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Abstract. This paper studies the independent implementability of rea-
chability properties, which are in general not compositional. We consider
modal specifications, which are widely acknowledged as suitable for ab-
stracting implementation details of components while exposing to the en-
vironment relevant information about cross-component interactions. In
order to obtain the required expressivity, we extend them with marked
states to model states to be reached. We then develop an algebra with
both logical and structural composition operators ensuring reachability
properties by construction.

1 Introduction

In order to face the intrinsic complexity of automotive, aeronautic and consumer
electronics embedded systems, but also of web-based service oriented architec-
tures, modular design aims at organizing systems as a set of distinct components
that can be developed independently and then assembled together. This is best
achieved using interfaces which abstract superfluous implementation details of a
component and expose cross-component protocol informations that are essential
to a correct use of a component. Component reuse in different contexts is thus
made possible, not only reducing design time, but also enabling the amortization
of design costs over several different projects.

Component interoperability or compatibility is then a major issue: when can
we safely compose two (or more) components? Compatibility is often considered
at a signature level. In this simple case, interfaces consist in function or method
types and compatibility consists in a type-checking, performed either at compile-
time or at run-time. This paper deals with a richer notion of interfaces capable
of capturing behavioral properties.

The first work on behavioral compatibility of interfaces has been proposed
in [I]. This paper considers an automata-based formalism for interfaces in which
transitions are labeled with output (produced by the component) or input (pro-
duced by the environment) actions. Then, a run-time error occurs whenever a
component produces an output that is not accepted as input by one of its peers.
The fact that a runtime error may occur does not necessarily lead to deem the

* A long version is available as a research report [5].



interfaces incompatible. Indeed, the authors promote an optimistic approach of
composition in which two interfaces are compatible if there exists a restriction
of the permitted actions of the environment in order to prevent the reachability
of a runtime error. They show that this form of compatibility is preserved in the
design flow provided alternating refinement [2] is used. More precisely, starting
from initial interfaces whose product satisfies a particular safety property (i.e.,
a runtime error cannot be reached), they can be refined independently and then
composed, their product will also satisfy the same safety property. This principle,
called independent implementability, is of key importance [I1] and enables the
concurrent design of systems that are then assembled in a bottom-up manner.

This paper now studies the case of reachability properties and proposes results
regarding their satisfaction by design. Basically, a reachability property states
that some particular situation can be reached. Examples abound in practice.
For instance, consider Service Oriented Architectures (SOA) formed of several
interacting services; they should always have the possibility to reach a termina-
tion state, by delivering a response to all service activation. However, termina-
tion is in general not preserved by service composition. Although reachability
properties are easy to verify in this context [4], model-checking may not be
an appropriate solution. First, because it requires to construct the reachability
graph of a system which may lead to a state explosion problem. Moreover, in
case model-checking reveals a violation of the reachability property, designers
have to iterate the design cycle by re-coding and re-validating their components,
therefore extending time to market. The alternative approach advocated in this
paper consists in controlling the design flow of components, that is, the evolu-
tion of interfaces through compositions and refinements, in order to ensure a
reachability property by construction. Now, what specification formalism cap-
turing some behavioral aspects of components is convenient for interface-based
design? Modal specifications [I6II4)3] are widely acknowledged as a suitable
proposal [T2/20021]. Basically, they consist in labeling interface transitions with
modalities, either must if the transition has to be enabled in any refinement, or
may if the transition is allowed. In [T2J20121], modal specifications are shown to
have many benefits comparing the specification formalism introduced in [I]; they
are not only equipped with an optimistic composition operator and a refinement
relation but also with a conjunction and a quotient operator. As reachability
properties cannot be expressed, in general, with modal specifications, we first
consider in this paper modal specifications enriched with marked states, in the
same fashion as it is done in [6]. We show that, in this framework, we can develop
a theory ensuring reachability properties by design.

2 Modeling with marked modal specifications

2.1 Background on automata

Let X' be a finite alphabet of actions, a deterministic automaton over X is a
tuple M = (R, 7%, X, X\, G) where R is a finite set of states, r’ € R is the unique
initial state, A is a partial map from R x X to R called the labeled transition



map and G C R is a non-empty set of marked states. The set of firable actions
from r € R is ready(r) = {a € X' | A(r, a) is defined}.

