
Theoretical Computer Science 412 (2011) 4373–4404

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Constraint Markov Chains✩

Benoît Caillaud a, Benoît Delahaye b, Kim G. Larsen c, Axel Legay a,∗, Mikkel L. Pedersen c,
Andrzej Wąsowski d
a INRIA/IRISA, Rennes, France
b Université de Rennes 1/IRISA, Rennes, France
c Aalborg University, Denmark
d IT University of Copenhagen, Denmark

a r t i c l e i n f o

Article history:
Received 18 July 2010
Received in revised form 19 April 2011
Accepted 5 May 2011
Communicated by J. Esparza

Keywords:
Specification theory
Markov Chains
Compositional reasoning
Abstraction
Process algebra

a b s t r a c t

Notions of specification, implementation, satisfaction, and refinement, together with
operators supporting stepwise design, constitute a specification theory. We construct
such a theory for Markov Chains (MCs) employing a new abstraction of a Constraint MC.
Constraint MCs permit rich constraints on probability distributions and thus generalize
prior abstractions such as Interval MCs. Linear (polynomial) constraints suffice for closure
under conjunction (respectively parallel composition). This is the first specification theory
forMCswith such closure properties.Wediscuss its relation to simpler operators for known
languages such as probabilistic process algebra. Despite the generality, all operators and
relations are computable.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Compositional design [1] is a research field, which aims at the development of mathematical foundations for reasoning
about components. Usually this is achieved by specifying and analyzing the interfaces of components in order to infer global
properties of a system in an incremental way. One popular approach in this area is the work on type systems, and in
particular, on type systems for modules in the programming language community. Another approach, in the verification
area, is the work on specification theories, which provide a modeling language for designing, evolving and advisedly reusing
components with formal guarantees. For example, a large system, or a complex communication protocol, can be designed
stepwise – by building more and more refined models – and analyzed piecewise by analyzing fragments of models and
reasoning about the properties of the parallel composition. The hope is that this waywe can combat the size and complexity
of modern systems.

For functional analysis of discrete-time non-probabilistic systems, the theory of Modal Transition Systems (MTSs)
[2,3] provides a specification formalism supporting refinement as well as conjunction and parallel composition. It has been
recently applied to construct interface theories [4,5], which are extensions of classical interface automata proposed by de
Alfaro et al. [6–10].

✩ A preliminary version of this paper has appeared in the 7th International Conference on Quantitative Evaluation of Systems.
∗ Corresponding author. Tel.: +32 476 27 57 12.

E-mail addresses: benoit.caillaud@irisa.fr (B. Caillaud), benoit.delahaye@irisa.fr (B. Delahaye), kgl@cs.aau.dk (K.G. Larsen), alegay@irisa.fr,
axel.legay@irisa.fr (A. Legay), mikkelp@cs.aau.dk (M.L. Pedersen), wasowski@itu.dk (A. Wąsowski).

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.05.010

http://dx.doi.org/10.1016/j.tcs.2011.05.010
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:benoit.caillaud@irisa.fr
mailto:benoit.delahaye@irisa.fr
mailto:kgl@cs.aau.dk
mailto:alegay@irisa.fr
mailto:axel.legay@irisa.fr
mailto:mikkelp@cs.aau.dk
mailto:wasowski@itu.dk
http://dx.doi.org/10.1016/j.tcs.2011.05.010

4374 B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404

Fig. 1. IMCs showing non-closure under conjunction. (Top) The two specifications of different aspects of a coffee service. (Bottom) A conjunction expressed
as a Markov Chain with linear constraints over probability values.

As soon as systems include randomized algorithms, probabilistic protocols, or interact with physical environment,
probabilistic models are required to reason about them. This is exacerbated by requirements for fault tolerance, when
systems need to be analyzed quantitatively for the amount of failure they can tolerate, or for the delays that may appear.
As Henzinger and Sifakis [1] point out, introducing probabilities into design theories allows assessing dependability of IT
systems in the same manner as commonly practiced in other engineering disciplines.

Generalizing the notion ofMTSs to the non-functional analysis of probabilistic systems, the formalism of Interval Markov
Chains (IMCs) was introduced in [11]; with notions of satisfaction and refinement generalizing probabilistic bisimulation.
Informally, IMCs extend Markov Chains by labeling transitions with intervals of allowed probabilities rather than concrete
probability values. Implementations of IMCs areMarkov Chains (MCs)whose probability distributionsmatch the constraints
induced by the intervals. IMCs are known to be an efficient model on which refinement checking can be performed with
efficient algorithms from linear algebra. Unfortunately, as we shall now see, the expressive power of IMCs is inadequate to
support both conjunction and parallel composition.

Consider the IMCs of Fig. 1. S1 specifies a behavior of a user of a coffee machine. It prescribes that a typical user orders
coffeewithmilkwith probabilitywithin [0, 0.5] and orders black coffeewith probability in [0.2, 0.7]. Customers also buy tea
with probability in the interval [0, 0.5]. Now the vendor of the machine delivers another specification, S2, which prescribes
that the machine is functioning only if coffee (white or black) is ordered with probability between 0.4 and 0.8. Otherwise,
the machine runs out of coffee powder too frequently, or the powder becomes too old. A conjunction of these two models
would describe users who have use patterns compatible with this particularmachine. In the bottom part of Fig. 1 we present
the structure of such a conjunction. States (2, 3), (3, 3), and (4, 2) are inconsistent and thus the corresponding probabilities
must be zero: z3 = z5 = z6 = 0. Now, attempting to express the conjunction S1 ∧ S2 as an IMC by a simple intersection
of bounds gives 0.4 ≤ z1 ≤ 0.5, 0.4 ≤ z2 ≤ 0.7, and z4 ≤ 0.5. However, this naive construction is too coarse: whereas
(z1, z2, z3, z4, z5, z6) = (0.5, 0.5, 0, 0, 0, 0) satisfies the constraints the resulting overall probability of reaching a state
resulting from State 2 of S2, i.e. z1 + z2 + z3 = 1, violates the upper bound of 0.8 specified in S2.

Instead the conjunction should require, among others, that z1 + z2 + z3 ∈ [0.4, 0.8], which is not an interval constraint.
This can be seen be pointing out an extremal point, which is not a solution, while all its coordinates take part in some
solution. The bottom right part of Fig. 1 lists all the needed constraints over zi necessary to express conjunction. A similar
example can show that IMCs are not closed under parallel composition, either.

One way to approach this problem could be to work with two types of specifications: IMCs for refinement, and with
a probabilistic logic such as PCTL [12] on which a logical conjunction is naturally defined. Such a solution is clearly not
satisfactory. Indeed, according to [13], there is no procedure to synthesize a MC (an implementation) that satisfies two PCTL
formulas in the quantitative case. It is also not possible to structurally compose two logical PCTL formulas.

The solution promoted in this paper is to enrich the model of IMCs. More precisely, we introduce Constraint Markov
Chains (CMCs) as a foundation for component-based design of probabilistic systems. CMCs are a further extension of IMCs
allowing rich constraints on the next-state probabilities from any state. Whereas linear constraints suffice for closure
under conjunction, polynomial constraints are necessary for closure under parallel composition. We provide constructs
for refinement, consistency checking, conjunction and parallel composition of CMC specifications — all indispensable
ingredients of a compositional design methodology.

Specification theories. Let us give an overview of specification theories from the point of view of the main operators, and
how they are supposed to be used. Amore detailedmethodological presentation, using the example not of probabilistic, but
of timed systems, is available in [14].

Consistency and satisfaction. The fundamental notion of a specification theory is satisfaction—a relation that binds the
specifications to their realizations (implementations or models). In our case, specifications are Constraint Markov Chains:

B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404 4375

Fig. 2. A Markov Chain satisfying specification S2 of Fig. 1.

mathematical over-approximations of probabilistic behaviors. Implementations are concrete random processes—Markov
Chains.

We have shown two examples of IMC specifications in the top of Fig. 1: one of expectations of use (S2) and one of usage in
practice (S1). Observe that these IMCs are also CMCs. In both cases it was easy to see that the specifications are consistent, i.e.
for each of them one can derive a Markov Chain which satisfies all the interval constraints. For IMC S2, the example of such
an implementation is shown in Fig. 2. In development of probabilistic protocols, consistency means that given an abstract
specification of a protocol, it is possible to derive a concrete random process satisfying its constraints.

It should be decidable whether a specification admits at least one implementation, and whether a system implements a
specification. In our theory, an implementation shall not be viewed as a program in a general purpose programming language
but rather as a mathematical object that represents a set of programs sharing common control properties.
Refinement. A refinement relation allows to explain whether a given specification S is a proper, consistent elaboration of
another more abstract specification T . If this is the case then every implementation of S would also be admitted by T—none
of such implementations would violate any requirements of T .

In system development the refinement relation is used to express correctness of a stepwise process, when more
coarse-grained descriptions are refined into more detailed ones, until an implementation is obvious. Dually, in verification,
refinement is used to establish that an abstract specification is refined by our concretemodel. Then the abstract specification,
which is usually smaller, can be more efficiently verified for properties preserved by refinement.

In Fig. 1 specification S2 does not refine the specification S1. This is witnessed by the Markov Chain in Fig. 2, which
implements S2, but not S1.

Parallel composition. A theory should provide a combination operator on specifications, reflecting the standard
composition of systems by putting different components together. In the coffee machine example such a situation could
arise, if we wanted to analyze the model of a given coffee machine (not shown here), and a given customer, to see whether
these two models are compatible. The first step of such an analysis would include combining the two models using parallel
composition. Similarly, in protocol development, parallel composition can be used to combine, for example, specifications
of a client and a server.

It is a common modeling scenario to use parallel composition of components, say S1 and S2, to build specifications of
systems that are supposed to refine general requirements specified using one model, for example T . Then refinement check
is performed, S1 ‖ S2 ≤ T , to verify whether indeed a decomposition into components is correct.
Conjunction. In contrast to parallel composition, conjunction is used to combine different specifications for the very same
component. Such a need could arise, if the model of the component consists of several separate specifications for different
viewpoints, or arising from different stakeholders. The conjunction of two specifications should thus correspond to a
specification whose implementations are all implementations of both conjoined specifications.

In our example, we already know that not all implementations of the coffee machine (S2) are also implementations of
S1—in practical terms there exist machines that have requirements incompatible with requirements of our users. A different
question is to ask, whether there exist any machines that are able to work with at least one of our users. This corresponds to
asking whether specification S1 ∧ S2 is consistent. It is not hard to check that this specification, presented as a CMC in Fig. 1,
can be satisfied by a Markov Chain, as already discussed.
Incremental design. A theory should allow incremental design (composing or conjoining specifications in any order) and
independent implementability (composable specifications can always be refined separately) [15].

For example it should be possible to create specifications for communicating components S1 and S2, and refining them
independently, to say P1 and P2 respectively, without loosing the overall refinement; so still P1 ‖ P2 ≤ S1 ‖ S2.

Detailed results. In the above summary we illustrated the main operators of a specification theory using the IMCs of Figs. 1
and 2. However, as argued earlier, such a theory cannot be build for IMCs due to the lack of suitable closure properties. In
this paper we develop the theory for Constraint Markov Chains. Below we summarize the most important design decisions.
A less experienced reader may choose to skip this rather technical summary during the first reading.

The notions of satisfaction and strong/weak refinements for CMCs conservatively extend similar notions for IMCs [16,11].
We characterize these relations in terms of implementation set inclusion. In particular, in the main theorem, we prove that
for deterministic CMCsweak and strong refinements are completewith respect to implementation set inclusion. In addition,
we provide a construction, which for any CMC S returns a deterministic CMC ϱ(S) containing the models of S. Refinement
relations are not complete for non-deterministic CMCs, but one can show that theweak refinement ismore likely to coincide
with implementation set inclusion in such a context. We show that refinement between CMCs with polynomial constraints
can be decided in essentially single exponential time.

4376 B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404

In CMCs, each state is also labeled with a set of subsets of atomic propositions. Those propositions represent properties
that should be satisfied by the implementation, the idea being that the satisfaction relation ensures that an implementation
matches at least one of the subsets. This allows the specification to make additional abstraction of the behaviors of the
implementation. Hence, at the level of specification, ourmodel presents choices on subsets of atomic propositions. However
these choices are independent from the probabilistic ones in the sense that any CMC whose states are labeled with a
set of subsets of atomic propositions can be turned to an equivalent (in terms of set of implementations) CMC whose
states are labeled with a single subset of atomic propositions. There, choices between the subsets of atomic propositions
disappear. It is thus not surprising that our notion of parallel composition is following the widely accepted principle of
separation of concerns. The idea is to separate parallel composition of probability distributions from synchronization on
sets of atomic propositions. This separation can be found in probabilistic specification theories that have probabilistic
automata as an underlying semantic model [17–20]. In fact, we show how probabilistic automata can be represented as
CMCs, and how the traditional notions of parallel composition on such a model can be derived in our framework. This latter
result shows that CMCs capture computational structure of known models and operators, laying down a basis for studying
shared properties of many probabilistic automata based languages. We exemplify this by showing how precongruence
properties for composition of probabilistic automata and known refinements can be obtained by reductions to
CMCs.

We also compare the expressiveness of the operation of parallel composition and the one of conjunction. It turns out that
for independent sets of valuations, composition refines conjunction, but the opposite is not true. This result allows to isolate
a class of CMCs and CMCs operations that is closed under linear constraints. Finally, we also show that CMCs are generally
not closed under disjunction and we discuss the problem of deciding whether a CMC is universal.

Structure of the paper. The paper is structured as follows. In Section 3,we introduce the concept of CMCs, satisfaction relation
with respect to Markov Chains and the problem of consistency. Refinement is discussed in Section 4 while conjunction is
presented in Section 5. Parallel composition is introduced in Section 6, wherewe also compare the operation to conjunction.
Disjunction and universality are discussed in Section 7. In Section 8, we introduce deterministic CMCs and show that, for this
class of CMCs, strong and weak refinements coincide with inclusion of implementation sets. Section 9 discusses the class
of polynomial CMCs, which is the smallest class of CMCs closed under all the compositional design operations. Section 11
concludes the paper with related and future work.

2. Background definitions

In this section, we introduce concepts and definitions that will be used throughout the rest of the paper.
Let A, B be sets of propositions with A ⊆ B. The restriction of W ⊆ B to A is given by W ↓A≡ W ∩ A. If T ⊆ 2B, then

T↓A≡ {W↓A| W ∈ T }. For W ⊆ A define the extension of W to B as W↑
B
≡ {V ⊆ B | V↓A= W }, so the set of sets whose

restriction to A isW . Lift it to sets of sets as follows: if T ⊆ 2A, then T↑B
≡ {W ⊆ B | W↓A∈ T }.

LetM,∆ ∈ [0, 1]n×k be two matrices and x ∈ [0, 1]k be a row vector. We writeMij for the cell in ith row and jth column
of M , Mp for the pth row of M , and xi for the ith element of x. Finally, ∆ is a correspondence matrix iff 0 ≤

∑k
j=1∆ij ≤ 1 for

all 1 ≤ i ≤ n. We define the following operations:

1. If ∆ ∈ [0, 1]k×q and ∆′
∈ [0, 1]k×r are two correspondence matrices, we define ∆′′

= ∆⊗ ∆′ by ∆′′
∈ [0, 1]k×(qr) and

∆′′

i(j,n) = ∆ij∆
′

in.
2. If∆ ∈ [0, 1]k×q and∆′

∈ [0, 1]r×s are two correspondence matrices, we define∆′′
= ∆⊙∆′ by∆′′

∈ [0, 1](kr)×(qs) and
∆′′

(i,j)(n,p) = ∆in∆
′

jp.

We have the following lemma.

Lemma 1. 1. Let∆ ∈ [0, 1]k×q and∆′
∈ [0, 1]q×r be two correspondence matrices. The matrix∆′′

= ∆∆′ is a correspondence
matrix;

2. Let ∆ ∈ [0, 1]k×q and ∆′
∈ [0, 1]k×r be two correspondence matrices. The matrix ∆′′

= ∆ ⊗ ∆′ is a correspondence
matrix;

3. Let ∆ ∈ [0, 1]k×q and ∆′
∈ [0, 1]r×s be two correspondence matrices. The matrix ∆′′

= ∆ ⊙ ∆′ is a correspondence
matrix;

Proof. We first prove the upper bound on the row-sum of each of the matrices.

1. Let 1 ≤ i ≤ k and 1 ≤ j ≤ r . We have∆′′

ij =
∑q

n=1∆in∆
′

nj. Thus,

r−
j=1

∆′′

ij =

r−
j=1

q−
n=1

∆in∆
′

nj =

q−
n=1

r−
j=1

∆in∆
′

nj

=

q−
n=1


∆in

r−
j=1

∆′

nj


≤

q−
n=1

∆in ≤ 1.

B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404 4377

(a) CMC S1 , the customer specification of the optical relay. (b) CMC S2 , the manufacturer specification of the relay.

Fig. 3. Two CMCs specifying an optical relay from different perspectives.

2. Let 1 ≤ i ≤ k and (j, n) ∈ {1, . . . , q} × {1, . . . , r}. We have∆′′

i(j,n) = ∆ij∆
′

in. Thus, similarly as above:−
(j,n)∈{1,...q}×{1,...r}

∆′′

i(j,n) =

q−
j=1

r−
n=1

∆ij∆
′

in =

q−
j=1


∆ij

r−
n=1

∆′

in


≤ 1.

3. Let (i, j) ∈ {1, . . . k} × {1, . . . r} and (n, p) ∈ {1, . . . q} × {1, . . . s}. We have∆′′

(i,j)(n,p) = ∆in∆
′

jp. Thus,−
(n,p)∈{1,...q}×{1,...s}

∆′′

(i,j)(n,p) =

q−
n=1

s−
p=1

∆in∆
′

jp =


q−

n=1

∆in


s−

p=1

∆′

jp


≤ 1.

All three row-sums are non-negative, as all the matrices only contain non-negative numbers. �

3. Constraint Markov chains

In this section, we explicitly introduce the concept of Constraint Markov Chains (CMCs). We first begin with the definition
ofMarkov Chains (MCs) that act as models for CMCs.
Definition 2 (Markov Chain). P = ⟨{1, . . . , n}, o,M, A, V ⟩ is a Markov Chain if {1, . . . , n} is a set of states containing the
initial state o, A is a set of atomic propositions, V : {1, . . . , n} → 2A is a state valuation, and M ∈ [0, 1]n×n is a probability
transition matrix:

∑n
j=1 Mij = 1 for i = 1, . . . , n.

We now introduce Constraint Markov Chains (CMCs for short), a finite representation for a possibly infinite set of MCs.
Roughly speaking, CMCs generalize MCs in that, instead of specifying a concrete transition matrix, they only constrain
probability values in the matrix. Constraints are modeled using a characteristic function, which for a given source state and a
distribution of probabilities of leaving the state evaluates to 1 iff the distribution is permitted by the specification. Similarly,
instead of a concrete valuation function for each state, a constraint on valuations is used. Here, a valuation is permitted iff it
is contained in the set of admissible valuations of the specification.
Definition 3 (Constraint Markov Chain). A Constraint Markov Chain is a tuple S = ⟨{1, . . . , k}, o, ϕ, A, V ⟩, where {1, . . . , k}
is a set of states containing the initial state o, A is a set of atomic propositions, V : {1, . . . , k} → 22A is a set of admissible state
valuations and ϕ : {1, . . . , k} → [0, 1]k → {0, 1} is a constraint function such that, for all states 1 ≤ j ≤ k, if ϕ(j)(x) = 1,
then the x vector is a probability distribution: x ∈ [0, 1]k and

∑k
i=1 xi = 1.

