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Abstract— Given a finite state system with partial observers find out that the actual trajectory of the system belongs to
and for each observer, a regular set of trajectories which we the secret$) he has been assigned.
call a secret, we consider the question whether the observers One reason why we believe the model sketched above is

can ever find out that a trajectory of the system belongs to some . s . . .
secret. We search for a regular control on the system, enforcing worth investigating is that, in the case of a single observer, it

the specified secrets on the observers, even though they havehas already been introduced independently in [3] and studied
full knowledge of this control. We show that an optimal control ~ further in [4]. What we callsecretshere was called there

always exists although it is generally not regular. We state gpaque predicatesalbeit with larger families of predicates
sufficient conditions for computing a finite and optimal control (sets of runs) and observation functions. It was shown in [4]
of the system enforcing the concurrent secret as desired. that anonymity problems and non-interference problems may
. INTRODUCTION be reduced to opacity problems, using suitable observation
) ) ) ) functions. It was showibidemthat model-checking a system
~ This work is an attempt to import supervisory controk,r gnacity is undecidable in the general case where an
into the area of computer security. Given an automaton, @fyaque predicate may refer to the visited states or may
plant, and given specifications of the desired behawgurof thes any recursive predicate on sequences of event labels.
plant, Ramadge and Wonham's theory presented in [1] []gnetheless, techniques based on abstract interpretation were
yields a finite, non blocking, and maximal permissive controly o qqsed in [4] for checking opacity in unbounded Petri nets.
of the plant enforcing this behaviour (in the normal case |, this paper, we limit ourselves to deal with finite state
or when_ u_nobserv_able events are uncontrolable). CO_”trOHE{/stems and with regular predicates defined on sequences of
synthesis is a desirable complement to model checking, fgisition labels. We have thus all cards in hands to decide
it allows curing the problems that model checkers can reve%pacity, even though several pajabserver, secreire taken
Supervisory control has found applications in manufacturings simultaneous account. Now differing from [4], we want
systems, in embedded systems, and more generally in safgfyhe aple toenforceopacity by supervisory control when
critical systems._ We feel it could finq applications as well il}he result of the decision is negative. In other terms, we
computer security, and we shall strive to support this thesig,at 1 disable the least possible family of trajectories such
With the above goal in mind, we have searched for g5t ng observer can ever find out that the system’s actual
class of security problems Ilkely_to be dealt with as Contrc?ﬂrajectory belongs to some secret. At first sight, this looks
problems. We model an interactive computer system and ifge 5 simple problem, all the more when it is assumed
users as a closed entity in which the users observe their oWgLt a1l events are controllable as we do in this paper (we

interactions with the system. The closed entity is representgghye the uncontrollable events to further consideration). The
with a finite automaton over an alphaletThe synchronous problem is in fact not that simple, for the observers have

interactions between each usand the system are figured by ¢ knowledge of the system, hence any control device
the elements of a corresponding sub-alphahet > (USers  hat may be added to the system is known to them. We
may synchronize when their sub-alphabets intersect). Usualjyj| nevertheless show that there exists always an optimal
in supervisory control, the control objective is a predicate 0Boniro| for enforcing the concurrent secrets on opponents,
the runs of the plant, specifying some combination of safety 1y aware of this control. We will also provide techniques
and liveness properties, and the observers act as Sensggscomputing this optimal control under assumptions that fit
i.e. they supply informations on the status of the plantg; |east with some applications.

used by the controller to produce an adequate feedbackrhe rest of the paper is organized as follows. The notation
enabling or disabling events in the plant. Here, the game igyy the problem are introduced in section Il. Section il
different: the observers are not on the side of '_[he _controll%ows that a unique optimal solution always exists, but it is
but they are opponents. As for the control objective, thergenerally not regular. Using the fixpoint characterization of
are still predicates§) on the runs of the system, but theyne optimal control, proofs of control enabledness of trajec-
interpretation is again different: an observeshould never (qies are presented as infinite trees in section IV; conditions
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Il. SECRETS, CONCURRENT SECRETS, AND THE
CONTROL PROBLEM