Transition map A is extended to its transitive and reflexive closure: let €
denote the empty word, for all » € R, A(r,e) = r and for all u € X*, a € X,
r1,72,73 € R, A(r1,u) = ro and A(rq,a) = rs imply A(r1,u.a) = r3. Define
L ={ue X* |3 € R, \(r°,u) =1’} to be the language of M. If A(r,u) =1’
for some u then 7’ is said to be reachable from 7.

Given P C R, define pre*(P) and post*(P) to be the set of states that are
respectively coreachable and reachable from any state r € P: it is the least set
such that for r € P, r € pre*(P) and r € post*(P) and for every A(r',a) =", if
r” € pre*(P) then r’ € pre*(P) and if v’ € post*(P) then r" € post*(P). With
a slight abuse, we may write pre*(r) and post*(r) for pre*({r}) and post*({r}).

If modeling a service, it is desirable to set that a service session eventually
terminates; this is often refered in SOC as weak termination. To capture this
kind of requirement, we define terminating automata: an automaton M is said
to be terminating whenever R = pre*(G) meaning that it is always possible to
reach a marked state from any state of the automaton. In other words, M is
terminating if and only if for any u € L, there exists a v such that uv € Ly
and A\(r’,uv) € G. In the temporal logic CTL, this property can be written
AG(EF G).

Given two automata M; = (Ry, 79, X1, A1, G1) and My = (Ra, 79, X9, Ao, Ga),
their product is the automaton M x Mg = (Ry X R, (r9,79), X1UX5, \, G1 X Ga)
where A((r1,72),a) is defined as (A1(r1,a),re) for a € X\ Xa, (r1, A2(r2,a)) for
a € Yo\ Xy and (A1(r1,a), Aa(re,a)) for a € Xy N Xs.

2.2 Marked modal specifications

Following [6], we enrich modal specifications [I6/T4J3] with marked states in
order to model states to be reached. For instance, if a designer specifies a service,
this enables to represent session terminations. The obtained formalism allows to
specify a (possibly infinite) set of automata called implementations.

Definition 1 (Marked Modal Specification). A marked modal specification
over X is a tuple C = (Q, ¢°, X, 5, must, may, F), where Q is a finite set of states,
q° € Q is the unique initial state, § : Q x X — Q is a partial labeled transition
map; must, may : Q — 2% map to each state q the set of required and allowed
actions from q, F C Q is a non-empty set of marked states.

It is assumed that a transition is associated to any allowed action, that is
for every state ¢ € @ and every action a € X, a € may(q) if and only if
5(q,a) is defined. The mapping may : Q — 2% can thus be reconstructed from
the transition relation 6. However, this distinction simplifies the definition of
satisfaction and refinement relations and compositions operators.

In this paper, marked modal specifications are taken deterministic, that is:
for any a € X and any state ¢ there is at most one state ¢’ such that é(¢q,a) = ¢'.
The reason for this will be given later in Sec. [3|



The underlying automata associated to C is Un(C) = (Q,¢°, ¥,d, F). The
language Lc is then Ly, c). As previously for automata, we extend ¢ to words
by taking its transitive and reflexive closure. Moreover, we define pre},(P) and
pre, (P) with P C @ as the set of states that are coreachable from any state g €
Q@ by following transitions labeled by required and allowed actions, respectively:
prek, (P) corresponds to pre*(P) in Un(C); pre};(P) is the least set such that
for r € P, r € pre};(P) and for every A(r’,a) = r” with a € must(r’) and
r" € pre};(P) then 1" € pre},(P). Last, post}, (P) is post*(P) in Un(C).

Any terminating automaton can be seen as a marked modal specification
with no design choice left open, that is, for any state r, the optional action
set may(r) \ must(r) is empty. More formally, the embedding of a terminating
automaton M = (R,r% X, \, G) into the class of the marked modal specifications
is Em(M) = (R,7°, X, \, must, may, G) with, for all r € R, may(r) = must(r) =
ready(r). Now, the semantics of marked modal specifications is given in terms
of terminating automata:

Definition 2 (Satisfaction). A terminating automaton M = (R,7°, ¥\, G)
satisfies the marked modal specification C = (Q, q°, X, 6, must, may, F'), denoted
M = C, if and only if there exists a simulation relation m C R X Q such that
(r°,¢°) € © and for all pairs (r,q) € w:

1. must(q) C ready(r) C may(q);

2. r € G implies q € F;

3. for every a € X and every v’ € R, N(r,a) =1’ implies (r',5(q,a)) € 7.

