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1. Introduction

Dealing with concurrency, time and causality in the design of electronic systems has become increasingly
difficult as the complexity of the designs grew.

Thesynchronous programming model[1, 2, 3] has had major successes at the specification level be-
cause it provides a simpler way to employ the power of concurrency in functional specification. Provided
that a few high-level constraints ensure compliance with the synchrony hypothesis, the designer can for-
get about timing and communication issues and concentrate on functionality. The synchronous model
features deterministic concurrency and simple composition mechanisms facilitating the incremental de-
velopment of large systems. Also, synchronous models are usually easier to analyze/verify/optimize
compared to asynchronous counterparts, often because the state-transition representations are smaller.

Synchronous languages like ESTEREL, LUSTRE, and SIGNAL , the quasi-synchronous STATECHA-
RTS modeling methodology, and design environments like SIMULINK / STATEFLOW all benefit from the
simplicity of thesynchronous hypothesis:

1. Cycle-based execution model. Behaviors are sequences ofreactionsindexed by aglobal logical
clock.

2. Within each reaction, the behavior is non-divergent and causal, so that the status of every signal is
defined prior to being used in computations.

Note that condition 2 empowers the conceptual abstraction that computations and communications are
infinitely fast (“zero-time”) and take place at discrete points in time, with no duration. It also allows
universally-recognized mathematical models like the Mealy machines and the digital circuits to be used
as semantic foundations.

Eventhough the synchronous assumption simplifies system specification and verification, the prob-
lem of deriving a correct physical implementation from it does remain [2]. In particular, difficulties arise
when the target implementation architecture has a distributed nature that does not match the synchronous
assumption because of large variance in computation and communication speeds and because of the dif-
ficulty of maintaining a global notion of time. This is increasingly the case in complex microprocessors
and Systems-on-a-Chip (SoC), and for many important classes of embedded applications in avionics,
industrial plants, and the automotive industry.

For instance, many industrial embedded applications consist of multiple processing elements, op-
erating at different rates, distributed over an extended area, and connected via communication buses.
To use a synchronous approach in the development of such applications, one solution is to replace the
asynchronous buses with communication infrastructures that comply with a notion of global synchro-
nization. This is examplified by the family of Timed-Triggered Architectures introduced and promoted
by H. Kopetz [4]. However, such a fully synchronous implementation must be conservative, forcing
the global clock to run as slow as the slowest computation/communication process. The overhead im-
plied by time-triggered architectures and synchronous implementations is often large enough to convince
designers to use asynchronous solutions.

Gathering advantages of both the synchronous and asynchronous approaches, Globally Asynchro-
nous Locally Synchronous (GALS) architectures are emerging as an architecture of choice for imple-
menting complex specifications in both hardware and software. In a GALS system, locally-clocked
synchronous components are connected through asynchronous communication lines. Thus, unlike for
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Figure 1. From synchrony to GALS. Bullets represent informative values (messages). Vertical gray boxes repre-
sent reactions. Horizontal ones represent asynchronous signals.

a purely asynchronous design, the existing synchronous tools can be used for most of the development
process, while the implementation can exploit the more efficient/unconstrained/required asynchronous
communication schemes.

We further pursue in this paper our quest for correct-by-construction deployment of synchronous
specifications over GALS architectures.

1.1. Informal discussion of the issues

In the synchronous paradigm[1, 2, 3], an execution of the program, also calledtrace, is a sequence
of reactions, each reaction assigning a unique value (status) to each variable of the program. Not all
variables need to be involved in each reaction. However, this is taken into account by extending the
domain of values of all variables with an extra symbol⊥, which denotes absence. Thus, absence can be
tested and used to exercise control.

No global clock exists in theasynchronous paradigm, meaning that no notion of reaction exists, and
that absence (⊥) has no meaning and cannot be sensed. Only the sequences of values on individual
channels can be observed, so that anasynchronous observationof the execution of a system is a function
assigning to each communication channel the sequence of transmitted messages/values. Asynchronously
observing a synchronous execution consists of removing the⊥ events and the synchronization boundaries
of the reactions to obtain an asynchronous observation.

In many cases, applications designed in a synchronous framework will be implemented for use
in an asynchronous environment. Two problems arise: First, the synchronous applications must be
fitted with wrappers that read the asynchronous inputs and schedule them into reactions before giving
them to the program and triggering the program clock (the scheduling operation inserts the missing
⊥ values). As the synchronous paradigm is often used in the development of safety-critical systems,
input reading and the system itself must be deterministic, or at least predictable. It is therefore essential
to consider classes of synchronous specifications that facilitate the development of efficient wrappers
which make input reading deterministic while not restricting the behavior of the system.

Second, the implementation must preserve the semantics of the synchronous specification, meaning
that the set of asynchronous observations of the specification must be identical to the set of observa-
tions of the implementation. Preservation of semantics is important because the advantages of synchrony
lie with specification and verification. We would therefore like each implementation trace to be cov-
ered by the verification of the synchronous model. This problem is of particular importance when the
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synchronous specification must be implemented over a distributed architecture (an operation calledde-
synchronization). In such cases, input reading and computation must be coordinated between distributed
sites, and doing this without a careful analysis can be very inefficient (in terms of speed, consumption,
communication, etc.) or simply incorrect.

This paper addresses the problem of desynchronizing a modular synchronous specification by re-
placing the communication lines between modules with asynchronous FIFOs. Instead of a single, global
wrapper, we shall have one wrapper per system component, as pictured in fig. 1. The exact problem we
address is that ofcharacterizing large classes of synchronous components for which small, simple wrap-
pers1 produce deterministic, efficient, and semantics-preserving GALS implementations. These classes
of systems can then be considered as the implementation space, and the remaining problem is that of
making given synchronous systems belong to these classes (by adding supplementary signaling). Natu-
rally, a larger implementation space covers better solutions that use less synchronization.

1.2. Previous work

Previous approaches to implementing modular synchronous specifications over GALS architectures are
respectively based onlatency-insensitive systems, onKahn process networks (KPN), and onendochron-
ous and isochronous systems.

In the latency-insensitive systemsof Carloni et al. [5], each synchronous component reads every
input and writes every output at each reaction. The communication protocols effectively simulate a
single-clock system, which is inefficient, but simplifies the implementation.

In aKahn process network[6], requiring that each component has a deterministic input/output behav-
ior implies the determinism of the global system (and thus any wrapper is a good one). Often used, due
to its robustness, in the development of embedded systems, the KPN-based approach has been adapted
by Caspiet al. for the desynchronization of functional dataflow synchronous specifications [7]. Giving
the approach its strength, the determinism is also its main drawback, as non-determinism is often useful
in the specification and analysis of concurrent systems. We also mention here the approach of Talpinet
al. [8], which is based on a bounded version of the Kahn principle.

The approach based onendo/isochronous systemshas been proposed by Benvenisteet al. [9] in
order to support the analysis of partial specifications (which can be non-deterministic, or incomplete),
to exploit execution modes, and to cover truly concurrent and multi-clock implementations. Informally
speaking, a synchronous component is endochronous when thepresence and absence of each variable
can be inferred incrementally during each reaction from thecurrent state and from the values of already
present values. An endochronous component knows how to readits inputs, meaning that no wrapper
is needed. Unfortunately, endochronous components can exhibit no internal concurrency, which makes
endochrony non-compositional (thus, incremental system development is impossible). Isochrony is a
semantics-preservation criterion over pairs of synchronous systems. The work of Singh and Theobald on
generalized latency-insensitive systems[10] can be seen as implementing endochrony in hardware.

Essential improvement is brought by the work by Potopet al. [11] on weak endochrony and weak
isochrony. Weak endochrony extends endochrony by allowingoperations within a component to run
independently when no synchronization is necessary. The notion is compositional, allowing incremental

1For instance, wrappers that trigger a transition as soon as the needed input is available.
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development of large systems. Being formulated in a non-causal2 framework, this approach is also less
constrained than the KPN-based one, allowing non-determinism in the less abstract causal model. The
non-causal framework is also the main disadvantage, because it hides implementation properties, like the
presence of synchronization or communication deadlocks (which are important in practice).

The distribution of synchronous or strongly synchronized specifications has been studied in many
other settings. We only mention here the Time-Triggered Architectures of Kopetz [4], theocrep tool
of Girault et al. [12], the AAA methodology of Sorel [13], and the desynchronization approach of
Cortadellaet al. [14].

From a more theoretical point of view, our work is closely related to results related to the confluence
of asynchronous system models [15]. In this sense, our work is closely related to results concerning the
design of delay-insensitive [16, 17, 18], speed-independent [19], and burst-mode [20] circuits (we will
come back with a comparison in section 4.3).

1.3. Contribution

This paper brings an important improvement over previous work, by allowing us toreason about con-
currency and efficient synchronization in a causal, operational synchronous framework that takes into
account the composition through read/write mechanisms. The approach inherits the advantages of the
weak endochrony-based approach: It allows the representation of non-deterministic specifications, takes
into account execution and communication modes, and coversconcurrent and multi-clock implementa-
tions. At the same time, it allows us to reason in a unified model about semantics-preservation and the
absence of deadlocks due to synchronization and communication (which are both essential correctness
properties of any implementation). As we shall see,the level of detail is essential in this analysis, as it
reveals the strong ties that exist between the two correctness properties, and simplifies the correctness
analysis.

Our main contribution is the definition of a new model for the representation of asynchronous imple-
mentations of synchronous specifications. The model coversclassical implementations, where a notion
of global synchronization is preserved by means of signaling, and globally asynchronous, locally syn-
chronous (GALS) implementations where the global clock is removed. We use this model to derive
criteria ensuring the correct deployment of synchronous specifications over GALS architectures.

1.4. Outline

The remainder of the paper is organized as follows: Section 2defines the formal framework used through-
out the paper, and section 3 gives intuitive examples and explains why the new structures are adapted to
modeling and reasoning about the correctness of GALS implementations of synchronous specifications.
Sections 4 defines criteria ensuring correct desynchronization. A short conclusion is given in section 5.