In the rest of the document, we consider that the last constraint,
∑k

i=1 xi = 1, is implicit and usually dropped in the
examples.
An Interval Markov Chain (IMC for short) [11] is a CMC whose constraint functions are represented by intervals, so for all
1 ≤ i ≤ k there exist constants αi, βi such that, for all states 1 ≤ j ≤ k, ϕ(j)(x) = 1 iff ∀1 ≤ i ≤ k, xi ∈ [αi, βi].
Example. Twoparties, a customer and a vendor, are discussing a design of a relay for an optical telecommunication network.
The relay is designed to amplify an optical signal transmitted over a long distance optical fiber. The relay should have several
modes of operation, modeled by four dynamically changing properties and specified by atomic propositions a, b, c , and d:

Atomic propositions in the optic relay specifications

a ber ≤ 10−9 Bit error rate lower than 1 per billion bits transmitted
b br > 10 Gbits/s The bit-rate is higher than 10 Gbits/s.
c P < 10 W Power consumption is less than 10 W.
d Standby The relay is not transmitting.

The customer presents CMC S1 (Fig. 3a) specifying the admissible behavior of the relay from their point of view. States are
labeled with formulas characterizing sets of valuations. For instance, ‘‘(a+ b+ c ≥ 2)∧ (d = 0)’’ at state 2 of S1 represents

4378 B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404

(a) Markov Chain P1 satisfying S1 and S2 . (b) Markov Chain P2 satisfying S1 and S2 .

Fig. 4. Two implementations (MCs) of an optical relay.

Fig. 5. Correspondence for initial states of P2 and S1 .

V1(2) = {{a, b}, {b, c}, {a, c}, {a, b, c}}, where a, b, c , and d range over Booleans. State 1 specifies a standby mode, where no
signal is emitted and only marginal power is consumed. State 2 is the high power mode, offering a high signal/noise ratio,
and hence a high bit-rate and low error rate, at the expense of a high power consumption. State 3 is the low power mode,
with a low power consumption, low bit-rate and high error rate. The customer prescribes that the probability of the high
power mode (state 2) is not less than 0.7. The vendor replies with CMC S2 (Fig. 3b), which represents possible relays that
they can build. Because of thermal limitations, the low power mode has a probability higher than 0.2.

A state u of S is (directly) reachable from a state i if there exists a probability distribution x ∈ [0, 1]k with a non-zero
probability xu, which satisfies ϕ(i)(x).

3.1. Satisfaction

We relate CMC specifications to MCs implementing them by extending the definition of satisfaction presented in [11].
Themainmodificationwith regard to that definition is thematching of valuation constraints (instead of concrete valuations)
and satisfying the full-fledged constraint functions of CMCs (instead of concrete probability distributions). Crucially, just like
in [11], we abstract from syntactic structure of transitions—a single transition in the implementation MC can contribute to
satisfaction of more than one transition in the specification by distributing its probability mass against several transitions.
Similarly, several MC transitions can contribute to satisfaction of a single specification transition.
Definition 4 (Satisfaction Relation). Let P = ⟨{1, . . . , n}, oP ,M, AP , VP⟩ be a MC and S = ⟨{1, . . . , k}, oS, ϕ, AS, VS⟩ be a
CMC with AS ⊆ AP . Then R ⊆ {1, . . . , n} × {1, . . . , k} is a satisfaction relation between states of P and S iff whenever pRu,
then
1. VP(p)↓AS∈ VS(u), and
2. there exists a correspondence matrix∆ ∈ [0, 1]n×k such that

• for all 1 ≤ p′
≤ nwith Mpp′ ≠ 0,

∑k
j=1∆p′j = 1;

• ϕ(u)(Mp∆) holds and
• if∆p′u′ ≠ 0, then p′Ru′.

We write P |= S iff there exists a satisfaction relation relating oP and oS , and call P an implementation of S. The set of all
implementations of S is given by [[S]] ≡ {P | P |= S}. Rows of∆ that correspond to reachable states of P always sum up to 1.
This is to guarantee that the entire probability mass of implementation transitions is allocated. For unreachable states, we
leave the corresponding rows in∆ unconstrained. P may have a richer set of atomic propositions than S, in order to facilitate
abstractmodeling: thisway an implementation canmaintain local information using internal variables. Algorithms to decide
satisfaction are particular cases of algorithms to decide refinement between CMCs. See the next section.
Example. We illustrate the concept of correspondence matrix between Specification S1 (given in Fig. 3a) and
Implementation P2 (given in Fig. 4b). The CMC S1 has three outgoing transitions from state 1 but, due to constraint function
in 1, the transition labeled with x1 cannot be taken (the constraint implies x1 = 0). The probability mass going from state 1
to states 2 and 3 in P2 corresponds to the probability allowed by S1 from its state 1 to its state 2; The redistribution is done
with the help of the matrix∆ given in Fig. 5. The ith column in∆ describes how big a fraction of each transition probability

B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404 4379

(a) CMC S before pruning. (b) CMC β(S). (c) CMC β∗(S).

Fig. 6. Illustration of the pruning algorithm.

(for transitions leaving 1) is associated with probability xi in S1. Observe that the constraint function ϕ1(1)(0, 0.8, 0.2) =

ϕ1(1)((0, 0.7, 0.1, 0.2)∆) is satisfied.

CMC semantics follows the Markov Decision Process (MDP) tradition [21,22]. The MDP semantics is typically opposed to
the Uncertain Markov Chain semantics, where the probability distribution from each state is fixed a priori.

States of CMCs are labeled with set of subsets of atomic propositions. A single set of propositions represents properties
that should be satisfied by the implementation. A set of sets models a choice of properties, with the idea being that the
satisfaction relation ensures that an implementation matches at least one of the subsets.

3.2. Consistency

We now define the notion of consistency and propose an algorithm that turns any consistent CMC in a CMC with no
inconsistent states.

A CMC S is consistent if it admits at least one implementation. We now discuss how to decide consistency. A state u of S
is valuation consistent iff V (u) ≠ ∅; it is constraint consistent iff there exists a probability distribution vector x ∈ [0, 1]k such
that ϕ(u)(x) = 1. It is easy to see that if each state of S is both valuation and constraint consistent, then S is also consistent.
However, inconsistency of a state, called local inconsistency, does not imply inconsistency of the specification, called global
inconsistency. Indeed, an inconsistent state could be made unreachable by forcing the probabilities to reach it to zero. The
operations presented later in this papermay introduce inconsistent states, leaving a question if a resulting CMC is consistent.
In order to decide whether S is inconsistent, state inconsistencies are propagated throughout the entire state-space using
a pruning operator β that removes inconsistent states from S. The result β(S) is a new CMC, which may still contain some
inconsistent states. We define β formally. Let S = ⟨{1, . . . , k}, o, ϕ, A, V ⟩ be a CMC.

• If the initial state o is locally inconsistent, then let β(S) = ∅ (meaning that it is not well defined, returning an empty
CMC).

• If S does not contain locally inconsistent states, then β(S) = S.
• Else proceed in two steps. Let k′ < k be the number of locally consistent states. Then define a function ν : {1, . . . , k} →

{⊥, 1, . . . , k′
}. All inconsistent states are mapped to ⊥, i.e. for all 1 ≤ i ≤ k take ν(i) = ⊥ iff [(V (i) = ∅) ∨ (∀x ∈

[0, 1]k, ϕ(i)(x) = 0)]. All remaining states are mapped injectively into {1, . . . , k′
}: ν(i) ≠ ⊥ =⇒ ∀j ≠ i, ν(j) ≠ ν(i).

Then let β(S) = ⟨{1, . . . , k′
}, ν(o), ϕ′, A, V ′

}, where V ′(i) = V (ν−1(i)) and for all 1 ≤ j ≤ k′ the constraint
ϕ′(j)(y1, . . . , yk′) is: ∃x1, . . . , xk such that

ν(q) = ⊥ ⇒ xq = 0

∧

∀1 ≤ l ≤ k′

: yl = xν−1(l)

∧

ϕ(ν−1(j))(x1, . . . , xk)


.

The constraint makes the inconsistent states unreachable, and then ⊥ is dropped as a state. Note that, in practice, the
new constraint can be computed in linear time by applying substitutions (of zeros for inconsistent states probabilities)
and variable renaming.

The operator is applied iteratively, until a fixpoint is reached. S is consistent if the resulting CMC β∗(S) is non-empty.
The unique maximum fixpoint is known to exist due to Tarski’s theorem, as β is a monotonic decreasing operator on a
finite powerset lattice ordered by set inclusion (β operates on sets of states). The following example illustrates the pruning
algorithm.

Example. Consider the CMC S = ⟨{1, 2, 3, 4}, 1, ϕ, {a, b, c}, V ⟩ given in Fig. 6a. Define ϕ as follows : ϕ(1)(x) ≡ (x3 ≤

0.3) ∧ (x2 + x3 = 1), ϕ(3)(x′) ≡ (x′

4 = 1). The constraint of states 2 and 4 are not relevant for this example.
State 4 is obviously not valuation consistent. States 1, 2 and 3 are all valuations and constraint consistent. As a

consequence, the first step of the pruning algorithm will only mark state 4 as inconsistent. Define the following function:

ν = [1 → 1, 2 → 2, 3 → 3, 4 → ⊥] . (1)

Then define β(S) = ⟨{1, 2, 3}, 1, ϕ′, {a, b, c}, V ′
⟩ such that, after reduction we have ϕ′(1)(y) ≡ (y3 ≤ 0.3)∧ (y2 + y3 = 1),

and ϕ′(3)(y′) ≡ ∃x′

4, (x
′

4 = 0) ∧ (x′

4 = 1). β(S) is given in Fig. 6b.

4380 B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404

Obviously, state 3 of β(S) is now constraint inconsistent: ϕ′(3)(y′) is not satisfiable. We thus apply another time the
pruning operator β in order to remove state 3. This time we obtain a consistent CMC β∗(S), given in Fig. 6c.

Theorem 5. Let S = ⟨{1, . . . , k}, o, ϕ, A, V ⟩} be a CMC and let β∗(S) = limn→∞ β
n(S) be the fixpoint of β . For any MC P, we

have (1) P |= S ⇐⇒ P |= β(S) and (2) [[S]] = [[β∗(S)]].

Proof. Let S = ⟨{1, . . . , k}, o, ϕ, A, V ⟩ be a CMC (with at least one inconsistent state) and P = ⟨{1, . . . , n}, oP ,M, AP , VP⟩

be a MC. Let S ′
= β(S) = ⟨{1, . . . , k′

}, o′, ϕ′, A, V ′
⟩ be the result of applying the pruning algorithm to S. If β(S) is empty,

then both S and β(S) are inconsistent.
Consider a function ν for removing inconsistent states (one exists because there are inconsistent states), such that k′ < k

and for all 1 ≤ i ≤ k, ν(i) = ⊥ ⇐⇒ [(V (i) = ∅) ∨ (∀x ∈ [0, 1]k, ¬ϕ(i)(x))] and ν(i) ≠ ⊥ ⇒ ∀j ≠ i, ν(j) ≠ ν(i). We
first show that P |= S ⇐⇒ P |= β(S).

⇒ Suppose that P |= S. Then there exists a satisfaction relation R such that oPRo. Define the relation R′
⊆ {1, . . . , n} ×

{1, . . . , k′
} such that pR′v iff there exists u ∈ {1, . . . , k} such that pRu and ν(u) = v. It is clear that oPR′o′. We prove

that R′ is a satisfaction relation. Let p, u, v such that pRu and ν(u) = v.
– As ν(u) ≠ ⊥, we have by definition that V ′(v) = V (u), thus VP(p)↓A∈ V ′(v).
– Let ∆ ∈ [0, 1]n×k be the correspondence matrix witnessing pRu. Let ∆′

∈ [0, 1]n×k′ such that ∆′
qw = ∆qν−1(w). It is

clear that∆′ is a correspondence matrix. We first show that
∀u′

∈ {1, . . . , k}, (ν(u′) = ⊥) ⇒ (∀q ∈ {1, . . . , n}, ∆qu′ = 0). (2)
Let u′

∈ {1, . . . , k} such that ν(u′) = ⊥, and suppose that there exists q ∈ {1, . . . , n}, ∆qu′ ≠ 0. As ∆ is a
correspondence matrix, we have qRu′. Thus VP(q)↓A∈ V (u′), which means that V (u′) ≠ ∅, and there exists∆′′ such
that ϕ(u′)(Mq∆

′′). Thus, there exists x ∈ [0, 1]k such that ϕ(u′)(x). As a consequence, we cannot have ν(u′) = ⊥,
which is a contradiction, thus (2).

We now prove that R′ satisfies the axioms of a satisfaction relation.

1. Let p′
∈ {1, . . . , n} such that Mpp′ ≠ 0. This implies, by definition, that

∑k
j=1∆p′j = 1. We have

∑k′
j=1∆

′

p′j =∑
r∈{1,...,k} | ν(r)≠⊥

∆p′r . By (2),
∑

r∈{1,...,k} | ν(r)≠⊥
∆p′r =

∑k
r=1∆p′r = 1.

2. Let y = Mp∆
′
∈ [0, 1]k

′

and x = Mp∆ ∈ [0, 1]1×k. We know that ϕ(u)(x) holds. Moreover, by (2), if ν(q) = ⊥,
then xq = 0, and for all l ∈ {1, . . . , k′

}, yl = xν−1(l). Clearly, this implies that ϕ′(v)(Mp∆
′) holds.

3. Let p′, v′
∈ {1, . . . , n} × {1, . . . , k′

} such that ∆′

p′v′
≠ 0. We have ∆′

p′v′
= ∆p′ν−1(v′) ≠ 0, thus there exists

u′
∈ {1, . . . , k} such that p′Ru′ and ν(u′) = v′. Finally p′R′v′.

Finally, R′ is a satisfaction relation such that oPR′o′, thus P |= β(S).
⇐ Conversely, the reasoning is the same, except that we now build ∆ from ∆′ saying that ∆qv = 0 if ν(v) = ⊥ and

∆qv = ∆′

qν(v) otherwise.

We have proved that β is implementations-conservative. Thus the fixpoint of β verifies the same property (this can be
concluded by mathematical induction, given that the fixpoint is always reached in a finite number of steps). �

The fixpoint of β , and thus the entire consistency check, can be computed using a quadratic number of state consistency
checks. The complexity of each check depends on the constraint language that has been chosen.

3.3. Single valuation normal form

It turns out that any CMC whose states are labeled with a set of subsets of atomic propositions can be turned into an
equivalent CMC (in terms of sets of implementations) whose states are labeled with sets that contains a single subset of
atomic propositions. Hence, working with sets of subsets of valuations is a kind of modeling sugar that can be removedwith
a transformation to the single valuation normal form. We now give details regarding this theory.

Definition 6. We say that a CMC is in a Single Valuation Normal Form if all its admissible valuation sets are singletons
(|V (i)| = 1 for each 1 ≤ i ≤ k).

More precisely every consistent CMC with at most one admissible valuation in the initial state can be transformed into the
normal form preserving its implementation set.

The normalization algorithm, which is presented in Definition 7, basically separates each state u with m possible
valuations into m states u1, . . . , um, each with a single admissible valuation. Then the constraint function is adjusted, by
substituting sums of probabilities going to the new states in place of the old probabilities targeting u. The transformation is
local and syntax based. It can be performed in polynomial time and it only increases the size of the CMC polynomially. We
will write N (S) for a result of normalization of S.

Definition 7 (Normalization Algorithm). Let S = ⟨{1, . . . , k}, o, ϕ, A, V ⟩ be a CMC. The normalization of S is only defined if
o is in single valuation normal form (i.e. |V (o)| = 1) and if there exists a function N : {1, . . . , k} → 2{1,...,m} such that:

1. {1, . . . ,m} = ∪i∈{1,...,k}N (i);

B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404 4381

(a) CMC S before normalization. (b) CMC N (S).

Fig. 7. Illustration of the normalization algorithm.

2. For all 1 ≤ i ≠ j ≤ k, N (i) ∩ N (j) = ∅;
3. ∀1 ≤ i ≤ k, |N (i)| = |V (i)|;

Under these assumptions, the normalization of S is the CMC N (S) = ⟨{1, . . . ,m}, o′, ϕ′, A, V ′
⟩ such that N (o) = o′ and

1. ∀1 ≤ j ≤ m, |V ′(j)| = 1;
2. ∀1 ≤ i ≤ k, V (i) = ∪u∈N (i)V ′(u);
3. ∀1 ≤ i ≤ k, ∀u, v ∈ N (i), u ≠ v ⇐⇒ V ′(u) ≠ V ′(v);
4. ∀1 ≤ j ≤ m. ϕ′(j)(x1, . . . xm) = ϕ(N −1(j))(

∑
u∈N (1) xu, . . . ,

∑
u∈N (k) xu).

By construction, N (S) is in single valuation normal form. Moreover, if S is consistent, then a function N satisfying the
conditions specified in Definition 7 exists.

The following example illustrates the normalization algorithm.

Example. Consider the CMC S = ⟨{1, 2, 3, 4}, 1, ϕ, {a, b, c, d, e}, V ⟩ given in Fig. 7a. Since states 2 and 3 have two valuation
sets, S is not in single valuation normal form. Define the following normalization function:

N =

1 → {1}, 2 → {2, 2′

}, 3 → {3, 3′
}, 4 → 4


. (3)

The result of applying the normalization algorithm to S is the CMC N (S) = ⟨{1, 2, 2′, 3, 3′, 4}, 1, ϕ′, {a, b, c, d, e}, V ′
⟩

given in Fig. 7b. Following the algorithms, states 2 and 3 of S have been each separated into two stateswith a single valuation.
The constraint function of state 1 uses y2 + y2′ and y3 + y3′ instead of x2 and x3 respectively.

We now show that normalization preserves implementations of a CMC.

Theorem 8. Let S = ⟨{1, . . . k}, o, ϕ, A, V ⟩ be a consistent CMC. If |V (o)| = 1, then for all MC P, we have P |= S ⇐⇒ P |=

N (S).

Proof. Let S = ⟨{1, . . . , k}, o, ϕ, A, V ⟩ be a consistent CMC such that |V (o)| = 1. Let S ′
= N (S) = ⟨{1, . . . ,m}, o′, ϕ′, A, V ′

⟩

and N : {1, . . . , k} → 2{1,...,m} be the associated function.
(⇒) Let P = ⟨{1, . . . , n}, oP ,M, AP , VP⟩ be a MC such that P |= S. Let R be the associated satisfaction relation. Let
R′

⊆ {1, . . . , n} × {1, . . . ,m} be a new relation such that pR′u ⇐⇒ VP(p) ∈ V ′(u) and pRN −1(u). We show that
R′ is a satisfaction relation. Let p, u such that pR′u.
1. By definition, we have VP(p) ∈ V ′(u).
2. We have pRN −1(u). Let ∆ ∈ [0, 1]n×k be the associated correspondence matrix. Define ∆′

∈ [0, 1]n×m such that
∆′

q,v = ∆q,N −1(v) if Vp(q) ∈ V ′(v) and 0 else. As every coefficient of ∆ appears once and only once in the same row
of∆′, it is clear that∆′ is a correspondence matrix. Moreover,
• If q is such that Mpq ≠ 0, then

∑m
j=1∆

′

q,j =
∑k

i=1∆q,i = 1 ;
• For all 1 ≤ i ≤ k,

∑
j∈N (i)([Mp∆

′
]j) = [Mp∆]i. As a consequence, ϕ′(u)(Mp∆

′) = ϕ(N −1(u))(Mp∆) holds.
• If q, v are such that∆′

q,v ≠ 0, then∆q,N −1(v) ≠ 0 and VP(q) ∈ V ′(v), thus qR′v.