The set of models (or implementations) of C is denoted [C]. A marked modal
specification is said satisfiable if and only if [C] # 0. Two marked modal speci-
fications C and C’ are said equivalent, written C = C’, if and only if they admit
the same implementations: [C] = [C']. Any unsatisfiable specification is mapped
on a special specification denoted C, , with [C, ] = 0.

Ezample 1. Consider the terminating automaton M in Fig. and the marked
modal specification C in Fig. where transitions from ¢ labeled by a are
dashed when a € may(q) \ must(q) and plain when a € must(q); marked
states are double-circled. M satisfies C because of the simulation relation = =
£0,0'), (1,1), (2,2)), (3,1)}.

Observe that, in state 2, although none of the two outgoing transition is must,
at least one of the two has to be present in any model in order to preserve the
reachability of a marked state. Such restricted disjunction cannot be expressed
with traditional unmarked modal specifications. Observe also that, according to
the second item of the Def. 2] the reachability of a marked state may be delayed:
1’ is marked, (3,1’) € 7 but 3 is not marked; however, a marked state can be
eventually reached from 3 thanks to the state 1.

According to Def. [2| only reachable states of C are semantically meaningful.
We thus suppose from now on, and without loss of generality, that C is reachable,
that is: Vg € Q, ¢° € pre*(q).
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(a) A terminating automaton M (b) A marked modal spec. C

Fig. 1. M is a model of C

A marked state g € F' is said delayable if q¢ can be reached again, that is,
there exists a word u # € such that §(g,u) = ¢; it is said undelayable otherwise.
Denote by D the set of delayable states of a marked modal specification.

A marked state ¢ € F is a bottleneck of C if it is the only marked state
reachable from some state ¢’ € @ that is, post’ (¢') N F = {q}. Intuitively, this
notion allows to identify the states that will be marked in any model of the
specification.

Lemma 1. Given a terminating automaton M and a marked modal specifica-
tion C s.t. M = C then: Lo C Le, and, for allu € Ly, ()\(ro,u),é(q07u)) em.

The introduced semantics induces some simplifications in the structure of
the marked modal specifications that we discuss now. At the end of this section,
this will lead to the definition of an associated normal form.

Must-saturation. Observe that any terminating automaton model of the mar-
ked modal specification in Fig. (1| includes the starting transition labeled by a
stemming from the initial state. It is thus a required transition that can be
assigned a must modality in the specification. We therefore introduce the must-
saturation of marked modal specifications.

Definition 3 (Must-saturation). A marked modal specification is must-sa-
turated if for all ¢ ¢ F such that there is a unique a € may(q), we have a €
must(q). Such a must-mapping is then said to be saturated.

Lemma 2. Any must-mapping can be saturated without changing the set of
marked implementations.

Consistency and attractability. Given a marked modal specification C =
(Q,q°, X, 6, must, may, F) and a state ¢ € Q, C is said consistent in ¢ if and only
if must(q) C may(q). C is said attracted in ¢ if and only if ¢ € pre’ (F).

Lemma 3. If M = C then C is consistent and attracted in every state 5(q°, )
with u € L.

As a consequence, only consistent and attracting states of C are semantically
meaningful. This now leads us to define a reduced form:

Definition 4 (Reduced marked modal specification). C is reduced iff ev-
ery state is reachable and it is consistent and attracted in every state q € Q.



Proposition 1 (Reducibility). Every satisfiable marked modal specification is
equivalent to a reduced marked modal specification.

Proof of this proposition is by construction of a reduced marked specification
pC and then proving that C and pC are equivalent. This construction makes use
of a pruning operation. We denote by Qu C @ the set of all states ¢ € @ such
that ¢ is inconsistent or unattracting, that is: must(q) € may(q) or q ¢ pre*(F).