2. The model

This section defines our model of asynchronous implementation of a synchronous specification. We
structured its presentation into several parts. The subsections 2.1, 2.2, and 2.3 introduce rather standard

2The termcausal/causalitycovers here the execution order of the various operations that make up a synchronous reaction. The
formalism presented in this paper has the means of representing this order. Other formalisms, including those of [9, 11], do not.
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notations for transition systems (labels, traces, concurrent transition systems, and composition by syn-
chronized product). Subsection 2.4 is the first to define communication channels, clocks, and the I/O
transition systems which form our basic implementation model. Section 2.5 defines the synchronous
transition systems – which are I/O transition systems satisfying the synchronous hypothesis. In section
2.6 we explain how transition systems are synchronously andasynchronously composed using FIFO
models. Recall that intuitive examples are given later, in section 3.

2.1. Variables and labels

Our components and systems interact with each other and withtheir environment throughvariables.
The domainof a variablev is denoted withDv. GivenV a finite set of variables, alabel over V is
a partial valuation of its variables. Formally, the set of all labels overV is LV =

∏

v∈V D⊥
v , where

D⊥
v = Dv ∪ {⊥}, and⊥ 6∈ Dv is a special symbol denoting theabsenceof a value. Thesupportof a

label l ∈ LV is supp(l) = {v ∈ V | l(v) 6= ⊥}. We denote with⊥V the label of empty support over
V . For simplicity, we shall usually write out a label as the setof its non-absent variable valuations. For
instance,< v = 0, u = 1 >V denotes the label overV with support{u, v} and which assigns 0 tov and
1 to u. When confusion is not possible, the setV of variables can be omitted from the notation. Also,
when confusion is not possible and we need to save space (for instance in large system representations)
we shall drop the “< >” delimiters.

If l ∈ LV andV ′ is another set of variables, then theimageof l throughV ′ is the labell |V ′∈ LV ′

that equalsl overV ∩ V ′ and equals⊥ onV ′ \ V .
The labelsli ∈ LVi

, i = 1, 2, arenon-contradictory, denotedl1 ./ l2, if for all v ∈ V1 ∩ V2 such that
li(v) 6= ⊥, i = 1, 2 we havel1(v) = l2(v). In this case, we define their:

• union: l1tl2 ∈ LV1∪V2
, of supportsupp(l1)∪supp(l2) and which equalsli oversupp(li), i = 1, 2.

• intersection:l1 u l2 ∈ LV1∪V2
, of supportsupp(l1) ∩ supp(l2) and which equalsli on its support.

The union and intersection operators are associative and commutative. When the labelsl1, l2 ∈ LV are

non-contradictory, we also define theirdifferencel1 \ l2 ∈ LV by l1 \ l2(u) =

{

l1(u), if u 6∈ supp(l2)

⊥, otherwise
.

When the non-contradictory labelsli ∈ LVi
, i = 1, 2 are equal overV1 ∩ V2, they are calledsynchro-

nizable. Their union is also called in this caseproductand denoted withl1 ⊗ l2. Note thatl1 ⊗ l2 equals
li onVi, i = 1, 2. The labelsli ∈ LVi

, i = 1, 2 aredisjoint if supp(l1) ∩ supp(l2) = ∅.
Assume thatv andv′ are variables with the same domain (i.e.Dv = Dv′ ). Givenl ∈ LV , with v ∈ V

andv′ 6∈ V \ {v}, the name change operator associatesl[v/v′] ∈ LV \{v}∪{v′} with:

l[v/v′](u) =

{

l(u), if u 6= v′

l(v), if u = v′

We define the “sub-label” partial order relation≤ overLV : l1 ≤ l2 if ∀v : (l1(v) 6= ⊥ ⇒ l1(v) =
l2(v)).
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2.2. Traces

A traceover the set of variablesV is afinite sequence of labels overV . The set of all traces overV is
denoted withTraces(V ) = L∗

V = {(li)0≤i<n | n ∈ IN ∧ ∀i : li ∈ LV }. Given a traceϕ = (li)0≤i<n
we denotelength(ϕ) = n andϕ[i] = li. Note that any label is a trace of length 1. We denote withε any
sequence of length 0. In particularε denotes the empty trace, regardless of the variable set.

Any two tracesϕ1, ϕ2 ∈ Traces(V ) can be concatenated (by juxtapositionϕ1ϕ2). The traceϕ1 is a
prefix ofϕ2 (writtenϕ1 � ϕ2) if, by definition,ϕ2 = ϕ1ϕ3 for someϕ3. The prefix relation is a partial
order over traces. The image operator is extended component-wise on traces:(li)0≤i<n |V ′= (li |V ′

)0≤i<n. The tracesϕi ∈ Traces(Vi), i = 1, 2 are calledsynchronizableif length(ϕ1) = length(ϕ2)
and if for allj the labelsϕ1[j] andϕ2[j] are synchronizable. In this case, we can define theproduct trace
ϕ1 ⊗ ϕ2 = (ϕ1[i] ⊗ ϕ2[i])0≤i<length(ϕ1). The product operator is associative and commutative. The
supportof a traceϕ, denotedsupp(ϕ), is the union of the supports of its labels.

2.3. Generalized concurrent transition systems

Thegeneralized concurrent transition systems(GCTS) form our (asynchronous) implementation model.
GCTSs are step transition systems where steps are syntacticrepresentions of the concurrency between
atomic operations (which assign or test a single variable).They generalize the concurrent transition
systems of Stark [21], and can be seen as a sub-set of the step transition systems of Mukund [22].

Definition 2.1. (generalized concurrent transition system)
A generalized concurrent transition system (GCTS) is a tuple Σ = (S, ŝ, V, ◦→Σ ), whereS is the set
of states (not necessarily finite) ,ŝ ∈ S is the initial state,V is the finite set of communication variables,
and◦→Σ ⊆ S × LV × S is a transition relation satisfying:

GCTS1 (void transition):∀s ∈ S : s◦
⊥V

Σ
// s .

GCTS2 (prefix closure): If s◦ l

Σ
// s′ andl′ ≤ l, then there existss′′ ∈ S such thats◦ l′

Σ
// s′′ and

s′′ ◦
l\l′

Σ
// s′ .

When there is no ambiguity,Σ can be dropped from the transition relation notation.

We shall say thatϕ = l1 . . . ln ∈ Traces(V ) is a trace of the GCTSΣ = (S, ŝ, V, ◦→Σ ) starting

in the states ∈ S if there exists1, . . . , sn ∈ S such thats◦
l1 // s1 ◦

l2 // . . . ◦
ln // sn . In this case, we

also write s◦
ϕ +3 sn . The set of all traces ofΣ starting ins is denoted byTracesΣ(s), and the set of

all destination states of such traces is:RSSs(Σ) = {s′ ∈ S | ∃ϕ : s◦
ϕ +3 s′ }. The reachable state

space ofΣ isRSS(Σ) =def RSSŝ(Σ).
Generalized concurrent transition systems are composed bymeans of synchronized product. Con-

sider two GCTSsΣi = (Si, ŝi, Vi, ◦→Σi
), i = 1, 2, then their product is defined as follows:

Σ1 ⊗ Σ2 = (S1 × S2, (ŝ1, ŝ2), V1 ∪ V2, ◦→Σ1⊗Σ2
)
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where (s1, s2) ◦
l

Σ1⊗Σ2

// (s′1, s
′
2) ⇔ si ◦

l|Vi

Σi

// s′i , i = 1, 2. The⊗ operator is well-defined — It preserves

the properties GCTS1 and GCTS2. It is also associative and commutative, and:

Traces�n

i=1
Σi

((si)1≤i≤n) = {
n

⊗

i=1

ϕi | ϕi ∈ TracesΣi
(si) pairwise synchronizable}

The variable name change operator is extended to GCTSs. IfΣ = (S, ŝ, V, ◦→Σ ), v ∈ V , v′ 6∈ V \{v},
andDv = Dv′ , then:

Σ[v/v′] = (S, ŝ, V \ {v} ∪ {v′}, { s◦
l[v/v′]

Σ[v/v′]
// s′ | s◦

l

Σ
// s′ })

2.4. I/O causality. Channels and clocks

In practice, communications between the different components of a system are directed. One component
emits a value on a channel, and another reads it. To take this into account, we usedirected communication
channelsthat are pairs ofdirected variables. We emit a value on a channelc by assigning the variable
!c, and we receive a value by reading the variable?c. The variables!c and?c have the same domain,
denoted withDc. We denote withC(V ) = {c |!c ∈ V or ?c ∈ V } the set of channels associated
with a set of variablesV . To simplify the model, we assume that every channel connects at most one
emitter with at most one receiver, meaning that!c is variable of at most one component in the system,
the same holding for?c (a simple renaming technique allows the use of multicast, but we shall not cover
the subject here). We further assume that the only variablesthat are not directed are theclocksof the
synchronous components. A clock is a variable whose domain isDclk = {>} (> stands for the “clock
tick”). Given a setV of variables we shall denote withClocks(V ) the subset of clock variables, and
with Directed(V ) = V \ Clocks(V ) the subset of directed variables. To simplify the notations, we
abbreviate the clock tick valuationτ = > with τ (for any clock variableτ ).

Definition 2.2. (I/O transition system)
We say that a GCTS is an I/O transition system when all its variables are either directed or clocks.From
now on, this paper only considers I/O transition systems.