Finally, R′ is a satisfaction relation. It is easy to see that opR′o′. As a consequence, we have P |= N (S).
(⇐) Let P = ⟨{1, . . . , n}, oP ,M, AP , VP⟩ be a MC such that P |= N (S). Let R be the associated satisfaction relation. Let
R′

⊆ {1, . . . , n} × {1, . . . , k} such that pR′u ⇐⇒ ∃j ∈ N (u) s.t. pRj. We will show that R′ is a satisfaction relation. Let
p, u such that pR′u.
1. We have VP(p) ∈ V (u) = ∪j∈N (u)V ′(j).
2. Let j ∈ N (u) such that pRj, and let∆ ∈ [0, 1]n×m be the associated correspondence matrix. Define∆′

∈ [0, 1]n×k such
that∆′

q,v =
∑

i∈N (v)∆q,i. It is clear that for all q,
∑k

v=1∆
′
q,v =

∑m
r=1∆qr . Thus∆′ is a correspondencematrix. Moreover,

• If q is such that Mpq ≠ 0, then
∑k

i=1∆
′

q,i =
∑m

r=1∆q,r = 1 ;

4382 B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404

• For all 1 ≤ i ≤ k, [Mp∆
′
]i =

∑
r∈N (i)([Mp∆]r). As a consequence, ϕ(u)(Mp∆) = ϕ′(j)(Mp∆

′) holds.
• If q, v are such that∆′

q,v ≠ 0, then there exists r ∈ N (v) such that∆q,r ≠ 0, thus qR′v.

Finally, R′ is a satisfaction relation. By construction oPR′o, thus it holds that P |= S. �

It is easy to see that normalization preserves determinism.

4. Refinement

Comparing specifications is central to stepwise design methodologies. Systematic comparison enables simplification of
specifications (abstraction) and adding details to specifications (elaboration). Usually specifications are compared using a
refinement relation. Roughly, if S1 refines S2, then any model of S1 is also a model of S2.

We will now introduce two notions of refinement for CMCs that extend two well known refinements for IMCs [11,16].
We not only generalize these refinements, but, unlike [11,16], we also characterize them in terms of implementation set
inclusion – also called thorough refinement – and computational complexity. We start with the definition of refinements,
then we propose algorithms to compute them.

4.1. Refinement relations

The strong refinement between IMCs, by Jonsson and Larsen [11], extends to CMCs in the following way:

Definition 9 (Strong Refinement). Let S1 = ⟨{1, . . . , k1}, o1, ϕ1, A1, V1⟩ and S2 = ⟨{1, . . . , k2}, o2, ϕ2, A2, V2⟩ be CMCs with
A2 ⊆ A1. A relation R ⊆ {1, . . . , k1} × {1, . . . , k2} is a strong refinement relation between states of S1 and S2 iff whenever
vRu, then
1. V1(v)↓A2⊆ V2(u), and
2. there exists a correspondence matrix ∆ ∈ [0, 1]k1×k2 such that for all probability distribution vectors x ∈ [0, 1]k1 if
ϕ1(v)(x) holds, then
• for all 1 ≤ i ≤ k1, xi ≠ 0 =⇒

∑k2
j=1∆ij = 1;

• ϕ2(u)(x∆) holds and
• if∆v′u′ ≠ 0, then v′Ru′.

We say that S1 strongly refines S2, written S1 ≼S S2, iff o1Ro2.

Strong refinement imposes a ‘‘fixed-in-advance’’ correspondence matrix ∆ regardless of the probability distribution
satisfying the constraint function. In contrast, the weak refinement, which generalizes the one proposed in [16] for IMCs,
allows choosing a different correspondence matrix for each probability distribution satisfying the constraint:

Definition 10 (Weak Refinement). Let S1 = ⟨{1, . . . , k1}, o1, ϕ1, A1, V1⟩ and S2 = ⟨{1, . . . , k2}, o2, ϕ2, A2, V2⟩ be CMCswith
A2 ⊆ A1. The relation R ⊆ {1, . . . , k1} × {1, . . . , k2} is a weak refinement relation iff whenever vRu, then:
1. V1(v)↓A2⊆ V2(u) and
2. for any distribution x ∈ [0, 1]k1 satisfying ϕ1(v)(x), there exists a matrix∆ ∈ [0, 1]k1×k2 such that

• for all 1 ≤ i ≤ k1, xi ≠ 0 =⇒
∑k2

j=1∆ij = 1;
• ϕ2(u)(x∆) holds and
• if∆v′u′ ≠ 0, then v′Ru′.

CMC S1 (weakly) refines S2, written S1 ≼ S2, iff o1Ro2.

Example. Fig. 8c illustrates a family of correspondence matrices parametrized by γ , witnessing the weak refinement
between initial states of S3 and S4 (defined in Fig. 8a–b). The actual matrix used in proving the weak refinement depends on
the probability distribution vector z that satisfies the constraint function ϕ3 of state (1, 1). Take γ =

0.7−z2,2
z2,3

if z2,2 ≤ 0.7

and γ =
0.8−z2,2

z2,3
otherwise. It is easy to see that ϕ3((1, 1))(z) implies ϕ4(1)(z∆).

Clearly, the existence a strong refinement relation implies the existence of a weak refinement relation, as every strong
refinement is a also aweak refinement. Furthermore, bothweak and strong refinements imply implementation set inclusion,
as shown by the following theorem:

Theorem 11. Let S1 = ⟨{1, . . . , k1}, o1, ϕ1, A1, V1⟩ and S2 = ⟨{1, . . . , k2}, o2, ϕ2, A2, V2⟩ be two CMCs. Assume S1 ≼ S2, we
prove that [[S1]] ⊆ [[S2]].

Proof. Since S1 ≼ S2, there exists a weak refinement relation R ⊆ {1, . . . , k1}× {1, . . . , k2} such that o1Ro2. Consider P =

⟨{1, . . . n}, oP ,M, AP , VP⟩ such that P |= S1. By definition there exists a satisfaction relation R′
⊆ {1, . . . , n} × {1, . . . , k1}

such that oPR′o1.
Consider the relation R′′

⊆ {1, . . . , n} × {1, . . . , k2}, such that pR′′u iff. there exists v ∈ {1, . . . , k1} such that pR′v and
vRu. We prove that R′′ is a satisfaction relation. First, it is clear that A2 ⊆ A1 ⊆ AP . Now, consider p, u such that pR′′u, so
there exists v such that pR′v and vRu. Since VP(p)↓A1∈ V1(v) and V1(v)↓A2⊆ V2(u), we have that VP(p)↓A2∈ V2(u).

B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404 4383

(a) S3 = S1 ∧ S2 . Constraints on propositions, pairwise conjunctions of constraints of S1 and S2 , are left out to avoid clutter.

(b) CMC S4 generalizing S3 , so S3 ≼ S4 .

(c) Weak refinement for initial states of S3 and S4 .

Fig. 8. Examples of refinement and conjunction.

We now build a correspondence matrix ∆′′. Consider the pth row of M , Mp ∈ [0, 1]n. Let ∆′
∈ [0, 1]n×k1 be a

correspondence matrix witnessing pR′v. Let y = Mp∆
′
∈ [0, 1]k1 . By Definition 4 we have ϕ1(v)(y). Let∆ ∈ [0, 1]k1×k2 be

the correspondence matrix witnessing vRu and define ∆′′
= ∆′∆ ∈ [0, 1]n×k2 . By Lemma 1, ∆′′ is also a correspondence

matrix. We prove that∆′′ satisfies the axioms of Definition 4.

1. Let 1 ≤ p′
≤ n such that Mpp′ ≠ 0. As a consequence,

∑k1
q=1∆

′

p′q = 1. We want to prove that
∑k2

j=1∆
′′

p′j = 1.

k2−
j=1

∆′′

p′j =

k2−
j=1


k1−
q=1

∆′

p′q∆qj


=

k1−
q=1


∆′

p′q

k2−
j=1

∆qj


.

Let q such that∆′

p′q ≠ 0. It is then clear that yq ≥ Mpp′∆′

p′q > 0. As∆ is a witness of vRu, we have, by the definition

of weak refinement,
∑k2

j=1∆qj = 1. Finally, this implies that
∑k2

j=1∆
′′

p′j = 1.
2. By Definition 10, since ϕ1(v)(Mp∆) holds, then ϕ2(u)(Mp∆

′′) holds.

4384 B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404

(a) CMC Sa . (b) CMC Sb .

Fig. 9. Distinguishing weak and strong refinement. Sa weakly, but not strongly, refines Sb . Here, and elsewhere, self-targeting loop transitions with
probability 1 have been elided (in states with no outgoing arrows).

3. Let p′, u′ such that ∆′′

p′u′ ≠ 0. By construction, it is clear that there exists v′ such that ∆′

p′v′
≠ 0 and ∆v′u′ ≠ 0. By

definition of∆′ and∆, this implies that p′R′v′ and v′Ru′, thus p′R′′u′.

From 1–3, we can conclude that R′′ is a satisfaction relation. Since oPR′′o2, we have P ∈ [[S2]] and [[S1]] ⊆ [[S2]]. �

In Section 8, we shall see that the converse holds for a particular class of CMCs. However, this is not the case in general:
strong refinement is strictly stronger than weak refinement, which is strictly stronger than implementation set inclusion.
Formally, we have the following proposition.
Proposition 12. There exist CMCs Sa, Sb, Sc and Sd such that

• Sa weakly refines Sb, and Sa does not strongly refine Sb;
• [[Sc]] ⊆ [[Sd]], and Sc does not weakly refine Sd.

Proof. • Consider the CMCs Sa and Sb given in Fig. 9a and b, respectively. By xa (resp. yb) we denote state x in Sa (resp. y
in Sb). We first show that there exists a weak refinement relation R such that Sa ≼ Sb, with 1aR1b. We then show that
there exists no strong refinement relation between Sa and Sb.
1. Let R = {(1a, 1b), (2a, 2b), (3a, 3b), (3a, 4b), (4a, 5b)}. We show that R is a weak refinement relation. We first focus

on building the correspondence matrix for the pair (1a, 1b). Let x be a distribution satisfying the constraint in 1a. Let
γ =

0.7−x2
x3

if x2 ≤ 0.7 and 0.8−x2
x3

otherwise. As x satisfies ϕa(1a), we have 0 ≤ γ ≤ 1. Consider the correspondence
matrix∆x given in Fig. 10

It is easy to see that for all valuations x satisfying ϕa(1a), ϕb(1b)(x∆x) also holds. The correspondence matrices for
the other pairs in R are trivial. Thus R is a weak refinement relation between Sa and Sb.

2. Suppose that there exists a strong refinement relation R′ such that 1aR
′1b. Let ∆ be the correspondence matrix

witnessing 1aR
′1b. Since 2a, 3a and 4a can all be reached from 1a with an admissible transition, the sum of the

elements in the corresponding rows in ∆ must be one. From the valuations of the states, we obtain that ∆ is of the
type given in Fig. 10, with 0 ≤ a ≤ 1.

Moreover, if R′ is a strong refinement relation, then we have that for all valuation x satisfying ϕa(1a), ϕb(1b)(x∆)
also holds.

Let x1 = (0, 0.6, 0.1, 0.3) and x2 = (0, 0.8, 0.1, 0.1). Both x1 and x2 satisfy ϕa(1a). If there exists a strong
refinement, this implies that ϕb(1b)(x1∆) and ϕb(1b)(x2∆) also hold. However, ϕb(1b)(x1∆) = 1 implies that a ≥ 1
and ϕb(1b)(x2∆) implies that a ≤ 0.

It is thus impossible to find a unique correspondence matrix working for all the ‘‘valid’’ valuations of the outgoing
transitions of 1a. As a consequence, there cannot exist a strong refinement relation R′ such that 1aR

′1b.

• Consider the CMCs Sc and Sd given in Fig. 11a and b. It is easy to see that Sc and Sd share the same set of implementations.
However, due to the constraints, state 2 of Sc cannot refine any state of Sd. As a consequence, Sc cannot refine Sd. �

So our refinement relations for CMCs can be ordered from finest to coarsest: the strong refinement, theweak refinement, and
the implementation set inclusion. As the implementation set inclusion is the ultimate refinement, checking finer refinements
is used as a pragmatic syntax-driven, but sound, way of deciding it.

As we shall see in the next section, the algorithms for checking weak and strong refinements are polynomial in
the number of states, but the treatment of each state depends on the complexity of the constraints. For the case of
implementation set inclusion, the algorithm is exponential in the number of states. Checking implementation set inclusion
seems thus harder than checking weak or strong refinement. In Section 8, we will propose a class of CMCs for which strong
and weak refinements coincide with implementation set inclusion.

B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404 4385

Fig. 10. Correspondence matrices for Sa ≼ Sb .

(a) CMC Sc . (b) CMC Sd .

Fig. 11. Weak refinement versus model inclusion: [[Sc]] ⊆ [[Sd]] but Sc ⋠ Sd .

4.2. Algorithms for computing refinements

We now discuss algorithms for checking implementation set inclusion and refinements.
We start with algorithms for checkingweak and strong refinements between two CMCs S1 = ⟨{1, . . . , k1}, o1, ϕ1, A1, V1⟩

and S2 = ⟨{1, . . . , k2}, o2, ϕ2, A2, V2⟩ with k1, k2≤n. Checking whether a relation R ⊆ {1, . . . , k1} × {1, . . . , k2} is a strong
(resp. weak) refinement relation reduces to checking, for all (i, j) ∈ R, the validity of the following refinement formulas:
∃∆,∀x, ϕ1(i)(x) ⇒ ϕ2(j)(x∆)∧


i′(
∑

j′ ∆i′j′ = 1)∧


i′,j′(i
′Rj′ ∨∆i′j′ = 0) for the strong refinement, and ∀x, ϕ1(i)(x) ⇒

∃∆, ϕ2(j)(x∆)∧


i′(
∑

j′ ∆i′j′ = 1)∧


i′,j′(i
′Rj′ ∨∆i′j′ = 0) for the weak refinement. Strong and weak refinements can be

decided by iterated strengthening of R with refinement formulas, starting from R0 = {(i, j)|V1(i) ↓A2⊆ V2(j)}, until either
(o1, o2) ∉ R, inwhich case S1 does not strongly (resp. weakly) refine S2, orR is found to be a strong (resp. weak) refinement.

The exact complexity of the algorithm depends on the type of constraints that are used in the specifications. As an
example, consider that all the constraints in S1 and S2 are polynomials of degree d with less than k bound variables —
we shall see that polynomial constraints is the smallest class under which CMCs are closed. There, deciding refinement
formulas can be done by quantifier elimination. When the number of quantifier alternations is constant, the cylindrical
algebraic decomposition algorithm [23,24], implemented in Maple [25], performs this quantifier elimination in time double

exponential in the number of variables. Consequently, refinement can be checked in O(n222n
2
) time.

However, considering constraints ϕ which contain only existential quantifiers, quantifier alternation is either one or two
for strong refinement and exactly one for weak refinement. There are quantifier elimination algorithms that have a worst
case complexity of a single exponential only in the number of variables, although they are double exponential in the number
of quantifier alternations [26]. Thanks to these algorithms, deciding whether R is a strong (resp. weak) refinement relation
can be done in time single exponential in the number of states n and k, the number of bound variables appearing in the
constraints: O(n2sP(n,k)dP(n,k)), where P is a polynomial.

We now turn to the case of implementation set inclusion. In [11], Larsen and Jonsson proposed an algorithm for solving
this problem for the case of IMCs. This algorithm directly extends to CMCs. The main difference with the algorithms for
solving weak and strong refinements is that the algorithm for implementation set inclusion is exponential in the number of
states.

Finally, let us mention that lower bounds for the strong and weak refinement checking remain open problems. On the
other hand, in [27], we have shown that implementation set inclusion is EXPTIME-hard for IMCs, hence providing a lower
bound also for CMCs.

5. Conjunction

Conjunction combines requirements of several specifications.

4386 B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404

Definition 13 (Conjunction). Let S1 = ⟨{1, . . . , k1}, o1, ϕ1, A1, V1⟩ and S2 = ⟨{1, . . . , k2}, o2, ϕ2, A2, V2⟩ be two CMCs. The
conjunction of S1 and S2, written S1 ∧ S2, is the CMC S = ⟨{1, . . . , k1} × {1, . . . , k2}, (o1, o2), ϕ, A, V ⟩ with A = A1 ∪ A2,
V ((u, v)) = V1(u)↑A

∩V2(v)↑
A, and

ϕ((u, v))(x1,1, x1,2, . . . , x2,1, . . . , xk1,k2) ≡ ϕ1(u)


k2−
j=1

x1,j, . . . ,
k2−
j=1

xk1,j


∧ ϕ2(v)


k1−
i=1

xi,1, . . . ,
k1−
i=1

xi,k2


.

Conjunction may introduce inconsistent states. Indeed, the intersection between the sets of valuations of two states may
be empty (see state (2, 3) in Fig. 1). Conjunction should thus normally be followed by applying the pruning operator β∗. As
already stated in the Introduction, the result of conjoining two IMCs is not an IMC in general, but a CMC whose constraint
functions are systems of linear inequalities. Fig. 8a depicts a CMC S3 expressing the conjunction of IMCs S1 and S2 (see
Fig. 3a–b). The constraint z2,3 + z3,3≥0.2 in state (1, 1) cannot be expressed as an interval.

As expected, conjunction of two specifications coincides with their greatest lower bound with respect to the weak
refinement (also called shared refinement).

Theorem 14. Let S1, S2 and S3 be three CMCs. We have (a) ((S1 ∧ S2) ≼ S1) and ((S1 ∧ S2) ≼ S2) and (b) if (S3 ≼ S1) and
(S3 ≼ S2), then S3 ≼ (S1 ∧ S2).

Proof. We separately prove the two items of the theorem. Let {1, . . . , k1}, {1, . . . , k2}, and {1, . . . , k3} be the sets of states
of S1, S2, and S3, respectively.
(a) Let S1 ∧ S2 = S = ⟨{1, . . . , k1} × {1, . . . , k2}, o, ϕ, A, V ⟩. Let R ⊆ ({1, . . . , k1} × {1, . . . , k2}) × {1, . . . , k1} such that
(u, v)Rw ⇐⇒ u = w. We will prove that R is a strong refinement relation. Let u ∈ {1, . . . , k1} and v ∈ {1, . . . , k2}. We
have (u, v)Ru.

1. By definition of S obtain V ((u, v))↓A1= (V1(u)↑A
∩V2(v)↑

A)↓A1⊆ V1(u).
2. Let ∆ ∈ [0, 1](k1k2)×k1 such that ∆(i,j),i = 1 and ∆(i,j),k = 0 if k ≠ i. We now prove that it satisfies the axioms of a

satisfaction relation for (u, v)Ru stated in Definition 4:
• Then we have ∀(i, j).

∑k1
k=1∆(i,j),k = 1.

• If x ∈ [0, 1](k1k2) is such that ϕ((u, v))(x), it implies by definition that ϕ1(u)(
∑k2

j=1 x1,j, . . . ,
∑k2

j=1 xk1,j) = ϕ1(u)(x∆)
holds.

