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Abstract Given a finite state system with partial observers and for each observer, a
regular set of trajectories which we call a secret, we consider the question whether
the observers can ever find out that a trajectory of the system belongs to some secret.
We search for a regular control on the system, enforcing the specified secrets on the
observers, even though they have full knowledge of this control. We show that an
optimal control always exists although it is generally not regular. We state sufficient
conditions for computing a finite and optimal control of the system enforcing the
concurrent secret as desired.
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1 Introduction

This work is an attempt to import supervisory control into the area of computer
security. Given an automaton, or plant, and given specifications of the desired
behaviour of the plant, Ramadge and Wonham’s theory presented in Ramadge and
Wonham (1987a,b) yields a finite, nonblocking, and maximal permissive control of
the plant enforcing this behaviour (when unobservable events are uncontrollable).
Controller synthesis is a desirable complement to model checking, for it may cure the
problems that model checkers can reveal. Supervisory control has found applications
in manufacturing systems, in embedded systems, and more generally in safety critical
systems. We feel it could find applications as well in computer security, and we shall
strive to support this thesis.

With the above goal in mind, we have searched for a class of security problems that
can be dealt with as control problems. We model an interactive computer system
and its users as a closed entity in which the users observe their own interactions
with the system. The closed entity is represented with a finite automaton over an
alphabet �. The synchronous interactions between each user i and the system are
represented as the elements of a corresponding sub-alphabet �i ⊆ � (users may
synchronize when their sub-alphabets intersect). Usually in supervisory control, the
control objective is a predicate on the runs of the plant, specifying some combination
of safety and liveness properties, and the observers act as sensors, i.e. they supply
information on the status of the plant, used by the controller to produce an adequate
feedback enabling or disabling events in the plant. Here, the game is different:
the observers are not on the side of the controller but they are opponents. As for
the control objective, there are still predicates (Si) on the runs of the system, but the
interpretation is again different: an observer i should never find out that the actual
trajectory of the system belongs to the secret (Si) he has been assigned.

One reason why we believe the model sketched above is worth investigating is
that, in the case of a single observer, it has already been introduced independently in
Mazaré (2004) and studied further in Bryans et al. (2006). What we call secrets here
was called there opaque predicates, albeit with larger families of predicates (sets of
runs) and observation functions. It was shown in Bryans et al. (2006) that anonymity
problems and noninterference problems may be reduced to opacity problems, using
suitable observation functions. It was shown ibidem that model-checking a system
for opacity is undecidable in the general case where an opaque predicate may refer
to the visited states or may be any recursive predicate on sequences of event labels.
Nonetheless, techniques based on abstract interpretation were proposed in Bryans
et al. (2006) for checking opacity in unbounded Petri nets.

In this paper, we limit ourselves to deal with finite state systems and with regular
predicates defined on sequences of transition labels. We have thus all cards in
hands to decide opacity, even though several pairs (observer, secret) are taken into
simultaneous account. Now differing from Bryans et al. (2006), we want to be able
to enforce opacity by supervisory control when the result of the decision is negative.
In other terms, we want to disable the smallest possible family of trajectories such
that no observer can ever find out that the system’s actual trajectory belongs to some
secret. At first sight, this looks like a simple problem, all the more when it is assumed
that all events are controllable as we do in this paper (we leave the uncontrollable
events to further consideration). The problem is in fact not that simple, for the
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observers have full knowledge of the system, hence any control device that may be
added to the system is known to them. We will nevertheless show that there exists
always an optimal control for enforcing the concurrent secrets on opponents, fully
aware of this control. We will also provide techniques for computing this optimal
control under assumptions that fit at least with some applications.

As a motivating example, consider a computer system that provides services to n
clients C1, . . . , Cn with disjoint alphabets �′

1, . . . , �
′
n. Let L ⊆ �∗ be the language of

the system, where �′
i ⊆ � for all i. One wants to give every client the guarantee

that no coalition of other users can ever be sure that he has started interacting
with the system. For each i, let Si = L ∩ �∗ �′

i �∗ and �i = ∪ j�=i �
′
j. The problem

is to compute the optimal control K ⊆ L enforcing the opacity of the concurrent
secret S = {(�1, S1), . . . , (�n, Sn)}, which means that for any w ∈ K and for any
i ∈ {1, . . . , n}, the projection πi (w) of w on �∗

i coincides with the projection πi (w
′)

of some word w′ ∈ K \ Si. A finite automaton realizing the optimal control K may
be computed for this case. Moreover, one can construct an equivalent decentralized
controller.

The rest of the paper is organized as follows. The notation and the problem are
introduced in Section 2. Section 3 shows that a unique optimal solution always exists,
but it is generally not regular. Using the fixpoint characterization of the optimal
control, proofs of control enabledness of trajectories are presented as infinite trees
in Section 4; conditions on these proof trees entailing the regularity of the optimal
control are also stated there. Section 5 produces closely connected conditions on
concurrent secrets. A complete example is presented in Section 6. Decentralized
control is discussed in Section 7. Directions for further work are suggested in a short
conclusion.

2 Secrets, concurrent secrets, and the control problem

To begin with, let us fix the notation. � is a finite alphabet, �∗ is the free monoid
generated by �, and Rat(�∗) is the family of rational subsets of �∗ i.e. the family
of regular languages over �. Let uv denote the concatenation product of the words
u and v, thus u is a prefix of uv and the empty word ε is a prefix of every word.
The length of u is denoted by |u|. For l ≤ |u|, u[l] denotes the prefix of u with the
length l, and for 0 < l ≤ |u|, u(l) denotes the lth letter occurring in u. For any sub-
alphabet �i ⊆ �, let πi : �∗ → �∗

i be the unique monoid morphism extending the
map πi(σ ) = σ if σ ∈ �i else ε (letters σ ∈ � are mapped to words by the usual
embedding of � into �∗). Throughout the paper, L is a nonempty prefix-closed
language in Rat(�∗) and for all i ∈ {1, · · · , n}, �i ⊆ �, Si ∈ Rat(�∗), and Si ⊆ L.
For u, v ∈ L and i ∈ {1, · · · , n}, let u �i v if πi(u) = πi(v) (thus �i is an equivalence
on L).

The language L represents the behaviour of a system with n users. For i ∈
{1, · · · , n}, the sub-alphabet �i represents the set of interactions that may take place
between the system and the user i. Users observe the system by interacting with it.
If the system’s trajectory is represented by w ∈ L, then the induced observation for
the user i is πi(w). Two users can communicate only by jointly interacting with the
system. An event σ ∈ �i ∩ � j represents an interaction of the system with the users i
and j.
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For each i ∈ {1, · · · , n}, the membership of the actual system’s trajectory in the
subset Si ⊆ L is intended to be kept secret from user i. Therefore, we refer to a subset
Si as a secret and to a n-tuple of secrets (S1, . . . , Sn) as a concurrent secret. In the
terminology of Mazaré (2004) and Bryans et al. (2006), each predicate Si should be
opaque w.r.t. the observation function πi and the language L.

