement, which leads
to an order relation on contracts.

Definition 5 We say thatC1 refinesC2 up to timet ∈ N∞,
denotedC1 �(≤t) C2, if it guarantees more and assumes
less, for all runs of length not greater thant: A1 ↑V1∪V2⊇
(A2 ↑V1∪V2)|≤t and(G1 ↑V1∪V2)|≤t ⊆ G2 ↑V1∪V2 .

Compositional Reasoning We now propose the follow-
ing results for compositional reasoning in a contract-based
setting.

Theorem 1 ([2]) ConsiderS1, S2 two systems andC1, C2

two contracts in canonical form. The following propositions
hold for all t ∈ N∞:

• S1 |=R(t) C1 and S2 |=R(t) C2 implies that(S1 ∩
S2) |=

R(t) (C1 ‖ C2);

• S1 |=R(t) C1 and S1 |=R(t) C2 iff S1 |=R(t) (C1 ∧
C2);

• S1 |=R(t) C1 andC1 �(≤t) C2 implies thatS1 |=R(t)

C2.

Theorem 2 ConsiderS1 and S2 two systems andC1, C2

two contracts in canonical form. Letd ≤ 1 be a discount
factor. The following propositions hold for allt ∈ N∞:

• S1 |=
A(t)
d,m1

C1 and S2 |=
A(t)
d,m2

C2 implies that(S1 ∩

S2) |=
A(t)
d,m1+m2−1 (C1 ‖ C2);

• S1 |=
A(t)
d,m1

C1 and S1 |=
A(t)
d,m2

C2 implies that

S1 |=
A(t)
d,m1+m2−1 (C1 ∧ C2);

• S1 |=
A(t)
d,m C1 andC1 �(≤t) C2 implies thatS1 |=

A(t)
d,m

C2.

The last item of each of the theorems also stands ifC1 and
C2 are not in canonical form.

3.3 Effective algorithms/representations

We proposesymbolicandeffectiveautomata-based rep-
resentations for contracts and systems. Those representa-
tions are needed to handle possibly infinite sets of runs with
a finite memory. We will be working with variables defined
over afinite domainD. According to our theory, a sym-
bolic representation is effective for an assumption (resp.a
guarantee) if inclusion is decidable and the representation
is closed under complementation (needed for refinement),
union, and intersection. A representation is effective fora
system (that is not an assumption or a guarantee) if it is
closed under intersection and (inverse) projection, and reli-
ability/availability are decidable.

We assume that systems that are not assumptions or guar-
antees are represented withsymbolic transition systems(see
Section 2 for properties) and that assumptions and guar-
antees are represented with either finite-word or Büchi au-
tomata. LetC = (V,A,G) be a contract, asymbolic con-
tract for C is thus a tuple(V,BA,BG), whereBA andBG

are automata withL(BA) = A andL(BG) = G. Observe
that there are systems and contracts for which there exists
no symbolic representation.

Since both finite-word and B̈uchi automata are closed
under complementation, union and intersection, it is easy
to see that the composition and the conjunction of two
symbolic contracts is still a symbolic contract. Moreover,
since inclusion is decidable for those automata, we can
always check whether refinement holds. We now focus
on the satisfaction relations. We distinguish between R-
Satisfiability and A-Satisfiability. We consider a symbolic
contractC = (V,BA,BG) and a symbolic transition system
Symb = (V,Qs, T,Qs0).

Reliability . When considering R-satisfaction, we will

5

assume thatBA andBG are B̈uchi automata. It is concep-
tually easy to decide whetherSymb R-satisfiesC. Indeed,
following results obtained for temporal logics [25, 26], im-
plemented in theSPIN toolset [22], this amounts to check
whether the B̈uchi automaton obtained by taking the syn-
chronous product betweenSymb and ¬(BG ∪ ¬BA) is
empty. Observe that assumptions and guarantees can also
be represented by logical formalisms that have a translation
to Büchi automata – this includesLTL [18] andETL[27].
The theory generalizes to other classes of infinite word au-
tomata closed under negation and union and other logical
formalisms such asCTL[9] or PSL[13].
Availability with level m and discount factor d . In [12],
de Alfaro et al. proposedDCTL, a quantitative version of
the CTL logic [9]. DCTL has the same syntax as CTL, but
its semantics differs : in DCTL, formulas and atomic propo-
sitions take values between0 and1 rather than in{0, 1}.
Let ϕ1 andϕ2 be two DCTL formulas, the value ofϕ1 ∧ϕ2

(resp.ϕ1 ∨ ϕ2) is the minimum (resp. maximum) between
the values ofϕ1 and ϕ2. The value of∀ϕ1 (resp. ∃ϕ1)
is the minimum (resp. maximum) valuation ofϕ1 over all
the runs. In addition to its quantitative aspect, DCTL also
allows to discount on the value of the formula as well as
to compute its average (△d operator, whered is the dis-
count : see the semantics withd = 1 and d < 1 page
6 of [12]) on a possibly infinite run. We assume thatBA

andBG arecompletefinite-word automata and show how
to reduce A-satisfaction to the evaluation of a DCTL prop-
erty. Our first step is to computeSymb′, the synchronous
product betweenSymb andBG ∪ ¬BA. The resulting au-
tomaton can also be viewed as a symbolic transition system
whose states are labelled with a propositionp which is true
if the state is accepting and false otherwise. In fact, finite
sequences of states ofSymb′ whose last state is accepting
are prefixes of runs ofSymb that satisfyBG∪¬BA. Hence,
checking whetherSymb A-satisfiesC boils down to com-
pute the minimal average to seep = 1 in Symb′. Our prob-
lem thus reduces to the one of checking for each initial state
of Symb′ whether the value of the DCTL property∀△d p
is greater or equal tom.

4 Probabilistic Contracts

We now extend the results of the previous section to sys-
tems that mix stochastic and non deterministic aspects. As
for the previous section, all our results will be developed
assuming that contracts and systems are represented by sets
of runs and then an automata-based representation will be
proposed.

In the spirit of [16], we now consider that the valua-
tions of some variables depend on a probability distribu-
tion. This allows to model systems failures. The easiest
way to describe probabilistic variables that will be shared

between contracts and implementations is to fix a set of
global probabilistic variablesP . We consider a probabil-
ity distributionP over[P]ω and extend it to[P]∗ as follows:
∀w ∈ [P]∗, P(w) =

∫

{w′∈P ω | w<w′}
P(w′)dw′, where<

is the prefix order on runs.

4.1 Probabilistic contracts

We will say that a contractC = (V,A,G) is a prob-
abilistic contract iff P ⊆ V , i.e. iff its set of variables
contains all the probabilistic variables. We now turn to the
problem of deciding whether a systemS = (U,Ω) satisfies
a probabilistic contractC = (V,A,G). As it was already
the case for non-probabilistic contracts, we will distinguish
R-Satisfaction and A-Satisfaction.

Our first step is to introduce the definition of scheduler
that will be used to resolve non determinism in assumption
and guarantee of contracts. Given a systemS = (U,Ω),
a schedulerf maps every finite runw on probabilistic vari-
ablesP to a runf(w) of S which coincides withw for every
probabilistic variable. In addition, it is assumed that sched-
ulers are causal, meaning that they resolve non-determinism
on a step by step basis. This is ensured by a monotonicity
assumption of the schedulers:∀w,w′ ∈ [P]

∗
, w < w′ ⇒

f(w) < f(w′).