• If∆(u′,v′),w′ ≠ 0, we have by definition u′
= w′ and (u′, v′)Ru′.

We conclude that R is a strong, and thus also a weak, refinement relation. Since (o1, o2)Ro1, we have S1 ∧ S2 ≼ S1. By
symmetry, we also have S1 ∧ S2 ≼ S2.
(b) Assume S3 ≼ S1 and S3 ≼ S2. By definition, there exist refinement relations R1 ⊆ {1, . . . , k3} × {1, . . . , k1} and
R2 ⊆ {1, . . . , k3} × {1, . . . , k2} such that o3R1o1 and o3R2o2. Let S1 ∧ S2 = S = ⟨{1, . . . , k1} × {1, . . . , k2}, o, ϕ, A, V ⟩.

Let R ⊆ {1, . . . , k3} × ({1, . . . , k1} × {1, . . . , k2}) such that uR(v,w) ⇐⇒ uR1v and uR2w. We now prove that R is
a weak refinement relation.

Consider u, v, w such that uR(v,w).

1. By definition, we have V3(u)↓A1⊆ V1(v) and V3(u)↓A2⊆ V2(w). As a consequence, V3(u)↓A⊆ V ((v,w)).
2. Let x ∈ [0, 1]k3 such that ϕ3(u)(x). Consider the correspondence matrices∆ ∈ [0, 1]k3×k1 and∆′

∈ [0, 1]k3×k2 given by
uR1v and uR2w for the transition vector x. Let∆′′

∈ [0, 1]k3×(k1k2) be a newmatrix such that∆′′
= ∆⊗∆′. By Lemma 1,

∆′′ is a correspondence matrix. We now prove that it satisfies the axioms of a refinement relation for uR(v,w):
• Let 1 ≤ i ≤ k3 such that xi ≠ 0. By definition of ∆ and ∆′, we have

∑k1
j=1∆ij = 1 and

∑k2
q=1∆

′

iq = 1, so∑
(j,q)∈{1,...,k1}×{1,...,k2}

∆′′

i(j,q) = (
∑k1

j=1∆ij)(
∑k2

q=1∆
′

iq) = 1.
• By definitions of ∆ and ∆′, both ϕ1(v)(x∆) and ϕ2(w)(x∆′) hold. Let x′

= x∆′′. It is clear that x∆ =

(
∑k2

j=1 x
′

(1,j), . . . ,
∑k2

j=1 x
′

(k1,j)
) and x∆′

= (
∑k1

i=1 x
′

(i,1), . . . ,
∑k1

i=1 x
′

(i,k2)
). As a consequence, ϕ((v,w))(x∆′′) holds.

• Let u′, v′, w′ such that∆′′

u′(v′,w′)
≠ 0. By construction, this implies∆u′v′ ≠ 0 and∆′

u′w′ ≠ 0. As a consequence, u′R1v
′

and u′R2w
′, thus u′R(v′, w′).

We conclude that R is a weak refinement relation. Since o3R(o1, o2), we have S3 ≼ (S1 ∧ S2). �

The first consequence of the above theorem is that conjunction with another specification is a monotonic operator with
respect to weak refinement. Furthermore, as it follows from the later results of Section 8, the set of implementations of a
conjunction of two deterministic specifications S1 and S2 coincides with the intersection of implementation sets of S1 and S2
(the greatest lower bound in the lattice of implementation sets).

6. Separation of concerns in parallel composition of specifications

Let us now turn to parallel composition. We first remark, that in concurrency theory it is customary to combine
parallel composition with synchronization—for example in many process algebras the same rules are used to explain how
parallel processes evolve, and how they communicate. In this work we take a different approach, separating these two

B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404 4387

(a) Two CMCs S and S ′ . (b) S ‖ S ′ .

(c) Synchronizer Sync. (d) (S ‖ S ′) ∧ Sync.

Fig. 12. Parallel composition and synchronization of CMCs.

concerns— parallel composition from synchronization. The choices regarding sets of valuations and the stochastic choices
are independent from each other.

First, components are composed into a kind of product—effectively just a vector of stochastically independent entities.
Second, the product is synchronized on valuations by constraining its behavior, to model handshake communication. For
example, assume that one component should be in a state where b holds, whenever b holds in another one. An independent
product of these two components will likely contain states where only one of the propositions is present, but not the
other. Then a synchronization operator is applied that will eliminate these states from the product, ensuring that the two
propositions b and b always co-occur.

This design has two significant advantages. First, it allowsmodeling very diverse synchronizationmechanisms. For CMCs
synchronization goes far beyondmatching label names, like in the above example. The synchronization is specified as a part
of the model, where it can express complex propositional constraints between propositions (for example a safety property).
It can be stateful and probabilistic.

Second, as wewill see, wewill obtain synchronization by simply using conjunction. This very elegantly exploits the prior
results on conjunction, as the synchronization operator turns out to be realizable using conjunction.

Remark 1. The principle of separation of concerns is intensively used in the definition of parallel composition for many
systems that mix stochastic and non-deterministic choices, among them many theories for probabilistic process algebra
[17,19]. Similar principles also apply for continuous-time stochastic models, in a slightly different setting based on CTMCs
[20]. In Section 10, in order to argue that such a design is reasonable, we will show that our parallel composition covers the
one of probabilistic automata [17]—which is a widely accepted and appreciated operator.

We start by showing how systems and specifications are composed in a nonsynchronizing manner, then we introduce
synchronization. The non-synchronizing independent parallel composition is largely just a product of two MCs (or CMCs):

Definition 15 (Parallel Composition of MCs). Let P1 = ⟨{1, . . . , n1}, o1,M ′, A1, V1⟩ and P2 = ⟨{1, . . . , n2}, o2,M ′′, A2, V2⟩

be two MCs with A1 ∩ A2 = ∅. The parallel composition of P1 and P2 is the MC P1 ‖ P2 = ⟨{1, . . . , n1} ×

{1, . . . , n2}, (o1, o2),M, A1 ∪A2, V ⟩, where:M ∈ [0, 1](n1n2)×(n1n2) is such thatM = M ′
⊙M ′′ and V ((p, q)) = V1(p)∪V2(q).

For CMCs we have the following definition.

Definition 16 (Parallel Composition of CMCs). Let S1 = ⟨{1, . . . , k1}, o1, ϕ1, A1, V1⟩ and S2 = ⟨{1, . . . , k2}, o2, ϕ2, A2, V2⟩ be
CMCswithA1∩A2 = ∅. The parallel composition of S1 and S2 is the CMC S1 ‖ S2 = ⟨{1, . . . , k1}×{1, . . . , k2}, (o1, o2), ϕ, A1∪

A2, V ⟩, where

ϕ((u, v))(z1,1, z1,2, . . . , z2,1, . . . , zk1,k2) ≡ ∃x1, . . . , xk1 , y1, . . . , yk2 ∈ [0, 1].∀(i, j) ∈ {1, . . . , k1} × {1, . . . , k2}.
zi,j = xiyj and ϕ1(u)(x1, . . . , xk1) = ϕ2(v)(y1, . . . , yk2) = 1.

Finally, V ((u, v)) = {Q1 ∪ Q2 | Q1 ∈ V1(u),Q2 ∈ V2(v)}.

In the Introduction we have demonstrated that IMCs are not closed under conjunction. Here, it is worth mentioning that
IMCs are not closed under parallel composition, even under the independent one. Consider IMCs S and S ′ given in Fig. 12a
and their parallel composition S ‖ S ′ given in Fig. 12b. Assume first that S ‖ S ′ is an IMC. As a variable zi,j is the product of

4388 B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404

two variables xi and yj, if S ‖ S ′ is an IMC, then one can show that the interval for zi,j is obtained by computing the products
of the bounds of the intervals over which xi and yj range. Hence, we can show that z1,1 ∈ [0, 1/2], z1,2 ∈ [0, 1/3], z2,1 ∈

[1/6, 1], z2,2 ∈ [0, 2/3]. Let [a, b] be the interval for the constraint zi,j, it is easy to see that there exist implementations I1 of
S1 and I2 of S2 such that I1 ‖ I2 satisfies the constraint zi,j = a (resp. zi,j = b). However, while each bound of each interval
can be satisfied independently, some points in the polytope defined by the intervals and the constraint

∑
zi,j = 1 cannot be

reached. As an example, consider z1,1 = 0, z1,2 = 1/3, z2,1 = 1/3, z2,2 = 1/3. It is clearly inside the polytope, but one cannot
find an implementation I of S ‖ S ′ satisfying the constraints given by the parallel composition. Indeed, having z1,1 = 0
implies that x1 = 0 and thus that z1,2 = 0.

Theorem 17. If S ′

1, S
′

2, S1, S2 are CMCs, then S ′

1 ≼ S1 and S ′

2 ≼ S2 implies S ′

1 ‖ S ′

2 ≼ S1 ‖ S2, so the weak refinement is a
precongruence with respect to parallel composition. Consequently, for any MCs P1 and P2 we have that P1 |= S1 ∧ P2 |= S2
implies P1 ‖ P2 |= S1 ‖ S2.

Proof. Let

S1 = ⟨{1, . . . , k1}, o1, ϕ1, A1, V1⟩,

S2 = ⟨{1, . . . , k2}, o2, ϕ2, A2, V2⟩,

S ′

1 = ⟨{1, . . . , k′

1}, o
′

1, ϕ
′

1, A
′

1, V
′

1⟩,

S ′

2 = ⟨{1, . . . , k′

2}, o
′

2, ϕ
′

2, A
′

2, V
′

2⟩,

S = ⟨{1, . . . , k1} × {1, . . . , k2}, (o1, o2), ϕ, A, V ⟩ = S1 ‖ S2,
S ′

= ⟨{1, . . . , k′

1} × {1, . . . , k′

2}, (o
′

1, o
′

2), ϕ
′, A′, V ′

⟩ = S ′

1 ‖ S ′

2,

be CMCs with A = A1 ∪ A2 and A′
= A′

1 ∪ A′

2. Assume that S ′

1 ≼ S1 and S ′

2 ≼ S2.
By definition, there exist two weak refinement relations R1 and R2 such that o′

1R1o1 and o′

2R2o2. Define R such that
(u′, v′)R(u, v) ⇐⇒ u′R1u and v′R2v. Consider now such (u′, v′) and (u, v). We prove that R satisfies the axioms of a
weak refinement relation between (u′, v′) and (u, v):

1. Note that from u′R1u (resp.v′R2v) it follows that A′

1 ⊆ A1 (resp.A′

2 ⊆ A′

2) and further A′

1 ∩ A2 = A1 ∩ A′

2 = ∅. We have:

V ′((u′, v′))↓A =

(Q1 ∪ Q2)↓A1∪A2 | Q1 ∈ V ′

1(u
′),Q2 ∈ V ′

2(v
′)


= {Q1↓A1 ∪Q2↓A2 | Q1 ∈ V ′

1(u
′),Q2 ∈ V ′

2(v
′)} ⊆ {Q1 ∪ Q2 | Q1 ∈ V1(u),Q2 ∈ V2(v)} = V ((u, v)).

2. Let z ′
∈ [0, 1](k

′
1k

′
2) such that ϕ′(u′, v′)(z ′). We now build the correspondence matrix ∆ witnessing (u′, v′)R(u, v).

Consider the correspondence matrices ∆1
∈ [0, 1]k

′
1×k1 and ∆2

∈ [0, 1]k
′
2×k2 witnessing respectively u′R1u and v′R2v

for the transition vector z ′. Define ∆ = ∆1
⊙ ∆2

∈ [0, 1](k
′
1k

′
2)×(k1k2). By Lemma 1, ∆ is a correspondence matrix.

Moreover, since ϕ′(u′, v′)(z ′) holds, there exist x′
∈ [0, 1]k

′
1 and y′

∈ [0, 1]k
′
2 such that ∀i, j, z ′

(i,j) = x′

iy
′

j and ϕ
′

1(u
′)(x′)

and ϕ′

2(v
′)(y′).

• Let (u′′, v′′) ∈ {1, . . . , k′

1} × {1, . . . , k′

2} such that z(u′′,v′′) ≠ 0. By definition of x′ and y′, this implies that x′

u′′ ≠ 0 and
y′

v′′
≠ 0. Thus

∑k1
j=1∆

1
u′′j = 1 and

∑k2
j=1∆

2
v′′j = 1.−

(r,s)∈{1,...,k1}×{1,...,k2}

∆(u′′,v′′)(r,s) =

−
(r,s)∈{1,...,k1}×{1,...,k2}

∆1
u′′r∆

2
v′′s

=

k1−
r=1

k2−
s=1

∆1
u′′r∆

2
v′′s =


k1−
r=1

∆1
u′′r


k2−
s=1

∆2
v′′s


= 1.

• Let z = z ′∆ ∈ [0, 1](k1k2). Notice that z = (x′∆1)⊗ (y′∆2).
Let x = x′∆1 and y = y′∆2. Since u′R1u and v′R2v, we have ϕ1(u)(x) and ϕ2(v)(y). Thus ϕ(u, v)(z ′∆).

• Let u′′, v′′, u′′′v′′′ such that ∆(u′′,v′′)(u′′′,v′′′) ≠ 0. By definition, this implies that ∆1
u′′u′′′ ≠ 0 and ∆2

v′′v′′′ ≠ 0, and as a
consequence (u′′, v′′)R(u′′′, v′′′).

We conclude that R is a weak refinement relation. Since (o′

1, o
′

2)R(o1, o2), we have S ′
≼ S. The second part of the theorem

follows, as satisfaction is a special case of the refinement. �

As alphabets of composed CMCs have to be disjoint, the parallel composition cannot synchronize the components on
state valuations like it is typically done for other (non-probabilistic) models. However, synchronization can be introduced
by conjoining the parallel composition with a synchronizer—a single-state CMCwhose valuation function relates the atomic
propositions of the composed CMCs.

Example. CMC S ‖ S ′ of Fig. 12b is synchronized with the synchronizer Sync given in Fig. 12c. Sync removes from S ‖ S ′

all the valuations that do not satisfy (a = d) ∧ (b = ¬c). The result is given in Fig. 12d. Observe that an inconsistency
appears in state (1, 1). Indeed, there is no implementation of the two CMCs that can synchronize in the prescribed way.
In general inconsistencies like this one can be uncovered by applying the pruning operator, which would return an empty

B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404 4389

specification. So synchronizers enable discovery of incompatibilities between component specifications in the same way as
it is known for non-probabilistic specification models.
Synchronization is associative with respect to parallel composition, which means that the order of synchronization and
parallel composition is inessential for final functionality of the system.
Theorem 18. Let S1, S2 and S3 be three CMCs with pairwise disjoint sets of propositions A1, A2 and A3. Let Sync123 be a
synchronizer over A1 ∪ A2 ∪ A3 and let Sync12 be the same synchronizer with its set of propositions restricted to A1 ∪ A2. The
following holds [[[((S1 ‖ S2) ∧ Sync12) ‖ S3] ∧ Sync123]] = [[(S1 ‖ S2 ‖ S3) ∧ Sync123]].
Proof. We first prove the following statement. Let S1 and S2 be two CMCs with disjoint sets of atomic propositions A1 and
A2. Let Sync1 be a synchronizing vector on A1. We have (S1 ‖ S2) ∧ Sync1 = (S1 ∧ Sync1) ‖ S2.

First, remember that synchronizers are single-state CMCs, with a single transition taken with probability 1. As a
consequence, computing the conjunction with a synchronizer preserves the structure of any CMC. The only change lies
in the sets of valuations.

Let p be a state of S1 and q be a state of S2. We have (V1(p) ∪ V2(q)) ∩ VSync1↑
A1∪A2= (V1(p) ∩ VSync1) ∪ V2(q). As a

consequence, the valuations of (S1 ∧ Sync1) ‖ S2 are the same as the valuations of (S1 ‖ S2) ∧ Sync1.
By monotonicity of conjunction, we have (S1 ‖ S2) ∧ Sync12 ≼ (S1 ‖ S2). By Theorem 17, it is implied that

[((S1 ‖ S2) ∧ Sync12) ‖ S3] ∧ Sync123 ≼ [S1 ‖ S2 ‖ S3] ∧ Sync123, and finally [[[((S1 ‖ S2) ∧ Sync12) ‖ S3] ∧ Sync123]] ⊆

[[[S1 ‖ S2 ‖ S3] ∧ S123]].
We now prove that [S1 ‖ S2 ‖ S3] ∧ Sync123 ≼ [((S1 ‖ S2) ∧ Sync12) ‖ S3] ∧ Sync123. By monotonicity of conjunction,

we have [S1 ‖ S2 ‖ S3] ∧ Sync123 ≼ [S1 ‖ S2 ‖ S3] ∧ Sync12 ∧ Sync123. Moreover, by the statement proved above, we
have [S1 ‖ S2 ‖ S3] ∧ Sync12 ≼ ((S1 ‖ S2) ∧ Sync12) ‖ S3. As a consequence, we have [S1 ‖ S2 ‖ S3] ∧ Sync123 ≼ [((S1 ‖

S2) ∧ Sync12) ‖ S3] ∧ Sync123, and thus [[[S1 ‖ S2 ‖ S3] ∧ Sync123]] ⊆ [[[((S1 ‖ S2) ∧ Sync12) ‖ S3] ∧ Sync123]]. �

Finally, synchronized parallel composition also supports component-based refinement in the style of Theorem 17.
Theorem 19. If S ′

1, S
′

2, S1, S2 are CMCs, Sync is a synchronizer and S ′

1 ≼ S1 and S ′

2 ≼ S2, then (S ′

1 ‖ S ′

2) ∧ Sync ≼ (S1 ‖

S2) ∧ Sync.
Consequently, a modeler can continue independent refinement of specifications under synchronization, knowing that the
original synchronized specification will not be violated. The theorem is a direct corollary of precongruence (Theorem 17)
and monotonicity of conjunction (follows from Theorem 14).

6.1. On comparing conjunction and parallel composition

Wenow compare conjunction and parallel compositionwith respect to implementation set inclusion.We shall see that if
the two operations are defined on CMCswith independent sets of valuations, then parallel composition refines conjunction;
the opposite does not hold. We first show that parallel composition refines conjunction.
Theorem 20. Let S1 and S2 be consistent CMCs with A1 ∩ A2 = ∅. It holds that S1 ‖ S2 ≼ S1 ∧ S2.
Proof. Let S1 = ⟨{1, . . . , k1}, o1, ϕ1, A1, V1⟩ and S2 = ⟨{1, . . . , k2}, o2, ϕ2, A2, V2⟩ be CMCs. Consider their parallel
composition S1 ‖ S2 = ⟨{1, . . . , k1} × {1, . . . , k2}, (o1, o2), ϕ‖, A, V ‖

⟩ and their conjunction S1 ∧ S2 = ⟨{1, . . . , k1} ×

{1, . . . , k2}, (o1, o2), ϕ∧, A, V∧
⟩, where A = A1 ∪ A2. We build a refinement relation R on ({1, . . . , k1} × {1, . . . , k2}) ×

({1, . . . , k1} × {1, . . . , k2}) as (u, v)R(u′, v′) if and only if u = u′ and v = v′.
Let (u, v) ∈ {1, . . . , k1} × {1, . . . , k2} such that (u, v)R(u, v). We now show that R is a refinement relation:

1. By construction, we have that V ‖((u, v)) = {Q1 ∪ Q2 | Q1 ∈ V1(u),Q2 ∈ V2(v)}. Moreover, since A1 ∩ A2 = ∅, we have
that V∧((u, v)) = V1(u)↑A

∩V2(v)↑
A
= {Q1 ∪ Q2 | Q1 ∈ V1(u),Q2 ∈ V2(v)}. Thus V ‖((u, v)) = V∧((u, v)).