Definition 1 Si is opaque w.r.t. πi (and L) if (∀w ∈ Si) (∃w′ ∈ L \ Si) w �i w′

When the predicate Si coincides with its prefix closure Si, nonopacity is the same
as normality which may be expressed as ∀w ∈ Si ∀w′ ∈ L w �i w′ ⇒ w′ ∈ Si .
However, opacity is not the opposite of normality, as the following example shows.
Given L = (ab)∗ + (ab)∗a let �i = {b} and Si = (ab)∗a then Si is both opaque and
normal.

As we explained in the introduction, we use here a strongly restricted form of
the original definition of opacity where the observation functions may be state and
history dependent. On the other hand, we consider a concurrent version of opacity.

Definition 2 (S1, . . . , Sn) is concurrently opaque (w.r.t. L) if for all i, Si is opaque
w.r.t. πi.

Checking concurrent opacity reduces obviously to checking opacity, which is easy
in our case (although not necessarily computationally simple) since we consider
exclusively regular systems and secrets.

Proposition 1 It is decidable whether (S1, . . . , Sn) is concurrently opaque.

Proof By definition, it suffices to decide for each i ∈ {1, . . . , n} whether Si is opaque
w.r.t. πi. The considered property holds if and only if πi(Si) ⊆ πi(L \ Si). As L and
Si are regular, L \ Si is regular, and since morphic images of regular languages are
regular, this relation can be decided. ��

Example 1 Let � = {a, b , c} and L be the set of prefixes of words in (a + b) c. Let
�1 = �2 = {c}, and let S1 and S2 be the intersections of L with �∗ a �∗ and �∗ b �∗,
respectively. The concurrent secret (S1, S2) is opaque. From the observation of the
event c, one is indeed unable to infer whether it was preceded by an a or by a b .

In the sequel, S = {(�1, S1), . . . , (�n, Sn)} denotes a concurrent secret upon a
fixed language L ⊆ �∗ (�i ⊆ � and Si ⊆ L ⊆ �∗ for all i). We say that S is opaque
if (S1, . . . , Sn) is concurrently opaque. A control is any nonempty prefix-closed
language L′ ⊆ L (we assume here that all events σ ∈ � are controllable). We say
that S is opaque under the control L′ ⊆ L if the induced secret (S′

1, . . . , S′
n) defined

with S′
i = Si ∩ L′ is concurrently opaque w.r.t. L′.

Our purpose is to solve the concurrent opacity control problem stated as follows.

Problem 1 Show that the set of controls enforcing the opacity of S either is empty
or has a greatest element, and compute this maximal permissive control.
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Enforcing concurrent opacity (n > 1) requires, as we shall see, significantly more
efforts than enforcing opacity.

3 A fixpoint characterization of the maximal permissive control enforcing
concurrent opacity

In this section, we show that the concurrent opacity control problem has a unique
maximal solution that we characterize as a greatest fixpoint. We propose two
counter-examples in which this maximal permissive control either is not regular or
cannot be computed within a finite number of fixpoint iterations.

Definition 3 For any prefix-closed subset L′ of L, the safe kernel of L′ w.r.t. the
secret S , notation K(L′,S), is the subset of all words w ∈ L′ such that w = uv ⇒
(∀i)(∃u′ ∈ L′ \ Si) u �i u′.

Thus, S is opaque under the control L′ ⊆ L if and only if L′ = K(L′,S), i.e. L′ is a
fixpoint of K(•,S). It is immediately observed that K(L′,S) is monotone in the first
argument (w.r.t. set inclusion). As the prefix-closed subsets of L form a complete
sub-lattice of P(�∗), it follows from Knaster–Tarski’s theorem Tarski (1955) that
K(•,S) has a greatest fixpoint in this sub-lattice.

Definition 4 Let SupK(L,S) be the greatest fixed point of the operator K(•,S).

Proposition 2 SupK(L,S) is the union of all controls enforcing the opacity of S . If
SupK(L,S) �= ∅, then it is the maximal permissive control enforcing the opacity of S ,
otherwise no such control can exist.

Proof This is a direct application of Knaster–Tarski’s fixpoint theorem. ��

Remark 1 The condition L′ ⊆ SupK(L,S) is necessary but not sufficient for some
nonempty control L′ to enforce the opacity of S . For instance, in Example 1,
SupK(L,S) = L, but the secret S1 is not opaque w.r.t. L′ = ε + a + ac.

The fixpoint characterization of the optimal control enforcing opacity does not
show that SupK(L,S) can be computed, nor that the control can be implemented
with a finite device. When n = 1, i.e. when S = {(�1, S1)}, this is not a problem
because in this particular case, SupK(L,S) is equal to K(L,S) and it may be shown
that K(L,S) is the set of words with all prefixes in L ∩ π−1

1 (L \ S1). Therefore,
SupK(L,S) = �∗ \ ((�∗ \ (L ∩ π−1

1 (L \ S1)) �∗) which is regular. When n > 1, two
situations contrast. The nice situation is when SupK(L,S) can be computed from L
by a finite number of iterated applications of the operator K(•,S). Actually, when
L′ is a regular subset of L, the same holds for K(L′,S), hence in the case under
consideration SupK(L,S) is regular. The rest of the section illustrates the converse
situation.
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3.1 A case where the closure ordinal of K(•,S) is transfinite

Let � = {a, b , c, d, e, f } and let L be the prefix-closed language accepted by the
finite automaton of Fig. 1 (where all states are accepting states). Define S =
{(�1, S1), (�2, S2)} with �1 = {c, f }, S1 = �∗af c (� \ {c})∗ ∩ L (this secret is opaque
w.r.t. π1 and L if, by observing only c and f , one cannot find out in any run that the
last occurrence of c was preceded by af ), and �2 = {b, e}, S2 = �∗deb (� \ {b})∗ ∩ L
(this secret is opaque if, by observing only b and e, one cannot find out in any run
that the last occurrence of b was preceded by de). Let L1 = K(L,S) be the first
language encountered in the greatest fixpoint iteration converging to SupK(L,S),
then L1 = L \ af c�∗ (the run af c reveals the secret S1 in that it may be inferred
from the projection f c on �∗

1 that the run is in S1, and the runs in af d�∗ reveal
nothing). The second item L2 = K(L1,S) is the language L1 \ af deb�∗ (relatively
to L1, the run af deb reveals the secret S2, and the runs in af dea�∗ reveal nothing).
After af c and af deb have been eliminated, the initial situation reproduces up to
the prefix af dea. Therefore, the fixpoint iteration produces a strictly decreasing and
infinite sequence of languages L j. The limit SupK(L,S) of this decreasing chain is
the set of all prefixes of words in the regular set Lω = (af de)∗, hence it is regular.
The optimal control enforcing the opacity of S may be implemented by any finite
automaton recognizing Lω.