To reason about desynchronization properties, we shall need the following function, which removes
the clock synchronization barriers, so that only messages (and not absence) are visible, along with mes-
sage ordering on each channel:δ : (D⊥

v )∗ → D∗
v , defined byδ(ε) = ε and:

δ(vϕ) =

{

vδ(ϕ), if v 6= ⊥

δ(ϕ), otherwise

Using this notation, we extend the relation≤ (first defined on labels) to a preorder overTraces(V ):
Given ϕ1, ϕ2 ∈ Traces(V ), we writeϕ1 ≤ ϕ2 whenever we haveδ(ϕ1 |{v}) � δ(ϕ2 |{v}) for all
v ∈ Directed(V ). If ϕ1 ≤ ϕ2 andϕ2 ≤ ϕ1, then we say thatϕ1 andϕ2 areasynchronously equivalent,
denotedϕ1 ∼ ϕ2. When for allv ∈ Directed(V ) we haveδ(ϕ1 |{v}) � δ(ϕ2 |{v}) or δ(ϕ2 |{v}) �
δ(ϕ1 |{v}), then we say thatϕ1 andϕ2 areasynchronously non-contradictory, and writeϕ1 ./ ϕ2. Note
that ./ extends to traces the non-contradiction relation over labels. Moreover, we can extend the label
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difference operator to non-contradictory traces by defining the asynchronous difference of tracesϕ1 \ϕ2

by induction:
{

ϕ1 \ (lϕ2) = (ϕ1 \ l) \ ϕ2

(l1ϕ1) \ l2 = (l1 \ l2)(ϕ1 \ (l2 \ l1))

If ϕ is a trace of an I/O transition system, then we denote with| ϕ | the number of assignments of
non-clock variables contained inϕ.

2.5. Synchronous transition systems

Our synchronous transition systems represent causal synchronous specifications or, equivalently, imple-
mentations of synchronous specifications where the global clock is preserved by some communication
infrastructure by means of added signalization3. A synchronous transition system is an I/O transition sys-
tem with a single clock variable, and satisfying the synchronous hypothesis and a stuttering-invariance
property (which is necessary if we want to derive GALS implementations).

Definition 2.3. (synchronous transition system)
A microstep synchronous transition system (µSTS) is a tupleΣ = (S, ŝ, V, τ, ◦→ ) where all the
variables ofV are directed, whereτ is a clock variable (the clock of the component), and where
(S, ŝ, V ∪ {τ}, ◦→ ) is a GCTS satisfying:

µSTS1 (clock transitions): ifs◦ l // s′ andl(τ) 6= ⊥ thenl |V = ⊥V .

µSTS2 (stuttering-invariance):ŝ◦
<τ> // ŝ and( s◦

<τ> // s′ ⇒ s′ ◦
<τ> // s′ )

µSTS3 (single assignment): two assignments of a same variable must be separated by a clock transi-

tion. More exactly, if s0 ◦
l1 // s1 ◦

l2 // . . . ◦
ln // sn and∀i : li 6= τ , thenl1, . . . , ln are pairwise

disjoint.

Note that axiomµSTS1 identifies theclock transitions– with label< τ > – which are the only transitions
where the clock variable is present. Such transitions separate synchronous reactions during which a
variable cannot be assigned more than once (cf. axiomµSTS3). A state which is destination of a clock
transition is calledsynchronizing state. Given a traceϕ of a synchronous system, we can decompose it
into reactionsϕ = Step0(ϕ) < τ > Step1(ϕ) < τ > . . . where each reactionStepi(ϕ) contains no
clock transition. As the transitions of eachStepi(ϕ) are disjoint, we can denote with< Stepi(ϕ) > the
union of all its labels. We shall say that a traceϕ is completeif it ends with a< τ > transition. We say
that aµSTS isnon-blockingif from any reachable state there is a path towards a stuttering state. Note
that in a non-blockingµSTS any trace can be completed. Blocking systems are considered incorrect.

An isomorphismλ between two GCTSsΣi = (Si, ŝi, Vi, ◦→Σi
), i = 1, 2 consists of two bijections

λS : S1 → S2 andλV : V1 → V2 having the properties: (i)∀v : Dv = DλV (v), (ii) λS(ŝ1) = ŝ2, and (iii)

s◦ l

Σ1

// s′ ⇔ λS(s)◦
λ(l)

Σ2

// λS(s′) , whereλ(l) denotes the label obtained froml by renamingv with

λV (v) for all v ∈ V1. If Σ1 andΣ2 are I/O transition systems, we say thatλ is an isomorphism of I/O

3Such as in theTime-Triggered Architecturesof Kopetz[4].



140 D. Potop-Butucaru and B. Caillaud / Correct-by-Construction Asynchronous Implementation...

transition systems ifλV maps read variables onto read variables, write variables onto write variables, and
clocks onto clocks. IfΣ1 andΣ2 areµSTSs, thenλ is an isomorphism ofµSTSs if it is an isomorphism
of I/O transition systems.

2.6. Synchronous and asynchronous composition

As earlier mentioned, we simplify the model by only allowingpoint-to-point communication, and we
enforce this rule by syntactic means. However, broadcast can be simulated by replicating and renaming
variables.

Definition 2.4. (composable transition systems)
We say that the I/O transition systemsΣi, i = 1, n arecomposableif their variable sets are mutually
disjoint.

Note that the definition requires not only point-to-point communications (no directed variable is shared
by two or more systems), but also the non-overlapping of clock sets (which is natural). Also note that
a system can have both!c and?c as variables, thus allowing the representation of systems obtained by
composition.

The composition of synchronous and asynchronous systems isdefined by means of synchronized
product, using FIFO models to represent communication through synchronous and asynchronous chan-
nels. To represent synchronous communication, we use 1-place synchronous FIFO models (which are
µSTSs themselves). The FIFO model associated with a channelc is:

SFIFO(c, τ) =

({c0, c1} ∪
⋃

x∈Dc

{cx}, c0,
⋃

x∈Dc

{!c = x, ?c = x}, τ, ◦→S )

where the transition relation is defined by:

c0
◦

<τ> 77 ◦
<!c=x>// cx ◦

<?c=x>// c1
◦

<τ>

bb
, x ∈ Dc

Note that modeling multicast communication (a feature thatwill not be addressed in this paper), can
simply be done by renaming channel read variables in a component-wise fashion, and then modifying
the FIFO model to allow the concurrent read of the value from different sites.

Asynchronous communication involves infinite asynchronous FIFO models (which are notµSTSs):

AFIFO(c) = (D∗
c , ε,

⋃

x∈Dc

{!c = x, ?c = x}, ◦→A )

where the transition relation contains all the transitionsof the form:

x1 . . . xn ◦
<!c=xn+1>// x1 . . . xnxn+1 ◦

<?c=x1>// x2 . . . xn+1
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Definition 2.5. (synchronous composition ofµSTSs)
Let Σi = (Si, ŝi, Vi, τi, ◦→Σi

), i = 1, 2 be composableµSTSs and letτ be a clock variable. Then, the
synchronous composition ofΣ1 andΣ2 over the base clockτ is:

Σ1 |τ Σ2 = Σ1[τ1/τ ] ⊗ Σ2[τ2/τ ] ⊗
⊗

c∈C(V1)∩C(V2)

SFIFO(c, τ)

Lemma 2.1. (Properties of the synchronous composition)
The synchronous composition of theµSTSsΣ1 andΣ2 over the base clockτ is aµSTS of clockτ . The
result of the synchronous composition is unique upto renaming of the base clock, so that we can omit
the base clockτ from the notation. Moreover, the operator| is associative and commutative, modulo
isomorphism.

In addition, note that synchronizing states of|ni=1Σi have void communication lines (all synchronous
FIFO models are in their unique synchronizing state).

Definition 2.6. (asynchronous composition of I/O systems)
Let Σi = (Si, ŝi, Vi, ◦→Σi

), i = 1, 2 be composable I/O transition systems. Then, the asynchronous
composition ofΣ1 andΣ2 is:

Σ1 ‖ Σ2 = Σ1 ⊗ Σ2 ⊗
⊗

c∈C(V1)∩C(V2)

AFIFO(c)

Lemma 2.2. (asynchronous composition properties)
The asynchronous composition of I/O transition systems results in another I/O transition system. The‖
operator is associative and commutative. The asynchronouscomposition of twoµSTSs is not aµSTS.

Proof:(lemmas 2.1 and 2.2) The operator⊗ is associative and commutative, which implies the associa-
tivity and commutativity of the synchronous and asynchronous composition operators. The isomorphism
of Σ1 |τ1 Σ2 andΣ1 |τ2 Σ2 is given by the renaming of the clock variable. 2

2.7. Product states and product traces

Note that the state of a synchronous or asynchronous productof I/O systems is not only given by
the state of the components, but also by the state of its communication channels. Indeed, given the
composableµSTSsΣi, i = 1, n, connected through the channelsci, i = 1,m, the state of|ni=1Σi

is ((si)i=1,n, (c
s
i )i=1,m), and the state of‖ni=1 Σi is ((si)i=1,n, (c

a
i )i=1,m), wherecsi denotes states of

SFIFO(ci, τ) andcai denotes states ofAFIFO(ci).
Nevertheless, for space reasons, we shall consider in this article only examples where the tuple

(si)i=1,n unambiguously identifies the state of the product. Thus, we can use the component state tuple
alone to label states.

As should be expected, the synchronous composition binds tighter than the asynchronous one. In-
deed, given the composableµSTSsΣi = (Si, ŝi, Vi, τi, ◦→Σi

), i = 1, n, we can map the state space of
|ni=1Σi onto the state space of‖ni=1 Σi:

ι : RSS(|ni=1Σi) ↪→ RSS(‖ni=1 Σi)
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by mapping for each communication channelc the state ofSFIFO(c, τ) onto the state ofAFIFO(c)
using: c0 7→ ε, c1 7→ ε, and∀x ∈ Dc : cx 7→ x. Similarly, we can define for anysi ∈ Si, i =
1, n the injective “inclusion morphism” that maps traces of the synchronous product into traces of the
asynchronous product:

ι : Traces|n

i=1
Σi

(s) ↪→ Traces‖n

i=1
Σi

(ι(s))

defined inductively byι(ε) = ε, by ι(ϕ1ϕ2) = ι(ϕ1)ι(ϕ2), and (for labels) by:

ι(l) =

{

l |�n

i=1
Vi∪{τi|i=1,n}, if l 6= < τ >

< τ1, . . . , τn >, if l = < τ >

whereτ is the base clock of the synchronous composition. With thesenotations we have:

s◦
ϕ

|n

i=1
Σi

+3 s′ ⇒ ι(s) ◦
ι(ϕ)

‖n

i=1
Σi

+3 ι(s′)

2.8. Projection operators. Traces of a GALS system

The operatorπσi () projects a state or transition label of the synchronous product |ni=1Σi onto the corre-
sponding state or transition label ofΣi. Similarly,παi () projects states and transitions of the asynchronous
product‖ni=1 Σi onto states and transitions ofΣi. The definition ofπσi () andπαi () is trivial, with the ex-
ception ofπσi () over transition labels, which involves the renaming of the common clockτ to the local
clock τi.