Definition 5 (Reduction operation). Given a marked modal specification
C=(Q,q", X, 6 must,may, F): if ¢° € pre’,;(Qu) then the reduction of C is C ;
otherwise, it is the marked modal specification (Q \ pres;(Qu),q%, X, 8", must’,

may', F'\ prey;(Qw)) where: §'(r,a) = v if and only if 6(r,a) =1’ and r,v' ¢
pre(Qw); as indicated in right after Def. may’ can be recovered from ¢
whereas must’ is the restriction of must to the domain Q \ pre};(Qw).

Normal form. This now leads us to define the normal form of any marked
modal specification:

Definition 6 (Normal form). A marked modal specification is in normal form
if it is both must-saturated and reduced.

According to Lem. [2| and Prop. [I} any marked modal specification C can be
put in normal form nC without altering its set of models. As a result, from now
on, we always suppose that marked modal specifications are in normal form.

At this point, the reader may wonder why must-saturation, consistency and
attractability are not fully part of the definition of marked modal specification
(as it is the case for the consistency requirement in the original papers on un-
marked modal specifications [I614]). The reason for this is because, in what
follows, we propose composition operators on marked modal specifications and
it is easier to define these constructions without trying to preserve these different
requirements. Now if the combination of two marked modal specifications (which
are now implicitly supposed to be in normal form) gives rise to a specification
violating one of the above requirements then a step of normalization has to be
applied on the result in order to have an iterative process.

3 Refinement of marked modal specifications

A refinement relation aims at relating interfaces at different stages of their de-
sign. Basically, it should correspond to refine the set of allowed implementations
of an interface. Moreover, we shall see later that refinement should entail substi-
tutability, meaning that the substitution of an interface Co by a refined version
C; must not impact the possible and actual cooperation with other components,
that have been previously declared as legal for Cs.

Definition 7 (Refinement). Given two marked modal specifications C1 = (Q1,
@, X, 81, musty, may,, F1) and Co = (Q2,¢8, X, 62, muste, mays, Fs), Cy is a re-
finement of Co, noted C1 < Co, if and only if there exists a simulation relation
II C Q1 % Qo such that (¢¥,49) € IT and, for all pairs (q1,q2) € II:



1. may,(q1) C may,(g2) and musti(q1) 2 musta(qa);
2. q1 € Fy implies qa € Fy;
3. for every a € may,(q1), we have: (51((]1, a),d2(qa, a)) elIl.

Intuitively, refining an interface corresponds to possibly changing a transition
with a may modality into either a required or a proscribed transition while
potentially delaying the reachability of a marked state. This relation is reflexive
and transitive and is thus a preorder.

Theorem 1. Given two marked modal specifications C1 and Ca, C1 < Cy if and
only if, [C1] C [C2].

Theorem [T] holds provided the marked modal specifications are deterministic.
If nondeterminism is allowed, refinement becomes correct but not fully abstract
(the implication from right to left in Theorem [1|is not true in general). This is
discussed for unmarked modal specifications in [15]; their counterexample can be
immediately adapted to our context. Moreover, as argued in [§], nondeterministic
modal specifications are not really suitable to characterize a set of deterministic
automata.

When the left counterpart is ultimately refined, the refinement relation co-
incide with the implementation relation: given a terminating automaton M and

a marked modal specification C, M |= C if and only if Em(M) < C.

4 Conjunction of marked modal specification

It is a current practice, when modeling complex systems, to associate several
specifications with a same system, sub-system, or component, each of them de-
scribing a different aspect of it. These so-called viewpoints may be engineered
independently, and possibly by different teams. It is then natural to question
whether different viewpoints are not contradictory and how to realize all of
them. This leads to define a conjunction operator. Moreover in [7], the authors
point out that, during the design cycle, a designer may be tempted to merge
two interfaces which share some similarities in order to use a same implementa-
tion for the two interfaces. More formally, this corresponds to look for a shared
refinement of the interfaces, if it exists.

We now define a conjunction operator which enjoy the expected properties
to solve the two above problems.

