
Concurrent Secrets

Eric Badouel*, Marek Bednarczyk**, Andrzej Borzyszkowski***, Benoˆıt Caillaud*, and Philippe Darondeau*

Abstract— Given a finite state system with partial observers
and for each observer, a regular set of trajectories which we
call a secret, we consider the question whether the observers
can ever find out that a trajectory of the system belongs to some
secret. We search for a regular control on the system, enforcing
the specified secrets on the observers, even though they have
full knowledge of this control. We show that an optimal control
always exists although it is generally not regular. We state
sufficient conditions for computing a finite and optimal control
of the system enforcing the concurrent secret as desired.

I. INTRODUCTION

This work is an attempt to import supervisory control
into the area of computer security. Given an automaton, or
plant, and given specifications of the desired behaviour of the
plant, Ramadge and Wonham’s theory presented in [1] [2]
yields a finite, non blocking, and maximal permissive control
of the plant enforcing this behaviour (in the normal case
or when unobservable events are uncontrolable). Controller
synthesis is a desirable complement to model checking, for
it allows curing the problems that model checkers can reveal.
Supervisory control has found applications in manufacturing
systems, in embedded systems, and more generally in safety
critical systems. We feel it could find applications as well in
computer security, and we shall strive to support this thesis.

With the above goal in mind, we have searched for a
class of security problems likely to be dealt with as control
problems. We model an interactive computer system and its
users as a closed entity in which the users observe their own
interactions with the system. The closed entity is represented
with a finite automaton over an alphabetΣ. The synchronous
interactions between each useri and the system are figured by
the elements of a corresponding sub-alphabetΣi ⊆ Σ (users
may synchronize when their sub-alphabets intersect). Usually
in supervisory control, the control objective is a predicate on
the runs of the plant, specifying some combination of safety
and liveness properties, and the observers act as sensors,
i.e. they supply informations on the status of the plant,
used by the controller to produce an adequate feedback
enabling or disabling events in the plant. Here, the game is
different: the observers are not on the side of the controller
but they are opponents. As for the control objective, there
are still predicates (Si) on the runs of the system, but the
interpretation is again different: an observeri should never

* E. Badouel, B. Caillaud, and P. Darondeau are with INRIA-Rennes
e-mail: ebadouel@irisa.fr bcaillau@irisa.fr darondeau@irisa.fr

** M. Bednarczyk is with IPIPAN-Gda´nsk
e-mail: m.bednarczyk@ipipan.gda.pl

*** A. Borzyszkowski is with the University of Gda´nsk and IPIPAN
e-mail: a.borzyszkowski@math.univ.gda.pl

find out that the actual trajectory of the system belongs to
the secret (Si) he has been assigned.

One reason why we believe the model sketched above is
worth investigating is that, in the case of a single observer, it
has already been introduced independently in [3] and studied
further in [4]. What we callsecretshere was called there
opaque predicates, albeit with larger families of predicates
(sets of runs) and observation functions. It was shown in [4]
that anonymity problems and non-interference problems may
be reduced to opacity problems, using suitable observation
functions. It was shownibidemthat model-checking a system
for opacity is undecidable in the general case where an
opaque predicate may refer to the visited states or may
be any recursive predicate on sequences of event labels.
Nonetheless, techniques based on abstract interpretation were
proposed in [4] for checking opacity in unbounded Petri nets.

In this paper, we limit ourselves to deal with finite state
systems and with regular predicates defined on sequences of
transition labels. We have thus all cards in hands to decide
opacity, even though several pairs(observer, secret)are taken
into simultaneous account. Now differing from [4], we want
to be able toenforceopacity by supervisory control when
the result of the decision is negative. In other terms, we
want to disable the least possible family of trajectories such
that no observer can ever find out that the system’s actual
trajectory belongs to some secret. At first sight, this looks
like a simple problem, all the more when it is assumed
that all events are controllable as we do in this paper (we
leave the uncontrollable events to further consideration). The
problem is in fact not that simple, for the observers have
full knowledge of the system, hence any control device
that may be added to the system is known to them. We
will nevertheless show that there exists always an optimal
control for enforcing the concurrent secrets on opponents,
fully aware of this control. We will also provide techniques
for computing this optimal control under assumptions that fit
at least with some applications.

The rest of the paper is organized as follows. The notation
and the problem are introduced in section II. Section III
shows that a unique optimal solution always exists, but it is
generally not regular. Using the fixpoint characterization of
the optimal control, proofs of control enabledness of trajec-
tories are presented as infinite trees in section IV; conditions
on proof trees entailing the regularity of the optimal control
are also stated there. Section V produces closely connected
conditions on concurrent secrets. An application is sketched
in section VI, where directions for further work are also
suggested.