To begin with, let us fix the notatio is a finite alphabet,
>* is the free monoid generated 1% and Rat(Z*) is the
family of rational subsets ot* i.e. the family of regular

languages ovekE. Let uv denote the concatenation product

of the wordsu andyv, thusu is a prefix ofuv and the empty
word € is a prefix of every word. The length ofis denoted
by |u|. Forl < |ul, u]l] denotes the prefix af with the length
I, and for 0< | < |u], u(l) denotes thd'" letter occurring
in u. For any sub-alphabei; C >, let 1 : ¥* — X be the
uniqgue monoid morphism extending the mego) = o if
0 €3 elsee (letterso € ~ are mapped to words by the
usual embedding oE into ¥*). For u,ve€ ¥, let u~; v if
15 (u) = 15(v). Throughout the papel, is a non-empty prefix-
closed language iRat(~*) and for alli € {1,--- ,n}, Z; C Z,
S € Rat(Z*), andS C L.

The languagé. represents the behaviour of a system wit
nusers. For € {1,---,n}, the sub-alphabei; represents the

set of the interactions that may take place between the system
and the user. Users observe the system by interacting with

it. If the system’s trajectory is representedwy L, then the
induced observation for the useilis T (w). Two users can
communicate only by jointly interacting with the systesry.
0 € ZjNZj is an interaction of the system with the users
and j.

For eachi € {1,---,n}, the membership of the actual
system’s trajectory to the subsg&tC L is intended to be
kept secretfrom the useri. In the terminology of [3] and
[4], the predicate5 should beopaquew.r.t. the observation
function g and the language.

Definition 1: $ is opaquew.r.t. 1§ (and L) if (Yw e
S)EAW eL\S)w~w -

When the predicat§ coincides with its prefix closur§,

h

Example 1:Let ~ = {a,b,c} andL be the set of prefixes
of words in(a+b)c. LetZ; =2, ={c}, and letS; and$; be
the intersections of with Z*a>~* andZ*bx*, respectively.
The concurrent secréf;, ) is opaque. From the observa-
tion of the event, one is indeed unable to infer whether it
was preceded with aa or with ab.

In the sequelS = {(Z1,%1),...,(Zn,Sh)} denotes a con-
current secret upon a fixed languageC >* (% C X and

S CLCZ for all i). We say thatS is opaque if(S)

is concurrently opaque. A control is any non-empty prefix-
closed languagk’ C L (we assume here that all eveots X
are controllable). We say that is opaque under the control
L’ C L if the induced secretS); defined with§ =SnNL’ is
concurrently opaque w.r.t.'.

Our purpose is to solve the concurrent opacity control
problem stated as follows.

Problem 1: Show that the set of controls enforcing the
opacity of S either is empty or has a greatest element, and
compute this maximal permissive control.

Enforcing concurrent opacityn(> 1) requires, as we shall
See, significantly more efforts than enforcing opacity.

I1l. AFIXPOINT CHARACTERIZATION OF THE
MAXIMAL PERMISSIVE CONTROL ENFORCING
CONCURRENT OPACITY

In this section, we show that the concurrent opacity control
problem has a unique maximal solution that we characterize
as a greatest fixpoint. We propose two counter-examples in
which this maximal permissive control either is not regular
or cannot be computed within a finite number of fixpoint
iterations.

Definition 3: For any prefix-closed subskt of L, thesafe
kernelof L" w.r.t. the secre§, notationK (L', 5), is the subset
of all wordswe L’ such thaw=uv=- (Vi)(3u' e L'\ §) u~;

U'

non-opacity is the same as normality which may be expressedThus,S is opaque under the contrbl C L if and only if

asywe§ Yw el w~ w = W € S. However, opacity L' =K(L,S)
is not the opposite of normality, as the following exampleobserveoi thak (L, S)

shows. GiverL = (ab)*+ (ab)*aletZj = {b} andS = (ab)*a
then§ is both opaque and normal.

,i.e. L is a fixpoint ofK (e, $). It is immediately
is continuous in the first argument
(w.r.t. set inclusion). As the prefix-closed subsetd dbrm
a complete sub-lattice of(Z*), it follows from Knaster-

As we explained in the introduction, we use here a stronglyarski's theorem [5] thak (s,.S) has a greatest fixpoint in
restricted form of the original definition of opacity where theynis sup-lattice.

observation functions may be state and history dependent. Onpefinition 4: Let SupK(L, 5) be the greatest fixed point
the other hand, we consider a concurrent version of opacity ihe operatoK (s, ). ’

Definition 2: (S); is concurrently opaquéw.r.t. L) if for
all i, S is opaque W.r.tTs.

