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Abstract
We introduce a model for the representation of asynchronous

implementations of synchronous specifications. The model cov-
ers classical implementations, where a notion of global syn-
chronization is preserved by means of signaling, and globally
asynchronous, locally synchronous (GALS) implementations
where the global clock is removed. Our model offers a uni-
fied framework for reasoning about two essential correctness
properties of an implementation: the preservation of semantics
and the absence of deadlocks.1

1. Introduction
Dealing with concurrency, time and causality in the design

of electronic systems has become increasingly difficult as
the complexity of the designs grew. Thesynchronous pro-
gramming model[1], [2], [3] has had major successes at
the specification level because it provides a simpler way to
employ the power of concurrency in functional specification.
Synchronous languages like ESTEREL, LUSTRE, and SIGNAL ,
the quasi-synchronous STATECHARTS modeling methodology,
and design environments like SIMULINK /STATEFLOW all ben-
efit from the simplicity of thesynchronous hypothesis, which
(1) lets computations and behaviors be divided into a discrete
sequence of computation steps, also calledreactions, indexed
by a global clock, and (2) requires that inside each reaction
the behavioral propagation is “well-behaved” (causal), so that
the status of each variable is established prior to being tested
or used. This hypothesis founds the conceptual abstraction
that computations are infinitely fast, and allows universally-
recognized mathematical models like the Mealy machines and
the digital circuits to be used as semantic foundations.

However, if the synchronous assumption simplifies system
specification and verification, the problem of deriving a correct
physical implementation from it does remain [2]. In particular,
difficulties arise when the target implementation architecture
has a distributed nature that does not match the synchronous
assumption because of large variance in computation and
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communication speeds and because of the difficulty of main-
taining a global notion of time. This is increasingly the case
in complex microprocessors and Systems-on-a-Chip (SoC),
and for many important classes of embedded applications in
avionics, industrial plants, and the automotive industry.

Gathering advantages of both the synchronous and asyn-
chronous approaches, the Globally Asynchronous Locally
Synchronous (GALS) architectures are emerging as an ar-
chitecture of choice for implementing complex specifications
in both hardware and software. In a GALS system, locally-
clocked synchronous components are connected through asyn-
chronous communication lines. Thus, unlike for a purely asyn-
chronous design, the existing synchronous tools can be used
for most of the development process, while the implemen-
tation can exploit the more efficient/unconstrained/required
asynchronous communication schemes.

We further pursue in this paper our quest for correct-by-
construction deployment of synchronous specifications over
GALS architectures.
Informal discussion of the issues. In the synchronous
paradigm[1], [2], [3], an execution of the program, also called
trace, is a sequence of reactions, each reaction assigning a
unique value (status) to each variable of the program. Not all
variables need to be involved in each reaction. However, this
is taken into account by extending the domain of values of
all variables with an extra symbol⊥, which denotes absence.
Thus, absence can be tested and used to exercise control.

No global clock exists in theasynchronous paradigm,
meaning that no notion of reaction exists, and that absence
(⊥) has no meaning and cannot be sensed. Only the sequences
of values on individual channels can be observed, so that
an asynchronous observationof the execution of a system
is a function assigning to each communication channel the
sequence of transmitted messages/values. Asynchronously ob-
serving a synchronous execution consists of removing the⊥
events and the synchronization boundaries of the reactions to
obtain an asynchronous observation.

In many cases, applications designed in a synchronous
framework will be implemented for use in an asynchronous
environment. Two problems arise: First, the synchronous ap-
plications must be fitted with wrappers that read the asyn-
chronous inputs and schedule them into reactions before giving
them to the program and triggering the program clock (the



scheduling operation inserts the missing⊥ values). As the
synchronous paradigm is often used in the development of
safety-critical systems, input reading and the system itself
must be deterministic, or at least predictable. It is therefore
essential to consider classes of synchronous specifications that
facilitate the development of efficient wrappers which make
input reading deterministic while not restricting the behavior
of the system.

Second, the implementation must preserve the semantics of
the synchronous specification, meaning that the set of asyn-
chronous observations of the specification must be identical
to the set of observations of the implementation. Preserva-
tion of semantics is important because the advantages of
synchrony lie with specification and verification. We would
therefore like each implementation trace to be covered by
the verification of the synchronous model. This problem is of
particular importance when the synchronous specification must
be implemented over a distributed architecture (an operation
called desynchronization). In such cases, input reading and
computation must be coordinated between distributed sites,
and doing this without a careful analysis can be very inefficient
(in terms of speed, consumption, communication, etc.) or
simply incorrect.

This paper addresses the problem of desynchronizing a
modular synchronous specification by replacing the commu-
nication lines between modules with asynchronous FIFOs.
Instead of a single, global wrapper, we shall have one wrapper
per system component. The exact problem we address is that
of characterizing large classes of synchronous components
for which small, simple wrappers2 produce deterministic, effi-
cient, and semantics-preserving GALS implementations. These
classes of systems can then be considered as the implemen-
tation space, and the remaining problem is that of making
given synchronous systems belong to these classes (by adding
supplementary signaling). Naturally, a larger implementation
space covers better solutions that use less synchronization.
Previous work. Previous approaches to implementing modu-
lar synchronous specifications over GALS architectures are
respectively based onlatency-insensitive systems, on Kahn
process networks (KPN), and onendo/isochronous systems.