Definition 6 (Scheduler) A schedulerf of systemS =
(U,Ω) is a monotonous mapping[P]

∗ → Ω such that for
all w ∈ [P]

∗, f(w) ↓P = w. The set of schedulers corre-
sponding to a systemS is denoted bySched(S).

In Section 3, R-Satisfaction was defined with respect to a
Boolean interpretation : either the system R-satisfies a con-
tract or it does not. When moving to the probabilistic set-
ting, we can give aqualitativedefinition for R-Satisfaction
that is : for any scheduler, is the probability to satisfy the
contract greater or equal to a certain threshold?

Definition 7 (P-R-Satisfaction) A systemS = (U,Ω) R-
satisfies a probabilistic contractC = (V,A,G) for runs of

lengthk (k ∈ N
∞) with levelα, denotedS ||=R(k)

α C, iff

inf
f∈Sched(S↑U∪V)

P([f([P]k) ∩ (G ∪ ¬A) ↑U∪V] ↓P) ≥ α.

Observe that, as for the non probabilistic case, we consider
that runs that do not satisfy the assumption are good runs.
In addition to the motivation given in Section 3.1, we will
see that using such an interpretation is needed when consid-
ering the conjunction operation (see the observation after
Theorem 3).

Though A-Satisfaction was already qualitative, we now
have to take into account the probabilistic point of view:

6

instead of considering the minimal value of the mean-
availability for all runs of the system, we now consider
theminimal expected valueof the mean-availability for all
schedulers.

Definition 8 (P-A-Satisfaction) A systemS = (U,Ω) A-
satisfies a probabilistic contractC = (V,A,G) for runs
of lengthk (k ∈ N

∞) with levelα and discount factord,
denotedS ||=

A(k)
d,α C, iff

inf
f∈Sched(S↑U∪V)

∫

w∈[P]k
P(w) · F (w)dw ≥ α

with

F (w) =

{

Dk,d

C↑U∪V (f(w)) if k < ω

lim inft→k Dt,d

C↑U∪V (f(w)) if k = ω.

4.2 Operations on probabilistic contracts
and Compositional reasoning

We now leverage the compositional reasoning results of
Section 3.2 to probabilistic contracts. We consider compo-
sition/conjunction and refinement separately.

4.2.1 Composition and Conjunction

Composition and conjunction of probabilistic contracts is
defined as for non probabilistic contracts (see Definition 4).
We thus propose an extension of Theorems 1 and 2 which
takes the probabilistic aspects into account.

Theorem 3 (P-R-Satisfaction)Consider three systems
S = (U,Ω), S1 = (U1,Ω1) and S2 = (U2,Ω2) and
two probabilistic contractsC1 = (V1, A1, G1) and
C2 = (V2, A2, G2) that are in canonical form. We have the
following results:

1. Composition. Assume thatS1 and S2

are P -compatible. If S1 ||=
R(k)
α C1 and

S2 ||=
R(k)
β C2, then S1 ∩ S2 ||=

R(k)
γ C1 ‖ C2 with

γ ≥ α + β − 1 if α + β≥1 and 0 otherwise.

2. Conjunction. Assume thatS is P -receptive. If
S ||=R(k)

α C1 and S ||=
R(k)
β C2, then S ||=R(k)

γ C1 ∧ C2

with γ ≥ α + β − 1 if α + β≥1 and 0 otherwise.

Consider two contracts(A1, G1) and (A2, G2) such that
A1 ⊂ G1, A2 ⊂ G2 and (A1 ∪ A2) ∩ (G1 ∩ G2) = ∅.
It is easy to see that any system will reliably satisfy both
contracts with probability1. According to an interpretation
where one considers that runs that do not satisfy assump-
tions are bad runs, the probability that a system satisfies the
conjunction is always0. With our interpretation, there are

situations where this probability is strictly higher than0 :
those where there are runs that do not belong toA1 or A2.

We now switch to the case of P-A-Satisfaction.

Theorem 4 (P-A-Satisfaction) Consider three systems
S = (U,Ω), S1 = (U1,Ω1) and S2 = (U2,Ω2) and
two probabilistic contractsC1 = (V1, A1, G1) and
C2 = (V2, A2, G2) that are in canonical form. We have the
following results:

1. Composition. Assume thatS1 and S2

are P -compatible. If S1 ||=
A(k)
d,α C1 and

S2 ||=
A(k)
d,β C2, then S1 ∩ S2 ||=

A(k)
d,γ C1 ‖ C2 with

γ ≥ α + β − 1 if α + β≥1 and 0 otherwise.

2. Conjunction. Assume thatS is P -receptive. If
S ||=

A(k)
d,α C1 and S ||=

A(k)
d,β C2, then S ||=

A(k)
d,γ C1 ∧ C2

with γ ≥ α + β − 1 if α + β≥1 and 0 otherwise.

4.2.2 Refinement

We consider refinement for probabilistic contracts. Contrar-
ily to the case of non probabilistic contracts, we will distin-
guish between R-Satisfaction and A-Satisfaction.

Following our move from R-Satisfaction to P-R-
Satisfaction, we propose the notion ofP-Refinementthat is
the quantitative version of the refinement we proposed in
Section 3. We have the following definition.

Definition 9 (P-Refinement) A probabilistic contract
C1 = (V1, A1, G1) P-Refines a probabilistic contract
C2 = (V2, A2, G2) for runs of lengthk (k ∈ N

∞) with level

α, denotedC1 �
R(k)
α C2, iff

∀f ∈ Sched((G1 ∪ ¬A1) ↑
V1∪V2),

P([f([P]k) ∩ (G2 ∪ ¬A2) ↑
V1∪V2] ↓P) ≥ α.

Quantitative refinement is compatible with the definition of
P-R-Satisfaction, which brings the following result.

Theorem 5 Consider aP -receptive systemS = (U,Ω)
and two probabilistic contractsCi = (Vi, Ai, Gi) for i =
1, 2. If (G1 ∪ ¬A1) is P -receptive and prefix-closed, then

S ||=R(k)
α C1 ∧ C1 �

R(k)
β C2 ⇒ S ||=

R(k)
α+β−1 C2.

P-A-satisfaction and quantitative refinement are orthogo-
nal measures. Indeed, P-A-satisfaction measures the infimal
expected availability of a system for all schedulers, while
quantitative refinement measures the infimal set of traces of
a probabilistic contract that corresponds to another proba-
bilistic contract. In such context, the minimal schedulers
for the two notions may differ. We propose the following
result, which links P-A-Satisfaction with the definition of
refinement proposed for non-probabilistic contracts.

7

Theorem 6 Consider aP -receptive systemS = (U,Ω)
and two probabilistic contractsCi = (Vi, Ai, Gi) for i =

1, 2. If S ||=
A(k)
d,α C1 andC1 �(≤k) C2, thenS |=

A(k)
d,α C2.