Proposition 2: SupKL,S) is the union of all controls
enforcing the opacity ofS. If SupKL,JS) # 0, then it is

Dealing with concurrent opacity does not make a bighe maximal permissive control enforcing the opacity.5of
change for checking opacity, which is easy in our casgiherwise no such control can exist.

(although not necessarily computationally simple) since we

consider exclusively regular systems and secrets.
Proposition 1: It is decidable whethefS); is concurrent-
ly opaque.
Proof: By definition, it suffices to decide for each
i €{1,...,n} whetherS is opaque w.r.trg. The considered
property holds if and only if;(S) C i(L\ S). As L and

Proof: This is a direct application of the Knaster-
Tarski’s fixpoint theoremn

Remark 1:The conditionL’ C SupK(L,S) is necessary
but not sufficienfor some non-empty contrdl’ to enforce
the opacity ofS. For instance, in Example SupK(L, 5) =L,
but the secre§, is not opaque w.r.tll’ =¢e+a+ac.
The fixpoint characterization of the optimal control en-

S are regularL.\ § is regular, and since morphic images offorcing opacity does not show th@upKL,S) can be
regular languages are regular, this relation can be dedmledcomputed, nor that the control can be implemented with a



I, a_ . f_. -~ %\ In fact, L1 = K(Lw,S) = 0 and this is a fixpoint. Opacity

’\9'/’ can therefore not be enforced.
f e
m‘ B. A case where SugK,S) is not regular
b Let X = {a,b,x,y} andL be the set of prefixes of words
in (ax)* (e+ab) (yb)". Define $ = {(%,S) |1<i<3} as
Fig. 1. An automaton follows (letting CL' =L\ L’ for L’ C L):

1) = ={ab}, (Si=¢e+(ax)"ab(yb)" + (Z\ {b})"

L : . . 2) I={xy} (S =(ax)"(yb)’
finite device. Whem =1, i.e. when $ = {(Z1,S)}, this is 3) s3={ab,xy}, (Ss=c+as
pot a problem because i_n this particular caSapK(L, 5) We claim thatSupK(L,.S) is not a regular language and
1S equal to K(L, ) anc_i It may b_e sh_own Ean(L’S) worse, the family of regular controls enforcing the opacity of
'S the set of words with *aII pr*eﬂxes 'mﬂnl (L Sl*)' S has no largest element. Recall that the subset of maximal
Thgrefpre,SupK(L,j) = T\ (2 \_(L m oL\ S)Z) words in a regular language is regular. In order to establish
which is regular. Whem > 1, two situations contrast. The the first part of the claim, one can show ti&4pK(L,.S) is
nice situation Is wherSL_JpK(L,S) can be_ computed frorh equal to the sett’ of all prefixes of words in the non regular
by a finite number of iterated applications of the OperatQ%nguageJnaN (ax)" (¢ + ab) (yb)". A detailed proof of this

S
K(e,5). Actuially, whenl sa regular. subset df, the same fact may be found in [6]. To show that the family of regular
holds forK(L’, 5), hence in the considered caSepK(L, S) controls enforcing the opacity of has no largest element,

is regular. The rest of the section illustrates the conversg . - << mes the opposite. [Rbe the largest prefix-closed

situation. regular subset df such thats is opaque w.r.tR. Necessarily,
_ _ o ax)" (yb)" ¢ R for somen. If it were otherwise, because
A. A case where the closure ordinal ofK.5) is transfinite (3% (yh)" 1 is the sole wordv € L'\ S; such thatv~; W