In the latency-insensitive systemsof Carloni et al. [4],
each synchronous component reads every input and writes
every output at each reaction. The communication protocols
effectively simulate a single-clock system, which is inefficient,
but simplifies the implementation.

In a Kahn process network[5], requiring that each com-
ponent has a deterministic input/output behavior implies the
determinism of the global system (and thus any wrapper is a
good one). Often used, due to its robustness, in the develop-
ment of embedded systems, the KPN-based approach has been
adapted by Caspiet al. for the desynchronization of functional
dataflow synchronous specifications [6]. Giving the approach
its strength, the determinism is also its main drawback, as non-

2For instance, wrappers that trigger a transition as soon as the needed input
is available.

determinism is often useful in the specification and analysis
of concurrent systems. We also mention here the approach of
Talpin et al. [7], which is based on a bounded version of the
Kahn principle.

The approach based onendo/isochronous systemshas been
proposed by Benvenisteet al. [8] in order to support the anal-
ysis of partial specifications (which can be non-deterministic,
or incomplete), to exploit execution modes, and to cover
truly concurrent and multi-clock implementations. Informally
speaking, a synchronous component is endochronous when
the presence and absence of each variable can be inferred
incrementally during each reaction from the current state and
from the values of already present values. An endochronous
component knows how to read its inputs, meaning that no
wrapper is needed. Unfortunately, endochronous components
can exhibit no internal concurrency, which makes endochrony
non-compositional (thus, incremental system development is
impossible). Isochrony is a semantics-preservation criterion
over pairs of synchronous systems. The work of Singh and
Theobald ongeneralized latency-insensitive systems[9] can
be seen as implementing endochrony in hardware.

Essential improvement is brought by the work by Potop
et al. [10] on weak endochrony and weak isochrony. Weak
endochrony extends endochrony by allowing operations within
a component to run independently when no synchronization is
necessary. The notion is compositional, allowing incremental
development of large systems. Being formulated in a non-
causal framework, this approach is also less constrained than
the KPN-based one, allowing non-determinism in the less
abstract causal model. The non-causal framework is also the
main disadvantage, because it hides implementation proper-
ties, like the presence of synchronization or communication
deadlocks (which are important in practice).

The distribution of synchronous or strongly synchronized
specifications has been studied in many other settings. We only
mention here the Time-Triggered Architectures of Kopetz [11],
theocrep tool of Giraultet al. [12], the AAA methodology of
Sorel [13], and the desynchronization approach of Cortadella
et al. [14]. From another point of view, our work is closely
related to results concerning the design of delay-insensitive
[15] and burst-mode [16] circuits.
Contribution. This paper brings an important improvement
over previous work, by allowing us toreason about concur-
rency and efficient synchronization in a causal, operational
synchronous framework that takes into account the compo-
sition through read/write mechanisms. The approach inherits
the advantages of the weak endochrony-based approach: It
allows the representation of non-deterministic specifications,
takes into account execution and communication modes, and
covers concurrent and multi-clock implementations. At the
same time, it allows us to reason in a unified model about
semantics-preservation and the absence of deadlocks due to
synchronization and communication (which are both essential
correctness properties of any implementation). As we shall see,
the level of detail is essential in this analysis, as it reveals the
strong ties that exist between the two correctness properties,



and simplifies the correctness analysis.
Our main contribution is the definition of a new model for

the representation of asynchronous implementations of syn-
chronous specifications. The model covers classical implemen-
tations, where a notion of global synchronization is preserved
by means of signaling, and globally asynchronous, locally
synchronous (GALS) implementations where the global clock
is removed.We use this model to derive criteria ensuring the
correct deployment of synchronous specifications over GALS
architectures.

For space reasons, and in order to keep the presentation
clear, we chose not to include the (rather complex) proofs of
our results in this paper. They shall soon be available in [17].
Outline. The remainder of the paper is organized as follows:
Section 2 defines the formal framework used throughout the
paper, and section 3 gives intuitive examples and explains
why the new structures are adapted to modeling and rea-
soning about the correctness of GALS implementations of
synchronous specifications. Sections 4 defines criteria ensuring
correct desynchronization. A short conclusion is given in
section 5.

2. The model
This section defines our model of asynchronous imple-

mentation of a synchronous specification. We structured its
presentation into several parts. The subsections 2.1, 2.2, and
2.3 introduce a rather standard notation for transition systems
(variables, transition labels, traces, concurrent transition sys-
tems, and composition by synchronized product). Subsection
2.4 is the first to define communication channels, clocks, and
the I/O transition systems which form our basic implemen-
tation model. Section 2.5 defines the synchronous transition
systems – which are I/O transition systems satisfying the
synchronous hypothesis. In section 2.6 we explain how transi-
tion systems are synchronously and asynchronously composed
using FIFO models. Recall that intuitive examples are given
later, in section 3.

2.1. Variables and labels
Our components and systems interact with each other and

with their environment throughvariables. The domain of a
variablev is denoted withDv. GivenV afiniteset of variables,
a label overV is a partial valuation of its variables. Formally,
the set of all labels overV is LV =

∏
v∈V D⊥

v , where
D⊥

v = Dv ∪ {⊥}, and⊥ 6∈ Dv is a special symbol denoting
the absenceof a value. Thesupport of a label l ∈ LV is
supp(l) = {v ∈ V | l(v) 6= ⊥}. We denote with⊥V the label
of empty support overV . For simplicity, we shall usually write
out a label as the set of its non-absent variable valuations. For
instance,< v = 0, u = 1 >V denotes the label overV with
support{u, v} and which assigns 0 tov and 1 tou. When
confusion is not possible, the setV of variables can be omitted
from the notation.