II. SECRETS, CONCURRENT SECRETS, AND THE
CONTROL PROBLEM

To begin with, let us fix the notation.Σ is a finite alphabet,
Σ∗ is the free monoid generated byΣ, and Rat(Σ∗) is the
family of rational subsets ofΣ∗ i.e. the family of regular
languages overΣ. Let uv denote the concatenation product
of the wordsu andv, thusu is a prefix ofuv and the empty
word ε is a prefix of every word. The length ofu is denoted
by |u|. For l ≤ |u|, u[l] denotes the prefix ofu with the length
l , and for 0< l ≤ |u|, u(l) denotes thel th letter occurring
in u. For any sub-alphabetΣi ⊆ Σ, let πi : Σ∗ → Σ∗

i be the
unique monoid morphism extending the mapπi(σ) = σ if
σ ∈ Σi else ε (letters σ ∈ Σ are mapped to words by the
usual embedding ofΣ into Σ∗). For u,v ∈ Σ∗, let u 'i v if
πi(u) = πi(v). Throughout the paper,L is a non-empty prefix-
closed language inRat(Σ∗) and for alli ∈ {1, · · · ,n}, Σi ⊆ Σ,
Si ∈ Rat(Σ∗), andSi ⊆ L.

The languageL represents the behaviour of a system with
n users. Fori ∈ {1, · · · ,n}, the sub-alphabetΣi represents the
set of the interactions that may take place between the system
and the useri. Users observe the system by interacting with
it. If the system’s trajectory is represented byw∈ L, then the
induced observation for the useri is πi(w). Two users can
communicate only by jointly interacting with the system,e.g.
σ ∈ Σi ∩Σ j is an interaction of the system with the usersi
and j.

For each i ∈ {1, · · · ,n}, the membership of the actual
system’s trajectory to the subsetSi ⊆ L is intended to be
kept secret from the useri. In the terminology of [3] and
[4], the predicateSi should beopaquew.r.t. the observation
function πi and the languageL.

Definition 1: Si is opaque w.r.t. πi (and L) if (∀w ∈
Si)(∃w′ ∈ L\Si) w'i w′

When the predicateSi coincides with its prefix closureSi ,
non-opacity is the same as normality which may be expressed
as ∀w∈ Si ∀w′ ∈ L w'i w′ ⇒ w′ ∈ Si . However, opacity
is not the opposite of normality, as the following example
shows. GivenL = (ab)∗+(ab)∗a let Σi = {b} andSi = (ab)∗a
thenSi is both opaque and normal.

As we explained in the introduction, we use here a strongly
restricted form of the original definition of opacity where the
observation functions may be state and history dependent. On
the other hand, we consider a concurrent version of opacity.

Definition 2: (Si)i is concurrently opaque(w.r.t. L) if for
all i, Si is opaque w.r.t.πi .

Dealing with concurrent opacity does not make a big
change for checking opacity, which is easy in our case
(although not necessarily computationally simple) since we
consider exclusively regular systems and secrets.

Proposition 1: It is decidable whether(Si)i is concurrent-
ly opaque.

Proof: By definition, it suffices to decide for each
i ∈ {1, . . . ,n} whetherSi is opaque w.r.t.πi. The considered
property holds if and only ifπi(Si) ⊆ πi(L \Si). As L and
Si are regular,L\Si is regular, and since morphic images of
regular languages are regular, this relation can be decided.

Example 1:Let Σ = {a,b,c} andL be the set of prefixes
of words in(a+b)c. Let Σ1 = Σ2 = {c}, and letS1 andS2 be
the intersections ofL with Σ∗aΣ∗ andΣ∗ bΣ∗, respectively.
The concurrent secret(S1,S2) is opaque. From the observa-
tion of the eventc, one is indeed unable to infer whether it
was preceded with ana or with a b.

In the sequel,S = {(Σ1,S1), . . . ,(Σn,Sn)} denotes a con-
current secret upon a fixed languageL ⊆ Σ∗ (Σi ⊆ Σ and
Si ⊆ L ⊆ Σ∗ for all i). We say thatS is opaque if (Si)i

is concurrently opaque. A control is any non-empty prefix-
closed languageL′ ⊆ L (we assume here that all eventsσ ∈ Σ
are controllable). We say thatS is opaque under the control
L′ ⊆ L if the induced secret(S′i)i defined withS′i = Si ∩L′ is
concurrently opaque w.r.t.L′.

Our purpose is to solve the concurrent opacity control
problem stated as follows.

Problem 1: Show that the set of controls enforcing the
opacity of S either is empty or has a greatest element, and
compute this maximal permissive control.

Enforcing concurrent opacity (n> 1) requires, as we shall
see, significantly more efforts than enforcing opacity.

III. A FIXPOINT CHARACTERIZATION OF THE
MAXIMAL PERMISSIVE CONTROL ENFORCING

CONCURRENT OPACITY

In this section, we show that the concurrent opacity control
problem has a unique maximal solution that we characterize
as a greatest fixpoint. We propose two counter-examples in
which this maximal permissive control either is not regular
or cannot be computed within a finite number of fixpoint
iterations.

Definition 3: For any prefix-closed subsetL′ of L, thesafe
kernelof L′ w.r.t. the secretS , notationK(L′,S), is the subset
of all wordsw∈ L′ such thatw= uv⇒ (∀i)(∃u′ ∈L′ \Si) u'i

u′.
Thus,S is opaque under the controlL′ ⊆ L if and only if

L′ = K(L′,S), i.e. L′ is a fixpoint ofK(•,S). It is immediately
observed thatK(L′,S) is continuous in the first argument
(w.r.t. set inclusion). As the prefix-closed subsets ofL form
a complete sub-lattice ofP (Σ∗), it follows from Knaster-
Tarski’s theorem [5] thatK(•,S) has a greatest fixpoint in
this sub-lattice.