Let us now extend the concurrent secret into S = {(�1, S1), (�2, S2), (�3, S3)}
with (�1, S1) and (�2, S2) as above, �3 = ∅ and S3 = L \ (�∗c�∗). Then, the closure
ordinal of K(•,S) increases from ω to ω + 1. To see this observe that, since �3 is
empty, the secret S3 is opaque w.r.t. any language L′ ⊆ L containing at least one
word which contains at least one occurrence of c. The greatest fixpoint iteration for
SupK(L,S) starts with the same decreasing sequence L j as before, but K(Lω,S)

differs now from Lω because Lω contains no word containing c (differing in that from
all L j). In fact, Lω+1 = K(Lω,S) = ∅ and this is a fixpoint. Opacity can therefore not
be enforced.

3.2 A case where SupK(L,S) is not regular

Let � = {a, b , x, y} and L be the set of prefixes of words in (ax)∗ (ε + ab) (yb)
∗.

Define S = {(�i, Si) | 1 ≤ i ≤ 3} as follows (letting �L′ = L \ L′ for L′ ⊆ L):

1. �1 = {a, b}, �S1 = ε + (ax)∗ ab (yb)
∗ + (� \ {b})∗ ∩ L

2. �2 = {x, y}, �S2 = (ax)∗ (yb)
∗

3. �3 = {a, b , x, y}, �S3 = ε + a�∗ ∩ L

Fig. 1 An automaton

a f
c

d

a

b

f e
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We claim that SupK(L,S) is not a regular language and worse, the family of regular
controls enforcing the opacity of S has no largest element. Recall that the subset of
maximal words in a regular language is regular. In order to establish the first part of
the claim, one can show that SupK(L,S) is equal to the set L′ of all prefixes of words
in the nonregular language ∪n∈IN (ax)n (ε + ab) (yb)

n. A detailed proof of this fact
may be found in Appendix.

To show that the family of regular controls enforcing the opacity of S has no
largest element, one assumes the opposite. Let R be the largest prefix-closed regular
subset of L such that S is opaque w.r.t. R. Necessarily, (ax)n (yb)

n �∈ R for some n.
If it were otherwise, because (ax)n−1 (yb)

n−1 is the sole word w′ ∈ L′ \ S1 such that
w �1 w′ for w = (ax)n (yb)

n, R would coincide with L′, which is not possible (L′ is
not regular). Let n be the least integer such that (ax)n (yb)

n �∈ R, and let R′ be R
augmented with all prefixes of words in {(ax)n (yb)

n , (ax)n−1 ab (yb)
n−1} not already

in R. The language R′ is prefix-closed and regular, and one can verify that S is opaque
w.r.t. R′. Thus, a contradiction has been reached.

4 Control enabling and ω-trees

This section serves as a bridge between the general problem and the practical solu-
tions that we shall propose in specific cases. From now on, Si�

∗ ∩ L ⊆ Si is imposed
on all sets Si in S = {(�1, S1), . . . , (�n, Sn)}. The assumption that secrets are suffix-
closed is motivated by its convenience (if not its necessity) for enforcing opacity
with finite control. Although this assumption was not satisfied in the examples from
Sections 3.1 and 3.2, it is quite natural since it amounts to strengthening the secrecy
requirement as follows: an observer i should never have the knowledge that the
trajectory of the system is in Si or was in Si at some instant in the past. We give
below a simpler definition of the operator K(•,S), which is equivalent to the earlier
definition when secrets are suffix-closed. Then we consider ω-trees that may be seen
as proofs of control enabledness of trajectories. Finally, we propose conditions on
sets of proof trees entailing the regularity of SupK(L,S), thus paving the way for
Section 5.

Definition 5 (modified form of Definition 3) For any prefix-closed subset L′ of L,
the safe kernel of L′ w.r.t. the secret S , notation K(L′,S), is the largest subset of L′
such that w ∈ K(L′,S) ⇒ (∀i)(∃w′ ∈ L′ \ Si) w �i w′.

Proposition 3 Definitions 3 and 5 are equivalent.

Proof For the duration of this proof, let K(•,S) and K′(•,S) be the two operators
from Definition 3 and Definition 5, respectively. Clearly, K(L′,S) ⊆ K′(L′,S)

for any L′. We show the converse relation. Consider any word w ∈ K′(L′,S) and let
w = uv be any decomposition of this word into two factors. We should prove that for
all i ∈ {1, . . . , n}, u �i u′ for some u′ ∈ L′ \ Si. As w ∈ K′(L′,S) and by definition,
w �i w′ for some w′ ∈ L′ \ Si. Now w′ �i uv, hence there exists at least one decom-
position w′ = u′v′ such that u �i u′. Finally, u′ ∈ L′ by prefix-closedness of L′, and
u′ /∈ Si by suffix-closedness of Si. Therefore, w ∈ K(L′,S). ��
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Definition 6 Given w ∈ L, a proof of control enabledness of w is a map f :
{1, . . . , n}∗ → L such that f (ε) = w and for all τ ∈ {1, . . . , n}∗ and j ∈ {1, . . . , n},
f (τ ) � j f (τ j) and f (τ j) /∈ S j.

The map f in the above definition is just a complete n-ary ordered tree labelled
on nodes, thus in particular it is an infinite tree. The next proposition follows
immediately from the co-inductive definition of SupK(L,S).

Proposition 4 For any w ∈ L, w ∈ SupK(L,S) if and only if there exists a proof of
the control enabledness of w.

A nice situation is when the control enabledness of a trajectory may be proved
with a regular tree. Let us recall the definition.

Definition 7 Let f : {1, . . . , n}∗ → L be a (complete n-ary ordered labelled) tree.
For any τ ∈ {1, . . . , n}∗, the sub-tree of f rooted at τ , in notation f/τ , is the (complete
n-ary ordered labelled) tree defined with ( f/τ)(τ ′) = f (ττ ′) for all τ ′ ∈ {1, . . . , n}∗.
The tree f is regular if it has a finite number of sub-trees f/τ .

Any regular tree f may be folded to a finite rooted graph. When the control
enabledness of the (good) trajectories may be proved using regular trees exclusively,
this predicate is therefore recursively enumerable. This condition is necessary and
sufficient for being able to enforce control, but not efficiently. In the rest of the
section, we search for additional conditions entailing the regularity of the control
SupK(L,S).

A first attempt towards this goal is to impose an upper bound on the number of
(different) subtrees of a regular proof tree. Equivalently, one may require that all
proof trees conform to a finite collection of finite patterns as follows.

Definition 8 A finite pattern for proofs (of control enabledness of trajectories) is a
finite, deterministic and complete automaton (Q, {1, . . . , n}, q0) (thus q0 ∈ Q and any
i ∈ {1, . . . , n} maps Q to itself). A proof tree f : {1, . . . , n}∗ → L conforms to a finite
pattern as above if there exists a labelling map λ : Q → L such that f (τ ) = λ(q0 · τ)

for all τ ∈ {1, . . . , n}∗ letting q · τ be defined inductively with q · ε = q and q · (τ1τ2) =
(q · τ1) · τ2 for all q ∈ Q.