Definition 8 (Conjunction). Given two marked modal specifications C; =
(Qh q?? 27 513 mUStla mayq, Fl) and C2 = (QQa qg7 27 5Qa mUStQa mays, F2)7 the
conjunction of C1 and Ca, noted C; A Ca, is the normal form n(Ci & Ca) of
C1 & Cy = (Q,q°, X, 8, must, may, F) with:
1. Q=Q1x Q2 and ¢° = (¢f,45);
2 for any g1 € Q. @2 € Q2 and a € 3, 5((q1,q2),a) = (d,44) if and only if
51(a1,0) = ¢} and 63(g2,a) = gb;
3. may(qu, q2) = may, (q1)Nmay,(q2) and must(q1, g2) = must1(q1)Umust2(qgz);



4. (q1,q2) € F if and only if ¢1 € F1 and g2 € F>.

Considering the manipulations done on the may/must-maps and on the tran-
sition map to obtain C; & Cq, the must-saturation and the consistency may not
be respected. We thus impose a normalization step in order to have an iterative
process as explained at the end of Sec. [2|

Theorem 2. Given some marked modal specifications C1, Co, C3 and C:
— [CL A Co] = [Ci] N [Ca]:
— Cy1 N Cq is the greatest lower bound of C1 and Cy for the refinement relation:
C §C1 and C S CQ zﬁC S Cl /\CQ;
— A is associative: C1 A (C2 AC3) = (C1 ACs) ACs.

5 Product of marked modal specifications

Reachability is not preserved by product in general. Fig. [2| shows a simple ex-
ample: My = C; and My = Co; however the product of My x Ms is a single
non-marked state, hence the reachability of a marked state is not possible.

@ R, E f
b ar b a a b
g 0 0
(a) M1 (b) C1 (C) Mz (d) CQ

Fig. 2. Reachability is not compositional

This leads us to consider the following problem: given two marked modal
specifications, can they be implemented concurrently i.e., such that the product
of any model of the first specification with any model of the second one will
always have the ability to reach a marked state of the product?

Similarly to [I], we distinguish a pessimistic from an optimistic view of com-
position and solve the previous problem in this two contexts.

First, in order to represent the cooperation between subsystems, a signa-
ture over Y is now associated to any terminating automaton or marked modal
specification over X:

Definition 9 (Signature). Given a set of actions X, a signature over X is a
mapping p : X — {?,1} which associates to any action either 7 when the action
is an input or ! when it is an output.

Now, transitions are either labeled !a (for p(a) =!) when the entity respon-
sible for the occurrence of a is the system, or ?a (for p(a) = ?) if a stems from
the environment of the system. The resulting formalism is thus suited to model
protocols between a system and an unknown partner belonging to the system



environment. Contrarily to the input/output automata of [I8] and following the
interface automata of [I], terminating automata and marked modal specifica-
tions are not required to be input-enabled, meaning that some actions ?b of the
environment may not be permitted in some state ¢q. More formally, this situa-
tion occurs in state ¢ if there is no outgoing transition from ¢ labeled by 7b.
This allows to restrict, from the point of view of the system, the behavior of its
environment.

Ezample 2. Fig. depicts the specification of a service which can receive
requests 77 from an unidentified subsystem in its environment and then answers
by producing !a until it is stopped with 7 f. It may also produce !b when set in
an enhanced mode by ?e. Fig. depicts the specification of a client which
expects to receive 7a as an answer to any request !7 and is ready to receive
remitted ?a. Although 7b is in the signature of Cs, there is no transition labeled
?b meaning that the client rejects this inputs.

We write X7 and X' for the set of input and output actions, respectively,
thus forming a partition of X. A system is then closed if its associated signature
is such that X7 = () and open otherwise. In this paper, we assume that if M |= C
then the signature associated to M and C is identical. Similarly, if C; < Cs then
C; and Cy have the same signature?.

A first condition to product is the composability of signatures. Given two sig-
natures g1 and pg over Xp and X5 respectively, defining two partitions (Zl?, E'l)
and (22?72!2), they are composable if no output actions is shared: X} N X} =
(). For composable signatures, we let the communication actions be the set
Yeolpir, pi2) = (X7 N X)) U (X3 N X)) which corresponds to the shared ac-
tions on which a synchronization will be possible. The set of private actions
is Z‘pr(,ul, /142) = (El U 22) \ (21 N 22)

Definition 10 (Product of signatures). The product of two composable sig-
natures 1 and po is b = p1 X e defined over X1 U Xy such that: X =
(BT U XN\ Lo, p2) and £' = 2j U 5.