2. Let z = (z1,1, z1,2, . . . , zk1,k2) ∈ [0, 1]k1k2 such that ϕ‖((u, v))(z) holds. Define the correspondence matrix ∆ ∈

[0, 1](k1k2)×(k1k2) as the matrix with∆(u,v),(u,v) = 1 if zu,v ≠ 0 and 0 otherwise. Observe that z∆ = z.
• Trivially, by construction, for all (i, j) ∈ {1, . . . , k1}× {1, . . . , k2} such that zi,j ≠ 0, we have that

∑
i′,j′ ∆(i,j),(i′,j′) = 1.

• We prove that ϕ∧((u, v))(z) holds: By hypothesis, ϕ‖((u, v))(z) holds. So there exist x ∈ [0, 1]k1 and y ∈ [0, 1]k2
such that ϕ1(u)(x) holds, ϕ2(v)(y) holds and for all i ∈ {1, . . . , k1} and j ∈ {1, . . . , k2}, we have zi,j = xiyj. As a
consequence, we have

∑k1
i=1 zi,j = yj for all j ∈ {1, . . . , k2} and

∑k2
j=1 zi,j = xi for all i ∈ {1, . . . , k1}. Since both

ϕ1(u)(x) and ϕ2(v)(y) hold, we have that ϕ∧((u, v))(z∆) holds.
• By construction of∆,∆(u,v),(u′,v′) ≠ 0 implies that u = u′ and v = v′, and therefore implies (u, v)R(u′, v′).

We conclude that R is a refinement relation since (o1, o2)R(o1, o2). We have shown that S1 ‖ S2 ≼ S1 ∧ S2. �

A direct consequence of the above theorem is that any model of the parallel composition is a model for the conjunction,
i.e.,[[S1 ‖ S2]] ⊆ [[S1 ∧ S2]]. We now show that the opposite inclusion does not hold.
Theorem 21. Let S1 and S2 be consistent CMCs with A1 ∩ A2 = ∅. It holds that [[S1 ∧ S2]] ⊈ [[S1 ‖ S2]].
Proof. We establish the proof by providing, in Fig. 13, two CMCs S1 and S2 and aMC I , such that I |= S1 ∧ S2 and I |̸= S1 ‖ S2.

The common structure of conjunction and parallel composition is shown in Fig. 13d. The constraint functions differ.
According to the definitions of conjunction and parallel composition, we have ϕ∧(1, 1)(z) ≡ z2,2 + z2,3 = z2,2 + z3,2 =

4390 B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404

(a) S1 , ϕ1(1)(x) ≡ x2 = 0.6 ∧ x3 = 0.4. (b) S2 , ϕ2(1)(y) ≡ y2 = 0.6 ∧ y3 = 0.4.

(c) I . (d) Common structure of S1 ∧ S2 and S1 ‖ S2 .

Fig. 13. Conjunction versus parallel composition: I |= S1 ∧ S2 but I |̸= S1 ‖ S2 .

(a) CMC S1 . (b) CMC S2 . (c) CMC S3 such that [[S1]] ∪ [[S2]] ([[S3]]. (d) MC I .

Fig. 14. CMCs not closed under disjunction: I |= S3 , but I |̸= S1 and I |̸= S2 .

0.6 ∧ z3,2 + z3,3 = z2,3 + z3,3 = 0.4 and ϕ‖(1, 1)(z) ≡ z2,2 = 0.36 ∧ z2,3 = z3,2 = 0.24 ∧ z3,3 = 0.16. I satisfies the
conjunction, but not the parallel composition, since the probability mass 0.4 of going to state 2 in I cannot be distributed to
(2, 2) of S1 ‖ S2. �

7. Disjunction and universality

In this section we show that CMCs are not closed under disjunction. We then solve the universality problem, that is the
problem of deciding whether a CMC admits arbitrary implementations.

7.1. On the existence of a disjunction of CMCs

In this section we discuss the problem of computing a CMC S whose models are the union of the models accepted by two
other CMCs S1 = ⟨{1, . . . , k1}, o1, ϕ1, A1, V1⟩ and S2 = ⟨{1, . . . , k2}, o2, ϕ2, A2, V2⟩. In general, such a CMC may not exist.
Indeed, assume that S1 and S2 have disjoint initial state valuations, and that the constraint functions of o1 and o2 do not
share the same set of satisfying probability vectors. The initial state o of any specification representing the union could take
valuations admissible according to o1 and a distribution Mo according to o2 (but not o1). That is, we cannot express the link
between a choice of the valuation of the initial state and a probability distribution.

This is illustrated in Fig. 14. S1 admits implementations with valuation a in the initial state, and c afterward. S2 admits
implementations with b in the initial state, and d afterward. Any CMC representing the disjunction would have to admit
a or b in the initial state, like the potential candidate S3 in Fig. 14c. Unfortunately, the implementation MC I in Fig. 14d

B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404 4391

satisfies S3 but it is a model of neither S1 and S2, as it combines the initial state valuation of the former, with behavior of the
latter.

However, if S1 and S2 have the same initial state valuation, then we can explicitly construct a CMC whose set of
implementations is the union of the sets of implementations of S1 and S2. This CMC is called the disjunction of S1 and S2,
and denoted S1 ∨ S2.

Let S1 = ⟨{1, . . . , k1}, o1, ϕ1, A1, V1⟩ and S2 = ⟨{1, . . . , k2}, o2, ϕ2, A2, V2⟩ be CMCs such that V1(o1) = V2(o2). Then
define S1 ∨ S2 = ⟨Q , 0, ϕ, A, V ⟩, where Q = {0, 1, . . . , k1, k1 + 1, . . . , k1 + k2}, A = A1 ∪ A2 and

V (i) =


V1(o) if i = 0, o = o1 = o2
V1(i) if i ∈ {1, . . . , k1}
V2(i − k1) if i ∈ {k1 + 1, . . . , k1 + k2}.

The constraint function ϕ : Q → [0, 1]k1+k2+1
→ {0, 1} is given by:

ϕ(i)(x0, x1, . . . , xk1 , xk1+1, . . . , xk1+k2)

≡




ϕ1(i)(x1, . . . , xk1) ∨ ϕ2(i)(xk1+1, . . . , xk1+k2)


∧

k1+k2−
i=0

xi = 1 if i = 0

ϕ1(i)(x1, . . . , xk1) ∧


x0 +

k1+k2−
i=k1+1

xi = 0


if 1 ≤ i ≤ k1

ϕ2(i)(xk1+1, . . . , xk1+k2) ∧

k1−
i=0

xi = 0 if k1 + 1 ≤ i ≤ k1 + k2.

7.2. The universality problem for CMCs

Consider the problem of deciding whether a CMC S admits all models defined over a set of atomic propositions A. This
problem can be reduced to checking whether the set of implementations of the universal CMCs UnivA representing all
models over A is included in the set of implementations of S. The CMC UnivA is defined as UnivA = ⟨{1}, 1, ϕ, A, V ⟩, where
ϕ(1)(x) ≡ 1 and V (1) = 2A.

Theorem 22. Let UnivA = ⟨{1}, 1, ϕ, A, V ⟩ be the universal CMC on the set of atomic propositions A and let I =

⟨{1, . . . , n}, o,M, AI , VI⟩ be any implementation such that A ⊆ AI . We have that I |= UnivA.

Proof. Construct the relation R = {1, . . . , n} × {1}. We show that R is a satisfaction relation: Let i ∈ {1, . . . , n} such that
iR1.

1. It is clear that VI(i)↓A∈ V (1) = 2A.
2. Consider Mi. We build a correspondence matrix∆ ∈ [0, 1]n×1 such that∆j1 = 1 if Mij > 0, and 0 otherwise.

• By construction,∆j1 = 1 for all j such thatMij > 0.
• SinceMi∆ = 1, ϕ(1)(Mi∆) holds.
• Let i′ such that∆i′,1 > 0. By construction of R, i′R1.

We conclude that R is a satisfaction relation, since oR1, and thus, I |= UnivA. �

We now switch to the problem of deciding whether the union of two CMCs S1 and S2 is universal. Despite the fact that
CMCs are not closed under union, this problem has a relatively simple solution. The idea is to create a new initial state with
a fresh atomic proposition λ /∈ A and then redistribute the entire probability mass to the original initial state. Formally:

Definition 23. For a CMC S = ⟨{1, . . . , k}, o, ϕ, A, V ⟩ and an atomic proposition λ /∈ A define the state-extended CMC
Sx = ⟨{1, . . . , k, o′

}, o′, ϕ′, A′, V ′
⟩, where A′

= A ∪ {λ}, V ′(o′) = {{λ}} and V ′(i) = V (i) for all i ∈ {1, . . . , k}. The constraint
function is given by:

ϕ′(i)(x) ≡

xo = 1 ∧


k−

i=1

xi = 0


if i = o′

ϕ(i)(x1, . . . , xk) ∧ xo′ = 0 for i ∈ {1, . . . , k}.

Fig. 15 gives an example. The union of the state-extended versions of S1 and S2 can now be computed and compared to
the state-extended version of UnivA. It is obvious that all the implementations of the state-extended version of a given CMC
C are state-extended versions of implementations of C .

4392 B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404

(a) CMC Sx1 . (b) CMC Sx2 . (c) Sx1 ∨ Sx2 .

Fig. 15. State-extended CMCs of Fig. 14 and their disjunction.

Fig. 16. A deterministic CMC cannot express the implementation set of T .

8. Deterministic CMCs

Clearly, if all implementations of a specification S1 also implement a specification S2, then the former is a strengthening
of the latter. Indeed, S1 specifies implementations that break no assumptions that can be made about implementations of
S2. Thus implementation set inclusion is a desirable refinement for specifications. Unfortunately the decision procedure for
implementation set inclusion is more complex and less efficient than the weak and (in particular) the strong refinement.
We have seen that the latter two both soundly approximate implementation set inclusion. Had that approximation been
complete, we could have a more efficient and simpler to program procedure for implementing the implementation set
inclusion.

In this section, we argue that this indeed is the case for an important subclass of specifications: deterministic CMCs. We
show that for this class strong refinement coincides with the implementation set inclusion. Thus for deterministic CMCs
more efficient algorithms exist for establishing the latter. For this reason we will also consider a determinization algorithm
for CMCs.

A CMC S is deterministic iff for every state i, states reachable from i have pairwise disjoint admissible valuations:

Definition 24. Let S = ⟨{1, . . . , k}, o, ϕ, A, V ⟩ be a CMC. S is deterministic iff for all states i, u, v ∈ {1, . . . , k}, if there exists
x ∈ [0, 1]k such that (ϕ(i)(x)∧ (xu ≠ 0)) and y ∈ [0, 1]k such that (ϕ(i)(y)∧ (yv ≠ 0)), then we have that V (u)∩ V (v) = ∅

or u = v.

By inspecting the constructions for conjunction and parallel composition, one can see that both trivially preserve
determinism.

In Fig. 3a and b, both S1 and S2 are deterministic specifications. In particular states 2 and 3, both of which can be reached
from state 1 in both CMCs, have disjoint valuation sets. On the other hand, the CMC T given in Fig. 16 is non-deterministic.
Indeed, for states 2 and 3, which can both be reached from state 1, we have that VT (2) ∩ VT (3) = {{a, c}} ≠ ∅.

Deterministic CMCs are less expressive than non-deterministic ones, in the sense that the same implementation sets
sometimes cannot be expressed. Consider again the CMC T given in Fig. 16. The set of implementations of T cannot be
represented by a deterministic CMC. Any merging of States 2 and 3 in T would result in a CMC that accepts models where
one can loop on valuation {a, c} and then accept valuation {a} with probability 1. Such a model cannot be accepted by T .

Wenowpresent a determinization algorithm that canbe applied to anyCMC S in single valuationnormal form (obtainable
by applying the normalization algorithm of Definition 7). This algorithm is based on a subset construction that resembles
the classical determinization for automata.

B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404 4393

Definition 25. Let S = ⟨{1, . . . , k}, o, ϕ, A, V ⟩ be a consistent CMC in single valuation normal form. If Q ⊆ {1, . . . , k}
and a ∈ 2A, then define reach(Q , a) to be the maximal1 set of states with valuation a that can be reached with a non-zero
probability, using a distribution that satisfies the constraint of at least one state ofQ . Formally reach : 2{1,...,k}

×2A
→ 2{1,...,k}

and

reach(Q , a) =


{v ∈ {1, . . . , k} | V (v) = {a} and ∃u ∈ Q . ∃x ∈ [0, 1]k. ϕ(u)(x) = 1 ∧ xv > 0}.

We lift the notion of reachability to all possible valuations as follows:

Reach(Q) = {reach(Q , a) | a ⊆ A}.

Now define the n-step reachability with

Reachn(Q) = Reachn−1(Q) ∪


Q ′∈Reachn−1

(Q)

Reach(Q ′)

and its transitive closure as the fixpoint

Reach∗(Q) = {Q } ∪ lim
n→∞

Reachn(Q).

Observe that for all Q and for all Q ′
∈ Reach∗(Q), there exists a valuation a ∈ 2A such that V (q) = {a} for all q ∈ Q ′ (by

construction).
A deterministic CMC for S is the CMC ϱ(S) = ⟨{Q1, . . . ,Qm},Qo′ , ϕ

′, A, V ′
⟩, where {Q1, . . . ,Qm} = Reach∗({o}),

Qo′ = {o} ∈ {Q1, . . . ,Qm} by definition, and ϕ′ and V ′ are defined as follows:

• for all Qi ∈ {Q1, . . . ,Qm}, let V ′(Qi) = {a} iff for all q ∈ Qi, V (qi) = {a} — there always exists exactly one such a by
construction, and

• for all Qi ∈ {Q1, . . . ,Qm} and for all y ∈ [0, 1]m,

ϕ′(Qi)(y1, . . . , ym) = [∀1 ≤ j ≤ m.Qj /∈ Reach(Qi) =⇒ yj = 0] ∧
q∈Qi

∃x ∈ [0, 1]k

ϕ(q)(x) ∧

∀1 ≤ j ≤ m. Qj ∈ Reach(Qi) =⇒

−
q′∈Qj

xq′ = yj

 .
Theorem 26. Let S be a CMC in single valuation normal form. It holds that S ≼S ϱ(S).

Proof. Let S = ⟨{1, . . . , k}, o, ϕ, A, V ⟩ be a CMC in single valuation normal form. Let ϱ(S) = ⟨{Q1, . . . ,Qm},Qo′ , ϕ
′, A, V ′

⟩

be a determinization of S.
Define R ⊆ {1, . . . , k} × {Q1, . . . ,Qm} such that uRQi ⇐⇒ u ∈ Qi. We will show that R is a strong refinement

relation. Let u, i such that uRQi.
1. By definition, since u ∈ Qi, we have V ′(Qi) = V (u).
2. Let∆ ∈ [0, 1]k×m such that∆vj = 1 if Qj ∈ Reach(Qi) and v ∈ Qj, and 0 otherwise. We prove that∆ is a correspondence

matrix.
Suppose that there exist 1 ≤ v ≤ k and 1 ≤ j ≠ l ≤ m such that ∆vj = ∆vl = 1. Then we know that v ∈ Qj

and v ∈ Ql, and that both Qj and Ql are in Reach(Qi). This violates the definition of Reach(Qi) (each of its sets must be
maximal). As a consequence, for all 1 ≤ v ≤ k, we have

∑m
j=1∆vj ≤ 1 and∆ is a correspondence matrix.

• Let x ∈ [0, 1]k such that ϕ(u)(x). Let 1 ≤ v ≤ k such that xv > 0. Since xv > 0 and u ∈ Qi, we know that
Reach(Qi) ≠ ∅. Moreover, there exists 1 ≤ j ≤ m such that Qj ∈ Reach(Qi) and v ∈ Qj. As a consequence, ∆vj = 1,
and

∑m
l=1∆vl = 1.

• Let y = x∆. We prove that ϕ′(y) holds.
– Since∆vj = 0 for all Qj /∈ Reach(Qi), we have that yj = 0 for all Qj /∈ Reach(Qi).
– There exist q ∈ Qi, namely u, and x ∈ [0, 1]k defined above, such that ϕ(u)(x) holds, and by definition, if

Qj ∈ Reach(Qi), then for all q′
∈ Qj, we have∆q′j = 1. As a consequence, yj =

∑k
r=1 xr∆rj =

∑
q′∈Qj

xq′ .
Thus ϕ′(x∆) holds.

• If∆vj > 0, then we have that v ∈ Qj by definition, thus vRQj.

Finally, R is a strong refinement relation, and o ∈ Qo′ = {o}, thus S strongly refines ϱ(S). �

This character of determinization resembles the known determinization algorithms for modal transition systems [28].

In Theorem 11 we have shown that weak (and thus also strong) refinement is sound with respect to implementation
set inclusion. We now state one of the main theorems of the paper. Weak refinement is complete with respect to
implementation set inclusion for deterministic CMCs.

1 Maximality is understood with respect to set inclusion here. It captures the fact that we want all such states.

4394 B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404

Theorem 27. Let S1 = ⟨{1, . . . , k1}, o1, ϕ1, A1, V1⟩ and S2 = ⟨{1, . . . , k2}, o2, ϕ2, A2, V2⟩ be two locally consistent
deterministic CMCs with single admissible valuation in initial state and A2 ⊆ A1. We have [[S1]] ⊆ [[S2]] ⇒ S1 ≼ S2.
Proof. First, since any consistent CMCwith a single valuation in the initial state can be normalized (see Theorem 8), without
change of the implementation set, we assume that S1 and S2 are actually in single valuation normal form.

Let S1 = ⟨{1, . . . , k1}, o1, ϕ1, A1, V1⟩ and S2 = ⟨{1, . . . , k2}, o2, ϕ2, A2, V2⟩ be two consistent and deterministic CMCs in
single valuation normal form such that A2 ⊆ A1 and [[S1]] ⊆ [[S2]].

First, notice that S1 ≼ S2 ⇐⇒ S ′

1 = ⟨{1, . . . , k1}, o1, ϕ1, A2, V1↓A2⟩ ≼ S2. It is thus safe to suppose that A1 = A2 = A.
Similarly, if I = ⟨. . . , AI , VI⟩ is a MC, we have I |= S1 ⇐⇒ I ′ = ⟨. . . , A1, VI↓A⟩ |= S1. As a consequence, it is also safe to
suppose that implementations have the same set of atomic propositions as S1 and S2.

In the following we will also rely on the local consistency of the two CMCs, which implies that for every state of a CMC
there exists aMC satisfying it. Thanks to Theorem 5, local consistency is not a real limitation, as the specifications can always
be pruned without loss of implementations.

In the proof we use the following notation: given a CMC S and its state o we write (S, o) to denote a new CMC created
from S by assuming o as its initial state.