4.2.3 An illustration

Consider the systems and contracts given in Figure 2. As-
sume that∀i ∈ N, P(f1(i) = 1) = 10−3 andP(f2(i) =

1) = 2.10−3. It is easy to show thatS1 ||=
R(50)
(1−10−3)50 C1

andS2 ||=
R(50)
(1−2.10−3)50 C2. It is however more difficult to de-

duce the probability for whichS1 ∩S2 satisfies the contract
C1 ‖ C2. Thanks to Theorem 3, we know that this probabil-
ity is at least(0.999)50+(0.998)50−1 = 0.86. Considering
C3 = ({f1, f2, a, c, d}, ”true”, ”�(d = ((a ∧ ¬f1) ∨ c) ∧

¬f2)”), it is clear thatC1 ‖ C2 �
R(50)
1 C3, which implies

thatS1 ∩ S2 |=
R(50)
0.86 C3.

4.3 Effective algorithms/representations

The constructions are similar to those given in Section
3.3. We assume the reader to be familiar with the concepts
of (discrete) Markov Chain and turn-based Markov Deci-
sion Processes. Roughly speaking, a Markov Chain is a
symbolic transition system whose states are labeled with
valuations for variables inP and transitions by probabil-
ities. The labelling by probabilities follows a probability
distribution, i.e., for a given state, the sum of the probabil-
ity values for all outgoing transitions must be less or equal
to one. In a given state, one picks up the next valuation
for the probability variables, i.e., the next state. The proba-
bility to pick up a valuation is the value given on the tran-
sition that links the current state to the next chosen one.
There is a special state called”init” from where one has to
chose the first value. The concept of representingP with a
Markov Chain is illustrated in Figure 4(a), whereP = {b}
and D = {0, 1}. In this example, the probability that a
run starts withb = 0 is 1/2. The probability that a run
starts with the prefix(b = 0)(b = 1)(b = 0) is given by
(1/2) × (1/4) × (1/3) = 1/24.

Let C = (V,BA,BG) be a symbolic contract and
Symb = (V,Qs, T,Qs0) be a symbolic transition system.
We consider a setP ⊆ V of probabilistic variables. We
assume that the distribution overP is symbolically repre-
sented with a Markov Chain. At each state, we have a prob-
ability distribution over the possible set of valuations for the
variables. The Markov chain is finitely-branching asD is fi-
nite. Observe that each state ofSymb can be split into two
states, one for the valuations of the non-probabilistic vari-
ables followed by one for the valuations of the probabilis-
tic variables. The result is a new symbolic systemSymb′′

where one first evaluateV \ P and thenP .

Example 1 The split is illustrated in Figure 3. Consider
the stateX = {a = 1, b = 0, c = 1} in the system given
in Figure (a). This state can be split into two states,A =
{a = 1, c = 1} andE = {b = 0}. The stateY = {a =
1, b = 1, c = 1} can be split intoB = {a = 1, c = 1} and
F = {b = 1}. In the split, there will be transitions fromA
to E and fromB to F . Any transition fromX (resp.Y) to
Y (resp. X) will now be fromE (resp. F) to B (resp.A).
SinceA and B have the same label and successors, they
can be merged, which gives the split in Figure (b).

It is easy to see that we can use the Markov Chain that
represents the probability distribution in order to “trans-
form” the transitions from a non deterministic variable state
of Symb′′ into a probability distribution over the proba-
bilistic variable states simply by synchronizing the two sys-
tems. By doing so,Symb′′ becomes aturn-based Markov
Decision Process(MDP). Recall that a turn-based MDPs
mixes both non-determinism and probability. In our set-
ting, non-determinism thus comes from the choice of the
values for the non-probabilistic variables, while probabil-
ity arises when evaluating variables inP . The transitions
from states that are labeled with probability variables are
thus non-deterministic (since one has to pick up the next
values for the non-probabilistic variables). Transitionsfrom
states that are labeled with non-probabilistic variables form
a probability distribution on the possible values of the prob-
abilistic variables. In this context, a run for the MDP is
simply an alternance of valuations of the non-probabilistic
and the probabilistic variables.

Example 2 The concept of turn-based Markov Decision
Process resulting from the product of a split and a Markov
chain forP is illustrated in Figure 4. Observe that the state
{a = 1, c = 1} has been duplicated. Indeed, according to
the Markov Chain in Figure 5.(a), the probability to select
{b = 0} in the first step is not the same as the one to select
it after the first step.

Assuming that the combination of the system with the
distribution can be represented with a MDP, we now briefly
discuss P-R-Satisfaction and P-A-Satisfaction. Ascheduler
for a Markov Decision Process [7] is a mechanism that, in
a non deterministic state, selects the successor state without
taking predecessors into account. This definition matches
the one we proposed in Definition 6. In this context, we
have the following methodology.

P-R-Satisfaction. Assuming thatBA andBG are B̈uchi
automata, P-R-Satisfaction can be checked with the tech-
nique introduced in [23, 11] (which requires a determiniza-
tion step from B̈uchi to deterministic Rabin [20]) and imple-
mented in theLIQUOR toolset [6]. Indeed, this technique
allows to compute the minimal probability for a Markov
decision process to satisfy a property which is representable

8

f2

b

a

f1

SystemS1

b = a ∧ ¬f1

f2f1

d

b

c

SystemS2

d = (b ∨ c) ∧ ¬f2

A1 : ”true” A2 : ”true”
G1 : ”�(b = a ∧ ¬f1)” G2 : ”�(d = (b ∨ c) ∧ ¬f2))”

(a) SystemsS1 andS2 and probabilistic contractsC1 andC2.

d = ((a ∧ ¬f1) ∨ c)
∧¬f2

a b

f1

f2

c

S2

S1 b = a ∧ ¬f1

V = {f1, f2, a, b, c, d}
A : true

G : �((b = a ∧ ¬f1)
∧(d = (b ∨ c) ∧ ¬f2))

(b) SystemsS1 ∩ S2 and probabilistic contractC1 ‖ C2.

Figure 2. Reliability : Example

a : 1
b : 1
c : 1

a : 1
b : 0
c : 1

(a) A symbolic transition systemSymb for V = {a, b, c}, where the
domain ofa, c is {1} and the domain ofb is {0, 1}, b is the probabilis-
tic input and the set of runs is given by((a = 1, b = 1, c = 1)∪ (a =
1, b = 0, c = 1))ω .

a : 1
c : 1

b : 0

b : 1

(b) The splitSymb′′ for Symb.

Figure 3. A symbolic transition system and its split.

with a Büchi automaton. We can thus consider assumptions
and guarantees represented with logical formalism that have
a translation to B̈uchi automata, e.g., ETL [27].

A-Satisfaction with level m and discount factor d. The
DCTL logic can also be interpreted over MDPs. The def-
inition of synchronous product easily extends to MDPs.
The product between a MDP and an automaton can be in-
terpreted as a MDP. We can thus use the labelling tech-
nique with propositions that was proposed for the non-
probabilistic case (assuming that the states of the automaton
have also been split (see the split for transition system)).
For a given scheduler (which transforms the MDP into a
Markov chain), we can compute theexpected valuefor the
formula△d p. We then compute the minimum between the
expected values for all schedulers and check whether it is
greater thanm. More details about model checking DCTL

over MDPs can be found in Section 2.2 of [12]. The overall
formula we model check is∀E[△d p], whereE states for
“expected value”.