Remark 2 The notation q · u used above for the next state function δ(q, u) is cus-
tomary in the algebraic theory of (deterministic and complete) automata, where
symbols τ are interpreted as mappings Mτ : Q → Q. These mappings generate a
semigroup, in which (Mu Mτ )(q) = Mτ (Mu(q)) = δ(δ(q, u), τ ). This notation, found
e.g. in Berstel (1978); Eilenberg (1974); Ginzburg (1968), will be used frequently in
the sequel.

The idea behind Definition 8 is that proof trees contain bounded information up
to the choice of a bounded number of words in L.
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Fig. 2 A finite pattern for
proofs of control enabledness

1

2

1

2

1
q2q1

q0

2

Example 2 Let � = {a, b} and L = �∗. Let S = {(�1, S1), (�2, S2)} with �1 = {a},
�S1 = b ∗a∗ and �2 = {b}, �S2 = a∗b ∗. The finite pattern shown on Fig. 2 supplies
proofs of control enabledness for all trajectories. For any word w with n occurrences
of a and m occurrences of b , the labelling map defined with λ(q0) = w, λ(q1) = b man,
and λ(q2) = anb m induces in fact an ω-tree witnessing that w ∈ SupK(L,S).

The existence of proof patterns (Definition 8) does not always entail the existence
of a regular control, which is our ultimate goal. One reason is that, given L, S and
(Q, {1, . . . , n}, q0), the set of labelling maps λ : Q → L considered in this definition
is generally not regular, i.e. it cannot be defined with a finite automaton on (�∗)|Q|.
For instance, if the labelling maps considered in Example 2 did form a regular set,
then the set of all pairs (b man, anb m) would be regular, but the iteration lemma for
rational sets Berstel (1978) entails the opposite (if the set is regular, for some N > 1
and for large enough n and m, (b man, anb m) could be written as (x, x′)(y, y′)(z, z′)
where 0 < |y| + |y′|, |x| + |x′| + |y| + |y′| ≤ N, and (x, x′)(y, y′)∗(z, z′) is included in
the set). Another reason is that, given L, S and (Q, {1, . . . , n}, q0), the set of values
taken at q = q0 by the labelling maps from Definition 8 is sometimes not regular. An
example is shown hereafter.

Example 3 Let � = {a, b} and L = �∗. Let S = {(�1, S1), (�2, S2)} where �1 = {a},
�2 = {b}, and �S1 = �S2 = (ε + b)(ab)∗(ε + a). Consider the set of all maps labelling
adequately the finite proof pattern from Fig. 3. The set of values taken by these maps
at q = q0 is the set of all words in which the numbers of occurrences a and b differ
by at most one, hence it is not regular.

Note that in both Examples 2 and 3, SupK(L,S) = �∗, and proofs of control
enabledness may be obtained for all w ∈ �∗ by labelling the finite proof pattern
shown in Fig. 4. In view of the above, one may concentrate on restricted proof
patterns as follows.

Fig. 3 A proof pattern
for Example 3

1 2

q0

q1

1 2
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Fig. 4 A proof pattern
for Examples 2 and 3

1 2

q2q1

q0

1 21 2

Definition 9 A type (of proof of control enabledness) is a finite pattern T =
(Q, {1, . . . , n}, q0) with a prefix-closed subset T ⊆ {1, . . . , n}∗ such that (∀q ∈ Q)

(∃! τ ∈ T) (q = q0 · τ) and for any map λ : Q → L,

(∀τ) (∀ j ) (τ j ∈ T ∧ λ(q0 · τ) � j λ(q0 · τ j ) ∧ λ(q0 · τ j ) /∈ S j)

⇒ (∀q) (∀ j ) (λ(q) � j λ(q · j ) ∧ λ(q · j ) /∈ S j)

where τ and j range over {1, . . . , n}∗ resp. over {1, . . . , n}. A proof tree f :
{1, . . . , n}∗ → L has type T if it conforms to this pattern (see Definition 8).

The set T in Definition 9 induces a (finite) tree, rooted at q0, that spans the
automaton (Q, {1, . . . , n}, q0). The point is that for any map λ : Q → L, if (λ(q) � j

λ(q · j ) ∧ λ(q · j ) /∈ S j) for all arcs (q, q · j ) in the spanning tree, then it holds also for
all chords, i.e. for all remaining edges of (the underlying graph of) (Q, {1, . . . , n}, q0).

Theorem 1 If there exists a finite number of types of proofs of control enabledness for
all trajectories w ∈ SupK(L,S), then SupK(L,S) is a regular language.

Proof It suffices to show that when type T = (Q, {1, . . . , n}, q0, T) has been fixed,
the set of trajectories w ∈ L with proofs of control enabledness of type T is regular.
In view of the Definitions 8 and 9, a word w belongs to the considered set if and
only if λ(q0) = w for some map λ : Q → L satisfying λ(q0 · τ) � j λ(q0 · τ j) and λ(q0 ·
τ j ) /∈ S j whenever τ j ∈ T and j ∈ {1, . . . , n}. In order to show that this is a regular
set, we construct the Arnold–Nivat product Arnold and Nivat (1982) of a family
of automata A τ indexed with τ ∈ T, as follows. Let A ε be a (finite deterministic)
partial automaton recognizing L, and for each sequence τ j in T with j ∈ {1, . . . , n}, let
A τ j be a (finite deterministic) partial automaton recognizing L \ S j. This defines the
components of the product. As for the synchronizations, let V be the set of T-vectors
�v : T → (� ∪ {ε}) such that (�v(τ) ∈ � j ∨ �v(τ j) ∈ � j) ⇒ �v(τ) = �v(τ j ) whenever τ j in
T and j ∈ {1, . . . , n}. The induced product is a (finite deterministic) partial automaton
A = (Q,V, �q0) defined as follows:

– The set of states Q is a set of T-vectors of states of automata A τ (τ ∈ T),
– For each τ ∈ T, �q0(τ ) is the initial state of A τ ,
– For all �q ∈ Q and τ ∈ T, �q(τ ) is a state of A τ ,
– For all �q ∈ Q, �v ∈ V and τ ∈ T, (�q · �v) (τ ) = �q(τ ) · �v(τ).

Therefore, �q · �v is defined if and only if �q(τ ) · �v(τ) = �q′(τ ) is defined for all τ .
Let �v1 . . . �vm be a word over V accepted by A. An associated T-vector �w : T →

L may be defined by setting �w(τ) = �v1(τ ) . . . �vm(τ ) for all τ ∈ T. It follows directly
from the construction that the map λ : Q → L such that λ(q0 · τ) = �w(τ) for all τ ∈ T
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satisfies λ(q0 · τ) � j λ(q0 · τ j) and λ(q0 · τ j) /∈ S j for τ j ∈ T and j ∈ {1, . . . , n}, hence
�w(ε) ∈ SupK(L,S).