Let = = {ab,c,d,e f} and letL be the prefix-closed for w= (ax)_”(yb)”, R would coincide Witth, which is not
language accepted by the finite automaton of Fig.1 (Whegg)s?ble %’ is not regular). Leh be the least m_teger such that
all states are accepting states). Define {(£1,51), (22,S)} (@9 (YD) ¢ R and letR be R augmented with all prefixes
with =1 = {c, f}, S, = Z*afc(Z\ {c})* (this secret is safe Of words in{(ax)”(yb)",(ax)" “ab(yb)™ "} not already in
if, by observing onlyc and f, one cannot find out in any R. The Ianguggé{’ is prefix-closed and regular, a!ﬂd. one can
run that the last occurrence ofwas preceded bgf), and verify that § is opaque w.r.tR. Thus, a contradiction has
5, ={b, e}, S =>*deb(z\ {b})* (this secret is safe if, by Peen reached.
observing onlyb ande, one cannot find out in any run that the
last occurrence ob was preceded bge). Let Ly = K(L,S) IV. CONTROL ENABLING AND &-TREES
be the first language encountered in the greatest fixpointWarning 1: From now onSx* C § is imposed on all sets
iteration converging tSupK(L, S), thenL; =L\afcz* (the S in S= {(Z1,S1),...,(Zn,S)}-
run afc reveals the secre®; and the runs irmfd>* reveal This section serves as a bridge between the general
nothing). The second itenhy; = K(L1,S) is the language problem and the practical solutions that we shall propose
L1\ afdel®* (relatively to L1, the runafdebreveals the in specific cases. The working assumption that secrets are
secretS,, and the runs ilnfdea&* reveal nothing). After suffix-closed is motivated by its convenience (if not its
afc and afdeb have been eliminated, the initial situationnecessity) for enforcing opacity with finite control. Although
reproduces up to the prefixfdea Therefore, the fixpoint this working assumption was not satisfied in the examples
iteration produces a strictly decreasing and infinite sequenfiem sections IlI-A and 1lI-B, it is quite natural since it
of languaged. ;. The limit SupK(L, ) of this decreasing amounts to strengthening the secrecy requirement as follows:
chain is the set of all prefixes of words in the regulaan observeri should never have the knowledge that the
setL, = (afde”, hence it is regular. The optimal control trajectory of the system is i or wasin § at some instantin
enforcing the opacity of may be implemented by any finite the past. We give below a simpler definition of the operator
automaton recognizinby,. K(e,S), which is equivalent to the earlier definition when

Let us now extend the concurrent secret info=  secrets are suffix-closed. Then we considdrees that may
{(Z1,9),(22,%),(Z3,S)} with (£1,S1) and (£2,S) as be seen as proofs of control enabledness of trajectories.
aboveZ3=0andS =Z*\ (*cz*). Then, the closure ordi- Finally, we propose conditions on sets of proof trees entailing
nal of K (e, 5) increases fronw to w+ 1. To see this observe the regularity ofSupK(L, S), thus paving the way for section
that, sinceXs is empty, the secre®; is safe relatively to V.
any languagé.’ C L containing at least one word containing Definition 5 (modified form of Def. 3)For any prefix-
at least one occurrence of The greatest fixpoint iteration closed subset’ of L, the safe kernelof L’ w.r.t. the secret
for SupK(L,.S) starts with the same decreasing sequdnce S, notationK(L’,S), is the largest subset df such that
as before, bukK (L, S) differs now from L, becauseL, weK(L',$)= (Vi)EW eL'\S)w~w.
contains no word containing (differing in that form allL ;). Proposition 3: Definitions 3 and 5 are equivalent.



Proof: For the duration of this proof, leK(e,S) and

K'(e,S) be the two operators from Def. 3 and Def. 5, / X
respectively. ClearlyK(L’,$) € K'(L,S) for any L’. We 2

show the converse relation. Consider any ward K'(L’,.5) L O‘h - “ZQ 5
and letw = uv be any decomposition of this word into two

factors. We should prove that for ak {1,...,n}, u~; u’ for
someu’ € L'\ S. Aswe K'(L',$) and by definitionw ~; w
for somew € L'\ S. Noww ~; uv, hence there exists at least

one decompositiow’ = UV’ such thati~; U Finally, U € L" 574 (q,) = a"b™ induces in fact ano-tree witnessing that
by prefix-closedness df’, andu’ ¢ S by suffix-closedness |, - SupKL, )

Fig. 2.