5 Conclusion

We have proposed a new theory for (probabilistic) con-
tracts. Our contributions are : (1) a theory for reliabilityand
availability, (2) a treatment of the stochastic aspects and(3)
a discussion on effective symbolic representations. We are
currently implementing the non probabilistic approach in
the SPIN toolset [22] and we plan to implement the proba-
bilistic approach in the LIQUOR toolset [6].

In addition to implementation, there are various other di-
rections for future research. A first direction is to developa
notion of quantitative refinement that is compatible with A-

9

b : 1

b : 0

1/2

1/2

3/4

2/3

1/4

1/3
init

(a) A Markov Chain for the distribution
over variables in P.

a : 1
c : 1

a : 1
c : 1

a : 1
c : 1

1/4

1/3

2/3

b : 1

b : 0

3/4

1/2

1/2

(b) A MDP for the product between the Markov chain in Figure
4(a) and the transition system in Figure 3(b).

Figure 4. The product of a split symbolic transition system with a Markov Chain.

satisfaction. We also plan to consider other symbolic repre-
sentations such as visibly pushdown systems [14]. Consid-
ering such representations will require new DCTL model
checking algorithms. We also plan to extend our results to
the timed setting. Finally, it would be worth considering the
case of dependent probability distributions.

References

[1] S. Andova. Process algebra with probabilistic choice. In
ARTS, volume 1601 ofLNCS, pages 111–129. Springer,
1999.

[2] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca,
R. Passerone, and C. Sofronis. Multiple viewpoint contract-
based specification and design. InFMCO’07, volume 5382
of LNCS, pages 200–225. Springer, October 2008.

[3] A. Benveniste, B. Caillaud, and R. Passerone. A
generic model of contracts for embedded systems.CoRR,
abs/0706.1456, 2007.

[4] J. R. Büchi. Weak second-order arithmetic and finite au-
tomata.Zeitschrift Math. Logik und Grundlagen der Math-
ematik, 6:66–92, 1960.

[5] B. Caillaud, B. Delahaye, K. Larsen, A. Legay, M. Pedersen,
and A. Wasowski. Compositional design methodology with
constraint markov chains. Technical report, INRIA/IRISA
Rennes, 2009.

[6] F. Ciesinski and C. Baier. Liquor: A tool for qualitative
and quantitative linear time analysis of reactive systems. In
QEST, pages 131–132. IEEE Computer Society, 2006.

[7] F. Ciesinski and M. Gr̈oßer. On probabilistic computation
tree logic. InValidation of Stochastic Systems, volume 2925
of LNCS, pages 147–188. Springer, 2004.

[8] E. Clarke, O. Grumberg, and D. Peled.Model Checking.
MIT Press, 1999.

[9] E. M. Clarke and E. A. Emerson. Design and synthesis
of synchronization skeletons using branching-time tempo-
ral logic. InLogic of Programs, volume 131 ofLNCS, pages
52–71. Springer, 1981.

[10] Combest. http://www.combest.eu.com.
[11] L. de Alfaro. Formal Verification of Probabilistic Systems.

PhD thesis, Stanford University, 1997.

[12] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and
M. Stoelinga. Model checking discounted temporal prop-
erties. InTACAS, volume 2988 ofLNCS, pages 77–92.
Springer, 2004.

[13] C. Eisner and D. Fisman.A Practical Introduction to PSL.
Springer, 2006.

[14] A. Finkel, B. Willems, and P. Wolper. A direct symbolic ap-
proach to model checking pushdown systems.Electr. Notes
Theor. Comput. Sci., 9, 1997.

[15] Y. Glouche, P. L. Guernic, J.-P. Talpin, and T. Gautier. A
boolean algebra of contracts for logical assume-guarantee
reasoning.CoRR, inria-00292870, 2009.

[16] N. López and M. Ńuñez. An overview of probabilistic
process algebras and their equivalences. InValidation of
Stochastic Systems, volume 2925 ofLNCS, pages 89–123.
Springer, 2004.

[17] R. Milner. Communication and Concurrency. Prentice Hall,
1989.

[18] A. Pnueli. The temporal logic of programs. InFOCS, pages
46–57. IEEE, 1977.

[19] S. Quinton and S. Graf. Contract-based verification of hier-
archical systems of components. InProc. of the 6th IEEE
International Conference on Software Engineering and For-
mal Methods (SEFM’08), pages 377–381. IEEE Computer
Society, 2008.

[20] M. Rabin and D. Scott. Finite automata and their deci-
sion problems.IBM Journal of Research and Development,
pages 115–125, 1959.

[21] Speeds. http://www.speeds.eu.com.
[22] The spin tool (spin). Available at

http://spinroot.com/spin/whatispin.html.
[23] M. Y. Vardi. Automatic verification of probabilistic concur-

rent finite-state programs. InFOCS, pages 327–338. IEEE,
1985.

[24] M. Y. Vardi. From church and prior to psl, 2007. Available
at http://www.cs.rice.edu/˜vardi/papers/index.html.

[25] M. Y. Vardi and P. Wolper. An automata-theoretic approach
to automatic program verification (preliminary report). In
LICS, pages 332–344. IEEE Computer Society, 1986.

[26] M. Y. Vardi and P. Wolper. Reasoning about infinite compu-
tations.Information and Computation, 115(1):1–37, 1994.

[27] P. Wolper. Temporal logic can be more expressive.Informa-
tion and Control, 56(1/2):72–99, 1983.

10

A Proofs of the Theorems

A.1 Properties common to all proofs

In this section, we present properties and Lemmas that
will be used in all proofs.

Property 1 Let E1 andE2 be two sets of runs overP . We
have:

P(¬(E1 ∩ E2)) ≤ P(¬E1) + P(¬E2)

⇒ 1 − P(E1 ∩ E2) ≤ (1 − P(E1)) + (1 − P(E2))

⇒ P(E1 ∩ E2) ≥ P(E1) + P(E2) − 1. (1)

Property 2 ConsiderV ⊆ V ′ ⊆ V ′′ three sets of variables
andE andE′′ two sets of runs overV andV ′′ respectively.
We have:

(E ↑V ′

) ↑V ′′

= E ↑V ′′

; (2)

(E ↑V ′′

) ↓V ′ = E ↑V ′

; (3)

(E′′ ↓V ′) ↓V = E ↓V ; (4)

w ∈ E′′ ⇒ w ↓V ∈ E′′ ↓V ; (5)

w ∈ E ⇒ w ↑V ′

⊆ E ↑V ′

. (6)

Lemma 1 ConsiderS = (U,Ω) a P-receptive system,f ∈
Sched(S) a scheduler ofS and U ′ a set of variables. If
P ⊆ U ′ ⊆ U , then we have:

f ↓U ′ :

{
[P]∞ → S ↓U ′

w 7→ f(w) ↓U ′

}

∈ Sched(S ↓U ′).