The product of two terminating automata M; and M with respective com-
posable signatures p; and po is then M; x My as defined in Sec. with
signature p1 X po.

5.1 Pessimistic composition of marked modal specifications

We first consider the case of pessimistic*® composition; we define a sufficient
and necessary condition such that two marked modal specification can be in-
dependently implemented, the product of any of their implementations being
terminating.

3 This assumption is taken to simplify the presentation. Refinement of signature as
defined in [21I] can be handled in the presented theory.
4 The pessimistic view of this approach will be made clearer in the next section.
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(a) Cy over {?r,?e,?7f,la,1b} (b) C2 over (c) Ci]||Cz2 over {?e,!r,!f, la, b}
{?a,?b,!r, ! f}

Fig. 3. Example of composition

This condition corresponds to the existence of a joint path to a marked state,
for every reachable state of the product of arbitrary implementations. We then
consider the less cooperative situation in which any optional behavior is disabled
and check if such paths exist. However, the minimal behavior associated to a
state of a marked modal specification is not unique in general. Consider C; in
Fig. the minimal number of outgoing transition stemming from the initial
state among all the models of C; is 1 and can be either a transition label by a or
by b. To represent the different minimal possibilities, we thus use an intermediate
structure called minimal constraint automaton. First we define the set of minimal
constraints associated to a state:

Definition 11 (Minimal constraints). For any state ¢ of a marked modal
specification C defined over X', we associate the set ((q) € 22" defined by:

{ must(q) } if must(q) # 0
Clq) =1 {{a} | a€may(q) } if must(q) =0 and q ¢ F
{0} if must(q) =0 and g€ F

Definition 12 (Minimal constraints automaton). Given a state q of a
marked modal specification C over X, the minimal constraints automaton Min(C, q)
is the automaton over X whose initial state is q; its labeled transition map is Aiin
such that Aviin(q',a) = ¢ if and only if a € X with X € ((¢') and 6(¢',a) = ¢";
its set of final states Gy s the set of undelayable bottlenecks of C.

We identify potential dead-ends, that is pairs of states of two marked modal
specifications C; and Cs to be composed from which no outgoing transition may
be available in a product of two respective implementations:

Definition 13 (Dead-end). Given q1 and go two states respectively from the

marked modal specifications C1 and Cy defined over Xy and Xy, the pair (q1,q2)

s a dead-end if:

1. qi € (F1\ D1) or g2 & (F2 \ D3) and,

2. there exists X1 € (1(q1) and Xo € (2(q2) such that: (X1 U (X2 \ 21))N (XU
(Z1\ Xo) = 0.



Ezample 3. The minimal constraints associated to the initial states of C; and Cy
from Fig. [2|and defined over the same alphabet of actions {a, b} are respectively
{{a},{b}} and {{a}}. The pair formed by this two states is thus a dead-end as
for X; = {b} and X5 = {a}, we have X; N Xy = 0.

This now leads us to a definition of exception state pairs from which a joint
path to a marked state pair cannot be ensured independently of the implemen-
tation choices to be made:

Definition 14 (Exception state pair). Given ¢; and gs two states respec-
tively from two marked modal specifications C1 and Ca, the pair (q1,q2) is an
exception if:

— Min(C1,q1) x Min(Ca, q2) is not terminating or,

— there exists a reachable dead-end® (g}, q5) in Min(Cy,q1) x Min(Ca, ga).

We denote by Ex(C1, C) the set of exception state pairs from C; and Co. Then
we can define the following criterion characterizing marked modal specifications
having compatible reachability:

Definition 15 (Compatible reachability). Two marked modal specifications
Cy and Cy have a compatible reachability, noted C1 ~7 Co, if there is no exception
state pair that is reachable in Un(Cy) x Un(Cz).

The soundness and the completeness of the previous definition are then stated
by the following Theorem:

Theorem 3 (Independent implementability). Given two marked modal spec-
ifications C1 and Cso, C1 ~7 Co if and only if for any My = C; and Ms |= Co,
the product My x My is terminating.

We now define the product of two marked modal specifications with compat-
ible reachability.