of S. Thereforew c K(L',.5). m _ There are two sources of problems with the proof patterns
Definition 6: Givenw < L, aproofof enablednessf wis  ¢rom pef. 8. The first difficulty is that, giverL, S and
amapf:{1,... ; n}* — L such thatf () =w and for_ allte (Q,{1,...,n},qo), the set of the labelling maps: Q — L
{1,....,m"andj e {1,...,n}, 1(1) = f(1j) andf(tj) ¢S considered in this definition is generally not reguiae, it
The mapf in the above definition is just a complete  cappot pe defined with a finite automaton ). For
ary ordered tree labelled on nodes, thus in particular it is fstance. if the labelling maps considered in example 2 did
infinite tree. The next proposition follows immediately fromsy, 4 regular set, then the set of all paifs™a”,a"b™)
the co-inductive definition oBupK(L, S). _ would be regular, but the iteration lemma for rational sets [7]
_ Proposition 4: Foranyw e L, we SupK(L, S) ifand only il the opposite (if the set is regular, for soke 1 and
if there exists a proof of the control enablednessvof for large enougm andm, (b™a",a"o™) could be written as
A nice situation is when the control enabledness of X)(y,y)(z,Z) where 0< |y|+|’>/| X+ X|+ |yl + Y| <N
trajectory may be proved with a regular tree. Let us recaE;]d (x.X)(y,y)*(zZ) is included in the set). The second
the definition. _ . difficulty is that, givenL, S and (Q,{1,...,n},qo), the set
Definition 7: Let f: {1,... ,n}* — L bea (fompleta-ary of values taken af = qo by the labelling maps from Def. 8
ordered labelled) tree. For anye {1,...,n}", the sub-tree 5 sometimes not regular. An example is shown hereafter.
of f rooted att, in notation f /1, is the (completen-ary Example 3:Let = = {ab} and L = >*. Let § =
ordered labelled) tree defined wili/1)(t") = f(t7’) for all (21,91, (22,S)} where ZJ’. = {a}, 5, = {b}, and (S, =
T e{1,...,n}*. The treef is regular if it has a finite number S = (¢ + b)(ab)*(e + a). Consider the set of all maps
of sub-treesf /1. . labelling adequately the finite proof pattern from Fig. 3. The
Any regular treef may be folded to a finite rooted graph. got of values taken by these mapgjat qo is the set of all

When the control enabledness of the (good) trajectories M3y, 4s in which the numbers of occurrencesand b differ
be proved using regular trees exclusively, this predicate lﬁ/ at most one, hence it is not regular.

therefore recursively enumerable. This condition is necessary

and sufficient for being able to enforce control, but not o

efficiently. In the rest of the section, we search for additional

conditions entailing the regularity of the cont®upK(L, ). lj LZ
A first attempt towards this goal is to impose an upper o

bound on the number of (different) subtrees of a regular 12( )

proof tree. Equivalently, one may require that all proof trees

conform to a finite collection of finite patterns as follows. Fig. 3.

Definition 8: A finite pattern for proofgof enabledness of
trajectories) is a finite, deterministic and complete automaton Note that in both examples 2 and SupKL,S) = =,
(Q,{1,....n},qo) (thusqo € Q and anyi € {1,...,n} maps and proofs of enabledness may be obtained fomadl >*
Q to itself). A proof treef : {1,....n}* — L conforms toa Py labelling the finite proof pattern shown in Fig. 4.
finite pattern if there exists a labelling map Q — L such

that f(t) = A(qo-T) for all T € {1,...,n}* letting g-T be . ® ,
defined inductively withg-& = q andq- (t112) = (q-T1) - T2 / \
for all g€ Q. " &
The idea behind this definition is that proof trees contain 12 Q O 12
bounded information up to the choice of a bounded number
of words inL. Fig. 4.
Example 2:Let ~ = {a,b} and L = ¥*. Let § =
{(21,9),(22,S)} with 5; = {a}, (S; = b*a* andZ; = {b}, In order to dodge the problems, one may concentrate on

(S = a*b*. The finite pattern shown on Fig. 2 suppliesrestricted proof patterns as follows.

proofs of control enabledness for all trajectories. For any Definition 9: A type (of proof of enabledness) is a finite
word w with n occurrences oft and m occurrences ob, pattern7 = (Q,{1,...,n},qo) with a prefix-closed subset
the labelling map defined with(qo) = w, A(gqr) = b™a", T C{1,...,n}* such that(vqe Q) (3!t T)(q=0qo-T) and



for any mapA : Q — L,
(Y1) (V]) (tj €T A Mo T) ~ Mgo 1)) A A(do-Tj) ¢ Sj)
= (va) (V) (\(@) ~jA(@-]) ANG-]) €S)
wheret and j range over{l,...,n}* resp. over{1,...,n}.
A proof tree f : {1,...,n}* — L has type7 if it conforms
to this pattern (see Def. 8).