If l ∈ LV andV ′ is another set of variables, then theimage
of l through V ′ is the labell |V ′∈ LV ′ that equalsl over
V ∩ V ′ and equals⊥ on V ′ \ V .

The labelsli ∈ Vi, i = 1, 2, arenon-contradictory, denoted
l1 ./ l2, if for all v ∈ V1 ∩ V2 such thatli(v) 6= ⊥, i = 1, 2
we havel1(v) = l2(v). In this case, theirunion is l1 t l2 ∈
LV1∪V2 , of supportsupp(l1) ∪ supp(l2) and which equalsli
over supp(li), i = 1, 2. The union operator is associative and
commutative. If l1, l2 ∈ LV are non-contradictory, we also
define theirdifferencel1 \ l2 ∈ LV by:

l1 \ l2(u) =
{
l1(u), if u 6∈ supp(l2)
⊥, otherwise

When the non-contradictory labelsli ∈ Vi, i = 1, 2 are equal
over V1 ∩ V2, they are calledsynchronizable. Their union is
also called in this caseproductand denoted withl1⊗ l2. Note
that l1⊗l2 equalsli onVi, i = 1, 2. The labelsli ∈ Vi, i = 1, 2
aredisjoint if supp(l1) ∩ supp(l2) = ∅.

Assume thatv and v′ are variables with the same domain
(i.e.Dv = Dv′ ). Given l ∈ LV , with v ∈ V andv′ 6∈ V \ {v},
the name change operator associatesl[v/v′] ∈ LV \{v}∪{v′}
with:

l[v/v′](u) =
{
l(u), if u 6= v′

l(v), if u = v′

We define the “inclusion” partial order≤ overLV : l1 ≤ l2
if ∀v : (l1(v) 6= ⊥ ⇒ l1(v) = l2(v)).

2.2. Traces
A trace over the set of variablesV is a finite sequence of

labels overV . The set of all traces overV is denoted with
Traces(V ) = L∗V = {(li)0≤i<n | n ∈ IN ∧ ∀i : li ∈ LV }.
Given a traceϕ = (li)0≤i<n we denotelength(ϕ) = n and
ϕ[i] = li. Note that any label is a trace of length 1.

Any two tracesϕ1, ϕ2 ∈ Traces(V ) can be concatenated.
The traceϕ1 is a prefix of ϕ2 (written ϕ1 � ϕ2) if, by
definition, ϕ2 = ϕ1ϕ3 for someϕ3. The prefix relation is
a partial order over traces. The image operator is extended
component-wise on traces:(li)0≤i<n |V ′= (li |V ′)0≤i<n. The
tracesϕi ∈ Traces(Vi), i = 1, 2 are calledsynchronizable
if length(ϕ1) = length(ϕ2) and if for all j the labelsl1[j]
and l2[j] are synchronizable. In this case, we can define the
product traceϕ1 ⊗ ϕ2 = (l1[i] ⊗ l2[i])0≤i<length(ϕ1). The
product operator is associative and commutative. Thesupport
of a traceϕ, denotedsupp(ϕ), is the union of the supports of
its labels.

2.3. Generalized concurrent transition systems
Thegeneralized concurrent transition systems(GCTS) form

our (asynchronous) implementation model. GCTSs are step
transition systems where steps are syntactic representions of
the concurrency between atomic operations (which assign
or test a single variable). They generalize the concurrent
transition systems of Stark [18], and can be seen as a sub-
set of the step transition systems of Mukund [19].

Definition 1 (generalized concurrent transition system)
A generalized concurrent transition system (GCTS) is a
tuple Σ = (S, ŝ, V, ◦→Σ ), whereS is the set of states (not
necessarily finite) ,̂s ∈ S is the initial state,V is the finite



set of communication variables, and◦→Σ ⊆ S × LV × S is
a transition relation satisfying:

GCTS1(void transition):∀s ∈ S : s◦
⊥V

Σ
// s .

GCTS2(prefix closure): If s◦ l

Σ
// s′ and l′ ≤ l, then

there existss′′ ∈ S such that s◦
l′

Σ
// s′′ and

s′′ ◦
l\l′

Σ
// s′ .

When there is no ambiguity,Σ can be dropped from the
transition relation notation.

We shall say thatϕ = l1 . . . ln ∈ Traces(V ) is a
trace of the GCTSΣ = (S, ŝ, V, ◦→Σ ) starting in the
state s ∈ S if there exist s1, . . . , sn ∈ S such that

s◦
l1 // s1 ◦

l2 // . . .◦
ln // sn . In this case, we also write

s◦
ϕ +3 sn . The set of all traces ofΣ starting ins is denoted

by TracesΣ(s), and the set of all destination states of such

traces is:RSSs(Σ) = {s′ ∈ S | ∃ϕ : s◦
ϕ +3 s′ }. The

reachable state space ofΣ is RSS(Σ) =def RSSŝ(Σ).
Concurrent transition systems are composed by means

of synchronized product. IfΣi = (Si, ŝi, Vi, ◦→Σi ), i =
1, 2, thenΣ1 ⊗ Σ2 = (S1 × S2, (ŝ1, ŝ2), V1 ∪ V2, ◦→Σ1⊗Σ2 ),

where (s1, s2)◦
l

Σ1⊗Σ2

// (s′1, s
′
2) ⇔ si ◦

l|Vi

Σi

// s′i , i = 1, 2. The

⊗ operator is well-defined – it preserves the properties GCTS1
and GCTS2. It is also associative and commutative, and
TracesNn

i=1 Σi
((si)1≤i≤n) is the set of all

⊗n
i=1 ϕi, where

ϕi ∈ TracesΣi(si) are mutually synchronizable.
The variable name change operator is extended to GCTSs.