Note that, while not constrained by global clock synchronization, the traces of‖ni=1 Σi still satisfy
a FIFO consistency property that requires that a value is read from a channel only after being emitted.
The following definition formalizes this for traces starting with void channels (from the initial state).
Intuitively, we require that in any trace of the composed system the sequence of values read from a
channel is a prefix of the sequence of values that are written.Moreover, we require that a write operation
occurs before the corresponding read operation.

Definition 2.7. (FIFO consistency)
Let Σi = (Si, ŝi, Vi, τi, ◦→i ), 1 ≤ i ≤ n be composableµSTSs, and letϕ be some trace in
Traces(

⋃n
i=1(Vi ∪ {τi})). We say thatϕ is FIFO consistent if for each channelc shared between two

components we haveδ(ϕ |{?c}) � δ(ϕ |{!c}) and the rank ofδ(ϕ |{?c})[j] in ϕ is greater than the rank of
δ(ϕ |{!c})[j] in ϕ for all j ≤ length(δ(ϕ |{?c})).

We can now characterize the traces of‖ni=1 Σi:

Lemma 2.3. (GALS traces)
Let Σ1, . . . ,Σn be composableµSTSs and lets ∈ RSS(|ni=1Σi) be a synchronizing state. Then,ϕ ∈
Traces‖n

i=1
Σi

(ι(s)) if and only if ∀i : παi (ϕ) ∈ TracesΣi
(πσi (s)) andϕ is FIFO consistent.

Proof: The direct implication is obvious according to the definitions of⊗ andπαi (). Conversely, consider
ϕ a consistent trace such that∀i : ϕi = παi (ϕ) ∈ TracesΣi

(πσi (s)). Then, the consistency ofϕ allows
us to prove, by induction overlength(ϕ), that the interleaving of theϕi’s into ϕ is possible under the
composition contraints imposed by the asynchronous FIFOs that take part in‖ni=1 Σi. This implies
ϕ ∈ Traces‖n

i=1
Σi

(ι(s)). 2
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As a corollary, if we are givenϕi ∈ TracesΣi
(πσi (s)), 1 ≤ i ≤ n, and if we can order their non-

clock transitions in a FIFO-consistent way, then there existsϕ ∈ Traces‖n

i=1
Σi

(ι(s)) such thatπαi (ϕ)
andϕi are identical upto void transitions for all1 ≤ i ≤ n.

3. Modelling and correctness of GALS implementations

This section starts by illustrating our definitions with a number of small, but intuitive examples. Based
on this intuition, we define in section 3.2 the formal correctness criterion. Section 3.3 explains why our
model is useful in solving the GALS implementation problem.

3.1. Examples

The following µSTS represents a system that emits a message on channela and then awaits for one
message from either channelb or r (e.g.for whichever comes first). Data is uninterpreted (not important),
therefore not represented. The clock of the system isτ1, and we shall assume that the directed variable
set ofΣ1 is {!a, ?b, ?r}:

Σ1 :

s2
◦

<τ1>
ww

s0
◦

<τ1> 77 ◦
<!a>// s1

◦

<?b>
==||||||

◦ <?r>

!!B
BB

BB
B

s3
◦

<τ1>
ww

In a more classical macrostep framework, like that of [11], this system would be represented by:

Σ1, macrostep version :

s2

s0

ab
==||||||

ar

!!B
BB

BB
B

s3

The correspondence between the microstep and macrostep representations of a system is straightforward:
The states of the macrostep system are the synchronizing states of the microstep one. The macrostep
transitions correspond to full reactions connecting synchronizing states (after forgetting the direction of
the signals and the causality between successive labels).

We composeΣ1 with theµSTSΣ2, which has the clockτ2 and the directed variable set{?a, !b}:

Σ2 : t0
◦

<τ2> 88 ◦
<?a> // t1 ◦

<τ2>
// t2

◦

<τ2>

��
◦
<!b> // t3 ◦

<τ2>
xx

The synchronous compositionΣ1 | Σ2 is done using two synchronous FIFOs, corresponding to the
variables/channelsa andb:

SFIFO(a, τ) :
a0

◦
<τ> 77 ◦

<!a>// a2 ◦
<?a>// a1

◦

<τ>

aa
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SFIFO(b, τ) :
b0

◦
<τ> 77 ◦

<!b> // b2 ◦
<?b> // b1◦

<τ>

bb

In this example, data is uninterpreted, only write/read causality and clock synchronization is considered.
The composed synchronous system is (we simplified for space reasons the label notations, as explained
in section 2.1):

Σ1 | Σ2 :

s0, t0
◦
τ

tt◦

!a
��

s1, t0 ◦
?a //

◦

?r
��

◦
?a?r

##H
HH

HH
HH

HH
s1, t1

◦

?r
��

s3, t0 ◦
?a // s3, t1 ◦

τ // s3, t2
◦

τ

GG
◦

!b // s3, t3

Note that we simplified the notation by not representing the state of the two FIFOs (the initial state having
void FIFOs, the status of the FIFOs is fully determined in each state). However, note that the composed
system is blocked in state(s3, t3) becauseSFIFO(b, τ) cannot take a clock transition (data has been
written on it, but not read). The systemΣ1 | Σ2 is blocking, thus incorrect.

The asynchronous compositionΣ1 ‖ Σ2 is done using the two asynchronous FIFOs, figured below:

AFIFO(b) :
ε◦
<!b> // b◦

<?b>

^^
AFIFO(a) :

ε◦
<!a> // a

◦

<?a>

^^

Recall that in the general case the asynchronous FIFO modelsare infinite. However,Σ1 andΣ2 can
emit at most one message on any of the two channels, so our choice does not affect the result of the
composition:

Σ1 ‖ Σ2 :

s0, t0
◦
τ1,τ2,τ1τ2tt◦

!a
��

s1, t0
◦

τ2
44

◦
?a //

◦

?r
��

◦
?a?r

##H
HH

HH
HH

HH
s1, t1 ◦

τ2 //
◦

?r
��

◦
τ2?r

##H
HH

HH
HH

HH
s1, t2

◦

τ2

��
◦

!b //
◦

?r
��

◦
!b?r

##H
HH

HH
HH

HH
s1, t3

◦

τ2

��
◦

?b //
◦

?r
��

s2, t3
◦

τ1,τ2,τ1τ2

��

s3, t0
◦

τ1,τ2,τ1τ2

GG
◦

?a // s3, t1
◦

τ1

GG
◦
τ2,τ1τ2// s3, t2

◦

τ1,τ2,τ1τ2

GG
◦

!b // s3, t3
◦

τ1,τ2,τ1τ2

GG

It is essential to note thatΣ1 ‖ Σ2 has traces, like< !a >< ?a >< τ2 >< !b >< ?b >, that are not
asynchronously equivalent to any of the synchronous tracesof Σ1 | Σ2. Such traces are not covered
by the verification done on the synchronous model, meaning that the GALS implementation does not
preserve the semantics of the specification.
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It is also important to note that requiring a one-to-one correspondence between synchronous and
asynchronous traces is not a good idea, because for large classes of systems it can be highly inefficient.
Consider, for instance, the following system:

Σ3 :

s2
◦

τ1

��

◦
?r

  B
BB

BB
BB

B

s0
◦

τ1 77 ◦
!a // s1

◦

?b
>>||||||||

◦
?r

  B
BB

BB
BB

B
◦

?b?r // s4
◦

τ1
ww

s3
◦

τ1

YY
◦

?b
>>||||||||

and its synchronous and asynchronous composition withΣ2:

Σ3 | Σ2 :

s0, t0
◦
τ

tt◦

!a
��

s1, t0 ◦
?a //

◦

?r
��

◦
?a?r

##H
HH

HH
HH

HH
s1, t1

◦

?r
��

s3, t0 ◦
?a // s3, t1 ◦

τ // s3, t2
◦

τ

GG
◦

!b // s3, t3 ◦
?b // s4, t3

◦

τ

GG

Σ3 ‖ Σ2 :

s0, t0
◦
τ1,τ2,τ1τ2tt◦

!a

��
s1, t0

◦
τ2

44
◦

?a //
◦

?r

��

◦
?a?r

!!C
CC

CC
CC

CC
s1, t1 ◦

τ2 //
◦

?r

��

◦
τ2?r

!!C
CC

CC
CC

CC
s1, t2

◦

τ2

��
◦

!b //
◦

?r

��

◦
!b?r

!!C
CC

CC
CC

CC
s1, t3

◦

τ2

��
◦

?b //
◦

?r

��

◦
?b?r

!!C
CC

CC
CC

CC
s2, t3

◦

τ1,τ2,τ1τ2

��

◦

?r

��
s3, t0

◦

τ1,τ2,τ1τ2

GG
◦

?a // s3, t1
◦

τ1

GG
◦
τ2,τ1τ2// s3, t2

◦

τ1,τ2,τ1τ2

GG
◦

!b // s3, t3
◦

τ1,τ2,τ1τ2

GG
◦

?b // s4, t3
◦

τ1,τ2,τ1τ2

GG

As expected, the synchronous composition binds tighter than the asynchronous one, but for any trace
of Σ3 ‖ Σ2 going from (s0, t0) to (s4, t3) we can find an asynchronously equivalent trace inΣ3 |
Σ2. Such a GALS implementation is obviously correct, because it does not introduce new behaviors.
Exploiting the concurrency between different computations (as we do here) to allow the systems to
evolve at different rates is a desirable feature because it minimizes communication and consumption.
The difference betweenΣ1 andΣ3 is that inΣ3 the transitions< ?b > and< ?r > are concurrent in
states1, while in Σ1 there is a non-deterministic choice between them (meaning that if messages come
on both channels, only one will be read, in an unpredictable fashion).
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3.2. Formal correctness criterion

We already presented, in section 1.1, the intuition covering the notion of correctness of a GALS im-
plementation with respect to its microstep synchronous specification. We give here the corresponding
formal correctness criterion:

Criterion 1. (correct desynchronization)
Let Σi, i = 1, n be composableµSTSs. Then, we shall say that the GALS implementation‖ni=1 Σi is
correctw.r.t. the synchronous specification|ni=1Σi if for all synchronizing states of |ni=1Σi and for all
traceϕ ∈ Traces‖n

i=1
Σi

(ι(s)) there existϕ̃ ∈ Traces‖n

i=1
Σi

(ι(s)) andϕ ∈ Traces|n

i=1
Σi

(s) such that
ϕ � ϕ̃ andϕ̃ ∼ ι(ϕ).