The proof is structured as a usual coinductive argument, starting with the presentation of a candidate relation R and
then continuing with evidence that R is indeed a refinement relation witnessing the refinement of S2 by S1. The argument
is essentially standard until the last step, marked with a ⋆ below, where we need to rely on the determinism of S2 and an
argument by contradiction to conclude.
Let R ⊆ {1, . . . , k1} × {1, . . . , k2} be the following binary relation on states:

R = {(v, u) | For all I. I |= (S1, v) implies I |= (S2, u)} . (4)
Consider v and u such that vRu and check that conditions of Definition 4 hold.
1. By local consistency of S1 there exists a MC I = ⟨{1, . . . , n}, p,M, A, V ⟩ such that I |= (S1, v), and, since vRu, then also

I |= (S2, u). Thus V (p) ∈ V1(v) and V (p) ∈ V2(u). As S1 and S2 are in single valuation normal form, V1(v) and V2(u) are
singletons, so V1(v) = V2(u).

2. Consider a probability distribution vector x ∈ [0, 1]k1 such that ϕ1(v)(x). Wewant to build a correspondencematrix∆ ∈

[0, 1]k1×k2 such that ϕ2(u)(x∆) holds. To this end, we build another implementation MC I = ⟨{1, . . . , k1}, v,M, A, V ⟩

such that for all 1 ≤ w ≤ k1,
(i) V (w) is the only valuation such that V1(w) = {V (w)}; The existence of V (w) is warranted by the normal form and

local consistency of S1.
(ii) Ifw ≠ v, the rowMw is any solution of ϕ1(w). One exists for each statew of S1 because S1 is locally consistent.
(iii) Mv = x.

When necessary, we will address state w of I as wI to differentiate it from state w of S1. The MC I clearly satisfies
(S1, v) as witnessed by the identity satisfaction relation R1. By hypothesis, we thus have I |= (S2, u), as vRu. Let R2 be
the relation witnessing I |= (S2, u), and let ∆2 be the correspondence matrix witnessing vIR2u. We will now show the
correspondence matrix∆witnessing the weak refinement invariant for vRu. Let∆ = ∆2.
• ∀1 ≤ i ≤ k1, xi ≠ 0 ⇒

∑k2
j=1∆ij = 1, because∆ = ∆2, which is a correspondence matrix witnessing satisfaction for

the same probability vectorMv = x.
• ϕ2(u)(x∆) holds for the same reason.
• It remains to show that if xv′ ≠ 0 and∆v′u′ ≠ 0, then v′Ru′. This argument occupies the remainder of the proof.

Assume v′, u′ as above. By definition of I and ∆ we have that (I, v′

I) |= (S1, v′) and (I, v′

I) |= (S2, u′). We want to prove⋆
not only for (I, v′

I) but also for all implementations I ′ such that I ′ |= (S1, v′) that I ′ |= (S2, u′). This argument proceeds ad
absurdum.

Suppose this is not the case: there exists a MC I ′ = ⟨{1, . . . , n}, p′,M ′, A, V ′
⟩ such that I ′ |= (S1, v′) and I ′ |̸= (S2, u′). Let

R′ be the satisfaction relation witnessing I ′ |= (S1, v′). We will use this implementation to construct an implementationI
of (S1, v)which also satisfies (S2, u). SinceI will embed I ′, and S2 is deterministic, wewill be able to obtain that I ′ |= (S2, u′),
which is a contradiction. Thus I ′ cannot exist, and indeed v′Ru′.

Below we constructI and argue thatI |= (S1, v) and thusI |= (S2, u). In the last part of the proof, marked with a }, we
argue that I ′ |= (S2, u′), which leads to a contradiction, concluding the proof.
LetI = ⟨{1, . . . , k1, k1 + 1, . . . , k1 + n}, v,M, A,V ⟩, where, among others, v and n are defined above. Intuitively, the first
k1 states correspond to I and the next n states to I ′. The state v′

I will be the link between the two and its outgoing transitions
will be the ones of p′, the state of I ′. The construction is illustrated in Fig. 17. The left part of the figure shows the general
structure ofI , the right part shows the composition of its transition matrix. Formally, we define the transition matrix M as
follows:

Mij =



Mij if 1 ≤ i, j ≤ k1 and i ≠ v′

0 if 1 ≤ j ≤ k1 and i = v′

0 if 1 ≤ i ≤ k1 and i ≠ v′, j > k1
M ′

p′(j−k1)
if j > k1 and i = v′

0 if i > k1 and 1 ≤ j ≤ k1
M ′

(i−k1)(j−k1)
if i, j > k1.

B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404 4395

(a) The MCI . (b) The transition matrix M .

Fig. 17. Visualization of the construction ofI for the proof of Theorem 27.

Furthermore:

V (i) =


V (i) for i ≤ k1
V ′(i − k1) for i > k1.

Wewant to show thatI |= (S1, v) first. Consider the following relation R ⊆ {1, . . . , k1 + n} × {1, . . . , k1}, between the
states ofI and the states of S1:R = {(q, w) ∈ R1 | q ≠ v′

} ∪ {(q, w) | (q − k1)R′w} ∪ {(v′, w) | p′R′w}. (5)

Intuitively, R is equal to R1 for the states q ≤ k1, except v′, and equal to R′ for the states q > k1. The states related to v′I
are the ones that were related to p′ with R′. We will show that R is a satisfaction relation betweenI and (S1, v).

Let q, w be states ofI and S1 respectively, such that qRw. For all the pairs where q ≠ v′I , the conditions of the satisfaction
relation still hold because they held for R1 if q ≤ k1 and for R′ otherwise (R1 ⊆ R by construction, since v′I Rv′ and
moreover v′ is the only state to which v′I was related in the identity relation R1). It remains to check the conditions for the
pairs where q = v′I , as this is the only state with a new behavior with respect to I and I ′. So consider a statew of S1 such that
v′I Rw.

1. Because v′

I and p′

I ′ are both related to v′ (respectively in R1 and in R′) it is clear thatV (v′I) = V (p′). As p′R′w, we know
that V ′(p′) ∈ V1(w). Thus,V (v′I) ∈ V1(w).

2. Let the correspondence matrix ∆′ witness p′R′w. Let ∆ ∈ [0, 1](k1+n)×k1 such that ∆ij = 0 if i ≤ k1, and ∆ij = ∆′

(i−k1)j
otherwise.
• We want to show that if M(v′I)(w′) ≠ 0, then

∑k1
j=1
∆w′j = 1. We know that M(v′I)(w′) = 0 if w′

≤ k1. Take w′ > k1
such that M(v′I)(w′) ≠ 0. Then we know that M(v′I)(w′) = M ′

p′(w′−k1)
. Because R′ is a satisfaction relation, it implies that∑k1

j=1∆
′

(w′−k1)j
= 1. Thus,

∑k1
j=1
∆w′j =

∑k1
j=1∆

′

(w′−k1)j
= 1.

• We want to show now that ϕ1(w)(Mv′I∆) holds. Let 1 ≤ j ≤ k1. We have:

Mv′I∆j =

k1+n−
l=1

M(v′I)l∆lj = 0 +

k1+n−
l=k1+1

M(v′I)l∆lj =

n−
l=1

M ′

p′ l∆
′

lj =


M ′

p′∆
′


j
.

As a consequence, Mv′I∆ = M ′

p′∆
′. Since∆′ is a witness of p′R′w, ϕ1(w)(M ′

p′∆
′) holds. So does ϕ1(w)(Mv′I∆).

• We want to show that if M(v′I)q ≠ 0 and ∆qw′ ≠ 0, then qRw′. We only need to consider q > k1 (since otherwiseM(v′I)q = 0) and w′ such that ∆qw′ ≠ 0. In this case, M(v′I)q = M ′

p′(q−k1)
≠ 0 and ∆′

(q−k1)w′ ≠ 0. As ∆′ is a witness of

p′R′w, it has to be that (q − k1)R′w′, which implies, by definition of R, that qRw′.
So we conclude thatI |= (S1, v), and thus alsoI |= (S2, u) since vRu.
Finally, to reach the contradiction, we show that the above implies I ′ |= (S2, u′). SinceI |= (S2, u) there exists }
∆′′

∈ [0, 1](k1+n)×k2 such that ϕ2(u)(MvI∆′′) holds.
(A) Consider u′′

≠ u′ such that V2(u′′) = V2(u′). Due to the determinism of S2, and to the fact that u′ is accessible from
u, we have [MvI∆′′

]u′′ = 0. Otherwise ϕ2(u) would be violated. Since M(vI)(v′I) ≠ 0 and M(vI)(v′I)∆′′

(v′I)u′′ is part of

[MvI∆′′
]u′′ , we must have∆′′

(v′I)u′′ = 0.

4396 B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404

(B) Consider u′′′ such that V (u′′′) ≠ V (u′). It is clear that∆′′

(v′I)u′′′ = 0 since∆′′ is witnessing satisfaction betweenI and S2.

(C) Moreover, we know that M(vI)(v′I) ≠ 0. Thus,
∑k2

j=1∆
′′

v′I j = 1.

According to (A) and (B), the only non-zero value in the sum in (C) must be∆′′

(v′I)u′ . Since∆′′ is witnessingI |= (S2, u),

we have (I, v′I) |= (S2, u′). But v′I and p′ only differ by state names, not by behaviors, so (I ′, p′) |= (S2, u′). This contradicts
our assumption. Thus v′Ru′, and R is a weak refinement relation.

Finally, the hypothesis [[S1]] ⊆ [[S2]] implies that o1Ro2 and further S1 ≼ S2. �

Thus, weak refinement and the implementation set inclusion coincide on the class of deterministic CMCs with at most
one valuation in the initial state. Finally, Theorem 27 also holds for strong refinement, as the two refinements coincide for
deterministic CMCs. Before any formal introduction of the result, we first introduce the following lemma that characterizes
the shape of the witness matrix of the satisfaction relation for an implementation and a CMC in normal form.
Lemma 28. Let S = ⟨{1, . . . , k}, oS, ϕ, A, VS⟩ be a deterministic CMC in single valuation normal form. Let P =

⟨{1, . . . , n}, oP ,M, A, VP⟩ ∈ [[S]] witnessed by a satisfaction relation R. Let p ∈ {1, . . . , n} and u ∈ {1, . . . , k} such that
pRu, and let∆ be the associated correspondence matrix. We have

∀p′
∈ {1, . . . , n}.Mpp′ ≠ 0 ⇒

u′
∈ {1, . . . , k} |∆p′u′ ≠ 0

 = 1.
Proof. Let S = ⟨{1, . . . , k}, oS, ϕ, A, VS⟩ be a deterministic CMC in single valuation normal form. Let P =

⟨{1, . . . , n}, oP ,M, A, VP⟩ ∈ [[S]] witnessed by a satisfaction relation R. Let p ∈ {1, . . . , n} and u ∈ {1, . . . , k} such that
pRu, and let∆ be the associated correspondence matrix.

Suppose that there exist p′, u′ and u′′ such that Mpp′ > 0, ∆p′u′ > 0 and ∆p′u′′ > 0 with u′
≠ u′′. Let y = M∆ be the

probabilistic transition outgoing from u according to∆. By construction, we have yu′ > 0 and yu′′ > 0.
Moreover, since∆p′u′ > 0 and∆p′u′′ > 0, it holds that p′Ru′ and p′Ru′′. Because of the single valuation normal form of

S, this implies that VS(u′) = VS(u′′) = {VP(p′)}.
Finally, there exist u, u′ and u′′

∈ {1, . . . , k} with u′
≠ u′′ and y ∈ [0, 1]k such that ϕ(u)(y) = 1, yu′ > 0, yu′′ > 0 and

VS(u′) = VS(u′′). This breaks the assumption that S is deterministic, which concludes the proof. �

According to the lemma, in any MC implementing a deterministic CMC, the probability of going to one implementation
state is never distributed to more than one specification state. Otherwise the specification would be non-deterministic. We
are now ready to state the theorem.
Theorem 29. Let S1 = ⟨{1, . . . , k1}, o1, ϕ1, A, V1⟩ and S2 = ⟨{1, . . . , k2}, o2, ϕ2, A, V2⟩ be two deterministic CMCs in normal
form. If there exists a weak refinement relation R such that S1RS2, then R is also a strong refinement relation.
Proof. Let v ∈ {1, . . . , k1} and u ∈ {1, . . . , k2} such that vRu.
1. By hypothesis, V1(v) ⊆ V2(u).
2. We know that for all x ∈ [0, 1]k1 satisfying ϕ1(v), there exists a correspondence matrix∆x satisfying the axioms of weak

refinement. We will build a correspondence matrix∆0 that will work for all x. Let p ∈ {1, . . . , k1}.
If for all x ∈ [0, 1]k1 , ϕ1(v)(x) ⇒ xp = 0, then let∆0

p = (0, . . . , 0).
Else, consider x ∈ [0, 1]k1 such that ϕ1(v)(x) and xp ≠ 0. By hypothesis, there exists a correspondence matrix ∆x

associated to vRu. Let ∆0
p = ∆x

p. By Lemma 28, there is a single u′
∈ {1, . . . , k2} such that ∆x

pu′ ≠ 0. Moreover, by

definition of∆x, we know that
∑k2

r=1∆
x
pr = 1, thus∆x

pu′ = 1. So∆0 is a correspondence matrix.
Suppose there exists y ≠ x ∈ [0, 1]k1 such that ϕ1(v)(y) and yp ≠ 0. Let∆y be the associated correspondence matrix.

As for x, there exists a unique u′′
∈ {1, . . . , k2} such that ∆y

pu′′ ≠ 0. Moreover ∆y
pu′′ = 1. Let x′

= x∆x and y′
= y∆y. By

definition, both ϕ2(u)(x′) and ϕ2(u′)(y′) hold, x′

u′ ≠ 0 and y′

u′′ ≠ 0. As ∆x
pu′ = ∆

y
pu′′ = 1, we have V2(u′) ∩ V2(u′′) ≠ ∅.

By hypothesis, S2 is deterministic, thus u′
= u′′.

As a consequence, we have∆x
p = ∆

y
p, so ∀z ∈ [0, 1]k1 , (ϕ1(v)(z) ∧ (zp ≠ 0)) ⇒ ∆z

p = ∆0
p , and we conclude that∆0

is uniquely defined.
Finally, consider∆0 defined as above. Let x ∈ [0, 1]k1 such that ϕ1(v)(x):

• xi ≠ 0 ⇒ ∆0
i = ∆x

i ⇒
∑k2

j=1∆
0
ij = 1;

• x∆0
= x∆x, thus ϕ2(u)(x∆0) holds.

• If∆0
v′u′ ≠ 0, then there exists y ∈ [0, 1]k1 such that ϕ1(v)(y) and∆0

v′u′ = ∆
y
v′u′ , thus v′Ru′.

We conclude that R is a strong refinement relation. �

Let us summarize the relations between refinements for deterministic CMCs:
[[S1]] ⊆ [[S2]] iff S1 ≼ S2 iff S1 strongly refines S2, (6)

if the CMCs are consistent andhave atmost one valuation in the initial state. The coincidence of the semantic refinementwith
coinductive refinements for CMCs is analogous to the case of trace inclusion refinement and simulation for deterministic
transition systems.

The above results on completeness for deterministic specifications carry over to refinements of [11,16] for IMCs, which
are special cases of our refinements. Completeness of these refinements was an open problem until now.

B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404 4397

Discussion: a weaker notion of determinism. Our notion of determinism may appear overly strong. Indeed, it assumes that,
from a given state i, one cannot reach two states u and v that share common sets of valuations. The assumption is made
independently of the distributions used to reach the two states, i.e., it may be the case that there exists no distribution
through which both u and v can be reached simultaneously.

A natural way to solve the problem would be to consider a weaker version of determinism. More precisely, we say that
a CMC S = ⟨{1, . . . , k}, o, ϕ, A, V } is weakly deterministic if whenever there exists x ∈ [0, 1]k and states i, u, v such that
ϕ(i)(x) and xu > 0 and xv > 0, we have V (u)∩ V (v) = ∅. This version of determinism is strictly weaker than the one given
in Definition 24. Indeed, only states that can be reached by the same distribution should have disjoint sets of valuations.
Though this notion seems reasonable, as mentioned, one can show that there exist twoweakly deterministic CMCs Sc and Sd
such that [[Sc]] ⊆ [[Sd]] but Sc ⋠ Sd. Example of such CMCs are given in the second item of Proposition 12 on page 19. Hence
working with this weaker, even if more natural, version of determinism does not close the gap between weak refinement
and implementation set inclusion.

9. Polynomial CMCs

It is not surprising that CMCs are closed under both conjunction and parallel composition. Indeed, CMCs do not make
any assumptions on constraint functions, even though there are many classes of constraints that are practically intractable.
While this paper is mainly concerned with the development of the theoretical foundations for CMCs, we now briefly study
classes of CMCs for which operations on constraints required by our algorithms can be managed quite efficiently.

A first candidate could be linear constraints, which is the obvious generalization of interval constraints. Unfortunately,
linear constraint CMCs are not closed under parallel composition. Indeed, as we have seen in Section 6 the parallel
composition of two linear constraints leads to a polynomial constraint. However, what ismore interesting is that polynomial
constraints are closed under both conjunction and parallel composition and that these operations do not increase the
quantifier alternations since they only introduce existential quantifiers. Hence, one can claim that CMCs with polynomial
constraints and only existential quantifiers are certainly the smallest extension of IMCs closed under all operations.

From the algorithmic point of view, working with polynomial constraints should not be seen as an obstacle. First, we
observe that algorithms for conjunction and parallel composition do not require any complex operations on polynomials.
The refinement algorithms (presented in Section 4.2) are polynomial in the number of states, and each iteration requires
a quantifier elimination. This procedure is known to be double exponential in general, but there exist efficient single
exponential algorithms [23,24] when quantifier alternations are fixed. Those algorithms are implemented in Maple [25].
The pruning operation is polynomial in the number of states, but each iteration also requires an exponential treatment
as one has to decide whether the constraints have at least one solution. Again, such problems can be solved with efficient
algorithms. Finally, determinizing a CMC can be performedwith a procedure that is similar to the determinization procedure
for finite-state automata. Such a procedure is naturally exponential in the number of states.

Remark 2. In Section 6, it was shown that, assuming independent sets of valuations, parallel composition is refined by
conjunction. We have also observed that the conjunction or disjunction of two linear constraints remains linear, but
that parallel composition may introduce polynomial constraints. From an implementation point of view it may thus be
more efficient to work with linear constraints only. For doing so, one can simply approximate parallel composition with
conjunction.

10. Relating CMCs to probabilistic automata

CMCs are a newcomer in a long series of probabilistic modeling languages and abstractions for them. Throughout the
paper we have indicated that many of our results directly translate to simpler abstractions, like IMCs. We shall now further
discuss this foundational aspect of CMCs, showing how they subsume a few established notions of refinement and parallel
composition for probabilistic automata (and for process algebra based on them).

Below we write Dist(S) for the set of all probability distributions over a finite set S. Given two finite sets S and T and
a probability distribution α ∈ Dist(S × T), we denote the marginal distribution over S as αs,T =

∑
t∈T αs,t , and similarly

for T . We say that ϕ is a non-deterministic distribution constraint over set I if all solutions x of ϕ are point distributions; so
∃i. xi = 1. Write [i

S] to denote a particular point distribution for which [i
S]i = 1. For example, in Fig. 11 constraints ϕc(2)

and ϕd(1) are non-deterministic distribution constraints. The two-point distributions satisfying ϕc(2) are [3
1..4] and [4

1..4].
Non-deterministic distribution constraints model a non-deterministic choice of an element from S. They will be used to

encode non-determinism in CMCs.
A probabilistic automaton (PA for short) [17] is a tuple S = (S, Act,→, s1), where S is a finite set of states, → ⊆

S × Act × Dist(S) is a finite transition relation and s1 ∈ S is the initial state.
If π ∈ Dist(S) and ϱ ∈ Dist(T), then π ⊗ ϱ denotes the unique independent product distribution such that (π ⊗ ϱ)st =

πsϱt . This is consistent with our definition of ⊗ in Section 2, if π , ϱ and π ⊗ ϱ are interpreted as row vectors. Then the
derived combined transition relation of S is given by −→c ∈ S × Act × Dist(S) as follows. We say that t a

−→cϱ iff ϱ is a convex
linear combination of vectors from ϱ = {ϱi | t a

−→ϱi}, so ϱ = ϱ × λ, where λ is a distribution vector λ ∈ [0, 1]|ϱ|. We
interpret ϱ as a matrix, where ith column is a distribution ϱi.