If Σ = (S, ŝ, V, ◦→Σ ), v ∈ V , v′ 6∈ V \ {v}, andDv = Dv′ ,
then:

Σ[v/v′] = (S, ŝ, V \ {v} ∪ {v′}, { s◦
l[v/v′]

Σ[v/v′]

// s′ | s◦ l

Σ
// s′ })

2.4. I/O causality. Channels and clocks
In real life, the communication between the different com-

ponents of a system is directed. One component emits a value
on a channel, and another reads it. To take this into account, we
usedirected communication channelsthat are pairs ofdirected
variables. We emit a value on a channelc by assigning the
variable!c, and we receive a value by reading the variable?c.
The variables!c and ?c have the same domain, denoted with
Dc. We denote withC(V ) = {c |!c ∈ V ∨?c ∈ V } the set
of channels associated with a set of variablesV . To simplify
the model, we assume that every channel connects at most one
emitter with at most one receiver, meaning that!c is variable of
at most one component in the system, the same holding for?c
(a simple renaming technique allows the use of multicast, but
we shall not cover the subject here). We further assume that
the only variables that are not directed are theclocksof the
synchronous components. A clock is a variable whose domain
is Dclk = {>} (> stands for the “clock tick”). Given a set
V of variables we shall denote withClocks(V ) the subset

of clock variables, and withDirected(V ) = V \ Clocks(V )
the subset of directed variables. To simplify the notations, we
abbreviate the clock tick valuationτ = > with τ (for any
clock variableτ ).

Definition 2 (I/O transition system) We say that a GCTS is
an I/O transition system when all its variables are either
directed or clocks.From now on, this paper only considers
I/O transition systems.

To reason about desynchronization properties, we shall need
the following function, which removes the clock synchro-
nization barriers, so that only messages (and not absence)
are visible, along with message ordering on each channel:
δ : (D⊥

v )∗ → D∗
v , defined byδ(ε) = ε and:

δ(vϕ) =
{
vδ(ϕ), if v 6= ⊥
δ(ϕ), otherwise

Using this notation, we extend the relation≤ (first de-
fined on labels) to a preorder overTraces(V ): Given
ϕ1, ϕ2 ∈ Traces(V ), we write ϕ1 ≤ ϕ2 whenever we
have δ(ϕ1 |{v}) � δ(ϕ2 |{v}) for all v ∈ Directed(V ).
If ϕ1 ≤ ϕ2 and ϕ2 ≤ ϕ1, then we say thatϕ1 and ϕ2

are asynchronously equivalent, denotedϕ1 ∼ ϕ2. When for
all v ∈ Directed(V ) we haveδ(ϕ1 |{v}) � δ(ϕ2 |{v}) or
δ(ϕ2 |{v}) � δ(ϕ1 |{v}), then we say thatϕ1 and ϕ2 are
asynchronously non-contradictory, and writeϕ1 ./ ϕ2. Note
that ./ extends the non-contradiction relation over labels.
Moreover, we can extend the label difference operator to non-
contradictory traces by inductively defining the asynchronous
difference of tracesϕ1 \ ϕ2:{

ϕ1 \ (lϕ2) = (ϕ1 \ l) \ ϕ2

(l1ϕ1) \ l2 = (l1 \ l2)(ϕ1 \ (l2 \ l1))

If ϕ is a trace of an I/O transition system, then we denote
with | ϕ | the number of assignments of non-clock variables
contained inϕ.

2.5. Synchronous transition systems
Our synchronous transition systems represent causal syn-

chronous specifications or, equivalently, implementations of
synchronous specifications where the global clock is preserved
by means of signalization. A synchronous transition system,
as defined below, is an I/O transition system with a single
clock variable, and satisfying the synchronous hypothesis and
a stuttering-invariance property (which is necessary if we want
to derive GALS implementations).

Definition 3 (synchronous transition system)A microstep
synchronous transition system (µSTS) is a tupleΣ =
(S, ŝ, V, τ, ◦→ ) where all the variables ofV are directed,
whereτ is a clock variable (the clock of the component), and
where(S, ŝ, V ∪ {τ}, ◦→ ) is a GCTS satisfying:

µSTS1 (clock transitions): if s◦ l // s′ and l(τ) 6= ⊥
then l |V = ⊥V .



µSTS2 (stuttering-invariance):

ŝ◦
<τ> // ŝ and ( s◦

<τ> // s′ ⇒ s′ ◦
<τ> // s′ )

µSTS3 (single assignment): two assignments of a same
variable must be separated by a clock transition.

More exactly, if s0 ◦
l1 // s1 ◦

l2 // . . .◦
ln // sn

and∀i : li 6= τ , thenl1, . . . , ln are mutually disjoint.