Definition 16 (Pessimistic product). Given two marked modal specifications

C1 = (Q1,4Y, X1, 61, musty, may, F1) and Cy = (Q2,q3, Xa, 62, musta, maysy, Fs)

with compatible reachability, the product C1 ®Cs is the marked modal specification

(Q,q°, X1 U Xy, 6, must, may, F) with:

1. Q=Q1 x Q2 and ¢° = (¢, 49);

2. for any 1 € Q1, @2 € Q2 and a € X7 U Xy, 5((q1,q2),a) is defined as
(01(q1,a),02(q2,a)) for a € Xy N Xy, (61(q1,0a),q2) for a € X1\ Xy and
(qlv 62(612704)) fOT‘ a€ Xy \ 21;

3. may((q1,q2)) = (mayy(q1) U (Z2\ £1)) N (mays(g2) U (21 \ 22));

4. must((q1,q2)) (mustl(ql) U (X2 \ Zl)) N (mustg(qg) U (X1 \ Eg));

5. (q1,q2) € F if and only if ¢ € Fy and g2 € Fy.

® As the set of states of Min(C;, q:) is a subset of these of C;, we can refer to (¢}, ¢5)
in Min(C1,q1) x Min(Cz,q2) as a pair of states of C; and C2 and then test if it is a
dead-end in the sense of Def. @



Now, the product of any models M of C; and M5 of Cy is model of C; ® Cs:

Proposition 2. Given two marked modal specifications C1 and Ca, if C1 ~7 Cs

then for any My = C1 and Mo = Cay, My x Ma |=C1 ® Ca.

Moreover, C; ® Co gives the most precise characterization of the behavior of
the product of any models M; of C; and M of Cs:

Proposition 3. Given two marked modal specifications C1 and Ca, if C1 ~3 Cs
and if there exists a marked modal specification C such that for any My = Cy
and My = Cy we have My X Mgy |=C then C; @ Cy < C.

One important principle in modular and concurrent design of systems is
the fact that a property checked on a primary version of some system artifacts
remains true on any refined version of them. This is what allows to guarantee
that the system parts corresponding to compatible interfaces can be designed
concurrently. This is respected for compatible reachability:

Proposition 4. For all marked modal specifications C1, C1 and Ca, if C1 ~7 Co
and C; <X Cy then Cy ~1 C3 and C; @ C2 X C1 ® Ca.

Last, the product is a commutative and associative operator, meaning that
interfaces can be assembled in any order without affecting the result.

Proposition 5. The product of marked modal specifications is commutative and
associative. Given three marked modal specifications C1, Co and C3: C1 ® Co =
Co®C1 and C1 ® (CQ ®C3) = (C1 ®C2) ® Cs.

5.2 Optimistic composition of marked modal specifications

Consider again C; and Cs from Fig.[3] They do not have a compatible reachability
as (3,0) is an exception state pairs because (4,1) is a reachable dead-end from
it. It is however pessimistic to declare C; and Cy as not composable. Indeed, the
system potentially formed by any model of C; and Cs would not be closed as
the occurence of 7e would still be under the control of the environment. Now
by preventing the environment from producing !e when C; and Cy are in their
initial state, the reachability of the exception state pairs (4,1) can be avoided.
In this section, let us now be optimistic and declare composable any C; and Cs
if there exists at least one environment, closing the system and preventing the
reachability of the bad states of C; and Cy in which the reachability property
cannot be guaranteed.

Definition 17 (Legal environment). Given M and &£ two terminating au-
tomata, £ is said to be a legal environment for M, if and only if: the signature
of M and € are composable; M x E is closed; Em(M) ~1+ Em(E), that is M x &
18 terminating.



Next, we define, for any automaton M (terminating or not) with r0 €
pre*(G), the subautomaton M* = (pre*(G),r%, ¥, \*, G) where \*(r,a) = r’
if and only if A(r,a) = 7’ and r,v" € pre*(G). It corresponds to the potential
reachable part of M when interacting with a legal environment.

Definition 18 (Optimistic compatible reachability). Two marked modal
specifications C1 and Co have an optimistic compatible reachability, noted C1 ~o
Cy if the pair of initial states (q?,q9) is not an exception state pairs.