4398 B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404

Fig. 18. Reducing a PA to CMC. Thereπ denotes a distribution constraint, which has a unique solution π . This is formalized below asϕ(2k + i′)(x).

Consider two PA S = (S, Act,→S, s0) and T = (T , Act,→T , t0). For a binary relation R ⊆ S × T we define a derived
relation R∗

⊆ Dist(S)×Dist(T) such that πR∗ϱ iff there exists a distribution α ∈ Dist(S × T) and (1) αq,T = πq for all q ∈ S,
(2) αS,r = ϱr for all r ∈ T and (3) αs,t ≠ 0 implies sRt .

Definition 30 (Simulation [17]). A relation R ⊆ S × T is a simulation iff (s, t) ∈ R implies that whenever s a
−→π for a

distribution π , then t a
−→ϱ for distribution ϱ such that πR∗ϱ.

R is a probabilistic simulation iff (s, t) ∈ R implies that if s a
−→π , then t a

−→cϱ for some distribution ϱ, and πR∗ϱ.

Let A ⊆ Act be the subset of actions on which S and T should synchronize. The parallel composition of S and T is a PA
S ‖ T = (S × T , Act,→, (s0, t0)), where → is the largest transition relation such that (s, t) a

−→π ⊗ ϱ if:
a ∈ A and s a

−→
Sπ and t a

−→
Tϱ, or

a /∈ A and s a
−→

Sπ and ϱ = [tT], or

a /∈ A and π = [sS] and t a
−→

Tϱ.
We now propose a linear encoding of PAs into CMCs, which reduces simulation and parallel composition of PAs to

refinement and parallel composition of CMCs (see Fig. 18). Let S = ({s1, . . . , sk}, Act,→, s0) be a PA. And let l be the number
of reachable action–distribution pairs, soΩS = {(a1, π1), . . . , (al, πl)} = {(a, π) | ∃s ∈ S. s a

−→π}. The corresponding CMC
is S = ⟨{1, . . . , 2k + l}, 1,ϕ,Act ∪ ⊥,V ⟩, where ⊥ /∈ Act.S has three kinds of states. Type-1 states, 1 . . . k, correspond directly to states of S. Distributions leaving these states model a
non-deterministic choice. Type-2 states, k + 1, . . . , 2k, model a possibility that a component remains idle in a state. Type-3
states, 2k + 1, . . . , 2k + l model the actual distributions of S. In the following we use i to range over states of Type-1 (so
usually 1 ≤ i ≤ k) and i′ to range over action–distribution pairs (so usually 1 ≤ i′ ≤ l). Similarly for j.V assigns value {∅} to type-1 states and value {{⊥}} to type-2 states. For type-3 states we assign actions of transitions in
S:V (2k + i′) = {{ai′}} for 1 ≤ i′ ≤ l. The distribution constraints are as follows:ϕ(i)(x) iff i is type-1 and x = [k+i

1..2k+l] or si
ai′

−−→πi′ ∧ x = [2k+i′

1..2k+l] for 1 ≤ i′ ≤ l.ϕ(k + i)(x) iff k + i is type-2 and x = [i
1..2k+l].ϕ(2k + i′)(x) iff 2k + i′ is type-3 and ∀j ∈ {1, . . . , k}. xj = πi′(sj).

We can now relate simulation of PAs to refinement of CMCs. We say that a constraint is a single-point constraint if it is
only satisfied by a unique distribution. Observe that all constraints in the encoding presented above are non-deterministic
distribution constraints or single-point constraints.

Lemma 31. Let ϕ and ψ be single-point constraints. If for each x ∈ [0, 1]k1 such that ϕ(x) holds, there exists a correspondence
matrix ∆x ∈ [0, 1]k1×k2 such that ψ(x∆x) holds, then there exists a correspondence matrix ∆ ∈ [0, 1]k1×k2 such that for all
x ∈ [0, 1]k1 we have that ϕ(x) =⇒ ψ(x∆).

The lemma holds trivially because there is only one distribution satisfying ϕ.

Lemma 32. Let ϕ (respectively ψ) be a non-deterministic distribution constraint over {1, . . . , k1} (respectively {1, . . . , k2}).
Then if for each distribution vector x satisfying ϕ there exists a correspondence matrix∆x ∈ [0, 1]k1×k2 such that ψ(x∆x) holds,
then there exists a correspondence matrix∆ ∈ [0, 1]k1×k2 such that for all x ∈ [0, 1]k1 we have that ϕ(x) =⇒ ψ(x∆).

Proof. Let x be such that ϕ(x) holds (thus there exists 1 ≤ i ≤ k1 such that xi = 1). There is a finite number of such vectors.
Let xi denote the one that has 1 on the ith position. Take∆ such that∆i = (∆xi)i (the witness from the lemma assumption)
if xi satisfies ϕ and∆i = 0k2 otherwise.

B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404 4399

Now for each xi satisfying ϕ we have that xi∆ = xi∆xi and then ϕ(xi) =⇒ ψ(xi∆xi) ⇐⇒ ψ(xi∆). �

Corollary 33. For any two probabilistic automata S and T we have thatS strongly refinesT iff S weakly refinesT.
Lemma 34. For any two probabilistic automata S and T such that T simulates S we have thatS weakly refinesT.
Proof (Sketch). Let R ⊆ S × T be the relation witnessing the simulation of S by T. Consider a relation Q as follows:

Q1 = {(i, j) | i ∈ {1, . . . , k1}, j ∈ {1, . . . , k2}, (si, tj) ∈ R}

Q2 = {(k1 + i, k2 + j) | i ∈ {1, . . . , k1}, j ∈ {1, . . . , k2}, (si−k1 , tj−k2) ∈ R}

Q3 = {(2k1 + i′, 2k2 + j′) | i′ ∈ {1, . . . , l1}, j′ ∈ {1, . . . , l2}, (ai, πi) ∈ ΩS, (aj, ϱj) ∈ ΩT, ai = aj, (πi, ϱi) ∈ R∗
}

Q = Q1 ∪ Q2 ∪ Q3.

It is easy to show that Q is a weak refinement. First observe that valuations always match for pairs in Q . The valuation is
empty for both S and T in Q1, it is {⊥} in Q2, and {ai} in Q3.

For a pair in (i, j) ∈ Q1 a distribution vector x satisfying the constraint of S is always a point distribution. If xk1+i = 1, take
∆k1+i,k2+j = 1 and zero otherwise. If x2k1+i′ = 1 take ∆2k1+i′,2k2+j′ = 1 and zero otherwise, where j′ is such that tj′

ai′
−−→ϱj′

and πi′R∗ϱj′ .
For a pair (k1 + i, k2 + j) ∈ Q2 take∆ij = 1, and zero otherwise.
For a pair (2k1 + i′, 2k2 + j′) ∈ Q3 take∆ such that for (i, j) ∈ {1, . . . , k1} × {1, . . . , k2} we have∆ij = αij/xi, or zero if

xi = 0, where α is the distribution witnessing πi′R∗ϱj′ . �

Lemma 35. For any two probabilistic automata S and T such thatS strongly refinesT we have that T simulates S.

Proof (Sketch). Assume thatS strongly refinesT is witnessed by a relation R ⊆ {1, . . . , 2k1 + l1} × {1, . . . , 2k2 + l2}. Show
that a relation Q = {(si, tj) ∈ S × T | (i, j) ∈ R, i ∈ {1, . . . , k1}, j ∈ {1, . . . , k2}} is a simulation relation.

In the crucial point of the proof consider αsitj = ∆ijπi′(si), where πi′ is a distribution being the only solution of a point
constraint for state i′ ∈ {2k1, . . . , 2k2 + l1}. �

Theorem 36 follows as a corollary from the above two lemmas and Corollary 33.

Theorem 36. T simulates S iff S strongly refinesT.
The same encoding is used to characterize parallel composition of PAs using parallel composition of CMCs.
We say that two CMCs S1 and S2 are isomorphic if there exists a bijection f : {1, . . . , k1} → {1, . . . , k2}, such that ϕ(v)

is satisfied by x ∈ [0, 1]k1 if and only if ϕ(f (v)) is satisfied by x.
Expression S[a′1/a1; . . . ; a′n/an]a1,...,an∈Act denotes a comprehended substitution, substituting a primed version of name ai

for each occurrence in ai, for all actions in Act.

Theorem 37. For two PAs S and T over the same set of actions Act and a synchronizing set A ⊆ Act we have that S ‖ T is
isomorphic to

((S ‖T[a
′
/a]a∈Act∪⊥) ∧ SA) [a/(a,a′); a/(a,⊥′); a/(⊥,a′)]a∈Act ,

where SA is a synchronizer over Act ∪ ⊥ × Act′ ∪ ⊥
′ defined by

(∀a ∈ A. a ⇐⇒ a′) ∧ (∀a /∈A. (a =⇒ ⊥
′) ∧ (a′

=⇒ ⊥)).

Proof. Let S = ({s1, . . . , sk1}, Act,→
S, s1), T = ({t1, . . . , tk2}, Act,→

T , t1), and A ⊆ Act. Consider S ‖ T =

({(s1, t1), (s1, t2), . . . , (sk1 , tk2)}, Act,→, (s1, t1)) defined in the usual way.
We now construct S ‖ T = ({1, . . . , 2k1k2 + l}, 1,ϕ, Act ∪ ⊥,V }) in the usual way, where l is the number of reachable

action–distribution pairs.
ConsiderS ‖T[a

′
/a]a∈Act∪⊥ = ⟨{1, . . . , 2k1 + l1}× {1, . . . , 2k2 + l2}, (1, 1), ϕ, Act∪ Act′ ∪⊥∪⊥

′, V ⟩, where l1 and l2 are
the number of reachable action–distribution pairs for S and T, respectively. Conjoining with SA allows exactly those pairs of
actions that are allowed in the parallel composition of probabilistic automata.

Finally we apply the renaming [a/(a,a′); a/(a,⊥′); a/(⊥,a′)]a∈Act, and obtain ((S ‖ T[a
′
/a]a∈Act∪⊥) ∧ SA)[a/(a,a′); a/(a,⊥′);

a/(⊥,a′)]a∈Act.
The bijection will be taken as the mapping that takes a state in S ‖ T to the equivalent state in ((S ‖ T[a

′
/a]a∈Act∪⊥) ∧

SA) [a/(a,a′); a/(a,⊥′); a/(⊥,a′)]a∈Act. The bijection f is defined, for states allowed by the parallel composition of PAs, as follows:

• i ∈ {1, . . . , k1k2} is mapped into {(1, 1), . . . , (k1, k2)} by i → (((i − 1) div k2)+ 1, ((i − 1) mod k2)+ 1),
• i ∈ {k1k2+1, . . . , 2k1k2} is mapped into {(k1+1, k2+1), . . . , (2k1, 2k2)} by i → (((i−1) div k2)+1, ((i−1) mod k2)+

1 + k2), and

4400 B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404

Fig. 19. An attempt to visualize the second encoding. π a
∗
denotes a constraint expressing a probability vector that is a linear combination of all probability

distributions labeled by a. Below this is formalized as ϕ̌(2k + i′)(x).

• i ∈ {2k1k2+1, . . . , 2k1k2+l} ismapped injectively into {k1+1, . . . , 2k1}×{2k2+1, . . . , 2k2+l2}∪{2k1+1, . . . , 2k1+l1}×
{k2+1, . . . , 2k2}∪{2k1+1, . . . , 2k1+l1}×{2k2+1, . . . , 2k2+l2}. This is done such that, f (2k1k2+p) = (2k1+q, 2k2+r),
if both 2k1k2 + p and (2k1 + q, 2k2 + r) are labeled with an a ∈ A and there exists s ∈ {s1, . . . , sk1} and t ∈ {t1, . . . , tk2},
such that s a

−→
Sπ and t a

−→
Tϱ and (s, t) a

−→π ⊗ϱ and the constraint functions of 2k1 + q and 2k2 + r are satisfied by π and
ϱ, respectively and the constraint function of 2k1k2 + p is satisfied by π ⊗ ϱ.
Similarly, f (2k1k2 + p) = (k1 + q, 2k2 + r), if both 2k1k2 + p and (k1 + q, 2k2 + r) are labeled with an a ∉ A and there
exists s ∈ {s1, . . . , sk1} and t ∈ {t1, . . . , tk2}, such that t a

−→
Tϱ and π = [s

{s1,...,sk}
] and (s, t) a

−→π ⊗ ϱ.

From the above, is it clear that for type-3 states i, i and f (i)will have equivalent constraint functions. For a type-1 state i,
a distribution giving probability 1 to i + k1k2 is allowed. In f (i) the same distribution is allowed, since, in the constraints ofS andT, distributions allowing S and T to idle, are allowed. Same argument holds for type-2 states.

It is then clear, that for a state v of S ‖ T, v and f (v) have equivalent constraint functions. �

Interestingly, the precongruence property for parallel composition of PAs is obtained as a corollary of the above two
reduction theorems and Theorem 17.

Another, very similar, but slightly more complicated, encoding exists, for which weak refinement coincides with
probabilistic simulation. Consider a PA S = (S, Act,→, s1), where S = {s1, . . . , sk}. Let {(s1, a1), . . . , (sl, al)} = {(s, a) |

s ∈ S ∧ a ∈ Act}. The corresponding CMC is

Š = ({1, . . . , 2k + l}, 1, ϕ̌, Act ∪ ⊥, V̌ }),

where ⊥ is a fresh symbol not in Act . We have three types of states (see Fig. 19). Type-1 states, {1, . . . , k}, correspond
directly to states {s1, . . . , sk}—their distribution constraints encode the non-deterministic choice of action. Type-2 states,
{k + 1, . . . , 2k}, represent the ability of a state to be idle. We will use them in parallel composition. Type-3 states,
{2k + 1, . . . , 2k + l}, encode choice of a probability distribution as a linear combination of distributions allowed by the
automaton.

The valuation functions are given by:

V̌ (i) = {∅} for 1 ≤ i ≤ k
V̌ (k + i) = {{⊥}} for 1 ≤ i ≤ k
V̌ (2k + i′) = {{ai′}} for 1 ≤ i′ ≤ l

and

ϕ̌(i)(x) is xk+i = 1 or ∃1 ≤ i′ ≤ l. x2k+i′ = 1 ∧ si
′

= si for 1 ≤ i ≤ k (type-1)
ϕ̌(k + i)(x) is xi = 1 for 1 ≤ i ≤ k (type-2)
ϕ̌(2k + i′)(x) is ∃λ ∈ Dist(1, . . . , |π|). x = πλ for 1 ≤ i′ ≤ l (type-3),

where π = {π | sj
aj

−→π}. Technically speaking π is a matrix, whose columns are distributions π . We write |π| for the
number of columns in π. Additionally x is implicitly required to be a probability distribution over {1, . . . , 2k + l}.

Observe thatS is only polynomially larger than S.

Lemma 38 (Soundness). For any two probabilistic automata S and T such that Š weakly refines Ť, we have that T
probabilistically simulates S.

Proof. Let S = (S, Act,→S, s1) and T = (T , Act,→T , t1), with S = {s1, . . . , sk1} and T = {t1, . . . , tk2}. In the proof we
write ϕ̌ to refer to the constraint function of Š, and ϱ̌ to refer to the constraint function of Ť. Also l1 and l2 are used to refer
to the number of combinations of state actions of respectively Š and Ť. Finally qi and rj are used to range over states in S
(respectively in T), when si and tj are bound to some concrete value.

B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404 4401

LetR ∈ {1, . . . , 2k1 + l1}×{1, . . . , 2k2 + l2} be a weak refinement relation between Š and Ť, witnessing the assumption
of the lemma. The proof proceeds by showing that

Q = {(si, tj) | (i, j) ∈ R ∧ 1 ≤ i ≤ k1 ∧ 1 ≤ j ≤ k2}

is a probabilistic simulation relation between S and T.
We apply the usual coinductive proof technique. Take (si, tj) ∈ Q. Let π ∈ Dist(S) be such that si

a
−→π , and (si

′

, ai′) =

(si, a).2
By construction of the encodingwe know that any probability distribution x satisfyingϕ(i)(x) is a point distribution, and x

such that x2k+i′ = 1 is possible. So consider such a distribution x. Since (i, j) ∈ Rwe know that there exists a correspondence
matrix∆ ∈ [0, 1](2k1+l1)×(2k2+l2) such thatψ(j)(x∆) holds. Moreover x∆must be a point distribution by construction of the
encoding. So (x∆)2k2+j′ = 1 for some 1 ≤ j′ ≤ l2. And, by refinement again, we get that valuation functions for 2k1 + i′ and
for 2k2 + j′ both return {{a}} and that (2k1 + i′, 2k2 + j′) ∈ R.

But Ť is also constructed using the encoding, so it necessarily is that tj
a

−→ϱ for some ϱ ∈ Dist(T).
Observe that ϕ(2k1 + i′)(π) holds, because π is always a convex linear combination of a set of vectors containing it. Since

(2k1 + i′, 2k2 + j′) ∈ R, there exists a correspondence matrix∆′
∈ [0, 1](2k1+l1)×(2k2+l2) such that ψ(2k2 + j′)(π∆′) holds.

The latter implies that π∆′ is a linear combination of vectors in ϱ = {ϱ | tj
a

−→ϱ}.
It remains to show that πR∗(π∆′). Take αqi,qj = πi∆

′

ij. We first argue that α ∈ Dist(S × T). Since each row of a

correspondence matrix sums up to 1, we have that πi∆
′

ij ∈ [0, 1] for all i, j. Also
∑k1

i=1
∑k2

j=1 πi∆
′

ij =
∑k1

i=1 πi = 1.

Consider αqi,T =
∑k2

j=1 αqi,tj =
∑k2

j=1 πi∆
′

ij = πi
∑k2

j=1∆
′

ij = πi as required by πR∗(π∆′).

Now consider αS,rj =
∑k1

i=1 αsi,rj =
∑k1

i=1 πi∆
′

ij = (π∆′)j as required by πR∗(π∆′).
Now if αqi,rj ≠ 0, then ∆′

ij ≠ 0, which in turn with refinement of 2k2 + j′ by 2k1 + i′ implies that (i, j) ∈ R, and
furthermore (si, sj) ∈ Q by construction, as required by πR∗(π∆′). This finishes the proof. �

Lemma 39 (Completeness). For any two probabilistic automata S and T such that T probabilistically simulates S, we have that
Š weakly refines Ť.

Proof. Let S = (S, Act,→S, s1) and T = (T , Act,→T , t1), with S = {s1, . . . , sk1} and T = {t1, . . . , tk2}. Let Q ⊆ S × T be
the probabilistic simulation relation between S and T, witnessing the assumption of the lemma.