Note that axiomµSTS1 identifies theclock transitions– with
label< τ > – which are the only transitions where the clock
variable is present. Such transitions separate synchronous
reactions during which a variable cannot be assigned more
than once (cf. axiomµSTS3). A state which is destination
of a clock transition is calledsynchronizing state. Given a
traceϕ of a synchronous system, we can decompose it into
reactionsϕ = Step0(ϕ) < τ > Step1(ϕ) < τ > . . . where
each reactionStepi(ϕ) contains no clock transition. As the
transitions of eachStepi(ϕ) are disjoint, we can denote with
< Stepi(ϕ) > the union of all its labels. We shall say that
a traceϕ is completeif it ends with a< τ > transition. We
say that aµSTS isnon-blockingif from any reachable state
there is a path towards a stuttering state. Note that in a non-
blockingµSTS any trace can be completed. Blocking systems
are considered incorrect.

2.6. Synchronous and asynchronous composition
As earlier mentioned, we simplify the model by only

allowing point-to-point communication, and we enforce this
rule by syntactic means3.

Definition 4 (composable transition systems)We say that
the I/O transition systemsΣi, i = 1, n are composableif their
variable sets are mutually disjoint.

Note that the definition requires not only point-to-point com-
munications (no directed variable is shared by two or more
systems), but also the non-overlapping of clock sets (which is
natural). Also note that a system can have both!c and ?c as
variables, thus allowing the representation of systems obtained
by composition.

The composition of synchronous and asynchronous systems
is defined by means of synchronized product, using FIFO
models to represent communication through synchronous and
asynchronous channels. To represent synchronous commu-
nication, we use 1-place synchronous FIFO models (which
are µSTSs themselves). The FIFO model associated with a
channelc is:

SFIFO(c, τ) =

({c0, c1} ∪
⋃

x∈Dc

{cx}, c0,
⋃

x∈Dc

{!c = x, ?c = x}, τ, ◦→S )

where the transition relation is defined by:

c0
◦

τ 77 ◦
<!c=x>// cx ◦

<?c=x>// c1
◦

<τ>

bb
, x ∈ Dc

3However, broadcast can be simulated by replicating and renaming vari-
ables.

Note that modeling multicast communication (a feature that
will not be addressed in this paper), is simply done by
renaming channel read variables in a component-wise fashion,
and then modifying the FIFO model to allow the concurrent
read of the value from different sites.

Asynchronous communication involves infinite asyn-
chronous FIFO models (which are notµSTSs):

AFIFO(c) = (D∗
c , ε,

⋃
x∈Dc

{!c = x, ?c = x}, ◦→A )

where the transition relation contains all the transitions of the
form:

x1 . . . xn ◦
<!c=xn+1> // x1 . . . xnxn+1 ◦

<?c=x1>// x2 . . . xn+1

Definition 5 (synchronous composition ofµSTSs) Let
Σi = (Si, ŝi, Vi, τi, ◦→Σi ), i = 1, 2 be composableµSTSs
and let τ be a clock variable. Then, the synchronous
composition ofΣ1 and Σ2 over the base clockτ is:

Σ1 |τ Σ2 = Σ1[τ1/τ ]⊗ Σ2[τ2/τ ]⊗
⊗

c∈C(V1)∩C(V2)

SFIFO(c, τ)

Lemma 1 (synchronous composition properties)The syn-
chronous composition of theµSTSsΣ1 and Σ2 over the base
clock τ is a µSTS of clockτ . The result of the synchronous
composition is unique upto isomorphism4 of µSTSs (so that
we can discardτ from the notation). Moreover, the operator|
is associative and commutative (again, modulo isomorphism).

In addition, note that synchronizing states of|ni=1 Σi have
void communication lines (all synchronous FIFO models are
in their unique synchronizing state).

Definition 6 (asynchronous composition of I/O systems)
Let Σi = (Si, ŝi, Vi, ◦→Σi

), i = 1, 2 be composable I/O
transition systems. Then, the asynchronous composition ofΣ1

and Σ2 is:

Σ1 || Σ2 = Σ1 ⊗ Σ2 ⊗
⊗

c∈C(V1)∩C(V2)

AFIFO(c)

Lemma 2 (asynchronous composition properties)The
asynchronous composition of I/O transition systems results in
another I/O transition system. The|| operator is associative
and commutative. The asynchronous composition of two
µSTSs is not aµSTS.

4An isomorphismλ between the GCTSsΣi = (Si, ŝi, Vi, ◦→Σi
), i =

1, 2 consists of two bijectionsλS : S1 → S2 and λV : V1 → V2

having the properties: (i)∀v : Dv = DλV (v), (ii) λS(ŝ1) = ŝ2, and

(iii) s ◦
l

Σ1

// s′ ⇔ λS(s) ◦
λ(l)

Σ2

// λS(s′) , whereλ(l) denotes the label

obtained froml by renamingv with λV (v) for all v ∈ V1. If Σ1 and Σ2

are I/O transition systems, we say thatλ is an isomorphism of I/O transition
systems ifλV maps read variables onto read variables, write variables onto
write variables, and clocks onto clocks. IfΣ1 andΣ2 areµSTSs, thenλ is
an isomorphism ofµSTSs if it is an isomorphism of I/O transition systems.