In other words, the GALS implementation is correct if any of its traces can be completed with a finite
number of transitions to a trace that is asynchronously equivalent to a complete synchronous trace.

Our criterion is akin to previous correctness criteria [9, 11] defined in a macrostep setting. Most im-
portant, criterion 1 allows us to exploit (like inΣ3 ‖ Σ2) the concurrency of the synchronous specifica-
tion to support GALS implementations that are weakly synchronized, yet correct. Important differences
exist, though, as our criterion is formulated in a micro-step operational framework that simplifies, as we
shall see in section 4.4, the definition of sufficient conditions for correctness.

As explained in the introduction, our purpose is now to find sufficient conditions for correctness (in
the formal sense of criterion 1) that cover large classes of implementations. We do not cover here the
synthesis problem of transforming given systems to satisfythe correctness criterion. However, we use
two examples to give the intuition of future synthesis techniques: First, to correct the composition of
Σ1 with Σ2, we can simply preventΣ2 from firing the transition labeled< !b > by guarding it with a
condition that is never fulfilled:

Σ′
2 : t0

◦
τ2 88 ◦

?a // t1 ◦
τ2

// t2
◦

τ2

��
◦
?d // t′3 ◦

!b // t3 ◦
τ2

xx

More interesting is the case where we composeΣ1 with a processΣ4 that non-deterministically chooses
between emittingb or doing something else. In this case, the solution is to signal the non-deterministic
choice toΣ1, so that it can adapt its behavior:

Σ4 :

u′2 ◦
!b // u2

◦
τ2

ww

u0
◦

τ1 77 ◦
?a // u1

◦

!d=0 >>}}}}}

◦ !d=1
  A

AA
AA

u′3 ◦
!x // u3

◦
τ2

ww

Here, we assumed that the non-deterministic choice between< !b > and< !x > is an essential feature
of the specificationΣ4, which must be preserved. To make the composition correct weneed to make this
choice visible from its asynchronous environment, under the form of a choice over the value of a new
channel, namedd. Then, we can modifyΣ1 into Σ′

1, which uses this signal to decide which message to
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wait for.

Σ′
1 :

s′2 ◦
?b // s2

◦
τ1

ww

s0
◦

τ1 77 ◦
!a // s1

◦

?d=0 >>~~~~~

◦ ?d=1
  @

@@
@@

s′3 ◦
?r // s3

◦
τ1

ww

3.3. Modeling issues

The I/O transitions systems can be viewed either as microstep specifications, or as asynchronous imple-
mentation models. A sub-class of I/O transition systems satisfy the synchronous hypothesis – they have
a single clock variable, which determines clock transitions, and no variable is assigned twice between
successive clock transitions. Thus, they can be seen as microstep synchronous specifications. The only
hypothesis that departs from the classical synchronous model is stuttering-invariance. However, we see
stuttering-invariance as a prerequisite for the efficient multi-rate GALS deployment.

If we compare our model to macro-step models like those of [9,11], every macrostep specification
(automaton) has (at least) a microstep implementation. Like many macro-step models, our formalism
does not explicitly represent the reaction to signal absence. This does not influence the expressivity of the
model, as reaction to signal absence can be represented using non-deterministic choice. The composition
through point-to-point links is not an essential restriction, as it is easy to define FIFO models that cover
multicast.

The synchronous and asynchronous composition operators reflect the assumption that an emitted
signal must not be left unread by the receiver. This hypothesis reflects in an operational fashion the
rendez-vous-like synchronized product composition from macro-step formalisms.

Composing theµSTSsΣi, i = 1, n using the ‖ operator intuitively corresponds to implementing
|ni=1Σi as a GALS system where all the communication lines have been replaced with asynchronous
FIFOs. The components are still clocked, but individual clocks are independent, and the components are
only synchronized by the FIFO causality rules. In the GALS implementation the clock of one component
can be triggered concurrently with another clock or an assignment of another component. The GALS
implementation can function in a multi-rate fashion, as no constraint relates the occurrence of clock
transition in different components.

Compared to classical macro-step approaches, our model brings a level of detail which is essential in
deciding the correctness of actual implementations. ComposingΣ5 andΣ6 results in a blocking system:

Σ5 : 0
◦

τ1 99 ◦
!a // 1◦

?b // 2◦
!c // 3

◦
τ1ee

Σ6 : 0
◦

τ2 99 ◦
?c // 1◦

!b // 2
◦

τ2ee

However, this problem cannot be observed in macro-step settings, where the system does not block and
can even fire the transition of labelabc. Indeed, the microstep model is better suited for analysis akin to
causality checks performed in synchronous languages like Esterel. In fact, we shall see in section 4.4,
that non-blocking correctness and semantics preservationare truly related.
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4. Correct desynchronization criteria

Following the goal fixed in the introduction, we now define criteria that characterize a large class of syn-
chronous components for which small, simple wrappers produce deterministic, efficient, and semantics-
preserving GALS implementations.

4.1. Microstep weak endochrony

Microstep weak endochrony (or, simply, weak endochrony) isthe property guaranteeing that a given syn-
chronous component (µSTS) knows how to read its inputs, so that no asynchronous wrapper is needed.
Weak endochrony requires that all internal choice of the component is visible as a choice over the value
(and not presence/absence status) of a directed variable (either input or output). Thus, the behavior of
the system becomes predictable inany asynchronous environment, because choices can be observed.

With this requirement, the implementation space delimitedby weak endochrony is nonetheless very
large: Concurrent behaviors are not affected by the previous rule, so that independent system parts
can evolve at different speeds. Weak endochrony does not require I/O determinism. Instead, a weakly
endochronous component must inform the environment about non-deterministic decisions (the variable
used to do so behaves like an oracle that is visible from outside).

Definition 4.1. (weak endochrony)
We say that theµSTSΣ = (S, ŝ, V, τ, ◦→ ) is weakly endochronous if it satisfies the following axioms:

µWE1 (determinism): s◦ l // si , i = 1, 2 ⇒ s1 = s2 (from now on, we shall denote withs.ϕ the

unique state ofΣ having the propertys◦
ϕ // s.l , and the notation is extended to traces).

µWE2 (independence):if the labelsl1 andl2 are disjoint and ifl1, l2 6= τ , then:

s1

s0
◦

l1
=={{{{{

◦

l2 !!C
CC

CC

s2

⇒ ∃s3 :

s1
◦ l2

!!C
CC

CC

s0
◦

l1
=={{{{{

◦

l2 !!C
CC

CC
◦

l1tl2 // s3

s2
◦ l1

=={{{{{

µWE3 (clock properties): assume thats0 ◦
<τ> // s1 andϕ ∈ TracesΣ(s0) with τ 6∈ supp(ϕ). Then:

1. ϕ ∈ TracesΣ(s1)

2. if ϕ < τ >∈ TracesΣ(s0), thenϕ < τ >∈ TracesΣ(s1) ands0.ϕ < τ > = s1.ϕ < τ >

3. if ϕψ < τ >∈ TracesΣ(s1), then there existsψ′ ≤ ψ such thatϕψ′ < τ >∈ TracesΣ(s0).

4. if ϕ < τ >, θ < τ >∈ TracesΣ(s0) andϕ ./ θ, thenϕ(θ \ ϕ) < τ >∈ TracesΣ(s0)

µWE4 (choice): if ϕi < v = xi >∈ TracesΣ(s), i = 1, 2 andϕ1 ./ ϕ2, thenϕ1 < v = x2 >∈
TracesΣ(s).
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Similar in intuition and in function to its macrostep counterpart [11], weak endochrony is nevertheless
specific to our more concrete causal, microstep framework. Thus, while choice can only occur at the
level of atomic variable assignments, concurrency (more precisely confluence) must also deal with full
reactions and clock transitions (through axiomsµWE2 andµWE3, and the consequences of lemma 4.2).
Axiom µWE4 insures that a choice between two concurrent execution paths does not hide a “real” choice
between non-concurrent assignments.

Lemma 4.1. (independence)
Let Σ = (S, ŝ, V, τ, ◦→ ) be a weakly endochronousµSTS, lets ∈ S, and letϕ1, ϕ2 ∈ TracesΣ(s)
with supp(ϕ1) ∩ supp(ϕ2) ⊆ {τ}. Then:

1. If τ 6∈ supp(ϕi), i = 1, 2, thens.ϕ1ϕ2 ands.ϕ2ϕ1 are defined and equal.

2. If ϕi complete,i = 1, 2, thens.ϕ1ϕ2 ands.ϕ2ϕ1 are defined and equal.

Proof:
part 1: From supp(ϕ1) ∩ supp(ϕ2) ⊆ {τ} and τ 6∈ supp(ϕi), i = 1, 2, we obtainsupp(ϕ1) ∩
supp(ϕ2) = ∅. Then the labelsϕ1[k] andϕ2[l] are disjoint, for all k and l. Based on this remark,
the result is easily obtained by induction overlength(ϕ1) + length(ϕ2), the induction step using axiom
µWE2.

part 2: We shall give here the proof for the case whereϕ1 andϕ2 comprise each one step. This will
prove that independent steps commute, and this result can then be easily applied to prove that any two
complete traces commute. Assume thenϕ1 = Step0(ϕ1) < τ > andϕ2 = Step0(ϕ2) < τ >. Let
s′ = s.Step0(ϕ1).