As A is a finite automaton, the projection of the language of A along ε is a regular
language. In order to complete the proof, it suffices therefore to show that for any
map λ : Q → L satisfying λ(q0 · τ) � j λ(q0 · τ j) and λ(q0 · τ j) /∈ S j for all τ j ∈ T, the
vector �w : T → L defined with �w(τ) = λ(q0 · τ) for all τ ∈ T may be written as a
word �v1 . . . �vm recognized by A. Given the construction of this automaton, it suffices
to exhibit a sequence �v1 . . . �vm ∈ V∗ such that �w(τ) = �v1(τ ) . . . �vm(τ ) for all τ ∈ T.
This is the contribution of the Lemma 1 (see hereafter). ��

Lemma 1 Let �w : T → �∗ where T is a prefix-closed subset of {1, . . . , n}∗ and
�w(τ) � j �w(τ j) for all τ j ∈ T with j ∈ {1, . . . , n}. Then �w(τ) = �v1(τ ) . . . �vm(τ ) for all
τ ∈ T for some sequence of vectors �vk : T → � ∪ {ε} such that for all τ j ∈ T, (�vk(τ ) ∈
� j ∨ �vk(τ j) ∈ � j) ⇒ �vk(τ ) = �vk(τ j).

Proof Let E be the set of all pairs (τ, i) such that τ ∈ T and 0 < i ≤ | �w(τ)|. Let <

be the partial order on E defined with (τ, i) < (τ ′, i′) if τ = τ ′ and i < i′. For each
j ∈ {1, . . . , n}, let (τ, i) � j (τ j, k) if π j( �w(τ)[i])) = π j( �w(τ j)[k])), �w(τ)(i) = �w(τ j)(k),
and this letter is in � j. Let ≡ denote the equivalence on E generated from the union of
the relations � j. We claim that this equivalence does not intersect and is compatible
with the partial order <. Let us establish this double claim.

1. Suppose for a contradiction that (τ, i) < (τ, i′) and (τ, i) ≡ (τ, i′). Then, by defini-
tion of ≡ and the relations � j, the words �w(τ)[i] and �w(τ)[i′] end with a common
letter �w(τ)(i) = �w(τ)(i′), and this letter occurs the same number of times in both
words. As i < i′, this is clearly not possible.

2. Suppose for a contradiction that (τ, i) < (τ, i′) and (τ ′, j ) < (τ ′, j′) while (τ, i) ≡
(τ ′, j′) and (τ, i′) ≡ (τ ′, j ). Then, by definition of ≡ and the relations � j,
�w(τ)(i) = �w(τ ′)( j′ ) and this letter σ occurs the same number of times in both
words �w(τ)[i] and �w(τ ′)[ j′]. In the same way, �w(τ)(i′) = �w(τ ′)( j ) and this letter
σ ′ occurs the same number of times in both words �w(τ)[i′] and �w(τ ′)[ j ]. Since
i < i′ and j < j′, it follows that σ and σ ′ are different letters (see Fig. 5).

Now let τ = ρx1 . . . xk and τ ′ = ρy1 . . . yl where ρ is the longest common prefix of τ

and τ ′ and xh, yh ∈ {1, . . . , n}. Then by definition of ≡ and the relations � j, (τ, i) ≡
(τ ′, j′) and (τ, i′) ≡ (τ ′, j ) entail that σ and σ ′ belong jointly to all the alphabets �xh

(1 ≤ h ≤ k) and �yh (1 ≤ h ≤ l). On the other hand, by the part 1 of the proof, (τ, i) ≡
(τ ′, j′) entails that necessarily �w(τ)[i] �−1

xk
◦ . . . ◦ �−1

x1
◦ �y1 ◦ . . . ◦ �yl �w(τ ′)[ j′].

Therefore the words �w(τ)[i] and �w(τ ′)[ j′] must have the same number of occurrences
of the letter σ ′, which is obviously not possible.

Fig. 5 Since i < i′ and j < j ′,
it follows that σ and σ ′ are
different letters
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Let C = (E/ ≡). Since < is compatible and does not intersect with ≡, the binary
relation (< ∪ ≡)∗/ ≡ is a strict partial order on C. Let C1 . . . Cm be an enumeration
of C compatible with this order. Each equivalence class C ∈ C induces naturally a
vector �v ∈ V , viz. �v(τ) = �w(τ)(i) if (τ, i) ∈ C for some i, or ε otherwise. Let �v1 . . . �vm

be the vectors associated with C1 . . . Cm, respectively. Then for any τ ∈ T, �w(τ) =
�v1(τ ) . . . �vm(τ ) as desired. ��

Theorem 1 opens the way to the practical synthesis of supervisory control for
concurrent opacity. The conditions for its application are examined further in
Section 5.

5 Concurrent secrets with a regular opacity control

First, let us recall a definition.

Definition 10 Let � be an equivalence relation on a set X and let S be a subset of
X. S is saturated for � if x ∈ S ∧ x � x′ ⇒ x′ ∈ S for any x′ ∈ X.

A saturated set is thus a union of equivalence classes. In case where X ⊆ �∗ and
� is � j, S ⊆ X is saturated for � if and only if, for any word x ∈ X, one can infer
whether x ∈ S from its projection π j(x) on �∗

j .
We propose here conditions on concurrent secrets S = {(�1, S1), . . . , (�n, Sn)}

ensuring that the maximal permissive opacity control SupK(L,S) is the language
of a finite automaton, that may be effectively constructed from finite automata
accepting the language L and the secrets Si. We examine first the case where the
alphabets �i form a chain for the inclusion, second the case where the secrets Si

form a chain for the inclusion, third the case where every secret Si is saturated by
any equivalence � j such that i �= j. We consider finally the combinations of the three
cases for the different pairs (i, j ).

Fig. 6 T1 for n = 3
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Proposition 5 If the alphabets �i form a chain for the inclusion, then the control
enabledness of all trajectories w ∈ SupK(L,S) may be shown with a single type of
proofs T1.

Proof Given �1 ⊆ �2 ⊆ . . . ⊆ �n, we construct a type T1 = (Q, {1, . . . , n}, q0, T) as
follows. T is the set of strictly increasing sequences of numbers in {1, . . . , n} (T is
drawn with solid arcs in Fig. 6), Q = T and q0 = ε. For any τ in T and i ∈ {1, . . . , n},
τ · i = τ ′i where τ ′ is the largest prefix of τ formed of integers strictly smaller than i
(see again Fig. 6). As (� j ◦ �i) ⊆�i for i ≤ j, T1 conforms to Definition 9. Finally,
for any w ∈ SupK(L,S), by Proposition 1, there must exist a map λ : Q → L, i.e.
λ : T → L, such that λ(ε) = w and for all τ j ∈ T, λ(τ) � j λ(τ j) ∧ λ(τ j ) /∈ S j. ��

Proposition 6 If the secrets Si form a chain for the inclusion, then the control
enabledness of all trajectories w ∈ SupK(L,S) may be shown with a single type of
proofs T2.

Proof Given S1 ⊆ S2 ⊆ . . . ⊆ Sn, we construct a type T2 = (Q, {1, . . . , n}, q0, T) as
follows. T is the set of strictly increasing sequences of numbers in {1, . . . , n} (T is
drawn with solid arcs in Fig. 7), Q = T and q0 = ε. For any τ in T and i ∈ {1, . . . , n},
τ · i = τ i if τ i ∈ T and τ · i = τ otherwise (see again Fig. 7). If i ≤ j, then for any
τ j in T (= Q), and for any map λ : Q → L, λ(τ j) /∈ S j ⇒ λ(τ j · i) /∈ Si since Si ⊆
S j. Therefore, T2 conforms to Definition 9, and the desired conclusion follows from
Proposition 1. ��

Proposition 7 If for all distinct i, j ∈ {1, . . . , n}, the secret Si is saturated by the equiva-
lence relation � j, then the control enabledness of all trajectories w ∈ SupK(L,S) may
be shown with a type of proofs T3.