2.7. Product states and product traces
Note that the state of a synchronous or asynchronous

product of I/O systems is not only given by the state of
the components, but also by the state of its communica-
tion channels. Indeed, given the composableµSTSsΣi, i =
1, n, connected through the channelsci, i = 1,m, the
state of |ni=1 Σi is ((si)i=1,n, (c

s
i )i=1,m), and the state of

||ni=1 Σi is ((si)i=1,n, (c
a
i )i=1,m), wherecsi denotes states of

SFIFO(ci, τ) andcai denotes states ofAFIFO(ci).
Nevertheless, our channels are fully deterministic, so that

the evolution of the system is completely determined by the
transitions of the componentsΣi. Therefore,when we work
on traces starting in given states we can drop the FIFO
states from the global system state notation(the destination
state is fully determined by the initial state and by the trace).

As should be expected, the synchronous composition binds
tighter than the asynchronous one. Indeed, given the compos-
ableµSTSsΣi = (Si, ŝi, Vi, τi, ◦→Σi

), i = 1, n, we can map
the state space of|ni=1 Σi onto the state space of||ni=1 Σi:

ι : RSS(|ni=1 Σi) ↪→ RSS(||ni=1 Σi)

by mapping for each communication channelc the state of
SFIFO(c, τ) onto the state ofAFIFO(c) using: c0 7→ ε,
c1 7→ ε, and ∀x ∈ Dc : cx 7→ x. Similarly, we can define
for any si ∈ Si, i = 1, n the injective “inclusion morphism”
that maps traces of the synchronous product into traces of the
asynchronous product:

ι : Traces|ni=1Σi
(s) ↪→ Traces||ni=1Σi

(ι(s))

defined inductively byι(ε) = ε, by ι(ϕ1ϕ2) = ι(ϕ1)ι(ϕ2),
and (for labels) by:

ι(l) =
{

l |Sn
i=1 Vi∪{τi|i=1,n}, if l 6= < τ >

< τ1, . . . , τn >, if l = < τ >

whereτ stands by the base clock of the synchronous compo-
sition. With these notations we have:

s◦
ϕ

|ni=1Σi

+3 s′ ⇒ ι(s)◦
ι(ϕ)

||ni=1Σi

+3 ι(s′)

3. Modelling and correctness of GALS im-
plementations

This section starts by illustrating our definitions with a num-
ber of small, but intuitive examples. Based on this intuition,
we are define in section 3.2 the formal correctness criterion.
Section 3.3 explains why our model is useful in solving the
GALS implementation problem.

3.1. Examples
The following µSTS represents a system that emits a

message on channela and then awaits for one message from
either channelb or r (e.g. for whichever comes first). Data is
uninterpreted (not important), therefore not represented. The

clock of the system isτ1, and we shall assume that the directed
variable set ofΣ1 is {!a, ?b, ?r}:

Σ1 :

s2
◦

<τ1>
ww

s0
◦

<τ1> 77 ◦
<!a>// s1

◦

<?b>
==||||||

◦ <?r>

!!B
BB

BB
B

s3
◦

<τ1>
ww

In a more classical macrostep framework, like that of [10],
this system would be represented by:

Σ1, macrostep version :

s2

s0

ab
==||||||

ar

!!B
BB

BB
B

s3

The correspondence between the microstep and macrostep
representations of a system is straightforward: The states of the
macrostep system are the synchronizing states of the microstep
one. The macrostep transitions correspond to full reactions
connecting synchronizing states (after forgetting the direction
of the signals and the causality between successive labels).

We composeΣ1 with theµSTSΣ2, which has the clockτ2
and the directed variable set{?a, !b}:

Σ2 : t0
◦

<τ2> 88 ◦
<?a> // t1 ◦<τ2>

// t2
◦

<τ2>

��
◦
<!b> // t3 ◦

<τ2>
xx

The synchronous compositionΣ1 | Σ2 is done using two
synchronous FIFOs, corresponding to the variables/channels
a andb:

SFIFO(a, τ) :
a0
◦

τ 77 ◦
<!a>// a2 ◦

<?a>// a1
◦

<τ>

aa

SFIFO(b, τ) :
b0

◦
τ 88 ◦

<!b>// b2 ◦
<?b>// b1◦

<τ>

aa

Note again that data is uninterpreted, only write/read causality
and clock synchronization is considered. The composed syn-
chronous system is (we simplified for space reasons the label
notations):

Σ1 | Σ2 :

s0, t0
◦

τ
kk◦

!a

��
s1, t0 ◦

?a //
◦

?r

��

◦
?a?r

!!B
BB

BB
BB

BB
s1, t1
◦

?r

��
s3, t0 ◦

?a // s3, t1 ◦
τ // s3, t2

◦

τ

FF ◦
!b // s3, t3



Note that we simplified the notation by not representing the
state of the two FIFOs (the initial state having void FIFOs,
the status of the FIFOs is fully determined in each state).
However, note that the composed system is blocked in state
(s3, t3) becauseSFIFO(b, τ) cannot take a clock transition
(data has been written on it, but not read). The systemΣ1 | Σ2

is blocking, thus incorrect.
The asynchronous compositionΣ1 || Σ2 is done using the

two asynchronous FIFOs, figured below:

AFIFO(b) :
ε◦

<!b> // b◦

<?b>

^^
AFIFO(a) :

ε◦
<!a> // a

◦

<?a>

^^

Recall that in the general case the asynchronous FIFO models
are infinite. However,Σ1 andΣ2 can emit at most one message
on any of the two channels, so our choice does not affect the
result of the composition:

Σ1 || Σ2:

s0, t0
◦

τ1,τ2,τ1τ2kk◦

!a

��
s1, t0
◦

τ2

++
◦

?a //
◦

?r

��

◦
?a?r

!!B
BB

BB
BB

BB
s1, t1 ◦

τ2 //
◦

?r

��

◦
τ2?r

!!B
BB

BB
BB

BB
s1, t2

◦

τ2

��
◦

!b //
◦

?r

��

◦
!b?r

!!B
BB

BB
BB

BB
s1, t3

◦

τ2

��
◦

?b //
◦

?r

��

s2, t3
◦

τ1,τ2,τ1τ2

��

s3, t0
◦

τ1,τ2,τ1τ2

FF ◦
?a // s3, t1

◦

τ1

FF ◦
τ2,τ1τ2// s3, t2

◦

τ1,τ2,τ1τ2

FF ◦
!b // s3, t3

◦

τ1,τ2,τ1τ2

FF

It is essential no note thatΣ1 || Σ2 has traces, like< !a ><
?a >< τ2 >< !b >< ?b >, that are not asynchronously
equivalent to any of the synchronous traces ofΣ1 | Σ2.
Such traces are not covered by the verification done on the
synchronous model, meaning that the GALS implementation
does not preserve the semantics of the specification.

It is also important to note that requiring a one-to-one
correspondence between synchronous and asynchronous traces
is not a good idea, because for large classes of systems it
can be highly inefficient. Consider, for instance, the following
system:

Σ3 :

s2
◦

τ1

��

◦
?r

  B
BB

BB
BB

B

s0
◦

τ1 77 ◦
!a // s1

◦

?b

>>||||||||

◦
?r

  B
BB

BB
BB

B◦
?b?r // s4

◦
τ1

ww

s3
◦

τ1

YY
◦

?b

>>||||||||

and its synchronous and asynchronous composition withΣ2:

Σ3 | Σ2 :

s0, t0
◦

τ
kk◦

!a

��
s1, t0 ◦

?a //
◦

?r

��

◦
?a?r

!!B
BB

BB
BB

BB
s1, t1
◦

?r

��
s3, t0 ◦

?a // s3, t1 ◦
τ // s3, t2

◦

τ

FF ◦
!b // s3, t3 ◦

?b // s4, t3
◦

τ

FF

Σ3 || Σ2

s0, t0
◦

τ1,τ2,τ1τ2kk◦

!a

��
s1, t0
◦

τ2

++
◦

?a //
◦

?r

��

◦
?a?r

!!B
BB

BB
BB

BB
s1, t1 ◦

τ2 //
◦

?r

��

◦
τ2?r

!!B
BB

BB
BB

BB
s1, t2

◦

τ2

��
◦

!b //
◦

?r

��

◦
!b?r

!!B
BB

BB
BB

BB
s1, t3

◦

τ2

��
◦

?b //
◦

?r

��

◦
?b?r

!!B
BB

BB
BB

BB
s2, t3

◦

τ1,τ2,τ1τ2

��

◦

?r

��
s3, t0

◦

τ1,τ2,τ1τ2

FF ◦
?a // s3, t1

◦

τ1

FF ◦
τ2,τ1τ2// s3, t2

◦

τ1,τ2,τ1τ2

FF ◦
!b // s3, t3

◦

τ1,τ2,τ1τ2

FF ◦
?b // s4, t3

◦

τ1,τ2,τ1τ2

FF

As expected, the synchronous composition binds tighter than
the synchronous one, but for any trace ofΣ3 || Σ2 going from
(s0, t0) to (s4, t3) we can find an asynchronously equivalent
trace inΣ3 | Σ2. Such a GALS implementation is obviously
correct, because it does not introduce new behaviors. Exploit-
ing the concurrency between different computations (as we
do here) to allow the systems to evolve at different rates is
a desirable feature because it minimizes communication and
consumption. The difference betweenΣ1 andΣ3 is that inΣ3

the transitions< ?b > and< ?r > are concurrent in states1,
while in Σ1 there is a non-deterministic choice between them
(meaning that if messages come on both channels, only one
will be read, in an unpredictable fashion).

3.2. Formal correctness criterion
The intuitive notion of correctness of a GALS implementa-

tion w.r.t. its microstep synchronous specification is formalized
in the following criterion:

Criterion 1 (correct desynchronization) Let Σi, i = 1, n
be composableµSTSs. Then, we shall say that the GALS
implementation||ni=1 Σi is correct w.r.t. the synchronous
specification|ni=1 Σi if for all synchronizing states of |ni=1

Σi and for all trace ϕ ∈ Traces||ni=1Σi
(ι(s)) there exist

ϕ̃ ∈ Traces||ni=1Σi
(ι(s)) and ϕ ∈ Traces|ni=1Σi

(s) such that
ϕ � ϕ̃ and ϕ̃ ∼ ι(ϕ).

In other words, the GALS implementation is correct if any of
its traces can be completed with a finite number of transitions
to a trace that is asynchronously equivalent to a complete
synchronous trace.



Our criterion is akin to previous correctness criteria [8],
[10] defined in a macrostep setting. Most important, criterion
1 allows us to exploit (like inΣ3 || Σ2) the concurrency
of the synchronous specification to support GALS implemen-
tations that are weakly synchronized, yet correct. Important
differences exist, though, as our criterion is formulated in a
micro-step operational framework that simplifies, as we shall
see in section 4.2, the definition of sufficient conditions for
correctness.