According to the first part of this lemma,s.Step0(ϕ1)Step0(ϕ2) ands.Step0(ϕ2)Step0(ϕ1) exist
and are equal.

By applying axiomµWE3.4,s.Step0(ϕ1)Step0(ϕ2) < τ > exists. Then, by applying axiomµWE3.2
in s′, we obtain thats′.< τ > Step0(ϕ2) < τ > exists and is equal tos′.Step0(ϕ2) < τ >. By using
the definition ofs′, this implies

s.Step0(ϕ1) < τ > Step0(ϕ2) < τ > = s.Step0(ϕ1)Step0(ϕ2) < τ >

Similarly:
s.Step0(ϕ2) < τ > Step0(ϕ1) < τ > = s.Step0(ϕ2)Step0(ϕ1) < τ >

Given that the second terms of the two equalities are equal, the proof is completed. 2

Lemma 4.2. (confluence)
Let Σ = (S, ŝ, V, τ, ◦→ ) be a weakly endochronousµSTS, lets ∈ S, and letϕi ∈ TracesΣ(s), i =
1, 2 such thatϕ1 ./ ϕ2. Then:

1. If τ 6∈ supp(ϕi), i = 1, 2, thens.ϕ1(ϕ2 \ ϕ1) ands.ϕ2(ϕ1 \ ϕ2) are defined and equal.

2. If ϕi complete,i = 1, 2, thens.ϕ1(ϕ2 \ ϕ1) ands.ϕ2(ϕ1 \ ϕ2) are defined and equal.
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Proof:
part 1:
Case a: When each of the two traces are reduced to one labelϕ1 = l1, ϕ2 = l2. Fromϕ1 ./ ϕ2 we have
l1 ./ l2. Then, from axiom GCTS2, we can decomposel2 into l2 \ l1 and l2 u l1. By applying axiom
µWE2 tol2 \ l1 andl1 in states, we obtain thats.l1(l2 \ l1) ands.(l2 t l1) exist and are equal. Similarly,
s.l2(l1 \ l2) exists, and is equal tos.(l2 t l1), which implies the needed result.
Case b: when onlyϕ2 is reduced to a single transition. We deduce that the desired result holds by
induction overlength(ϕ1), and by applying case (a).
Case c: the general case. Induction overlength(ϕ2) allows us to prove the first point of the lemma in
the general case.

part 2: We shall give here the proof for the case whereϕ1 andϕ2 comprise one step each. This will
prove that non-contradictory steps can be merged into confluent derivations. The general case is proved
by iterating this result. Assume thenϕ1 = Step0(ϕ1) < τ > andϕ2 = Step0(ϕ2) < τ >. Let
s′ = s.Step0(ϕ1).

Using the first point of the lemma,s.Step0(ϕ1)(Step0(ϕ2) \ Step0(ϕ1)) and
s.Step0(ϕ2)(Step0(ϕ1) \ Step0(ϕ2)) exist and are equal. From axiomµWE3.4,
s.Step0(ϕ1)(Step0(ϕ2) \ Step0(ϕ1)) < τ > exists, and then, by applying axiomµWE3.2 in states′ we
obtain that

s.Step0(ϕ1) < τ > (Step0(ϕ2) \ Step0(ϕ1)) < τ > = s.Step0(ϕ1)(Step0(ϕ2) \ Step0(ϕ1)) < τ >

Similarly,

s.Step0(ϕ2) < τ > (Step0(ϕ1) \ Step0(ϕ2)) < τ > = s.Step0(ϕ2)(Step0(ϕ1) \ Step0(ϕ2)) < τ >

which impliess.ϕ1(ϕ2 \ ϕ1) = s.ϕ2(ϕ1 \ ϕ2). 2

Note that the proofs of lemma 4.1(1) and lemma 4.2(1) are onlybased on the axiomsµWE3 and
µWE4.

Lemma 4.3. (completion)
Let Σ = (S, ŝ, V, τ, T ) be a weakly endochronousµSTS, and consider a states ∈ S and two traces
ϕ1, ϕ2 ∈ TracesΣ(s). If ϕ2 is complete andϕ1 ≤ ϕ2, then there existsϕ3 complete such thats.ϕ1ϕ3 =
s.ϕ2 andϕ1ϕ3 ∼ ϕ2. In addition, ifϕ1 is complete then we can takeϕ3 = ϕ2 \ ϕ1.

Proof: The case whereϕ1 is complete is a mere corollary of lemma 4.2(2). The case where τ 6∈ ϕ1 is
proved using axiomµWE3.4. The general case is a simple combination of the two previous cases. 2

Note that we do not require confluence for arbitrary (incomplete) traces. The intuition behind this
restriction is that the atomicity of reactions must be preserved, and therefore the clock transitions cannot
follow the simple commutation rule of axiomµWE2. In the following weakly endochronousµSTS, for
instance (initial states), s.< ?a > ands.< τ >< ?a > are different:

s
◦

τ

��

◦
?a // ◦ ?b // ◦ τ //

◦
?a // ◦ ?b // ◦

τ

@@��������
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Also note how lemma 4.1 gives the classical independence (full commutation) results, for the case
wheresupp(ϕ1) andsupp(ϕ2) share no directed variable. However, the finer microstep notion allows us
to consider systems likeΣ3 where the classical macrostep independence does not apply (in states0, the
macrostep transitionsab andar do not commute, yet the system is I/O deterministic).

The confluence properties of an endochronous system are evenstronger, as stated by the following:

Theorem 4.1. (determinism)
LetΣ = (S, ŝ, V, τ, T ) be a weakly endochronousµSTS,s ∈ S, and letϕ1, ϕ2 be traces ofTracesΣ(s)
such thatϕ1 ∼ ϕ2. Then

1. if τ 6∈ supp(ϕi), i = 1, 2, thens.ϕ1 = s.ϕ2

2. if ϕ1, ϕ2 are complete, thens.ϕ1 = s.ϕ2.

Proof: Point 1 is a corollary of lemma 4.2(1). Point 2 is a simple corollary of lemma 4.3. 2

Note that the last lemma (point 1) tells us that we can non-ambiguously label the states reachable
from a given state in one instant by the signals emitted or received to reach it.

In fact, these strong confluence properties allow us to put any trace of of a weakly endochronous
system innormal form, in which every transition is maximal and the number of reactions minimal. The
main result is:

Theorem 4.2. (maximal steps/normal form)
Let Σ = (S, ŝ, V, τ, T ) be a weakly endochronousµSTS,s ∈ S, andϕ ∈ TracesΣ(s), complete.
Then, there existsϕ ∈ TracesΣ(s), complete, withϕ ∼ ϕ and such that< Step0(ϕ) > is maximal (for
label inclusion).

Proof: Let L be the set of all labelsl of non-clock transitions starting ins such thatl ≤ ϕ. Then, for
all l1, l2 ∈ L we havel1 ./ l2. By using the same reasoning as in the proof of lemma 4.2(1), we obtain
l1 t l2 ∈ L, for all l1, l2 ∈ L. The maximal transitionϕ[0] is the union of all the labels inL.

This process can be iterated to construct maximal non-clock, non-void transitionsϕ[j], j ≥ 0, until
for a givenj0 + 1 no such transition can be built. The process is finite, for each variablev ∈ V can be
assigned at most once byϕ1 = ϕ[0 . . . j0].

From the maximality ofϕ1 and from lemma 4.3, we deduce thatϕ = ϕ1 < τ > (ϕ\ϕ1) is a trace of
TracesΣ(s) with ϕ ∼ ϕ. The maximality of< Step0(ϕ) > is easily proved byreduction ad absurdum,
which completes our proof. 2

We conclude the presentation of weak endochrony by stating the very important compositionality
result that allows to incrementally build complex weakly endochronous systems.

Theorem 4.3. (compositionality)
Let Σi, i = 1, n be composable weakly endochronousµSTSs. Then,|ni=1Σi is weakly endochronous.

Proof: Direct application of the previous results, by taking into account the definition of the synchronous
composition. 2

Weak endochrony is illustrated by theµSTSsΣ2, Σ3, andΣ3 | Σ2 of section 3.1, and by all the
examples of the sections 3.2 and 3.3. TheµSTS Σ1 is not weakly endochronous because the non-
deterministic choice in states1 makesΣ1 unpredictable, so that other components, likeΣ4, cannot adjust
their behavior to preserve the synchronous semantics. The transformation ofΣ1 in Σ′

1 illustrates the type
of instrumentation required to transform a generalµSTS into a weakly endochronous one.



152 D. Potop-Butucaru and B. Caillaud / Correct-by-Construction Asynchronous Implementation...

4.2. Comparison with macrostep Weak Endochrony

The fundamental difference between macrostep Weak Endochrony and this microstep version is that
the former can make decisions involving the value of severalsignals received during a reaction. In our
microstep framework, each decision is based on the value of only one input signal.

It is easy to associate a macrostep synchronous representation – an LSTS in the spirit of [11] – to any
STS. More exactly, givenΣ = (S, ŝ, V, τ, T ), we associate the LSTS[Σ] = (S, ŝ, T ′), where:

s l

[Σ]
// s′ ⇔ ∃ϕ :















s◦
ϕ +3 s′

ϕ = Step0(ϕ) < τ >

l =< Step0(ϕ) >

In other words, the macrostep version considers only transitions from a synchronizing state to another
synchronizing state, the other states being invisible at this level of abstraction.