Proof We construct a type T3 = (Q, {1, . . . , n}, q0, T) as follows. T is the set of
sequences in {1, . . . , n}∗ with at most one occurrence of each number (T is drawn with

Fig. 7 T2 for n = 3
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Fig. 8 T3 for n = 3
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solid arcs in Fig. 8), Q = T and q0 = ε. For any τ in T and i ∈ {1, . . . , n}, τ · i = τ i if
τ i ∈ T and τ · i = τ otherwise (see again Fig. 8). Let λ : Q → L be any map such
that λ(τ) � j λ(τ j) ∧ λ(τ j) /∈ S j whenever τ j ∈ T. One may show by induction on τ

that λ(τ) /∈ Si for any i ∈ {1, . . . , n} occurring in τ . Indeed, if this property holds for
τ , it must hold for τ j because λ(τ) � j λ(τ j) and � j saturates Si and L \ Si for all i
occurring in τ . Therefore, T3 conforms to Definition 9, and the desired conclusion
follows from Proposition 1. ��

Example 4 Proposition 7 applies to the concurrent secret S = {(�1, S1), . . . , (�n,

Sn)} from Section 1, where Si = L ∩ �∗ �′
i �∗ and w �i w′ if w and w′ have the same

projection on (∪ j�=i �
′
j)

∗. Indeed, for i �= j, w � j w′ entails that w and w′ have the

Fig. 9 T4
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same projection on (�′
i)

∗. One can construct for this case a finite automaton that
accepts SupK(L,S).

One can deal similarly with many other situations where �i ⊆ � j or Si ⊆ S j or �i

saturates S j, or conversely with i and j, for all distinct i, j ∈ {1, . . . , n}. For instance,
let n = 3, and suppose S1 ⊆ S2, �3 ⊆ �2, and �1 saturates S3. Then the control
enabledness of all w ∈ SupK(L,S) may be proved using the type T4 (see Fig. 9).

Unfortunately, we cannot extend Propositions 5, 6, and 7 into a general proposi-
tion, for we do not know whether SupK(L,S) is regular in three particular cases:

– S1 ⊆ S2, �2 ⊆ �3, and �1 saturates S3,
– S1 ⊆ S2, �2 saturates S3, and �3 ⊆ �1,
– �1 saturates S2, �2 saturates S3, and �3 saturates S1.

The best we can do is therefore to propose an algorithm that constructs a unique
type for all proofs of control enabledness in all cases where this is possible. In
this perspective, we introduce rewrite rules on labelled graphs. In each rule, one
vertex of the left member is dropped and the edges that were incident to this vertex
are redirected to other vertices. The vertices and edges present on both sides of a
rule serve as an application context (indicated by the labels put on the concerned
vertices). The rewrite rules are displayed in Fig. 10 (where i �= j and sat is an
abbreviation for “saturates”).

Proposition 8 Given S = {(�1, S1), . . . , (�n, Sn)}, let R be the set of rewrite rules
that correspond to predicates true in S . Whenever the complete n-ary tree rewrites to
some finite graph, any such graph yields a uniform type T for proving the control
enabledness of all trajectories. The spanning tree of T is the subset of edges of the
complete n-ary tree that have been preserved by the rewriting.

Proof In view of Definition 9 it is enough to show, for each graph G on the right hand
side of a rewrite rule (see Fig. 10), that any map λ : {x, y} → L or λ : {x, y, z} → L
compatible with the rigid edges of G is compatible also with the dashed edge of G,

where λ is compatible with x
i−→ y if λ(x) �i λ(y) and λ(y) /∈ Si. Considering the

Fig. 10 Four rules
xx y yi j
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predicates defining the application conditions of the rewrite rules, this verification is
immediate. ��

When Proposition 8 can be applied, the construction proposed in the proof of
Proposition 1 may be used to produce a finite automaton realizing the maximal
permissive opacity control, but Proposition 8 is not immediately effective. We
remedy now this deficiency.

Proposition 9 It is decidable whether some finite graph may be derived from the
complete n-ary tree using the rules in R and such graphs can be computed when they
exist.

Proof As a preliminary remark, note that the rewrite rules in R are not necessarily
confluent (i.e. A � B and A � C do not always entail that B �∗ D and C �∗ D for
some D), hence the finite graph we compute is just one among several possible types
of proofs of control enabledness.

Let I = {1, . . . , n} and let F ⊆ I∗ be the set of all words ii, or ij, or iji such
that True, or (S j ⊆ Si ∨ � j ⊆ �i), or �i satS j, respectively. If the words in F are
considered as forbidden factors for words in I∗, the remaining words form a regular
language T = I∗ \ (I∗ F I∗).

If T is infinite, the rewrite system R cannot terminate on the complete n-ary tree
and it cannot produce any finite graph. If T is finite, let (Q, {1, . . . , n}, q0) be the
partial automaton defined with Q = T, q0 = ε, and τ · i = τ i for τ i in T.

To obtain a type of proof of control enabledness (Q, {1, . . . , n}, q0, T) conforming
Definition 9, it now suffices to complete the partial automaton (Q, {1, . . . , n}, q0) as
follows: for all words τ in T, and by increasing lengths of words τ ,

– set τ i · j = τ i if τ i · j is undefined and S j ⊆ Si or �i sat S j and τ = τ ′ · j,
– set τ i · j = τ · j if τ i · j is still undefined and � j ⊆ �i. ��

6 A complete example

Let � = {a, b , c}. For every letter σ ∈ � and for every word w ∈ �∗, let #σ(w)

count the occurrences of σ in w. Let L be the set of all words w ∈ �∗ such that
0 ≤ #c(v) − #a(v) − #b(v) ≤ 3 for every prefix v of w. In shorter form, L =⇓ (0 ≤
#c − #a − #b ≤ 3). This language is prefix closed and regular. Let the concurrent
secret S = {(�1, S1), . . . , (�3, S3)} where �1 = {a, c}, �2 = {b , c}, �3 = {b} and the
secret sets Si are the respective differences L \ �Si defined with

�S1 = L ∩ ⇓ (#c − #a − #b ≤ 2),
�S2 = L ∩ ⇓ (#c − #a ≤ 2),
�S3 = L ∩ ⇓ (#a = 0).