Proof :
Let f ′ = f ↓U ′ . By definition,f ′ : [P]∗ → S ↓U ′ . Non-
sider noww ∈ [P]∗ andw′ < w. Sincew′ < w, we have
f(w′) < f(w). As a consequence,f ′(w′) < f ′(w). More-
over, f(w) ↓P = w and P ⊆ U ′, thus by (4),(f(w) ↓U ′

) ↓P = w.
�

Lemma 2 Consider S = (U,Ω) a P-receptive system,
f ∈ Sched(S) a scheduler ofS andU ′ andU ′′ two sets of
variables. IfP ⊆ U ′ ⊆ U , P ⊆ U ′′ ⊆ U andU ′∪U ′′ = U ,
then

∀w ∈ (P)∞, f ↓U ′ (w) ∩ f ↓U ′′ (w) = {f(w)}.

Proof :

Let w′ = f ↓V ′ (w) andw′′ = f ↓V ′′ (w). w, w′ and
w′′ are such that∀i ∈ N,∀v ∈ V ′, f(w)(i)(v) = w′(i)(v)

and ∀i ∈ N,∀v ∈ V ′′, f(w)(i)(v) = w′′(i)(v). More-
over, becausew′ andw′′ are both projections off(w), ∀i ∈
N,∀v ∈ V ′ ∩ V ′′, f(w)(i)(v) = w′(i)(v) = w′′(i)(v).
Now, considerw0 ∈ f ↓V ′ (w) ∩ f ↓V ′′ (w). Sincew0 ∈
(f ↓V ′ (w)) ↑V , we havew0 ↓V ′= w′. Thus∀i ∈ N,∀v ∈
V ′, w0(i)(v) = w′(i)(v) = f(w)(i)(v).
Similarly, sincew0 ∈ (f ↓V ′′ (w)) ↑V , we have∀i ∈
N,∀v ∈ V ′, w0(i)(v) = w′′(i)(v) = f(w)(i)(v).
Finally, ∀i ∈ N,∀v ∈ V = V ′ ∪ V ′′, w′′(i)(v) =
f(w)(i)(v), thusw′′ = f(w).

�

Lemma 3 ConsiderS = (U,Ω) and S′ = (U,Ω′) two
systems over the same set of variablesU . If S and S′

are P-receptive and ifS′ is prefix-closed, then for allf ∈
Sched(S), there existsf ′ ∈ Sched(S′) such that

∀w ∈ [P]∗, f(w) ∈ S′ ⇒ f ′(w) = f(w).

Proof :
Considerf ∈ Sched(S) and letf ′ : [P]∗ → S′ such that :

f ′(ε) = ε

f ′(w.σ) = f(w.σ) if f(w.σ) ∈ S′

f ′(w.σ) = f ′(w).σ′ s.t.f ′(w).σ′ ∈ S′ andσ′ ↓P = σ.

First of all, sinceS′ is prefix-closed, iff(w) ∈ S′, then for
all w′ < w, f(w′) ∈ S′, and as a consequencef ′(w′) =
f(w′). Moreover, sinceS′ is P-receptive, iff ′(w) ∈ S′,
then for allσ ∈ P → D, there existsσ′ ∈ U → D such
that σ′ ↓P = σ and f ′(w).σ′ ∈ S′. This ensures that the
definition off ′ is coherent.
We will now prove by induction thatf ′ ∈ Sched(S′).

• f ′(ε) = ε satisfies the prefix property.

• Let w ∈ [P]k and w′ < w. Suppose thatf ′(w′) <
f ′(w). Letσ ∈ P → D.

– If f(w.σ) ∈ S′, thenf ′(w.σ) = f(w.σ) and
∀w′′ < w, f ′(w′′) = f(w′′). Sincef is a sched-
uler, we havef(w′) < f(w.σ).

– Else,f ′(w.σ) = f ′(w).σ′ and as a consequence,
f ′(w′) < f ′(w) < f ′(w).σ′.

�

A.2 Proof of Theorem 2

For the sake of simplicity, we will consider thatk =
ω. The proofs fork < ω are simpler versions of those
presented here.

11

1. Proof :
Let S = (U,Ω) = S1 ∩ S2 and C = (V,A,G) =
C1 ‖ C2. SinceC1 andC2 are contracts in canonical
form, we haveG1 = G1 ∪ ¬A1 andG2 = G2 ∪ ¬A2.
Similarly, since composition preserves canonicity, we
haveG = G ∪ ¬A.

Considerw ∈ ((S1 ↑U1∪U2 ∩S2 ↑U1∪U2) ↑U∪V)|k.
Let w1 = w ↓U1∪V1

and w2 = w ↓U2∪V2
. By (5),

we have
w1 ∈ (((S1 ↑U1∪U2) ↑U∪V))|k ↓U1∪V1

. By (2) and
(3), this implies thatw1 ∈ (S1 ↑U1∪V1)|k. Similarly,
we also havew2 ∈ (S2 ↑U2∪V2)|k.

Consider t ≤ k and i ≤ t. By definition, if
ϕC↑U∪V

w (i) = 0, thenw[0,i] /∈ G ↑U∪V . By (6), we de-
duce[(w1[0,i] /∈ G1 ↑U1∪V1)∨(w2[0,i] /∈ G2 ↑U2∪V2)].
As a consequence,

ϕC↑U∪V

w (i) ≥ ϕC1↑
U1∪V1

w1
(i) + ϕC2↑

U2∪V2

w2
(i) − 1

⇒ ∀t ≤ k, D
(t,d)

C↑U∪V (w) ≥D
(t,d)

C1↑U1∪V1
(w1)

+ D
(t,d)

C2↑U2∪V2
(w2) − 1

⇒ lim inf
t→k

D
(t,d)

C↑U∪V (w) ≥ lim inf
t→k

D
(t,d)

C1↑U1∪V1
(w1)

+ lim inf
t→k

D
(t,d)

C2↑U2∪V2
(w2)

− 1.

By hypothesis, we have

lim inf
t→k

D
(t,d)

C1↑U1∪V1
(w1) ≥ m1

lim inf
t→k

D
(t,d)

C2↑U2∪V2
(w2) ≥ m2.

As a consequence,

lim inf
t→k

D
(t,d)

C↑U∪V (w) ≥ m1 + m2 − 1.

Finally,

∀w ∈ (S ↑U∪V)|k, lim inf
t→k

D
(t,d)

C↑U∪V (w) ≥m1 + m2

− 1

⇒ inf
w∈(S↑U∪V)|k

lim inf
t→k

D
(t,d)

C↑U∪V (w) ≥m1 + m2

− 1.

�

2. Proof :
Let C = (V,A,G) = C1 ∧ C2. SinceC1 andC2 are
contracts in canonical form, we haveG1 = G1 ∪¬A1

and G2 = G2 ∪ ¬A2. Similarly, since conjunction
preserves canonicity, we haveG = G ∪ ¬A.

Considerw ∈ (S1 ↑U1∪V)|k. Let w1 = w ↓U1∪V1

and w2 = w ↓U1∪V2
. By (5), we havew1 ∈

((S1 ↑U1∪V))|k ↓U1∪V1
. By (3), this implies that

w1 ∈ (S1 ↑U1∪V1)|k. Similarly, we also havew2 ∈
(S1 ↑U1∪V2)|k.