The setT in Def. 9 induces a (finite) tree, rooted @,
that spans the automat¢®, {1,... ,n},qo). The point is that

for any mapA : Q — L, if (A(a) ~j A(q-j) AA(T-]) €Sj)

je{1,...,n}. ThenW(t) = V1(T)...Vn(1) for all T €T for
some sequence of vectorig: T — XU {¢e} such that for all
TjeT, (W(1) € Zj VW(T)) € ) = Vi(T) = Vi(T]).

Theorem 1 opens the way to the practical synthesis of
supervisory control for concurrent opacity. The conditions
for its application are examined further in section V.

V. CONCURRENT SECRETS WITH A REGULAR
OPACITY CONTROL

for all arcs(qg,q-j) in the spanning tree, then it holds also We propose here conditions on concurrent seciets
for all chords,i.e. for all remaining edges of (the underlying {(%1,S1),...,(Zn,S)} ensuring that the maximal permis-

graph Of) (Qa {1a e 7n}7q0)'

sive opacity controSupK(L,.5) is the language of a finite

Theorem 1:If there exists a finite number of types ofautomaton, that may effectively be constructed from finite

proofs of enabledness for all trajectoriese SupKL,.S),
thenSupK(L, S) is a regular language.
Proof: It suffices to show that when type&l =

automata accepting the langualgeand the secret§. We
examine first the case where the alphat®téorm a chain
for the inclusion, second the case where the se&efisrm

(Q,{1,...,n},q0,T) has been fixed, the set of trajectoriesa chain for the inclusion, third the case where every secret

w € L with proofs of enabledness of typ€ is regular.
In view of the definitions 8 and 9, a worg belongs to
the considered set if and only N(qo) = w for some map
A :Q— L satisfyingA(qo-T) ~j A(qo- Tj) andA(do-Tj) ¢ Sj

wheneverj € T andj € {1,...,n}. In order to show that this

S is saturated by any equivalencg such thati # j (a set
is saturatedby an equivalence if it is a union of equivalence
classes). We consider finally the combinations of the three
cases for the different pairs, j).

Proposition 5: If the alphabetsy; form a chain for the

is a regular set, we construct the Arnold-Nivat product [8] ofnclusion, then the enabledness of all trajectorigsc

a family of automatad, indexed witht € T, as follows. Let

A¢ be a (finite deterministic) partial automaton recognizing

L, and for each sequenag in T with j € {1,...,n}, let

SupK(L,S) may be shown with a single type of proofs.
Proof: Given the chairk; C 2, C ... C X, we construct
atypeZs = (Q,{1,...,n},qo,T) as follows.T is the set of

Ayj be a (finite deterministic) partial automaton recognizingtrictly increasing sequences of numbers(in... .n} (T is
L\ S;. This defines the components of the product. As fodrawn with solid arcs in Fig. 5Q =T andqp = €. For any

the synchronizations, let’ be the set ofl -vectorsv: T —
(XU{e}) such that(V(t) € 3; vV V(1) € Zj) = V(1) =V(Tj)
whenevertj in T and j € {1,...,n}. The induced product
is a (finite deterministic) partial automatol = (Q, ¥V, do)
defined as follows:

- the set of stateg) is a set ofT-vectors,

- for eacht € T, o(7) is the initial state of4y,
-forallge Q andt €T, q(1) is a state ofdy,
-forallge Q,ve ¥ andteT, (§-V) (1) =q(T) - V(1)
Therefored- v is defined if and only ifg(t) - V(1) = ¢(
defined for allt.