Definition 4: Let SupK(L,S) be the greatest fixed point
of the operatorK(•,S).

Proposition 2: SupK(L,S) is the union of all controls
enforcing the opacity ofS . If SupK(L,S) 6= /0, then it is
the maximal permissive control enforcing the opacity ofS ,
otherwise no such control can exist.

Proof: This is a direct application of the Knaster-
Tarski’s fixpoint theorem.

Remark 1:The conditionL′ ⊆ SupK(L,S) is necessary
but not sufficientfor some non-empty controlL′ to enforce
the opacity ofS . For instance, in Example 1,SupK(L,S)= L,
but the secretS1 is not opaque w.r.t.L′ = ε+a+ac.

The fixpoint characterization of the optimal control en-
forcing opacity does not show thatSupK(L,S) can be
computed, nor that the control can be implemented with a

a f
c

d

a

b

f e

Fig. 1. An automaton

finite device. Whenn = 1, i.e. when S = {(Σ1,S1)}, this is
not a problem because in this particular case,SupK(L,S)
is equal to K(L,S) and it may be shown thatK(L,S)
is the set of words with all prefixes inL ∩ π−1

1 (L \ S1).
Therefore,SupK(L,S) = Σ∗ \ ((Σ∗ \ (L ∩ π−1

1 (L \ S1))Σ∗)
which is regular. Whenn > 1, two situations contrast. The
nice situation is whenSupK(L,S) can be computed fromL
by a finite number of iterated applications of the operator
K(•,S). Actually, whenL′ is a regular subset ofL, the same
holds forK(L′,S), hence in the considered caseSupK(L,S)
is regular. The rest of the section illustrates the converse
situation.

A. A case where the closure ordinal of K(•,S) is transfinite

Let Σ = {a,b,c,d,e, f} and let L be the prefix-closed
language accepted by the finite automaton of Fig.1 (where
all states are accepting states). DefineS = {(Σ1,S1),(Σ2,S2)}
with Σ1 = {c, f}, S1 = Σ∗a f c(Σ\ {c})∗ (this secret is safe
if, by observing onlyc and f , one cannot find out in any
run that the last occurrence ofc was preceded bya f), and
Σ2 = {b, e}, S2 = Σ∗deb(Σ\ {b})∗ (this secret is safe if, by
observing onlyb ande, one cannot find out in any run that the
last occurrence ofb was preceded byde). Let L1 = K(L,S)
be the first language encountered in the greatest fixpoint
iteration converging toSupK(L,S), thenL1 = L\a f cΣ∗ (the
run a f c reveals the secretS1 and the runs ina f dΣ∗ reveal
nothing). The second itemL2 = K(L1,S) is the language
L1 \ a f debΣ∗ (relatively to L1, the run a f deb reveals the
secretS2, and the runs ina f deaΣ∗ reveal nothing). After
a f c and a f deb have been eliminated, the initial situation
reproduces up to the prefixa f dea. Therefore, the fixpoint
iteration produces a strictly decreasing and infinite sequence
of languagesLj . The limit SupK(L,S) of this decreasing
chain is the set of all prefixes of words in the regular
set Lω = (a f de)∗, hence it is regular. The optimal control
enforcing the opacity ofS may be implemented by any finite
automaton recognizingLω.

Let us now extend the concurrent secret intoS =
{(Σ1,S1),(Σ2,S2),(Σ3,S3)} with (Σ1,S1) and (Σ2,S2) as
above,Σ3 = /0 andS3 = Σ∗ \ (Σ∗cΣ∗). Then, the closure ordi-
nal of K(•,S) increases fromω to ω+1. To see this observe
that, sinceΣ3 is empty, the secretS3 is safe relatively to
any languageL′ ⊆ L containing at least one word containing
at least one occurrence ofc. The greatest fixpoint iteration
for SupK(L,S) starts with the same decreasing sequenceLj

as before, butK(Lω,S) differs now from Lω becauseLω
contains no word containingc (differing in that form allLj).

In fact, Lω+1 = K(Lω,S) = /0 and this is a fixpoint. Opacity
can therefore not be enforced.

B. A case where SupK(L,S) is not regular

Let Σ = {a,b,x,y} and L be the set of prefixes of words
in (ax)∗ (ε+ab)(yb)∗. Define S = {(Σi ,Si) | 1≤ i ≤ 3} as
follows (letting {L′ = L\L′ for L′ ⊆ L):