Consider t ≤ k and i ≤ t. By definition, if
ϕC↑U1∪V

w (i) = 0, thenw[0,i] /∈ G ↑U1∪V . By (6), we
deduce[(w1[0,i] /∈ G1 ↑U1∪V1)∨(w2[0,i] /∈ G2 ↑U1∪V2

)]. As a consequence,

ϕC↑U1∪V

w (i) ≥ ϕC1↑
U1∪V1

w1
(i) + ϕC2↑

U1∪V2

w2
(i) − 1

⇒ ∀t ≤ k, D
(t,d)

C↑U1∪V (w) ≥D
(t,d)

C1↑U1∪V1
(w1)

+ D
(t,d)

C2↑U1∪V2
(w2) − 1

⇒ lim inf
t→k

D
(t,d)

C↑U1∪V (w) ≥ lim inf
t→k

D
(t,d)

C1↑U1∪V1
(w1)

+ lim inf
t→k

D
(t,d)

C2↑U1∪V2
(w2)

− 1.

By hypothesis, we have

lim inf
t→k

D
(t,d)

C1↑U1∪V1
(w1) ≥ m1

lim inf
t→k

D
(t,d)

C2↑U1∪V2
(w2) ≥ m2.

As a consequence,

lim inf
t→k

D
(t,d)

C↑U1∪V (w) ≥ m1 + m2 − 1.

Finally,

∀w ∈ (S1 ↑U1∪V)|k, lim inf
t→k

D
(t,d)

C↑U1∪V (w) ≥m1 + m2

− 1

⇒ inf
w∈(S1↑U1∪V)|k

lim inf
t→k

D
(t,d)

C↑U1∪V (w) ≥m1 + m2

− 1.

�

12

3. Proof :
Considerw ∈ (S1 ↑U1∪V2)|k. Letw′ ∈ w ↑U1∪V1∪V2

andw1 = w′ ↓U1∪V1
. By (2) and (3), we havew1 ∈

(S1 ↑U1∪V1)|k.

Consider now t ≤ k and i ≤ t. By
definition, ϕC1↑

U1∪V1

w1
(i) = 1 ⇐⇒

w1[0,i] ∈ (G1 ∪ ¬A1) ↑U1∪V1 . By
hypothesis, ((G1 ∪ ¬A1) ↑

V1∪V2)|≤k ⊆
((G2 ∪ ¬A2) ↑

V1∪V2)|≤k. Thus, by
(6), ((G1 ∪ ¬A1) ↑

U1∪V1∪V2)|≤k ⊆
((G2 ∪ ¬A2) ↑

U1∪V1∪V2)|≤k.
If ϕC1↑

U1∪V1

w1
(i) = 1, then

w1[0,i] ∈ ((G1 ∪ ¬A1) ↑
U1∪V1)|≤k

⇒ w1[0, i] ↑
U1∪V1∪V2⊆ ((G1 ∪ ¬A1) ↑

U1∪V1∪V2)|≤k

⇒ w1[0, i] ↑
U1∪V1∪V2⊆ ((G2 ∪ ¬A2) ↑

U1∪V1∪V2)|≤k

⇒ w′
[0,i] ∈ (G2 ∪ ¬A2) ↑

U1∪V1∪V2

⇒ w′
[0,i] ↓U1∪V2

∈ (G2 ∪ ¬A2) ↑
U1∪V1∪V2↓U1∪V2

by (5)

⇒ w[0,i] ∈ (G2 ∪ ¬A2) ↑
U1∪V2 by (3)

⇒ ϕC2↑
U1∪V2

w (i) = 1.

Thus,

∀t ≤ k, ∀i ≤ t, ϕC2↑
U1∪V2

w (i) ≥ ϕC1↑
U1∪V1

w1
(i)

⇒ ∀t ≤ k, Dt,d

C2↑U1∪V2
(w) ≥ Dt,d

C1↑U1∪V1
(w1)

⇒ lim inf
t→k

Dt,d

C2↑U1∪V2
(w) ≥ lim inf

t→k
Dt,d

C1↑U1∪V1
(w1).

By hypothesis,

lim inf
t→k

Dt,d

C1↑U1∪V1
(w1) ≥ m.

As a consequence,

∀w ∈ (S1 ↑U1∪V2)|k, lim inf
t→k

Dt,d

C2↑U1∪V2
(w) ≥ m

⇒ inf
w∈(S1↑U1∪V2)|k

lim inf
t→k

Dt,d

C2↑U1∪V2
(w) ≥ m.

�

A.3 Proof of Theorem 3

1. Proof :
Let S = (U,Ω) = S1 ∩ S2 and C = (V,A,G) =
C1 ‖ C2. SinceC1 and C2 are in canonical form and

since composition preserves canonicity, we will con-
sider thatG1 = G1 ∪ ¬A1, G2 = G2 ∪ ¬A2 and
G = G ∪ ¬A.

Considerf ∈ Sched(S ↑U∪V). SinceS1 and S2

are P-compatible,f is defined over all runs in[P]k.
Moreover, sinceS = (S1 ↑U1∪U2) ∩ (S2 ↑U1∪U2),
we have(f ∈ Sched((S1 ↑U1∪U2) ↑U∪V)) ∧ (f ∈
Sched((S2 ↑U1∪U2) ↑U∪V)). By (2), we obtain

(f ∈ Sched(S1 ↑U∪V)) ∧ (f ∈ Sched(S2 ↑U∪V)).

Let f1 = f ↓U1∪V1
andf2 = f ↓U2∪V2

. By Lemma 1,
we have

{

∧
(f1 ∈ Sched((S1 ↑U∪V) ↓U1∪V1

))

(f2 ∈ Sched((S2 ↑U∪V) ↓U2∪V2
))

Thus, by (3),

(f1 ∈ Sched(S1 ↑U1∪V1)∧ (f2 ∈ Sched(S2 ↑U2∪V2)).

Consider noww ∈ [P]k. If f1(w) ∈ G1 ↑U1∪V1 , then
by (6) and (2),f1(w) ↑U∪V ⊆ G1 ↑U∪V . Similarly, if
f2(w) ∈ G2 ↑U2∪V2 , thenf2(w) ↑U∪V ⊆ G2 ↑U∪V .
As a consequence,f1(w) ↑U∪V ∩f2(w) ↑U∪V ⊆
(G1 ∩ G2) ↑U∪V , and, by Lemma 2,f(w) ∈ (G1 ∩
G2) ↑

U∪V . As a consequence,

E1
︷ ︸︸ ︷

[f1([P]k) ∩ G1 ↑U1∪V1] ↓P ∩

E2
︷ ︸︸ ︷

[f2([P]k) ∩ G2 ↑U2∪V2] ↓P

⊆ [f([P]k) ∩ G ↑U∪V] ↓P
︸ ︷︷ ︸

E

.

This implies, by (1), thatP(E) ≥ P(E1) + P(E2)− 1.
Moreover, by hypothesis,

{

P(E1) ≥ α

P(E2) ≥ β.

Thus,P(E) ≥ α + β − 1 and

∀f ∈ Sched(S ↑U∪V),

P([f([P]k) ∩ G ↑U∪V] ↓P) ≥ α + β − 1.