Let V1 ...Vy be a word overl accepted bya. An asso-
ciatedT-vectorw: T — L may be defined by setting(t) =
V1(T)...Un(1) for all T € T. It follows directly from the
construction that the map: Q — L such that\(qo-T) = W(T)
for all Te T satisfies\(qo-T) ~j A(Qo-Tj) andA(go-Tj) ¢ S
fortjeT andj e {1,....n}, hencew(e) € SupKL,.JS).

%) is

Tin T andi e {1,...,n}, t-i=Ti wheret is the largest
prefix of 1 formed of integers strictly smaller thain(see
again Fig. 5). As(~j o) C; for i < j, 71 conforms to
Def. 9. Finally, for anyw € SupK(L,.5), by Prop. 1, there
must existamap:Q—L,i.e.A: T —L, such thal(¢) =w
and for alltj e T, A(T) ~j A(T)) AAN(T)) ¢ S;. m

Proposition 6: If the secrets§ form a chain for the inclu-
sion, then the enabledness of all trajectories SupK(L, S)
may be shown with a single type of proofs.

Proof: Given the chair5; C S C ... C S5, we construct
atype = (Q,{1,...,n},qo,T) as follows.T is the set of
strictly increasing sequences of numbergin... ,n} (T is
drawn with solid arcs in Fig. 6)Q =T andqo = €. For any
TinTandie{l,....,n}, t-i=tiif ieT andt-i=T1
otherwise (see again Fig. 6). i< j, then for anytj in T
(=Q),andforanymap:Q— L, A(T)) ¢ Sj = A(Tj-i) ¢S
since § C §j. Therefore, 7, conforms to Def. 9, and the

As 4 is a finite automaton, the projection of the languageéesired conclusion follows from Prop. .
of 4 alonge is a regular language. In order to complete the Proposition 7: If for all distincti, j € {1,... ,n}, the secret

proof, it suffices therefore to show that for any mapQ — L
satisfyingA(qo-T) ~j A(do-Tj) and A(go-Tj) ¢ Sj for all
Tj €T, the vectom: T — L defined withw(t) = A(qo-T) for
all t€ T may be written as a word, . . . Vi, recognized byA.

S is saturated by the equivalence relatiory, then the
enabledness of all trajectories= SupK(L, .S) may be shown
with a type of proofsZs.

Proof: We construct a type/z = (Q,{1,...,n},qo,T)

Given the construction of this automaton, it suffices to exhib#s follows. T is the set of sequences ifL,... ,n}* with

a sequencg ...Vm € V* such thati¥(t) = V4(1)... Vm(T) for

at most one occurrence of each numbe€rig drawn with

all T €T. This is the contribution of the lemma 1 (proved insolid arcs in Fig. 7)Q=T andqgp =¢. For anyt in T and

[6]). m
Lemma l:Let w: T — Z* where T is a prefix-closed
subset of{1,... ,n}* andw(t) ~; W(tj) for all Tj € T with

ie{l,...,n}, t-i=Ti if Ti e T andt-i =1 otherwise (see
again Fig. 7). Let : Q — L be any map such thai(t) ~;
A(T)) A A(T)) ¢ Sj) whenevertj € T. One may show by



induction ont thatA(t) ¢ S for anyi € {1,...,n} occurring
in 1. Indeed, if this property holds far, it must hold fort|
because\(t) ~; A(1j) and~; saturatess andL\ S for all

i occurring int. Therefore, 73 conforms to Def. 9, and the
desired conclusion follows from Prop. M.
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Fig. 5. 7 forn=3
that constructs a unique type for all proofs of enabledness

in all cases where this is possible. In this perspective, we
introduce rewrite rules on labelled graphs. In each rule, one
vertex of the left member is dropped and the edges that were
incident to this vertex are redirected to other vertices. The
vertices and edges present on both sides of a rule serve as
an application context (indicated by the labels put on the
concerned vertices). The rewrite rules are displayed in Fig. 9
(wherei # j andsat is an abbreviation for “saturates”).