1) Σ1 = {a,b}, {S1 = ε+(ax)∗ab(yb)∗ +(Σ\ {b})∗
2) Σ2 = {x,y}, {S2 = (ax)∗ (yb)∗

3) Σ3 = {a,b,x,y}, {S3 = ε+aΣ∗

We claim thatSupK(L,S) is not a regular language and
worse, the family of regular controls enforcing the opacity of
S has no largest element. Recall that the subset of maximal
words in a regular language is regular. In order to establish
the first part of the claim, one can show thatSupK(L,S) is
equal to the setL′ of all prefixes of words in the non regular
language∪n∈IN (ax)n (ε+ab)(yb)n. A detailed proof of this
fact may be found in [6]. To show that the family of regular
controls enforcing the opacity ofS has no largest element,
one assumes the opposite. LetR be the largest prefix-closed
regular subset ofL such thatS is opaque w.r.t.R. Necessarily,
(ax)n (yb)n 6∈ R for somen. If it were otherwise, because
(ax)n−1 (yb)n−1 is the sole wordw′ ∈ L′ \S1 such thatw'1 w′
for w = (ax)n (yb)n, R would coincide withL′, which is not
possible (L′ is not regular). Letn be the least integer such that
(ax)n (yb)n 6∈ R, and letR′ be R augmented with all prefixes
of words in {(ax)n (yb)n ,(ax)n−1ab(yb)n−1} not already in
R. The languageR′ is prefix-closed and regular, and one can
verify that S is opaque w.r.t.R′. Thus, a contradiction has
been reached.

IV. CONTROL ENABLING AND ω-TREES

Warning 1: From now on,SiΣ∗ ⊆Si is imposed on all sets
Si in S = {(Σ1,S1), . . . ,(Σn,Sn)}.

This section serves as a bridge between the general
problem and the practical solutions that we shall propose
in specific cases. The working assumption that secrets are
suffix-closed is motivated by its convenience (if not its
necessity) for enforcing opacity with finite control. Although
this working assumption was not satisfied in the examples
from sections III-A and III-B, it is quite natural since it
amounts to strengthening the secrecy requirement as follows:
an observeri should never have the knowledge that the
trajectory of the system is inSi or wasin Si at some instant in
the past. We give below a simpler definition of the operator
K(•,S), which is equivalent to the earlier definition when
secrets are suffix-closed. Then we considerω-trees that may
be seen as proofs of control enabledness of trajectories.
Finally, we propose conditions on sets of proof trees entailing
the regularity ofSupK(L,S), thus paving the way for section
V.

Definition 5 (modified form of Def. 3):For any prefix-
closed subsetL′ of L, the safe kernelof L′ w.r.t. the secret
S , notation K(L′,S), is the largest subset ofL′ such that
w∈ K(L′,S) ⇒ (∀i)(∃w′ ∈ L′ \Si) w'i w′.

Proposition 3: Definitions 3 and 5 are equivalent.

Proof: For the duration of this proof, letK(•,S) and
K′(•,S) be the two operators from Def. 3 and Def. 5,
respectively. Clearly,K(L′,S) ⊆ K′(L′,S) for any L′. We
show the converse relation. Consider any wordw∈ K′(L′,S)
and letw = uv be any decomposition of this word into two
factors. We should prove that for alli ∈ {1, . . . ,n}, u'i u′ for
someu′ ∈ L′ \Si. As w∈ K′(L′,S) and by definition,w'i w′
for somew′ ∈ L′ \Si. Now w′ 'i uv, hence there exists at least
one decompositionw′ = u′v′ such thatu'i u′. Finally, u′ ∈ L′
by prefix-closedness ofL′, andu′ /∈ Si by suffix-closedness
of Si . Therefore,w∈ K(L′,S).

Definition 6: Givenw∈ L, a proof of enablednessof w is
a map f : {1, . . . ,n}∗ → L such thatf (ε) = w and for allτ ∈
{1, . . . ,n}∗ and j ∈ {1, . . . ,n}, f (τ)' j f (τ j) and f (τ j) /∈Sj .

The map f in the above definition is just a completen-
ary ordered tree labelled on nodes, thus in particular it is an
infinite tree. The next proposition follows immediately from
the co-inductive definition ofSupK(L,S).

Proposition 4: For anyw∈ L, w∈SupK(L,S) if and only
if there exists a proof of the control enabledness ofw.

A nice situation is when the control enabledness of a
trajectory may be proved with a regular tree. Let us recall
the definition.

Definition 7: Let f : {1, . . . ,n}∗ → L be a (completen-ary
ordered labelled) tree. For anyτ ∈ {1, . . . ,n}∗, the sub-tree
of f rooted atτ, in notation f/τ, is the (completen-ary
ordered labelled) tree defined with(f/τ)(τ′) = f (ττ′) for all
τ′ ∈ {1, . . . ,n}∗. The treef is regular if it has a finite number
of sub-treesf/τ.

Any regular treef may be folded to a finite rooted graph.
When the control enabledness of the (good) trajectories may
be proved using regular trees exclusively, this predicate is
therefore recursively enumerable. This condition is necessary
and sufficient for being able to enforce control, but not
efficiently. In the rest of the section, we search for additional
conditions entailing the regularity of the controlSupK(L,S).

A first attempt towards this goal is to impose an upper
bound on the number of (different) subtrees of a regular
proof tree. Equivalently, one may require that all proof trees
conform to a finite collection of finite patterns as follows.