This criterion is sound and complete as stated by the following Theorem:

Theorem 4 (Independent implementability). Given two marked modal spec-
ifications C; and Ca, C1 ~o Ca if and only if for any My = C1 and Ms | Ca
there ezists a legal environment € for My x Ms.

Definition 19 (Optimistic product). Given two marked modal specifications
C1 and Co over composable signatures p1 and po and with optimistic compatible
reachability, the optimistic product Ci||Cy is the normal form of the marked
modal specification (Q,q°, X1 U X, 6, must, may, F) over g x po with:
- Q=(Q1xQ2) \Ex(C1,C2) and ¢° = (49, 43);
— forany q1 € @1, g2 € Q2 and a € X7 U Xy:
e ifa e X1\Y; and (81(q1,a),q2) ¢ BEx(C1,C2): 6((q1,42),a) = (61(q1,a), q2);
e ifa € 2o\ and (q1,02(q2,a)) ¢ Ex(C1,C2):6((q1,42),a) = Q1752 (g2, a));
e ifac XN Y and (61(q1,a),02(q2,a)) ¢ Ex(C1,C2): 6((q1,42),a) =
(01(q1, @), 02(q2, @)).
— a € must((q1,q2)) if a € (must1(q1) U (X2 \ 1)) N (musta(g2) U (X1 \ X2))
and 5((q1,q2),a) is defined;
— (q1,92) € F if and only if 1 € F1 and ¢ € F>.

Ezample 4. The optimistic product of C; and Co from Fig. [3] is depicted in
Fig. The action ?e is not allowed in the initial state as a legal environement
would never produce le to prevent the reachability of the exception states (3, 0).

Proposition 6. Given two marked modal specifications C; and Ca, if C1 ~o Ca
then for any My = C1 and My |= Ca, (My x Mo)" EC || Ca.

The next proposition states that C; || Co is the minimal marked modal speci-
fication w.r.t. refinement enjoying the independent implementability property:

Proposition 7. Given two marked modal specifications C1 and Ca, if C1 ~o Ca
and if there exists a marked modal specification C such that for any My = Cy and
My [= Cy there exists a legal environment £ for My x My and (M1 x My)* = C,
then C1]|C2 < C.

Optimistic compatible reachability is preserved by refinement hence allowing
concurrent design of sub-systems. Moreover, the optimistic product is monotonic
with respect to the refinement relation and is also associative which guarantees
independence in the design flow.



Proposition 8. For all marked modal specifications C1, Cy and Ca, if C1 ~o Co
and C{ X Cy then C} ~o Co and C; ||Ca <X Cq || Ca.

Proposition 9. The optimistic product of marked modal specifications is com-
mutative and associative. Given three marked modal specifications C1, Co and Cs:

Ci||Co =Ca|Cr and C1 || (C2]|C3) = (C1 || C2) || C5-

6 Related works and conclusion

Marked modal specifications can be used to express, in a modular manner, that
a system should be capable of reaching one or several marked states representing
either the completion of a composition of services or the quiescence of a network
of interacting agents. They improve the expressive power of deterministic modal
specifications that corresponds to the conjunctive v-calculus [I0] which does not
allow to capture reachability properties.

The same goal can be achieved with automata-theoretic specifications in
which states are annotated with propositional formulas expressing implementa-
tion variants and, possibly, an obligation of progress. This is the case of annotated
automata [22] and operating guidelines [T9/17]. While both formalisms have a
product (or parallel) composition operator, they are missing the optimistic view
of composition and also the conjunction operator that turns out to be instru-
mental as soon as components are described according to several distinct but
interacting viewpoints [21].

The disjunctive variants of modal specifications [13[9] allows to constraint
progress and thus to inductively express reachability. However no implemen-
tation relations including marked states nor optimistic composition have been
proposed for these variants of modal specifications.

Marked modal specifications look similar to the modal specifications with
marked states introduced in [6]. However, these two formalisms are very differ-
ent because the satisfaction relation in [6] admits implementations having final
states corresponding to a state of the specification that is not final. This is appro-
priate in the context of supervisory control synthesis. However, this semantics
does not seem well-suited to a specification algebra with a refinement preorder,
which explains why a different satisfaction relation is used for marked modal
specifications.
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