X iy X Y.
O;O*J>o > o;o’ , i S CS
Fig. 6. % forn=3 N . .
y X y
O;O4J>O > o—|>o‘ 2jC3
vl
j\\ l‘\xv
[¢] [e]
z z
Xj Vi z j X iy z_ |
O*J»o#»o*]»o D> o#o*I»o’ Lo jsat§
X Y i L S T
OHI O*»I o > o*»l o i True
123 123 123 123 173 123 Fig. 9. Four rules
Fig. 7. T forn=3 Proposition 8: Given § = {(Z1,S1),...,(Zn,Sh)}, let R

be the set of the rewrite rules that correspond to predicates
One can deal similarly with many other situations wher&rue in S. Whenever the completeary tree rewrites to some
% C%jorSCSor ~ saturatesSj, or conversely withi  finite graph, any such graph yields a uniform tyge for
andj, for all distincti, j € {1,...,n}. For instance, leh=3, proving the enabledness of all trajectories. The spanning tree
and supposé&, C S, 33 C 55, and~; saturatesss. Then the of 7 is the subset of edges of the completary tree that
enabledness of all € SupK(L, . S) may be proved using the have been preserved by the rewriting.
type 74 (see Fig. 8). Proof: In view of Def. 9 it is enough to show, for each
Unfortunately, we cannot extend propositions 5,6, and graphG on the right hand side of a rewrite rule (see Fig. 9),
into a general proposition, for we do not know whethethat any map\ : {x,y} — L or A: {x,y,z} — L compatible

SupK(L,.S) is regular in three particular cases: with the rigid edges o6 is compatible also with the dashed
-5 CS, 3 C 23, andx~; saturatesss, edge of G, where\ is compatible withx —-y if A(X) ~;

-5 CS, ~ saturatesSs, and>3 C 23, A(y) andA(y) ¢ S. Considering the predicates defining the
- ~1 saturatess;, ~» saturatesSs, and~3 saturatess;. application conditions of the rewrite rules, this verification

The best we can do is therefore to propose an algorithis immediate ®



When proposition 8 can be applied, the construction From the beginning of section IV, we worked with open
proposed in the proof of proposition 1 may be used tgecrets,i.e. secrets§ such thatS§%* C §. The goal was
produce a finite automaton realizing the maximal permissii® make Def. 3 equivalent to the simpler definition Def. 5.
opacity control, but Prop. 8 is not immediately effective. WeAnother way to obtain this equivalence is to impose on each
remedy now this deficiency. secretS the following condition, whereC is the order prefix:

Proposition 9: It is decidable whether some finite graph(vweL\S) m(w) =uo= (3veL\S) (v<wA T5(v) =u).
may be derived from the completeary tree using the rules Such secrets mag.g.carry the information that some system
in R and such graphs can be computed when they exist. processs in a critical section.

Proof: Let | ={1,...,n} and letF C I* be the set of As regards the control objective, we focussed our efforts
all wordsii, orij, or jij such thatTrue or (S§§C SVvX; C on opacity, but we did not take the deadlock freeness or the
Zj), or ~j sat§, respectively. Defind = 1"\ (I*FI*), then liveness of the controlled system into consideration and this
R produces finite graphs from the completary tree if is a shortcoming. Another valuable extension would be to
and only if T is finite. The detailed argumentation and thevork with boolean combinations of opacity predicatesy.
construction of a typeél” with the spanning tred may be if S is opaque w.r.tZ; thenS; is not opaque w.r.t2,.
found in [6]. m We end with a few words on observability and contro-

Example 4:Let £ = {a,b,c} and letL be a prefix-closed lability. On the side of the observation functions, we have
regular language oveX. Define S = {(Z1,S1),...,(Z3,S3)}  restricted our attention to projections on subalphabets, but it
such thatz; = {a,c}, Z, = {b,c}, 23 ={b}, andS =SZ* would be more adequate to accomodate also all alphabetic
for all i € {1,...,3}. The construction sketched in the proofmorphisms. As regards control, we dealt with all events
of proposition 9 yields the typ&; and the spanning treE  as controlable events, but it would be more realistic to
displayed in Fig. 8. accomodate also uncontrolable events.

SupKL,S) may be computed by stages following the
structure of T. One computes firsSBupKL,S)\ Ss, using
the type that appears iy at the end of both paths 13 and
3. Next, one computeSupK(L, 5)\ S; from SupK(L, 5)\ Ss,

; ; [1] P.J. Ramadge and W.M. Wonham, Supervisory Control of a Class of
using the type at the end of the path 1Tp. Fma"y’ one Discrete Event ProcesseSlAM Journal of Control and Optimization
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