Definition 8: A finite pattern for proofs(of enabledness of
trajectories) is a finite, deterministic and complete automaton
(Q,{1, . . . ,n},q0) (thusq0 ∈ Q and anyi ∈ {1, . . . ,n} maps
Q to itself). A proof tree f : {1, . . . ,n}∗ → L conforms toa
finite pattern if there exists a labelling mapλ : Q→ L such
that f (τ) = λ(q0 · τ) for all τ ∈ {1, . . . ,n}∗ letting q · τ be
defined inductively withq · ε = q andq · (τ1τ2) = (q · τ1) · τ2

for all q∈ Q.
The idea behind this definition is that proof trees contain

bounded information up to the choice of a bounded number
of words inL.

Example 2:Let Σ = {a,b} and L = Σ∗. Let S =
{(Σ1,S1),(Σ2,S2)} with Σ1 = {a}, {S1 = b∗a∗ andΣ2 = {b},
{S2 = a∗b∗. The finite pattern shown on Fig. 2 supplies
proofs of control enabledness for all trajectories. For any
word w with n occurrences ofa and m occurrences ofb,
the labelling map defined withλ(q0) = w, λ(q1) = bman,

1

2

1

2

1 2
q2q1

q0

Fig. 2.

and λ(q2) = anbm induces in fact anω-tree witnessing that
w∈ SupK(L,S).

There are two sources of problems with the proof patterns
from Def. 8. The first difficulty is that, givenL, S and
(Q,{1, . . . ,n},q0), the set of the labelling mapsλ : Q → L
considered in this definition is generally not regular,i.e. it
cannot be defined with a finite automaton on(Σ∗)|Q|. For
instance, if the labelling maps considered in example 2 did
form a regular set, then the set of all pairs(bman,anbm)
would be regular, but the iteration lemma for rational sets [7]
entails the opposite (if the set is regular, for someN > 1 and
for large enoughn andm, (bman,anbm) could be written as
(x,x′)(y,y′)(z,z′) where 0< |y|+ |y′|, |x|+ |x′|+ |y|+ |y′| ≤N,
and (x,x′)(y,y′)∗(z,z′) is included in the set). The second
difficulty is that, givenL, S and (Q,{1, . . . ,n},q0), the set
of values taken atq = q0 by the labelling maps from Def. 8
is sometimes not regular. An example is shown hereafter.

Example 3:Let Σ = {a,b} and L = Σ∗. Let S =
{(Σ1,S1),(Σ2,S2)} where Σ1 = {a}, Σ2 = {b}, and {S1 =
{S2 = (ε + b)(ab)∗(ε + a). Consider the set of all maps
labelling adequately the finite proof pattern from Fig. 3. The
set of values taken by these maps atq = q0 is the set of all
words in which the numbers of occurrencesa and b differ
by at most one, hence it is not regular.

1 2

1 2

q0

q1

Fig. 3.

Note that in both examples 2 and 3,SupK(L,S) = Σ∗,
and proofs of enabledness may be obtained for allw ∈ Σ∗
by labelling the finite proof pattern shown in Fig. 4.

1 2

1 21 2

q2q1

q0

Fig. 4.

In order to dodge the problems, one may concentrate on
restricted proof patterns as follows.

Definition 9: A type (of proof of enabledness) is a finite
patternT = (Q,{1, . . . ,n},q0) with a prefix-closed subset
T ⊆ {1, . . . ,n}∗ such that(∀q∈ Q)(∃! τ ∈ T)(q = q0 ·τ) and

for any mapλ : Q→ L,
(∀τ)(∀ j) (τ j ∈ T ∧ λ(q0 ·τ) ' j λ(q0 ·τ j) ∧ λ(q0 ·τ j) /∈ Sj)
⇒ (∀q)(∀ j) (λ(q) ' j λ(q · j) ∧ λ(q · j) /∈ Sj)
whereτ and j range over{1, . . . ,n}∗ resp. over{1, . . . ,n}.
A proof tree f : {1, . . . ,n}∗ → L has typeT if it conforms
to this pattern (see Def. 8).

The setT in Def. 9 induces a (finite) tree, rooted atq0,
that spans the automaton(Q,{1, . . . ,n},q0). The point is that
for any mapλ : Q→ L, if (λ(q) ' j λ(q · j) ∧ λ(q · j) /∈ Sj)
for all arcs(q,q · j) in the spanning tree, then it holds also
for all chords,i.e. for all remaining edges of (the underlying
graph of)(Q,{1, . . . ,n},q0).

Theorem 1:If there exists a finite number of types of
proofs of enabledness for all trajectoriesw ∈ SupK(L,S),
thenSupK(L,S) is a regular language.