⇒ inf
f∈Sched(S↑U∪V)

P([f([P]k) ∩ G ↑U∪V] ↓P) ≥

α + β − 1.

�

13

2. Proof :
We will useC = (V,A,G) = C1 ∧ C2. SinceC1 andC2

are in canonical form and since conjunction preserves
canonicity, we will consider thatG1 = G1 ∪ ¬A1,
G2 = G2 ∪ ¬A2 andG = G ∪ ¬A.

Considerf ∈ Sched(S ↑U∪V). SinceS is P-receptive,
f is defined over all runs in[P]k.

Let f1 = f ↓U∪V1
andf2 = f ↓U∪V2

. By Lemma 1,
we have

{

∧
(f1 ∈ Sched((S ↑U∪V) ↓U∪V1

))

(f2 ∈ Sched((S ↑U∪V) ↓U∪V2
))

Thus, by (3),

(f1 ∈ Sched(S ↑U∪V1) ∧ (f2 ∈ Sched(S ↑U2∪V2)).

Consider noww ∈ [P]k. If f1(w) ∈ G1 ↑U∪V1 , then
by (6) and (2),f1(w) ↑U∪V ⊆ G1 ↑U∪V . Similarly, if
f2(w) ∈ G2 ↑U∪V2 , thenf2(w) ↑U∪V ⊆ G2 ↑U∪V .
As a consequence,f1(w) ↑U∪V ∩f2(w) ↑U∪V ⊆
(G1 ∩ G2) ↑U∪V , and, by Lemma 2,f(w) ∈ (G1 ∩
G2) ↑

U∪V . As a consequence,

E1
︷ ︸︸ ︷

[f1([P]k) ∩ G1 ↑U∪V1] ↓P ∩

E2
︷ ︸︸ ︷

[f2([P]k) ∩ G2 ↑U∪V2] ↓P

⊆ [f([P]k) ∩ G ↑U∪V] ↓P
︸ ︷︷ ︸

E

.

This implies, by (1), thatP(E) ≥ P(E1) + P(E2)− 1.
Moreover, by hypothesis,

{

P(E1) ≥ α

P(E2) ≥ β.

Thus,P(E) ≥ α + β − 1 and

∀f ∈ Sched(S ↑U∪V),

P([f([P]k) ∩ G ↑U∪V] ↓P) ≥ α + β − 1

⇒ inf
f∈Sched(S↑U∪V)

P([f([P]k) ∩ G ↑U∪V] ↓P) ≥

α + β − 1.

�

A.4 Proof of Theorem 4

For the sake of simplicity, we will consider thatk =
ω. The proofs fork < ω are simpler versions of the ones
presented here.

1. Proof :
Let S = (U,Ω) = S1 ∩ S2 and C = (V,A,G) =
C1 ‖ C2.SinceC1 and C2 are in canonical form and
since composition preserves canonicity, we will con-
sider thatG1 = G1 ∪ ¬A1, G2 = G2 ∪ ¬A2 and
G = G ∪ ¬A.

Considerf ∈ Sched(S ↑U∪V). SinceS1 andS2 are
P-compatible,f is defined over all runs in[P]k. More-
over, sinceS = (S1 ↑U1∪U2) ∩ (S2 ↑U1∪U2), it is
clear that(f ∈ Sched((S1 ↑U1∪U2) ↑U∪V)) ∧ (f ∈
Sched((S2 ↑U1∪U2) ↑U∪V)). Thus, by (2),

⇒ (f ∈ Sched(S1 ↑U∪V))∧ (f ∈ Sched(S2 ↑U∪V)).

Let f1 = f ↓U1∪V1
andf2 = f ↓U2∪V2

. By Lemma 1,
we have

⇒

{

∧
(f1 ∈ Sched((S1 ↑U∪V) ↓U1∪V1

))

(f2 ∈ Sched((S2 ↑U∪V) ↓U2∪V2
))

Thus, by (3),

(f1 ∈ Sched(S1 ↑U1∪V1) ∧ (f2 ∈ Sched(S2 ↑U2∪V2)).

Considerw ∈ [P]k, t ≤ k andi ≤ t. If ϕC↑U∪V

f(w) (i) =

0, thenf(w)[0,i] /∈ G ↑U∪V . By (6) and (3), we de-
duce that[(f1(w)[0,i] /∈ G1 ↑U1∪V1) ∨ (f2(w)[0,i] /∈

G2 ↑U2∪V2)]. As a consequence,

ϕC↑U∪V

f(w) (i) ≥ ϕC1↑
U1∪V1

f1(w) (i) + ϕC2↑
U2∪V2

f2(w) (i) − 1

⇒ ∀t ≤ k, D
(t,d)

C↑U∪V (f(w)) ≥D
(t,d)

C1↑U1∪V1
(f1(w))

+ D
(t,d)

C2↑U2∪V2
(f2(w))

− 1

⇒ lim inf
t→k

D
(t,d)

C↑U∪V (f(w)) ≥ lim inf
t→k

D
(t,d)

C1↑U1∪V1
(f1(w))

+ lim inf
t→k

D
(t,d)

C2↑U2∪V2
(f2(w))

− 1.

14

As a consequence,∀w ∈ [P]k,

lim inf
t→k

D
(t,d)

C↑U∪V (f(w)) ≥ lim inf
t→k

D
(t,d)

C1↑U1∪V1
(f1(w))

+ lim inf
t→k

D
(t,d)

C2↑U2∪V2
(f2(w))

− 1

⇒

∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C↑U∪V (f(w))dw ≥

∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C1↑U1∪V1
(f1(w))dw

+

∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C2↑U2∪V2
(f2(w))dw

− 1.

By hypothesis, we have

∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C1↑U1∪V1
(f1(w))dw ≥ α

∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C2↑U2∪V2
(f2(w))dw ≥ β.

Thus,∀f ∈ Sched(S ↑U∪V),

∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C↑U∪V (f(w))dw ≥ α+β−1

�

2. Proof :
Let C = (V,A,G) = C1 ∧ C2.SinceC1 and C2 are
in canonical form and since conjunction preserves
canonicity, we will consider thatG1 = G1 ∪ ¬A1,
G2 = G2 ∪ ¬A2 andG = G ∪ ¬A.

Considerf ∈ Sched(S ↑U∪V). SinceS is P-receptive,
f is defined over all runs in[P]k. Let f1 = f ↓U∪V1

andf2 = f ↓U∪V2
. By Lemma 1, we have

⇒

{

∧
(f1 ∈ Sched((S ↑U∪V) ↓U∪V1

))

(f2 ∈ Sched((S ↑U∪V) ↓U∪V2
))

Thus, by (3)

(f1 ∈ Sched(S ↑U∪V1) ∧ (f2 ∈ Sched(S ↑U∪V2)).