Thus Si = Si�
∗ ∩ L for all i. Intuitively, (�1, S1) means that one should not be able

to infer from the projection of the system’s trajectory on �∗
1 that #c(v) − #a(v) −

#b(v) = 3 for some prefix v of this trajectory. Similarly, secret S2 is that #c(v) − #a(v)

has reached value 3, and secret S3 is that a has been performed. Clearly, S1 ⊆ S2,
�3 ⊆ �2, and �1 saturates S3. Applying the construction sketched in the proof
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Fig. 11 Linear inequalities in
the left part entail #b ≤ 2. The
tree in the right part proves
that cbcb ∈ SupK(L,S) \ S3

of Proposition 9, one obtains therefore the type T4 and the spanning tree T displayed
in Fig. 9.

It may be observed that each of the languages L, �S1, �S2, or �S3 is specified by a
set of linear inequalities, that must hold on the firing counts of letters a, b , and c for
every word or prefix of word in the considered language. Using this observation, one
may easily derive from the spanning tree T a nondeterministic Petri net generator
for the optimal control SupK(L,S). First, one attaches to each node of the spanning
tree T a Petri net (with transitions a, b , c) as follows. The Petri net at the root of
T generates the language L. For each path τ i in T, the Petri net at the target node
of this path generates the language �Si. Second, for each path τ i, one merges the
transitions named x in the nets respectively attached to paths τ and τ i if and only if
x ∈ �i. Last, one replaces all names of transitions by ε, except for merged transitions
that include some transition of the net at the root node. The resulting net is large,
some of its subnets are redundant (as we shall see), and it has the drawback to be
nondeterministic.

To alleviate things, one may try logical reasoning instead of automated synthesis
and proceed as follows. First, one attaches to each node of the spanning tree T the
system of linear inequalities over #a, #b and #c characteristic of the language L (for
the root node) or �Si (for the target node of a path τ i), using new names for variables
#a, #b and #c at each node. Second, one identifies names xτ and xτ i whenever x ∈ �i.
Third, one tries to eliminate all variables except those occurring at the root node. To
illustrate the method, we compute SupK(L,S) by stages following the structure of
T. We proceed bottom up, beginning with the subtree of T reached by path 13 or
3. Decorating this subtree by linear inequalities yields the linear system in the left
part of Fig. 11. A word w ∈ {a, b , c}∗ belongs to SupK(L,S) \ S3 if and only if this
linear system (in the variables #a′, #b ′, #a′′) is feasible for all parameters #a = #a(v),
#b = #b(v), and #c = #c(v) such that v is a prefix of w. Now, we do not need to

Fig. 12 Eliminating redundant
equations from the left part
yields the system in the
right part
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Fig. 13 Two other equivalent
systems

compute SupK(L,S) \ S3, but just its projection on �∗
3 = b ∗. The linear inequalities

in the left part of Fig. 11 entail #b ≤ 2. The tree in the right part of Fig. 11 proves
that cbcb ∈ SupK(L,S) \ S3. Therefore, the projection under consideration is the
set ⇓ (#b ≤ 2) = {ε, b , bb}.

One may now replace the two subtrees (of T) at the end of paths τ = 13 or 3
by inequalities #b τ ≤ 2 and label the remaining nodes of T with linear inequalities.
The result is shown in the left part of Fig. 12. Eliminating redundant equations yields
the system in the right part of Fig. 12. We will show that the language defined by
this system of linear constraints (on firing counts of letters) is equal to the language
defined by the linear systems shown in Fig. 13.

The first stage is to show that for any word w in ⇓ (0 ≤ #c − #a − #b ′ ≤ 2 ∧
#b ′ ≤ 2 ), w �2 w′ for some word w′ in ⇓ (#c − 2 ≤ #a′′ ≤ #c − #b ′). Let u and v be
two prefixes of w, with u shorter than v. Then #c(u) − 2 ≤ #c(u) − #b ′(u) ≤ #a(u)

≤ #a(v) ≤ #c(v) − #b ′(v). Therefore, one can define an increasing function f (u) on
prefixes u of w such that #c(u) − 2 ≤ f (u) ≤ #c(u) − #b ′(u) for all u. A word w′ may
be produced by a transducer that takes w as input, erases all occurrences of a, and
inserts occurrences of a′′ whenever the value of f increases as desired. The second

Fig. 14 SupK(L,S) may be
realized by a Petri net with
transitions a, b , c plus one
silent transition with high
priority

ba

2 3

c
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stage is to show that both systems in Fig. 13 define the same language. This can be
done by reproducing the above reasoning.

One can unfortunately not further simplify the rightmost system in Fig. 13. In fact,
let w be a word in ⇓ (0 ≤ #c − #a − #b ≤ 3 ∧ #b ≤ 2 ), then w �1 w′ for some word
w′ in ⇓ (0 ≤ #c − #a − #b ′ ≤ 2 ∧ #b ′ ≤ 2 ) if and only if, for any prefixes u and v of w

with u shorter than v, (#c(u) − #a(u)) − (#c(v) − #a(v)) ≤ 2. This condition is clearly
necessary. When it holds, #c(u) − #a(u) − 2 ≤ #c(v) − #a(v), hence one can define an
increasing function f (u) such that #c(u) − #a(u) − 2 ≤ f (u) ≤ #c(u) − #a(u) for all u.
This function may be used to monitor the insertion of occurrences of b ′ in w after all
occurrences of b have been erased.

Summarizing the above, SupK(L,S) is the set of words w such that, for any two
prefixes u and v with u shorter than v, 0 ≤ #c(u) − #a(u) − #b(u) ≤ 3, #b(u) ≤ 2,
and #c(u) − #a(u) − 2 ≤ #c(v) − #a(v). The last condition is not satisfied e.g. in the
words w = cccaaa or w = cccbcaacaa. This is not the language of any Petri net with
set of transitions {a, b , c}. SupK(L,S) may however be realized by a Petri net with
transitions a, b , c plus one silent transition with high priority, as shown in Fig. 14.

7 Decentralized control

We did not strive until now to obtain decentralized solutions of the concurrent
opacity control problem. Fortunately, such solutions come for free from the results
established in Sections 4 and 5, as the following theorem states.

Theorem 2 Let S = {(�1, S1), . . . , (�n, Sn)} be a concurrent secret upon L ⊆ �∗, then
there exists prefix closed languages Ki ⊆ �∗

i (for i = 1 . . . n) such that SupK(L,S) =
(∩i π

−1
i (Ki)) ∩ L. Moreover, if SupK(L,S) is regular, then the Ki are regular.

Proof By Proposition 4, w ∈ SupK(L,S) if and only if there exists a proof of the
control enabledness of w. In view of Definition 6 and again by Proposition 4, this
holds if and only if, for all i ∈ {1, . . . , n}, w �i wi for some wi ∈ SupK(L,S) \ Si.
Therefore, SupK(L,S) = (∩i π

−1
i (Ki)) ∩ L where for all i, Ki = πi(SupK(L,S) \

Si). The second statement in the theorem is obvious. ��

Theorem 2 states that concurrent opacity may always be enforced by decentralized
control. This may help the users of distributed computer facilities to accept more
readily the idea of opacity control. A user Ui mistrusting the other users Uj might be
more inclined to trust a local controller Ki than a global controller, directly connected
to all users.