The proof proceeds by showing that a relation R ⊆ {1, . . . , 2k1 + l1} × {1, . . . , 2k2 + l2} is a weak refinement relation
between Š and Ť.

Take the following candidate for R:

R1 = {(i, j) | (si, tj) ∈ Q}

R2 = {(k1 + i, k2 + j) | (si, tj) ∈ Q}

R3 = {(2k1 + i′, 2k2 + j′) | (si, tj) ∈ R ∧ si = si
′

∧ tj = t j
′

}

R = R1 ∪ R2 ∪ R3.

We apply the usual coinductive proof technique.
Case 1. Take (i, j) ∈ R1 and x satisfying ϕ(i)(x). We know that x can only be a point distribution. If xk1+i = 1, then we

take ∆ such that ∆k1+i,k2+j = 1 (and ∆ is zero for all other elements). Clearly ∆ is a correspondence matrix. Moreover x∆
is a point distribution with 1 in the (k2 + j)th position, so ψ(j)(x∆) holds by construction of the encoding (see first case in
encoding of constraints). Also (k1 + i, k2 + j) ∈ R2 since (si, tj) ∈ Q.

If x2k1+i′ = 1, then it means that si
V̌ (i)

−−→π for some π and action V̌ (i). But then, since (si, tj) ∈ Q, it is possible that
tj

V̌ (i)
−−→cϱ, for some distribution ϱ. Let j′ be such that tj = t j

′

and aj′ = V̌ (i). Take a correspondence matrix ∆ such that
∆2k1+i′,2k2+j′ = 1 (and ∆ is zero for all other elements). We have that x∆ is a point distribution with 1 in the (2k2 + j′)th
position, so ψ(j)(x∆) holds by construction of encoding resulting in j (see first case in encoding of constraints). Also
(2k1 + i′, 2k2 + j′) ∈ R3 ⊆ R by definition of R3.

Case 2. Take (k1 + i, k2 + j) ∈ R2. The argument is almost identical to the first sub-case in Case 1. We omit it here.
Case 3. Take (2k1+i′, 2k2+j′) ∈ R3 and x satisfyingϕ(2k1+i′)(x). Let si = si

′

and tj = t j
′

. ByR3 weknow that (si, tj) ∈ Q.

By construction of the encoding si
V̌ (2k1+i′)

−−−−−→x and furthermore tj
V̌ (2k1+i′)

−−−−−→cϱ, whereϱ = ϱλ for some probability distribution
λ ∈ Dist(1, . . . , |ϱ|). Clearly ψ(2k2 + j′)(ϱ) = 1. It remains to check that π can be correspondence to ϱ.

To this end consider a correspondence matrix∆ such that

∆ij =


αsi,tj/xi if xi ≠ 0 and i ≤ k1, j ≤ k2
0 otherwise.

2 The equality binds i′ to be the index of (si, a) on the list of state–action pairs in the encoding of S.

4402 B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404

Now (x∆)j =
∑2k1+l1

i=1 xi∆ij =
∑k1

i=1 xiαsi,tj/xi =
∑k1

i=1 αsi,tj = αS,tj = ϱj by xR∗ϱ (this discussion only holds for j ≤ k2, but
the remaining elements are zero, which is easy to argue for. Also somewhat sloppily we ignored the possibility of division by
zero — indeed it cannot happen since for xi = 0we said that∆ij is simply zero). Effectively x∆ = ϱ, so it satisfiesψ(2k2+ j′).
Valuations obviously match.

Moreover if∆ij ≠ 0, then αsi,tj ≠ 0 and (si, tj) ∈ Q and then (i, j) ∈ R1 ⊆ R, which finishes the proof. �

Theorem 40 is a corollary from the above two lemmas.

Theorem 40. T probabilistically simulates S iff Š weakly refines Ť.

Similarly, we obtain a precongruencewith probabilistic simulation using a suitable encoding—a good example howCMCs
can be used to study properties of simpler languages in a generic way.

11. Related work and concluding remarks

We have presented CMCs—a new model for representing a possibly infinite family of MCs. Unlike the previous
attempts [11,16], our model is closed under many design operations, including composition, conjunction, determinization
and normalization. We have studied these operations as well as several classical compositional reasoning properties,
showing that, among others, the CMC specification theory is equippedwith a complete refinement relation (for deterministic
specifications), which naturally interacts with parallel composition, synchronization and conjunction. We have also
demonstrated how our framework can be used to obtain properties for less expressive languages, by using reductions.
In particular, we have exemplified this for probabilistic automata with simulation and probabilistic simulation of
Segala.

Two recent contributions [16,29] are related to our work. Fecher et al. [16] propose a model checking procedure for
PCTL [30] and Interval Markov Chains (other procedures recently appeared in [22,31]), which is based on weak refinement.
However, our objective is not to use CMCswithin amodel checking procedure for probabilistic systems, but rather to benefit
from it as a specification theory.

Very recently Katoen et al. [29] have extended Fecher’s work to Interactive Markov Chains, a model for performance
evaluation [32,33]. Their abstraction uses the continuous-time version of IMCs [34] augmented with may and must
transitions, very much in the spirit of [2]. Parallel composition is defined and studied for this abstraction, however
conjunction has been studied neither in [16] nor in [29].

Over the years process algebraic frameworks have been proposed for describing and analyzing probabilistic systems
based on Markov Chains (MCs) and Markov Decision Processes [20,35,36]. Also a variety of probabilistic logics have
been developed for expressing properties of such systems, e.g., PCTL [12]. Both traditions support refinement between
specifications using various notions of probabilistic simulation [11,16] and, respectively, logical entailment [37]. Whereas
the process algebraic approach favors parallel composition, the logical approach favors conjunction. Neither of the two
supports both conjunction and parallel composition.

In mathematics the abstraction of Markov set-chains [38] lies very close to IMCs. It has been, for instance, used to
approximate dynamics of hybrid systems [39]. The latter defines the intervals on the transition probabilities, while the
former uses matrix intervals in the transition matrix space, which allows reasoning about the abstraction using linear
algebra. Technically a Markov set-chain is an explicit enumeration of all the implementations of an IMC. While these works
are clearly related to ours, we shall observe that like IMCs, these models are not closed under conjunction/composition.

In controller synthesis a notion of Constrained Markov Decision Processes (CMDPs) has been introduced. The similarity
of name to CMCs is purely coincidental. In particular CMDPs are not a generalization/abstraction of CMCs. CMDPs, as
described by Altman [40], are Markov Decision Processes annotated with several cost functions. They are used to synthesize
probabilistic schedulers that optimize one cost function under a constraint over the other functions. Thus they are not a
specification theory or an abstraction in the same sense as CMCs are.

As a futurework, it would be of interest to design, implement and evaluate efficient algorithms for procedures outlined in
this paper. We would also like to define a quotient relation for CMCs, presumably building on results presented in [41]. The
quotienting operation is of particular importance for component reuse [4,42–45]. One could also investigate the applicability
of our approach in model checking procedures, in the same style as Fecher and coauthors have used IMCs for model
checking PCTL [16]. Another promising direction would be to mix our results with those we recently obtained for timed
specifications [46–48], hence leading to the first theory for specification of timed probabilistic systems [49]. We should also
investigatemore quantitative versions of the refinement operation like thiswas done for contracts in [50]. Finally, itwould be
interesting to extend our composition operation by considering products of dependent probability distributions in the spirit
of [51].

Acknowledgments

This work was supported by the European COMBEST project no. 215543, by VKR Centre of Excellence MT-LAB, and by an
‘‘Action de Recherche Collaborative’’ ARC (TP)I.

B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404 4403

References

[1] T.A. Henzinger, J. Sifakis, The embedded systems design challenge, in: FormalMethods, FM, in: Lecture Notes in Computer Science, vol. 4085, Springer,
2006, pp. 1–15.

[2] K.G. Larsen, Modal specifications, in: Automatic Verification Methods for Finite State Systems, AVMS, in: Lecture Notes in Computer Science, vol. 407,
Springer, 1989, pp. 232–246.

[3] K. G. Larsen, U. Nyman, A. Wąsowski, On modal refinement and consistency, in: Concurrency Theory, CONCUR, Springer, 2007, pp. 105–119.
[4] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, A. Legay, R. Passerone, Modal interfaces: unifying interface automata and modal specifications,

in: Embedded Software, EMSOFT, ACM, 2009, pp. 87–96.
[5] K.G. Larsen, U. Nyman, A. Wąsowski, Modal I/O automata for interface and product line theories, in: European Symposium on Programming, ESOP,

in: Lecture Notes in Computer Science, Springer, 2007, pp. 64–79.
[6] L. de Alfaro, T.A. Henzinger, Interface automata, in: Foundations of Software Engineering, FSE, ACM Press, 2001, pp. 109–120.
[7] L. Doyen, T.A. Henzinger, B. Jobstmann, T. Petrov, Interface theories with component reuse, in: L. de Alfaro, J. Palsberg (Eds.), Embedded Software,

EMSOFT, ACM Press, 2008, pp. 79–88.
[8] A. Chakrabarti, L. de Alfaro, T.A. Henzinger, F.Y.C. Mang, Computer Aided Verification, CAV, in: Lecture Notes in Computer Science, vol. 2404, 2002,

pp. 414–427.
[9] L. de Alfaro, L.D. da Silva, M. Faella, A. Legay, P. Roy, M. Sorea, Sociable interfaces, in: Frontiers of Combining Systems, FroCos, in: Lecture Notes in

Computer Science, vol. 3717, Springer, 2005, pp. 81–105.
[10] B.T. Adler, L. de Alfaro, L.D. da Silva, M. Faella, A. Legay, V. Raman, P. Roy, Ticc: a tool for interface compatibility and composition, in: Computer Aided

Verification, CAV, in: Lecture Notes in Computer Science, vol. 4144, Springer, 2006, pp. 59–62.
[11] B. Jonsson, K.G. Larsen, Specification and refinement of probabilistic processes, in: Logic in Computer Science, LICS, IEEE Computer, 1991, pp. 266–277.
[12] H. Hansson, B. Jonsson, A logic for reasoning about time and reliability, Form. Asp. Comput. 6 (5) (1994) 512–535.
[13] T. Brázdil, V. Forejt, J. Kretínský, A. Kucera, The satisfiability problem for probabilistic ctl, in: Proceedings of the Twenty-Third Annual IEEE Symposium

on Logic in Computer Science, LICS 2008, 24–27 June 2008, IEEE Computer Society, Pittsburgh, PA, USA, 2008, pp. 391–402.
[14] A. David, K.G. Larsen, A. Legay, U. Nyman, A.Wasowski, Methodologies for specification of real-time systems using timed i/o automata, in: F.S. de Boer,

M.M. Bonsangue, S. Hallerstede, M. Leuschel (Eds.), FMCO, in: Lecture Notes in Computer Science, vol. 6286, Springer, 2009, pp. 290–310.
[15] L. de Alfaro, T.A. Henzinger, Interface-based design, in: Engineering Theories of Software-intensive Systems, in: NATO Science Series: Mathematics,

Physics, and Chemistry, vol. 195, Springer, 2005, pp. 83–104.
[16] H. Fecher, M. Leucker, V. Wolf, Don’t Know in probabilistic systems, in: SPIN, in: Lecture Notes in Computer Science, vol. 3925, Springer, 2006,

pp. 71–88.
[17] R. Segala, N. Lynch, Probabilistic simulations for probabilistic processes, in: Concurrency Theory CONCUR, in: Lecture Notes in Computer Science,

vol. 836, springer, 1994, pp. 481–496.
[18] H. Hansson, B. Jonsson, A calculus for communicating systemswith time and probabitilies, in: IEEE Real-Time Systems Symposium, 1990, pp. 278–287.
[19] B. Jonsson, K. Larsen, W. Yi, Probabilistic extensions of process algebras, in: Handbook of Process Algebra, Elsevier, 2001, pp. 681–710.
[20] H. Hermanns, Interactive Markov chains: and the quest for quantified quality, Springer-Verlag, Berlin, Heidelberg, 2002.
[21] K. Sen, M. Viswanathan, G. Agha, Model-checking Markov chains in the presence of uncertainties, in: Tools and Algorithms for the Construction and

Analysis of Systems, TACAS, in: Lecture Notes in Computer Science, vol. 3920, Springer, 2006, pp. 394–410.
[22] K. Chatterjee, K. Sen, T.A. Henzinger, Model-checking omega-regular properties of interval Markov chains, in: Foundations of Software Science and

Computation Structures, FoSSaCS, in: Lecture Notes in Computer Science, vol. 4962, Springer, 2008, pp. 302–317.
[23] C.W. Brown, Simple cad construction and its applications, J. Symbolic Comput. 31 (5) (2001) 521–547.
[24] C.W. Brown, J.H. Davenport, The complexity of quantifier elimination and cylindrical algeraic decomposition, in: Symbolic and Algebraic Computation

SSAC, Waterloo, ON, Canada, 2007, pp. 54–60.
[25] H. Yanami, H. Anai, SyNRAC: a Maple toolbox for solving real algebraic constraints, ACM Commun. Comput. Algebra 41 (3) (2007) 112–113.
[26] S. Basu, New results on quantifier elimination over real closed fields and applications to constraint databases, J. ACM 46 (4) (1999) 537–555.
[27] B. Caillaud, B. Delahaye, K.G. Larsen, A. Legay, M.L. Pedersen, A. Wąsowski, Decision problems for interval markov chains, Res. Rep. (2010). URL

http://www.cs.aau.dk/~mikkelp/doc/IMCpaper.pdf.
[28] N. Beneš, J. Křetínský, K. Larsen, J. Srba, On determinism in modal transition systems, Theoret. Comput. Sci. 410 (41) (2009) 4026–4043.
[29] J. Katoen, D. Klink, M.R. Neuhäußer, Compositional abstraction for stochastic systems, in: FormalModelling and Analysis of Timed Systems, FORMATS,

in: Lecture Notes in Computer Science, vol. 5813, Springer, 2009, pp. 195–211.
[30] F. Ciesinski, M. Größer, On probabilistic computation tree logic, in: Validation of Stochastic Systems, VSS, in: Lecture Notes in Computer Science,

vol. 2925, Springer, 2004, pp. 147–188.
[31] S. Haddad, N. Pekergin, Using stochastic comparison for efficient model checking of uncertain Markov chains, in: Quantitative Evaluation of SysTems,

QEST, IEEE Computer Society Press, 2009, pp. 177–186.
[32] H. Hermanns, U. Herzog, J. Katoen, Process algebra for performance evaluation, Theoret. Comput. Sci. 274 (1–2) (2002) 43–87.
[33] J. Hillston, A Compositional Approach to Performance Modelling, Cambridge University Press, 1996.
[34] J. Katoen, D. Klink, M. Leucker, V.Wolf, Three-valued abstraction for continuous-timeMarkov chains, in: Computer Aided Verification, CAV, in: Lecture

Notes in Computer Science, vol. 4590, Springer, 2007, pp. 311–324.
[35] S. Andova, Process algebrawith probabilistic choice, in: AMASTWorkshoponReal-Time andProbabilistic Systems, ARTS, in: LectureNotes in Computer

Science, vol. 1601, Springer, 1999, pp. 111–129.
[36] N. López, M. Núñez, An overview of probabilistic process algebras and their equivalences, in: Validation of Stochastic Systems, VSS, in: Lecture Notes

in Computer Science, vol. 2925, Springer, 2004, pp. 89–123.
[37] H. Hermanns, B. Wachter, L. Zhang, Probabilistic CEGAR, in: Computer Aided Verification, CAV, in: Lecture Notes in Computer Science, vol. 5123,

Springer, 2008, pp. 162–175.
[38] H.J. Hartfield, Markov Set-Chains, in: Lecture Notes in Mathematics, vol. 1695, Springer Verlag, 1998.
[39] A. Abate, A. D’Innocenzo, M.D.D. Benedetto, S.S. Sastry, Markov set-chains as abstractions of stochastic hybrid sytems, in: M. Egerstedt, B. Mishra

(Eds.), Proceedings of the 11th International Workshop on Hybrid Systems: Computation and Control, in: Lecture Notes in Computer Science,
vol. 4981, Springer, 2008, pp. 1–15.

[40] E. Altman, Constrained Markov Decision Processes, Chapman & Hall/CRC, 1999.
[41] K.G. Larsen, A. Skou, Compositional verification of probabilistic processes, in: Concurrency Theory, CONCUR, in: Lecture Notes in Computer Science,

vol. 630, Springer, 1992, pp. 456–471.
[42] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, R. Passerone, Why are modalities good for interface theories? in: Application of Concurrency to

System Design, ACSD, IEEE Computer Society Press, 2009, pp. 119–127.
[43] J.-B. Raclet, Quotient de spécifications pour la réutilisation de composants, Ph.D. Thesis, Université de Rennes I, december 2007 (in French).
[44] J.-B. Raclet, Residual for component specifications, in: Formal Aspects of Component Software, FACS, in: Electr. Notes Theor. Comput. Sci., vol. 215,

2008, pp. 93–110.
[45] P. Bhaduri, Synthesis of interface automata, in: Automated Technology for Cerification and Analysis, ATVA, in: Lecture Notes in Computer Science,

vol. 3707, 2005, pp. 338–353.
[46] A. David, K.G. Larsen, A. Legay, U. Nyman, A.Wąsowski, Timed i/o automata: a complete specification theory for real-time systems, in: Hybrid Systems:

Computation and Control, HSCC, ACM, 2010, pp. 91–100.

http://www.cs.aau.dk/~mikkelp/doc/IMCpaper.pdf

4404 B. Caillaud et al. / Theoretical Computer Science 412 (2011) 4373–4404

[47] N. Bertrand, S. Pinchinat, J.-B. Raclet, Refinement and consistency of timedmodal specifications, in: Language and Automata Theory and Applications,
LATA, in: Lecture Notes in Computer Science, vol. 5457, Springer, Tarragona, Spain, 2009, pp. 152–163.

[48] N. Bertrand, A. Legay, S. Pinchinat, J.-B. Raclet, A compositional approach on modal specifications for timed systems, in: International Conference on
Formal Engineering Methods, ICFEM, in: Lecture Notes in Computer Science, vol. 5885, Springer, 2009, pp. 679–697.

[49] M.Z. Kwiatkowska, G. Norman, J. Sproston, F. Wang, Symbolic model checking for probabilistic timed automata, Inform. and Comput. 205 (7) (2007)
1027–1077.

[50] B. Delahaye, B. Caillaud, A. Legay, Probabilistic contracts: A compositional reasoning methodology for the design of stochastic systems, in: 10th
International Conference on Application of Concurrency to System Design, ACSD 2010, Braga, Portugal, 21–25 June 2010, IEEE Computer Society,
2010, pp. 223–232.

[51] L. de Alfaro, T.A. Henzinger, R. Jhala, Compositionalmethods for probabilistic systems, in: Concurrency Theory, CONCUR, in: Lecture Notes in Computer
Science, vol. 2154, Springer, 2001, pp. 351–365.

	Constraint Markov Chains
	Introduction
	Background definitions
	Constraint Markov chains
	Satisfaction
	Consistency
	Single valuation normal form

	Refinement
	Refinement relations
	Algorithms for computing refinements

	Conjunction
	Separation of concerns in parallel composition of specifications
	On comparing conjunction and parallel composition

	Disjunction and universality
	On the existence of a disjunction of CMCs
	The universality problem for CMCs

	Deterministic CMCs
	Polynomial CMCs
	Relating CMCs to probabilistic automata
	Related work and concluding remarks
	Acknowledgments
	References