Proof: It suffices to show that when typeT =
(Q,{1, . . . ,n},q0,T) has been fixed, the set of trajectories
w ∈ L with proofs of enabledness of typeT is regular.
In view of the definitions 8 and 9, a wordw belongs to
the considered set if and only ifλ(q0) = w for some map
λ : Q→ L satisfyingλ(q0 ·τ) ' j λ(q0 ·τ j) andλ(q0 ·τ j) /∈ Sj

wheneverτ j ∈T and j ∈ {1, . . . ,n}. In order to show that this
is a regular set, we construct the Arnold-Nivat product [8] of
a family of automataAτ indexed withτ ∈ T, as follows. Let
Aε be a (finite deterministic) partial automaton recognizing
L, and for each sequenceτ j in T with j ∈ {1, . . . ,n}, let
Aτ j be a (finite deterministic) partial automaton recognizing
L \Sj . This defines the components of the product. As for
the synchronizations, letV be the set ofT-vectors~v : T →
(Σ∪{ε}) such that(~v(τ) ∈ Σ j ∨~v(τ j) ∈ Σ j) ⇒ ~v(τ) =~v(τ j)
wheneverτ j in T and j ∈ {1, . . . ,n}. The induced product
is a (finite deterministic) partial automatonA = (Q ,V ,~q0)
defined as follows:
- the set of statesQ is a set ofT-vectors,
- for eachτ ∈ T, ~q0(τ) is the initial state ofAτ,
- for all ~q∈ Q andτ ∈ T, ~q(τ) is a state ofAτ,
- for all ~q∈ Q , ~v∈ V andτ ∈ T, (~q·~v)(τ) =~q(τ) ·~v(τ).
Therefore,~q·~v is defined if and only if~q(τ) ·~v(τ) = ~q′(τ) is
defined for allτ.

Let ~v1 . . .~vm be a word overV accepted byA . An asso-
ciatedT-vector~w : T → L may be defined by setting~w(τ) =
~v1(τ) . . .~vm(τ) for all τ ∈ T. It follows directly from the
construction that the mapλ : Q→ L such thatλ(q0 ·τ) = ~w(τ)
for all τ∈ T satisfiesλ(q0 ·τ)' j λ(q0 ·τ j) andλ(q0 ·τ j) /∈ Sj

for τ j ∈ T and j ∈ {1, . . . ,n}, hence~w(ε) ∈ SupK(L,S).
As A is a finite automaton, the projection of the language

of A alongε is a regular language. In order to complete the
proof, it suffices therefore to show that for any mapλ : Q→ L
satisfying λ(q0 · τ) ' j λ(q0 · τ j) and λ(q0 · τ j) /∈ Sj for all
τ j ∈ T, the vector~w : T → L defined with~w(τ) = λ(q0 ·τ) for
all τ∈T may be written as a word~v1 . . .~vm recognized byA .
Given the construction of this automaton, it suffices to exhibit
a sequence~v1 . . .~vm∈ V ∗ such that~w(τ) =~v1(τ) . . .~vm(τ) for
all τ ∈ T. This is the contribution of the lemma 1 (proved in
[6]).

Lemma 1:Let ~w : T → Σ∗ where T is a prefix-closed
subset of{1, . . . ,n}∗ and~w(τ) ' j ~w(τ j) for all τ j ∈ T with

j ∈ {1, . . . ,n}. Then~w(τ) =~v1(τ) . . .~vm(τ) for all τ ∈ T for
some sequence of vectors~vk : T → Σ∪{ε} such that for all
τ j ∈ T, (~vk(τ) ∈ Σ j ∨~vk(τ j) ∈ Σ j) ⇒ ~vk(τ) =~vk(τ j).

Theorem 1 opens the way to the practical synthesis of
supervisory control for concurrent opacity. The conditions
for its application are examined further in section V.

V. CONCURRENT SECRETS WITH A REGULAR
OPACITY CONTROL

We propose here conditions on concurrent secretsS =
{(Σ1,S1), . . . ,(Σn,Sn)} ensuring that the maximal permis-
sive opacity controlSupK(L,S) is the language of a finite
automaton, that may effectively be constructed from finite
automata accepting the languageL and the secretsSi . We
examine first the case where the alphabetsΣi form a chain
for the inclusion, second the case where the secretsSi form
a chain for the inclusion, third the case where every secret
Si is saturated by any equivalence' j such thati 6= j (a set
is saturatedby an equivalence if it is a union of equivalence
classes). We consider finally the combinations of the three
cases for the different pairs(i, j).

Proposition 5: If the alphabetsΣi form a chain for the
inclusion, then the enabledness of all trajectoriesw ∈
SupK(L,S) may be shown with a single type of proofsT1.

Proof: Given the chainΣ1 ⊆ Σ2 ⊆ . . .⊆ Σn, we construct
a typeT1 = (Q,{1, . . . ,n},q0,T) as follows.T is the set of
strictly increasing sequences of numbers in{1, . . . ,n} (T is
drawn with solid arcs in Fig. 5),Q = T andq0 = ε. For any
τ in T and i ∈ {1, . . . ,n}, τ · i = τ′i whereτ′ is the largest
prefix of τ formed of integers strictly smaller thani (see
again Fig. 5). As(' j ◦ 'i) ⊆'i for i ≤ j, T1 conforms to
Def. 9. Finally, for anyw ∈ SupK(L,S), by Prop. 1, there
must exist a mapλ : Q→ L, i.e. λ : T → L, such thatλ(ε) = w
and for allτ j ∈ T, λ(τ) ' j λ(τ j) ∧ λ(τ j) /∈ Sj .

Proposition 6: If the secretsSi form a chain for the inclu-
sion, then the enabledness of all trajectoriesw∈ SupK(L,S)
may be shown with a single type of proofsT2.