8 Conclusion

The work we have presented is an attempt to approach the problem of concurrent
opacity control from automata based Ramadge–Wonham framework. We have
proposed sufficient conditions under which the optimal control (that always exists if
some control exists) may be enforced by a finite automaton. We have also observed
that the optimal control can always be enforced by a decentralized controller. These
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results may be found encouraging, but the topic of concurrent opacity control is in
an early stage and much is left to be done.

Some limitations of this work are voluntary, e.g. we restricted ourselves on
purpose to regular languages and to regular control, but some other limitations could
hopefully be lifted in continuations of this work. A list follows.

From the beginning of Section 4, we worked with open secrets, i.e. secrets Si

such that Si�
∗ ⊆ Si. The goal was to make Definition 3 equivalent to the simpler

definition Definition 5. In fact, a weaker condition on secrets Si suffices to obtain this
equivalence, namely the following condition, where ≤ is the prefix order:

(∀w ∈ L \ Si) πi(w) = uσ ⇒ (∃v ∈ L \ Si) (v ≤ w ∧ πi(v) = u)

Such secrets may e.g. carry the information that some system process is in a critical
section.

As regards the control objective, we focused our efforts on opacity, but we did not
take the deadlock freeness or the liveness of the controlled system into consideration
and this is a shortcoming. Another valuable extension would be to work with boolean
combinations of opacity predicates, e.g. if S1 is opaque w.r.t. �1 then S2 is not opaque
w.r.t. �2.

We end with a few words on observability and controllability. On the side
of the observation functions, we have restricted our attention to projections on
subalphabets, but it would be better to accommodate also all alphabetic morphisms.
As regards control, we dealt with all events as controllable events, but it would be
more realistic to accommodate also uncontrollable events.

Acknowledgements We would like to thank the reviewers for their help to improve an earlier
version of this paper. This research was supported by CATALYSIS, a program within CNRS/PAN
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Appendix

A case where SupK(L,S) is not regular

In this appendix we give a detailed proof of the fact that the set SupK(L,S)

is not regular where language L and secret S are given as follows (recalled
from Section 3.2). Let � = {a, b , x, y} and L be the set of prefixes of words in
(ax)∗ (ε + ab) (yb)

∗. Define S = {(�i, Si) | 1 ≤ i ≤ 3} where:

1. �1 = {a, b}, �S1 = ε + (ax)∗ ab (yb)
∗ + (� \ {b})∗

2. �2 = {x, y}, �S2 = (ax)∗ (yb)
∗

3. �3 = {a, b , x, y}, �S3 = ε + a�∗

In order to establish the claim, we will show that SupK(L,S) is equal to the set
L′ of all prefixes of words in the nonregular language ∪n∈N (ax)n (ε + ab) (yb)

n.
Recalling that the subset of maximal words in a regular language is a regular
language, it is then clear that SupK(L,S) is not regular. We show that SupK(L,S) =
L′ by proving the reciprocal inclusion of the two sets.

For i ∈ {1, 2, 3} and for all w ∈ L, define w�i� = {
w′ ∈ L′ | w �i w′ ∧ w′ ∈ �Si

}
.

Since SupK(L,S) is the maximal permissive control enforcing the opacity of S , it
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suffices to show that S is opaque w.r.t. L′ in order to establish L′ ⊆ SupK(L,S).
Therefore, as L′ ⊆ L, it suffices to prove the assertion:

(1) For all w ∈ L′ and i ∈ {1, 2, 3}, the set w�i� is nonempty.

The relation SupK(L,S) ⊆ L′ may be reduced to a similar assertion. For τ ∈
{1, 2, 3}∗ and for all w ∈ L, let w�τ� be inductively defined with w�ε� = {w} and
w�τ i� = ∪ {w′�i� | w′ ∈ w�τ�}. Whenever, for some w ∈ L, w�τ� = ∅ for some τ ,
w /∈ SupK(L,S). Actually, if τ has length j, then w does not belong to the jth

language L j encountered in the greatest fixpoint iteration for SupK(L,S), i.e.
L0 = L, L1 = K(L0,S), and so on. Therefore, SupK(L,S) ⊆ L′ follows from the
assertion:

(2) For all w ∈ L \ L′, the set w�τ� is empty for some τ ∈ {1, 2, 3}∗.

Note that for any w ∈ L, if w ∈ ε + a�∗ then w�3� = {w} else w�3� = ∅, hence
SupK(L,S) or any stronger opacity enforcing control cannot contain any word
starting with a letter different from a (this was the point in introducing the
secret S3).

Let us now prove (1) and (2). For this purpose, one may classify the words w ∈ L
into categories as follows (singleton sets of words are represented as words).

1. w = (ax)n ab (yb)
m :

w ∈ w�1�, w�2� = (ax)n (yb)
m, w�3� = w

2. w = (ax)n (yb)
m :

(a) n, m ≥ 1 ⇒ w�1� = (ax)n−1 ab (yb)
m−1, w ∈ w�2�, w�3� = w

(b) m = 0 ⇒ w ∈ w�1� ∩ w�2�, w�3� = w

(c) n = 0, m ≥ 1 ⇒ w�1� = ∅, w ∈ w�2�, w�3� = ∅
3. w = (ax)n ab (yb)

m y :

w�2� = (ax)n (yb)
m+1, (ax)n ab (yb)

m ∈ w�1�, w�3� = w

4. w = (ax)n a :

w ∈ w�1�, w�2� = (ax)n, w�3� = w

5. w = (ax)n (yb)
m y :

(a) n, m ≥ 1 ⇒ w�1� = (ax)n−1ab(yb)m−1, (ax)n(yb)m+1 ∈ w�2�, w�3� = w

(b) n ≥ 1, m = 0 ⇒ w ∈ w�1�, (ax)n yb ∈ w�2�, w�3� = w

(c) n = 0, m ≥ 1 ⇒ w�1� = ∅, (yb)
m+1 ∈ w�2�, w�3� = ∅

(d) n, m = 0 ⇒ ε ∈ w�1�, yb ∈ w�2�, w�3� = ∅

The words w′ ∈ L′ may be classified similarly into five categories as follows:

1. w′ = (ax)n ab (yb)
m with n ≥ m,

2. w′ = (ax)n (yb)
m with n ≥ m,

3. w′ = (ax)n ab (yb)
m y with n ≥ m + 1,

4. w′ = (ax)n a, or
5. w′ = (ax)n (yb)

m y with n ≥ m + 1.
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It results from a comparison of the two classifications that the property (1) holds.
Finally, the property (2) also holds, since all words w ∈ L \ L′ necessarily meet one
the five cases below.

1. w = (ax)n ab (yb)
m with n < m: then w�(2 · 1)n+1� = ∅

2. w = (ax)n (yb)
m with n < m: then w�(1 · 2)n · 1� = ∅

3. w = (ax)n ab (yb)
m y with n ≤ m: then w�1 · (2 · 1)n+1� = ∅

4. w = (ax)n (yb)
m y with 0 < n ≤ m: then w�(1 · 2)n · 1� = ∅

5. w = (yb)
m y: then w�3� = ∅

We have thus proved that SupK(L,S) is not a regular language.
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