Considerw ∈ [P]k, t ≤ k andi ≤ t. If ϕC↑U∪V

f(w) (i) =

0, thenf(w)[0,i] /∈ G ↑U∪V . By (6) and (3), we de-
duce that[(f1(w)[0,i] /∈ G1 ↑U∪V1) ∨ (f2(w)[0,i] /∈

G2 ↑U∪V2)]. As a consequence,

ϕC↑U∪V

f(w) (i) ≥ ϕC1↑
U∪V1

f1(w) (i) + ϕC2↑
U∪V2

f2(w) (i) − 1

⇒ ∀t ≤ k, D
(t,d)

C↑U∪V (f(w)) ≥D
(t,d)

C1↑U∪V1
(f1(w))

+ D
(t,d)

C2↑U∪V2
(f2(w))

− 1

⇒ lim inf
t→k

D
(t,d)

C↑U∪V (f(w)) ≥ lim inf
t→k

D
(t,d)

C1↑U∪V1
(f1(w))

+ lim inf
t→k

D
(t,d)

C2↑U∪V2
(f2(w))

− 1.

As a consequence,∀w ∈ [P]k,

lim inf
t→k

D
(t,d)

C↑U∪V (f(w)) ≥ lim inf
t→k

D
(t,d)

C1↑U∪V1
(f1(w))

+ lim inf
t→k

D
(t,d)

C2↑U∪V2
(f2(w))

− 1

⇒

∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C↑U∪V (f(w))dw ≥

∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C1↑U∪V1
(f1(w))dw

+

∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C2↑U∪V2
(f2(w))dw

− 1.

By hypothesis, we have

∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C1↑U∪V1
(f1(w))dw ≥ α

∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C2↑U∪V2
(f2(w))dw ≥ β.

Thus,∀f ∈ Sched(S ↑U∪V),

∫

w∈[P]k
P(w) · lim inf

t→k
D

(t,d)

C↑U∪V (f(w))dw ≥ α+β−1

�

15

A.5 Proof of Theorem 5

Proof :
Considerf ∈ Sched(S ↑U∪V2). By Lemma 1, there exists
f ′ ∈ Sched(S ↑U∪V1∪V2) such thatf ′ ↓U∪V2

= f . Letf1 =
f ′ ↓U∪V1

. By Lemma 1, we havef1 ∈ Sched(S ↑U∪V1

). Lemma 3 states that there existsf ′
2 ∈ Sched((G1 ∪

¬A1) ↑U∪V1∪V2) such that∀w ∈ [P]∗, f ′(w) ∈ (G1 ∪
¬A1) ↑U∪V1∪V2⇒ f ′

2(w) = f ′(w). Let f2 = f ′
2 ↓V1∪V2

.
By Lemma 1, we havef2 ∈ Sched((G1 ∪ ¬A1) ↑

V1∪V2 .
Considerw ∈ [P]k. If f1(w) ∈ (G1 ∪ ¬A1) ↑U∪V1 , then
by (6),f ′(w) ∈ (G1 ∪ ¬A1) ↑

U∪V1∪V2⇒ f ′
2(w) = f ′(w).

Moreover, iff2(w) ∈ (G2 ∪ ¬A2) ↑ V1 ∪ V2, then by (6),
f ′
2(w) ∈ (G2 ∪ ¬A2) ↑

U∪V1∪V2 . Thus,

f ′(w) ∈ (G2 ∪ ¬A2) ↑
U∪V1∪V2

⇒ f(w) ∈ (G2 ∪ ¬A2) ↑
U∪V2 by (5).

As a consequence, let

E1 =[f1([P]k) ∩ (G1 ∪ ¬A1) ↑
U∪V1] ↓P

E2 =[f2([P]k) ∩ (G2 ∪ ¬A2) ↑
V1∪V2] ↓P

E =[f([P]k) ∩ (G2 ∪ ¬A2) ↑
U∪V2] ↓P

We haveE1 ∩ E2 ⊆ E.
This implies, by (1), thatP(E) ≥ P(E1) + P(E2) − 1.
Moreover, by hypothesis,

{

P(E1) ≥ α

P(E2) ≥ β.

Thus,P(E) ≥ α + β − 1 and∀f ∈ Sched(S ↑U∪V2),

P([f([P]k) ∩ (G2 ∪ ¬A2) ↑
U∪V2] ↓P) ≥ α + β − 1

�

A.6 Proof of Theorem 6

For the sake of simplicity, we will consider thatk =
ω. The proof fork < ω is a simpler version of the one
presented here.

Proof :
Consider f ∈ Sched(S ↑U∪V2). By Lemma 1,
there exists f ′ ∈ Sched(S ↑U∪V1∪V2) such that
f ′ ↓U∪V2

= f . Let f1 = f ′ ↓U∪V1
. By Lemma 1

again, we havef1 ∈ Sched(S ↑U∪V1). Consider
now w ∈ [P]k, t ≤ k and i ≤ t. By definition,

ϕC1↑
U∪V1

f1(w) (i) = 1 ⇐⇒ f1(w)[0,i] ∈ (G1 ∪ ¬A1) ↑U∪V1 .

By hypothesis,

((G1 ∪ ¬A1) ↑
V1∪V2)|≤k ⊆ ((G2 ∪ ¬A2) ↑

V1∪V2)|≤k.

Thus, by (6),

((G1 ∪ ¬A1) ↑
U∪V1∪V2)|≤k ⊆ ((G2 ∪ ¬A2) ↑

U∪V1∪V2)|≤k.

If ϕC1↑
U∪V1

f1(w) (i) = 1, then

f1(w)[0,i] ∈ ((G1 ∪ ¬A1) ↑
U∪V1)|≤k

⇒ f1(w)w[0, i] ↑U∪V1∪V2⊆ ((G1 ∪ ¬A1) ↑
U∪V1∪V2)|≤k

⇒ f1(w)w[0, i] ↑U∪V1∪V2⊆ ((G2 ∪ ¬A2) ↑
U∪V1∪V2)|≤k

⇒ f ′(w)[0,i] ∈ (G2 ∪ ¬A2) ↑
U∪V1∪V2

⇒ f ′(w)[0,i] ↓U∪V2
∈ (G2 ∪ ¬A2) ↑

U∪V1∪V2↓U∪V2
by (5)

⇒ f(w)[0,i] ∈ (G2 ∪ ¬A2) ↑
U∪V2 by (3)

⇒ ϕC2↑
U∪V2

f(w) (i) = 1.

Thus,

∀t ≤ k, ∀i ≤ t, ϕC2↑
U∪V2

f(w) (i) ≥ ϕC1↑
U∪V1

f1(w) (i)

⇒ ∀t ≤ k, Dt,d

C2↑U∪V2
(f(w)) ≥ Dt,d

C1↑U∪V1
(f1(w))

⇒ lim inf
t→k

Dt,d

C2↑U∪V2
(f(w)) ≥ lim inf

t→k
Dt,d

C1↑U∪V1
(f1(w)).

By hypothesis,

lim inf
t→k

Dt,d

C1↑U∪V1
(f1(w)) ≥ α.

As a consequence,

∀w ∈ [P]k, lim inf
t→k

Dt,d

C2↑U∪V2
(f(w)) ≥ m

⇒

∫

w∈[P]k
P(w) · lim inf

t→k
Dt,d

C2↑U∪V2
(f(w))dw ≥ m.

Finally, ∀f ∈ Sched(S ↑U∪V2),

∫

w∈[P]k
P(w) · lim inf

t→k
Dt,d

C2↑U∪V2
(f(w))dw ≥ m

�

16