Proof: Given the chainS1 ⊆ S2 ⊆ . . .⊆ Sn, we construct
a typeT2 = (Q,{1, . . . ,n},q0,T) as follows.T is the set of
strictly increasing sequences of numbers in{1, . . . ,n} (T is
drawn with solid arcs in Fig. 6),Q = T andq0 = ε. For any
τ in T and i ∈ {1, . . . ,n}, τ · i = τi if τi ∈ T and τ · i = τ
otherwise (see again Fig. 6). Ifi ≤ j, then for anyτ j in T
(= Q), and for any mapλ : Q→ L, λ(τ j) /∈Sj ⇒ λ(τ j · i) /∈Si

since Si ⊆ Sj . Therefore,T2 conforms to Def. 9, and the
desired conclusion follows from Prop. 1.

Proposition 7: If for all distinct i, j ∈ {1, . . . ,n}, the secret
Si is saturated by the equivalence relation' j , then the
enabledness of all trajectoriesw∈SupK(L,S) may be shown
with a type of proofsT3.

Proof: We construct a typeT3 = (Q,{1, . . . ,n},q0,T)
as follows. T is the set of sequences in{1, . . . ,n}∗ with
at most one occurrence of each number (T is drawn with
solid arcs in Fig. 7),Q = T andq0 = ε. For anyτ in T and
i ∈ {1, . . . ,n}, τ · i = τi if τi ∈ T andτ · i = τ otherwise (see
again Fig. 7). Letλ : Q→ L be any map such thatλ(τ) ' j

λ(τ j) ∧ λ(τ j) /∈ Sj) wheneverτ j ∈ T. One may show by

induction onτ that λ(τ) /∈ Si for any i ∈ {1, . . . ,n} occurring
in τ. Indeed, if this property holds forτ, it must hold forτ j
becauseλ(τ) ' j λ(τ j) and' j saturatesSi andL\Si for all
i occurring inτ. Therefore,T3 conforms to Def. 9, and the
desired conclusion follows from Prop. 1.

3

1

1

2

2

2

2

1

3

3

31 2

3

3
3

1

1

1

2

32

2

1

Fig. 5. T1 for n = 3

3

32

3

21

123
123

123

21

12

3

1

2

1

3

Fig. 6. T2 for n = 3

321321321321 321 321

21 21

31 31

32 32

1 2 3

2 1 3

1 2 3

3 1

3 32 1 12

2

Fig. 7. T3 for n = 3

One can deal similarly with many other situations where
Σi ⊆ Σ j or Si ⊆ Sj or 'i saturatesSj , or conversely withi
and j, for all distinct i, j ∈ {1, . . . ,n}. For instance, letn= 3,
and supposeS1 ⊆ S2, Σ3 ⊆ Σ2, and'1 saturatesS3. Then the
enabledness of allw∈ SupK(L,S) may be proved using the
type T4 (see Fig. 8).

Unfortunately, we cannot extend propositions 5,6, and 7
into a general proposition, for we do not know whether
SupK(L,S) is regular in three particular cases:
- S1 ⊆ S2, Σ2 ⊆ Σ3, and'1 saturatesS3,
- S1 ⊆ S2, '2 saturatesS3, andΣ3 ⊆ Σ1,
- '1 saturatesS2, '2 saturatesS3, and'3 saturatesS1.
The best we can do is therefore to propose an algorithm

21

21

21

21

21

21

1 2 3

2 3

1 3

3
3

31

2 3

1 2

3

3

2 3

1 2
3

3

Fig. 8. T4

that constructs a unique type for all proofs of enabledness
in all cases where this is possible. In this perspective, we
introduce rewrite rules on labelled graphs. In each rule, one
vertex of the left member is dropped and the edges that were
incident to this vertex are redirected to other vertices. The
vertices and edges present on both sides of a rule serve as
an application context (indicated by the labels put on the
concerned vertices). The rewrite rules are displayed in Fig. 9
(wherei 6= j andsat is an abbreviation for “saturates”).

xx y yi
j

j i

x y x y

z z

x y z x y z

j j
j

j

i j

j i

i

j i

xx y yi
i

i i

j

Sj ⊆ Si

Σ j ⊆ Σi

True

'i sat Sj

Fig. 9. Four rules

Proposition 8: Given S = {(Σ1,S1), . . . ,(Σn,Sn)}, let R
be the set of the rewrite rules that correspond to predicates
true inS . Whenever the completen-ary tree rewrites to some
finite graph, any such graph yields a uniform typeT for
proving the enabledness of all trajectories. The spanning tree
of T is the subset of edges of the completen-ary tree that
have been preserved by the rewriting.

Proof: In view of Def. 9 it is enough to show, for each
graphG on the right hand side of a rewrite rule (see Fig. 9),
that any mapλ : {x,y} → L or λ : {x,y,z} → L compatible
with the rigid edges ofG is compatible also with the dashed
edge ofG, where λ is compatible withx

i−→ y if λ(x) 'i

λ(y) and λ(y) /∈ Si . Considering the predicates defining the
application conditions of the rewrite rules, this verification
is immediate.

When proposition 8 can be applied, the construction
proposed in the proof of proposition 1 may be used to
produce a finite automaton realizing the maximal permissive
opacity control, but Prop. 8 is not immediately effective. We
remedy now this deficiency.