Unfortunately, the relation between microstep and macrostep weak endochrony is not simple. Given
aµSTSΣ, such as the one below (at left) the fact that[Σ] (below, at right) is weakly endochronous does
not imply thatΣ is microstep weakly endochronous. In our case, it is not.

s1 ◦
c=1 // s2

◦
τ

ww

s0
◦

τ

++ ◦

a
>>||||||||

◦
b

  B
BB

BB
BB

B

s3 ◦
c=2 // s4

◦
τ

ww

s2

s0

a,c=1
>>||||||||

b,c=2

  B
BB

BB
BB

B

s4

At the same time, a microstep weakly endochronous systemΣ is not necessarily macrostep weakly
endochronous, as the following example shows:

s2
◦

b

  B
BB

BB
BB

B

◦

τ

��

s0 ◦
c //

◦
τ
''

s1
◦

a
>>||||||||

◦
b

  B
BB

BB
BB

B
◦

ab // s4
◦

τ
ww

s3
◦

a
>>||||||||

◦

τ

EE

s1
b

  B
BB

BB
BB

B

s0

ac
>>||||||||

bc

  B
BB

BB
BB

B
abc // s4

s2

a
>>||||||||

One extra problem is that there exist macrostep weakly endochronous systems that have no microstep
weakly endochronous encoding. One of them is the following:

s2
BD=0

  B
BB

BB
BB

B

s1 s0
RC=D=1

oo

AC=0
>>||||||||

BD=0   B
BB

BB
BB

B
ABC=D=0 // s4

s3
AC=0

>>||||||||
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It appears that for each macrostep weakly endochronous system there exists a microstep one over the
same variables and with the same asycnhronous traces. As explained, earlier, this is due to the fact that
macrostep weak endochrony can rely on tests involving several variables at a time, which is impossible
in our microstep framework.

4.3. Comparison with related models

Weak endochrony belongs to a family of properties whose goalis to preserve concurrency while ensuring
the correct operation of a system in an untimed asynchronousenvironment. We refer here to the work of
Keller [15]. In this paper, Keller shows that 3 properties –determinism, commutativity, andpersistence
– ensure global confluence in a very general form of asynchronous transition system. The determinism
requirement is quite common, but commutativity and persistence are the key point of the approach. They
roughly correspond to axiomsµWE2 andµWE3, ensuring that independent labels in a given state are
concurrent and non-interfering, and remain available while not taken.

Weak endochrony follows the same principles, but in a much more specific setting:

• Our communication lines can transmit data, not mere arrivalnotifications. This allows us to refine
our correctness criteria to take into accountchoice in the system-environment synchronization
protocol (axiomµWE4).

• Weak endochrony deals withsynchronous systems. The most natural way of ensuring persistency
of transitions that are not taken is to ensure an intra-instance persistency, concerning microstep
transitions (µWE2), and a macrostep persistency, covering full reactions(µWE3 states that clock
transitions cannot disable other transitions). It is interesting here to recall that the macrostep weak
endochrony of [11] needed only a macrostep persistency property. But here we need the microstep
aspect, as well. Macrostep persistency can be seen as covering non-interfering transactions instead
of elementary communications.

• Weak endochrony defines a normal, most compact form for system behaviors, something not pro-
vided by the general confluence results of Keller. This allows reasoning on convergence speed. For
instance, if two synchronous reactions starting in a state are non-contradictory, then convergence
between them can be attained in at most one reaction.

• Finally, our systems are input/output systems, which are predictable, but not deterministic as such
(they are deterministic only if we forget about the direction of signals).

These supplementary aspects determine the complexity of the theory and the difficulty of the proofs. A
Major difference with Keller’s work is that he is interestedin the confluence of a single system (which
corresponds, in our setting, to lemma 4.3). Our work aims at finding conditions under which the seman-
tics of a system of components does not change when we replacea strongly synchronized composition
mechanism with a purely asynchronous one.

The work of Keller provides the link with two approaches usedin asynchronous circuit design:
speed independence and delay insensitivity. Speed independence [23, 19, 15] (which usually implies
the hypothesis of semimodularity) ensures that the behavior of a circuit does not depend on the speed
of its basic computing elements. Delay insensitivity [16, 17] ensures that the behavior of a circuit does
not depend on the delays of its internal or external communication lines. These two properties are



154 D. Potop-Butucaru and B. Caillaud / Correct-by-Construction Asynchronous Implementation...

important because they support the definition of circuits whose functionality remains unchanged when
the fabrication process changes.

Like weak endochrony, speed independence and delay insensitivity support specializations of Keller’s
fundamental theorem (as noted, for instance, in [15]), but the hypothesis on the systems and communi-
cation lines are different from those of weak endochrony.

A second important difference with Keller’s work is that ourresults are based on the assumption that
an underlying communication infrastructure provides a lossless message-passing mechanism. Under this
assumption, weak endochrony implies a very permissive persistency property. By comparison, speed
independence and delay insensitivity ensure, among other things, that signals are not lost (in a sense,
they cover at the same time the correctness of the message-passing protocol under given hypothesis4,
and the persistency property).

Wires in speed independent or delay insensitive circuits can only transmit events, not values: An
event consist in the wire changing its value from 0 to 1, or from 1 to 0. Thus, value choices (as found in
weakly endochronous systems) cannot be directly expressedin Keller’s formalism, as the only possible
choices are among different events, occurring on differentwires. Microstep weak endochrony is not
meant to express such choices, which depend on temporal assumptions on the environment (no input is
produced by the environment until the system is ready to readit). With an appropriate introduction of
clock transitions, weak endochrony should be able to directly represent delay-insensitive systems with
no choice (cf. axiomR′

3 in [16]).
More work is needed to understand the precise relation between weak endochrony, on one side, and

speed independence and delay insensitivity, on the other, particularly by defining a notion ofcircuit
realizationfor weakly endochronous systems, along the lines of [19].

Our work bears some relations with that of Yun and Dill on burst-mode circuits [20]. Their goal is to
deal with multiple-signal interactions, instead of singlesignal events. The approach is oriented towards
circuit synthesis, and strict operation conditions are required, which basically exclude true concurrency.

4.4. Correctness results

Weak endochrony is compositional. However weak endochronyof all components does not guarantee
the correctness (non-blocking) of the global synchronous specification, nor the correctness (semantics
preservation) of the GALS implementation model. This can beeasily checked on the systems formed by
composingΣ′

1 andΣ2 — defined in Sections 3.1 and 3.2.
The most important result of this paper is the following theorem, which states that the correctness of

the synchronous composition implies the correctness of theGALS implementation.
In fact, the strong confluence and determinism properties ofthe weakly endochronous systems will

allow to prove an even stronger result, that also insures state determinism in addition to observational
behavior equivalence:

Criterion 2. (correct desynchronization for weakly endochronous systems)
Let Σi, i = 1, n be composableµSTSs. Then, we shall say that the GALS implementation‖ni=1 Σi is
correctw.r.t. the synchronous specification|ni=1Σi if for all synchronizing states of |ni=1Σi and for all
traceϕ ∈ Traces‖n

i=1
Σi

(ι(s)) there existϕ ∈ Traces|n

i=1
Σi

(s) complete and̃ϕ ∈ Traces‖n

i=1
Σi

(ι(s))
such thatϕ � ϕ̃, ϕ̃ ∼ ι(ϕ), andι(s).ϕ̃ = ι(s).ι(ϕ).

4such as the fact that forks are isochronic
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Quite interestingly, Criterion 2 implies Criterion 1 (the former has extra requirements).

Theorem 4.4. (correctness)
Let Σi, i = 1, n be composable weakly endochronousµSTSs. If|ni=1Σi is non-blocking, then‖ni=1 Σi is
correctw.r.t. |ni=1Σi in the sense of criterion 2.

Two technical lemmas are needed to prove the theorem.

Lemma 4.4. (completion, GALS)
Let Σ1, . . . ,Σn be composable weakly endochronousµSTSs, lets be a synchronizing state of|ni=1Σi,
and letψ ∈ Traces|n

i=1
Σi

(s), complete, andϕ ∈ Traces‖n

i=1
Σi

(ι(s)) such thatϕ ≤ ι(ψ). Then, there
existsθ ∈ Traces‖n

i=1
Σi

(ι(s).ϕ) such thatϕθ ∼ ι(ψ) andι(s).ϕθ = ι(s).ι(ψ)

Proof: We can assume, without losing generality, that all the labels ofψ are atomic (assign exactly one
variable). By projectingϕ andψ on the componentsΣi, we obtain:

παi (ϕ), πσi (ψ) ∈ TracesΣi
(πσi (s)) with

{

πσi (ψ) complete

παi (ϕ) ≤ πσi (ψ)

We denote withϕi = παi (ϕ), ψi = πσi (ψ), si = πσi (s). By applying lemma 4.3(2), we find a complete
traceθi such that the following holds inΣi:

si ◦
ϕi +3

◦

ψi

��

◦

θi

s{ ppppppppppppp

ppppppppppppp

Now recall that the construction process used by lemma 4.3 (based on the constructions of lemma 4.2)
insures that in eachθi the atomic communication operations (non-clock labels) are ordered in the same
fashion as they are inψi. More precisely, letri be the rank inψi of the non-clock label that has ranki
in θi. Wheneverri > rj, we havei > j. The same relation is preserved by the projection ofψ ontoψi.
Then, the ordering of the operations of theθi in ψ can be used to interleave the labels of the tracesθi into
θ, and our lemma is proved. 2

Lemma 4.5. (technical)
Let Σ1, . . . ,Σn be composable weakly endochronousµSTSs, lets be a synchronizing state of|ni=1Σi,
and letϕ,ψ < τ1 . . . τn >∈ Traces‖n

i=1
Σi

(ι(s)) such thatϕ ./ ψ and∀i : τi 6∈ supp(ψ). Then:

ϕ(ψ \ ϕ), ψ < τ1 . . . τn > (ϕ \ ψ) ∈ Traces‖n

i=1
Σi

(ι(s))

Proof: By projectingϕ andψ on the componentsΣi, we obtain:

παi (ϕ), παi (ψ) < τi >∈ TracesΣi
(πσi (s)) with

{

παi (ϕ) ./ παi (ψ)

τi 6∈ supp(π
α
i (ψ))

We denote withϕi = παi (ϕ), ψi = παi (ψ), si = πσi (s). Also let ϕi = ϕ1
iϕ

2
i with ϕ1

i complete and
τi 6∈ supp(ϕ2

i ). All these elements are pictured in fig. 2, which also contains the other transitions that
will be constructed during this proof.
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si ◦
ϕ1

i +3
◦

ψi

��

◦
ϕ2

i +3
◦

ψi\ϕ
1
i

��

◦

ψi\ϕi

��
◦

τi
��

◦
ϕ2

i
\(ψi\ϕ1

i
)
+3

◦

τi
��

◦
ϕ1

i
\ψi +3 ◦

ϕ2
i
\(ψi\ϕ1

i
)
+3

where

{

(ϕ1
i \ ψi)(ϕ

2
i \ (ψ1 \ ϕ

1
i )) = ϕi \ ψi

ϕ1
iϕ

2
i = ϕi

Figure 2. Diagram with the transitions used in the proof of lemma 4.5

By applying lemma 4.2(2),si.ϕ1
i (ψi \ ϕ

1
i ) < τi > andsi.ψi < τi > (ϕ1

i \ ψi) exist and are equal.
By applying lemma 4.2(1) in statesi.ϕ1

i and for the tracesϕ2
i and ψi \ ϕ1

i , we conclude that
si.ϕ

1
iϕ

2
i (ψi \ ϕi) andsi.ϕ1

i (ψi \ ϕ
1
i )(ϕ

2
i \ (ψi \ ϕ

1
i )) exist and are equal.

The existence ofsi.ϕ1
iϕ

2
i (ψi \ ϕi) means thatϕi(ψi \ ϕi) ∈ TracesΣi

(si).
The existence ofsi.ϕ1

i (ψi \ ϕ
1
i )(ϕ

2
i \ (ψi \ ϕ

1
i )) means thatθi = ϕ2

i \(ψi \ ϕ
1
i ) is a trace ofΣi start-

ing in si.ϕ1
i (ψi \ ϕ

1
i ). Since< τi > is a trace starting in the same state, from axiomµWE1 we obtain that

θi is a trace ofΣi starting in statesi.ϕ1
i (ψi \ ϕ

1
i ) < τi >, and by the identity ofsi.ϕ1

i (ψi \ ϕ
1
i ) < τi >

andsi.ψi < τi > (ϕ1
i \ ψi) we haveψi < τi > (ϕi \ ψi) ∈ TracesΣi

(si).
We proved that for all1 ≤ i ≤ n we haveϕi(ψi \ϕi), ψi < τi > (ϕi \ψi) ∈ TracesΣi

(si), meaning
that

∀i : παi (ϕ(ψ \ ϕ)), παi (ψ < τ1 . . . τn > (ϕ \ ψ)) ∈ TracesΣi
(πσi (s))

On each channel, the projection of any ofϕ(ψ \ ϕ) or ψ < τ1 . . . τn > (ϕ \ ψ) is either a prefix of
the projection ofϕ, or a prefix of the projection ofψ, which are themselves consistent. Therefore, traces
ϕ(ψ \ ϕ) andψ < τ1 . . . τn > (ϕ \ ψ) are also consistent. According to lemma 2.3, this implies that
ϕ(ψ \ ϕ), ψ < τ1 . . . τn > (ϕ \ ψ) is in Traces‖n

i=1
Σi

(ι(s)). 2

Thanks to these two technical lemmas, theorem 4.4 can now be proved.

Proof of theorem 4.4: Let s be a synchronizing state of|ni=1Σi and letϕ ∈ Traces‖n

i=1
Σi

(ι(s)).
We prove the existence ofϕ andϕ̃ by induction over| ϕ | (the number of variable assignments inϕ).
We can assume, without losing generality, that every label of ϕ assigns exactly one variable, either clock
or directed. The reduction to this case is straightforward.

If | ϕ |= 0, thenϕ̃ = ϕ andϕ =< τ > clearly satisfy the conditions of criterion 2.
Consider nowϕ with | ϕ |≥ 1. If ϕ[0] =< τ >, then we have:

ι(s) ◦
ϕ[0] // ι(s)◦

ϕ[1...length(ϕ)−1] +3

The induction hypothesis can be applied onϕ[1 . . . length(ϕ) − 1] to determineϕ̃ andϕ.
From now on, we assume thatϕ[0] is not a clock transition.
To prove thatϕ̃ andϕ exist, we shall first constructψ ∈ Traces|n

i=1
Σi

(s) such thatτ 6∈ supp(ψ),
ψ < τ >∈ Traces|n

i=1
Σi

(s), ψ[0] = ϕ[0], andι(ψ) ./ ϕ.

Construction of ψ: Consider the projections ofϕ onto componentsπαj (ϕ), 1 ≤ j ≤ n. Sinceϕ[0] is
not the empty transition, nor a clock transition, then thereexists at least anj such thatπαj (ϕ)[0] is not a
clock transition, nor a void transition. Note thatπαj (ϕ)[0] is fireable in stateπσj (s).
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Then, we start the iterative construction ofψ by setting the iteration counteri to 0 and settingψ0 =
ϕ[0]. The iteration step:

continuation test: If ψi < τ >∈ Traces|n

i=1
Σi

(s), then we completed our construction.

construction step: If ψi < τ > 6∈ Traces|n

i=1
Σi

(s), and since|ni=1Σi is non-blocking, there exists a
label< v = x > such thatψi < v = x >∈ Traces|n

i=1
Σi

(s). If ψi < v = x > ./ ϕ, then
considerψi+1 = ψi < v = x > and go to the continuation test.

If not, thenϕ = ϕ0 < v = y > ϕ1 with x 6= y andv 6∈ supp(ϕ0). However, by applying axiom
µWE4, we haveψi < v = y >∈ Traces|n

i=1
Σi

(s). By consideringψi+1 = ϕi < v = y >, we
also haveψi+1 ./ ϕ, and we go to the continuation test.

The previous algorithm is finite, bounded by the number of variables in|ni=1Σi. In the end we put the
lastψi in ψ.

Construction of ϕ̃ andϕ: Let s1 = s.ψ < τ >. According to lemma 4.5 we have

ϕ(ι(ψ) \ ϕ), ι(ψ) < τ1, . . . , τn >∈ Traces‖n

i=1
Σi

(ι(s))

Sinceϕ[0] = ι(ψ)[0], we have| ϕ \ ψ |<| ϕ |. Then, we can apply the induction hypothesis in the
synchronizing states1, and obtainθ ∈ Traces|n

i=1
Σi

(s1), complete, and̃θ ∈ Traces‖n

i=1
Σi

(ι(s1)) such
that:











ϕ \ ι(ψ) � θ̃

ι(θ) ∼ θ̃

ι(s1).ι(θ) = ι(s1).θ̃

Let ϕ = φ < τ > θ. Given thatϕ ≤ ι(ψ) < τ1 . . . τn > (ϕ \ ι(ψ)) and thatϕ \ ι(ψ) ≤ ι(θ),
we deduceϕ ≤ ι(ϕ). Sinceϕ ∈ Traces|n

i=1
Σi

(s) is complete, lemma 4.4 can be applied to build
ϕ′ ∈ Traces‖n

i=1
Σi

(ι(s).ϕ) such thatϕϕ′ ∼ ι(ϕ) andι(s).ϕϕ′ = ι(s).ι(ϕ). By consideringϕ̃ = ϕϕ′,
the proof is completed. 2

Theorem 4.4 implies that for large classes of components forwhich simple wrappers exist, the cor-
rectness of the GALS implementation is implied by the correctness of the global synchronous specifi-
cation. Thus, no extra signalization is needed to ensure semantics preservation (and no costly synthesis
algorithms). The GALS implementation is correct by construction.

5. Conclusion. Future work

We introduced a new model for the representation of asynchronous implementations of synchronous
specifications. The model covers implementations where a notion of global synchronization is preserved
by means of signaling, and GALS implementations, where global synchronization is relaxed. The model
takes into account computation and communication causality, and allows us to reason about semantics-
preservation and absence of deadlocks in the GALS deployment of synchronous specifications. As the
model captures the internal concurrency of the synchronousspecification, our correctness criteria support
implementations that are less constrained and more efficient than existing ones.
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The results of section 4 suggest that our model offers a good abstraction level for reasoning about
desynchronization. In particular, the level of detail is essential in revealing the intricate relation be-
tween (1) causal dependencies, concurrency and conflicts inthe micro-step semantics of a synchronous
specification and (2) the correctness (semantics preservation) of its GALS implementation.

5.1. Future work

Thanks to this new model, we are exploring the development ofGALS circuits made of synchronous
IPs. Our work aims at using asynchronous logic wrappers to encapsulate the components of a modular
synchronous circuit into delay insensitive components. Our model seems well-suited to analyze designs
involving both synchronous and asynchronous circuit specifications. Preliminary results are presented in
[24], but we are only at the beginning of our work.

We are also considering symbolic analysis techniques that would allow us to translate the theory
detailed in this paper to high-level synchronous languageslike Signal or Esterel, instead of simple finite
state automata. The objective is to derive efficient algorithms transforming general high-level specifica-
tions into weakly endochronous ones. Preliminary results in this direction are presented in [25].

A third research direction concerns the (still not sufficiently clear) relations between classical, macro-
step synchronous models and more operational models like microstep synchronous transition systems
(µSTS), or the ones covering the implementations of synchronous programming languages, especially
when desynchronization is involved. For instance, it is important to understand how the notions of correct
desynchronization and endochrony can be transposed into a constructive framework such as the one of
Esterel [26].
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