Proposition 9: It is decidable whether some finite graph
may be derived from the completen-ary tree using the rules
in R and such graphs can be computed when they exist.

Proof: Let I = {1, . . . ,n} and letF ⊆ I∗ be the set of
all words ii , or i j , or ji j such thatTrue, or (Sj ⊆ Si ∨Σ j ⊆
Σi), or 'i satSj , respectively. DefineT = I∗ \ (I∗FI∗), then
R produces finite graphs from the completen-ary tree if
and only if T is finite. The detailed argumentation and the
construction of a typeT with the spanning treeT may be
found in [6].

Example 4:Let Σ = {a,b,c} and letL be a prefix-closed
regular language overΣ. DefineS = {(Σ1,S1), . . . ,(Σ3,S3)}
such thatΣ1 = {a,c}, Σ2 = {b,c}, Σ3 = {b}, andSi = SiΣ∗
for all i ∈ {1, . . . ,3}. The construction sketched in the proof
of proposition 9 yields the typeT4 and the spanning treeT
displayed in Fig. 8.

SupK(L,S) may be computed by stages following the
structure ofT. One computes firstSupK(L,S) \S3, using
the type that appears inT4 at the end of both paths 13 and
3. Next, one computesSupK(L,S)\S1 from SupK(L,S)\S3,
using the type at the end of the path 1 inT4. Finally, one
computesSupK(L,S) from SupK(L,S)\S1 andSupK(L,S)\
S3.

VI. CONCLUSION

We shall try first in this section to illustrate the possible
applications of the work we have presented. Consider a
computer system that provides services ton usersU1, . . . ,Un
with disjoint alphabetsΣ1, . . . ,Σn. Let L⊆Σ∗ be the language
of the system, whereΣ ⊇ Σi for all i. One wants to give
every userUi the guarantee that no coalition of other users
can ever be sure that he has started working. The problem is
therefore to enforce the opacity of the concurrent secretS =
{(Σ′

1,S1), . . . ,(Σ′
n,Sn)} where for eachi, Si = L∩Σ∗ΣiΣ∗ and

Σ′
i =∪ j 6=iΣ j . As' j saturatesSi for j 6= i, one can construct a

finite automaton acceptingSupK(L,S). We feel this example
is typical of many practical security problems.

Some limitations of this work are voluntary,e.g. we
restricted ourselves on purpose to regular languages and to
regular control, but some other limitations could hopefully
be lifted in continuations of this work. A list follows.

From the beginning of section IV, we worked with open
secrets,i.e. secretsSi such thatSiΣ∗ ⊆ Si . The goal was
to make Def. 3 equivalent to the simpler definition Def. 5.
Another way to obtain this equivalence is to impose on each
secretSi the following condition, where≤ is the order prefix:
(∀w∈ L\Si) πi(w) = uσ⇒ (∃v∈ L\Si) (v≤w∧ πi(v) = u).
Such secrets maye.g.carry the information that some system
processis in a critical section.

As regards the control objective, we focussed our efforts
on opacity, but we did not take the deadlock freeness or the
liveness of the controlled system into consideration and this
is a shortcoming. Another valuable extension would be to
work with boolean combinations of opacity predicates,e.g.
if S1 is opaque w.r.t.Σ1 thenS2 is not opaque w.r.t.Σ2.

We end with a few words on observability and contro-
lability. On the side of the observation functions, we have
restricted our attention to projections on subalphabets, but it
would be more adequate to accomodate also all alphabetic
morphisms. As regards control, we dealt with all events
as controlable events, but it would be more realistic to
accomodate also uncontrolable events.

REFERENCES

[1] P.J. Ramadge and W.M. Wonham, Supervisory Control of a Class of
Discrete Event Processes,SIAM Journal of Control and Optimization,
vol. 25, 1987, pp 206-230.

[2] P.J. Ramadge and W.M. Wonham, On the Supremal Controllable
Language of a Given Language,SIAM Journal of Control and Op-
timization, vol. 25, 1987, pp 637-659.

[3] L. Mazaré, Using unification for opacity properties,in Proc. of the
Workshop on Issues in the Theory of Security (WITS’04), 2004.

[4] J.W. Bryans, M. Koutny, L. Mazar´e and P.Y.A. Ryan, Opacity Gen-
eralised to Transition Systems,in Proc. of the Workshop on Formal
Aspects in Security and Trust (FAST 2005), 2005.

[5] A. Tarski, A lattice-theoretical fixpoint theorem and its applications,
Pacific Journal of Mathematics, vol. 5, 1955, pp. 285-309.

[6] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and
P. Darondeau, Concurrent Secrets (full version), INRIA-RR 5771
(available from http://www.inria.fr/rrrt), 2005.

[7] J. Berstel,Transductions and Context-Free Languages, Teubner Ver-
lag, 1978.

[8] A. Arnold and M. Nivat, Comportements de processus,in Actes
du Colloque AFCET “Les math´ematiques de l’informatique”, 1982,
pp.35-68.

This research was supported by CATALYSIS, a program within
CNRS/PAN cooperation framework