As explained in the introduction, our purpose is now to
find sufficient conditions for correctness (in the formal sense
of criterion 1) that cover large classes of implementations.
We do not cover here the synthesis problem of transforming
given systems to satisfy the correctness criterion. However,
we use two examples to give the intuition of future synthesis
techniques: First, to correct the composition ofΣ1 with Σ2,
we can simply preventΣ2 from firing the transition labeled
< !b > by guarding it with a condition that is never fulfilled:

Σ′
2 : t0

◦
τ2 88 ◦

?a // t1 ◦τ2
// t2

◦

τ2

��
◦
?d // t′3 ◦

!b // t3 ◦
τ2

xx

More interesting is the case where we composeΣ1 with a
process that non-deterministically chooses between emittingb
or doing something else. In this case, the solution is to signal
the non-deterministic choice toΣ1, so that it can adapt its
behavior:

Σ′
1 :

s′2 ◦
?b // s2

◦
τ1

ww

s0
◦

τ1 77 ◦
!a // s1

◦

?d=0
>>~~~~~

◦ ?d=1

  @
@@

@@

s′3 ◦
?r // s3

◦
τ1

ww

Σ4 :

s′2 ◦
!b // s2

◦
τ2

ww

s0
◦

τ1 77 ◦
?a // s1

◦

!d=0
>>~~~~~

◦ !d=1

  @
@@

@@

s′3 ◦
!x // s3

◦
τ2

ww

Here, we assumed that the non-deterministic choice between
< !b > and< !x > is an essential feature of the specification
Σ4, which must be preserved. To make the composition correct
we need to make this choice visible from its asynchronous
environment, under the form of a choice over the value of a
new signal (d). ComponentΣ′

1 can use this signal to decide
which message to wait for.

3.3. Modeling issues
The I/O transitions systems can be viewed either as mi-

crostep specifications, or as asynchronous implementation
models. A sub-class of I/O transition systems satisfy the
synchronous hypothesis – they have a single clock variable,
which determines clock transitions, and no variable is assigned
twice between successive clock transitions. Thus, they can

be seen as microstep synchronous specifications. The only
hypothesis that departs from the classical synchronous model
is stuttering-invariance. However, we see stuttering-invariance
as a prerequisite for the efficient multi-rate GALS deployment.

If we compare our model to macro-step models like those of
[8], [10], every macrostep specification (incomplete automa-
ton) has (at least) a microstep implementation. Like many
macro-step models, our formalism does not explicitly represent
the reaction to signal absence. This does dot influence the
expressivity of the model, as reaction to signal absence can be
represented using non-deterministic choice. The composition
through point-to-point links is not an essential restriction, as
it is easy to define FIFO models that cover multicast.

The synchronous and asynchronous composition operators
reflect the assumption that an emitted signal must not be
left unread by the receiver. This hypothesis reflects in an
operational fashion the rendez-vous-like synchronized product
composition from macro-step formalisms.

Composing theµSTSsΣi, i = 1, n using the|| operator
intuitively corresponds to implementing|ni=0 Σi as a GALS
system where all the communication lines have been replaced
with asynchronous FIFOs. The components are still clocked,
but individual clocks are independent, and the components
are only synchronized by the FIFO causality rules. In the
GALS implementation the clock of one component can be
triggered concurrently with another clock or an assignment of
another component. The GALS implementation can function
in a multi-rate fashion, as no constraint relates the occurrence
of clock transition in different components.

Compared to classical macro-step approaches, our model
brings a level of detail which is essential in deciding the
correctness of actual implementations. ComposingΣ5 andΣ6

results in a blocking system:

Σ5 : 0◦τ1 :: ◦
!a // 1◦

?b // 2◦
!c // 3◦ τ1dd

Σ6 : 0◦τ2 :: ◦
?c // 1◦

!b // 2◦ τ2dd

However, this problem cannot be observed in macro-step
settings, where the system does not block and can even fire
the transition of labelabc. Indeed, the microstep model is
better suited for analysis akin to causality checks performed
in synchronous languages like Esterel. In fact, we shall see
in section 4.2, that non-blocking correctness and semantics
preservation are truly related.

4. Correct desynchronization criteria

Following the goal fixed in the introduction, we now define
criteria that characterize a large class of synchronous compo-
nents for which small, simple wrappers produce deterministic,
efficient, and semantics-preserving GALS implementations.
We recall that the proofs of our results will be available
in [17].



4.1. Microstep weak endochrony
Microstep weak endochrony (or, simply, weak endochrony)

is the property guaranteeing that a given synchronous com-
ponent (µSTS) knows how to read its inputs, so that no
asynchronous wrapper is needed. Weak endochrony requires
that all internal choice of the component is visible as a choice
over the value (and not presence/absence status) of a directed
variable (either input or output). Thus, the behavior of the
system becomes predictable inany asynchronous environment,
because choices can be observed.

With this requirement, the implementation space delimited
by weak endochrony is nonetheless very large: Concurrent
behaviors are not affected by the previous rule, so that inde-
pendent system parts can evolve at different speeds. Weak en-
dochrony does not require I/O determinism. Instead, a weakly
endochronous component must inform the environment about
non-deterministic decisions (the variable used to do so behaves
like an oracle that is visible from outside).

Definition 7 (weak endochrony) We say that theµSTSΣ =
(S, ŝ, V, τ, ◦→ ) is weakly endochronous if it satisfies the
following axioms:

µWE1(determinism): s◦
l // si , i = 1, 2 ⇒ s1 = s2

(from now on, we shall denote withs.ϕ the unique

state ofΣ having the propertys◦
ϕ // s.l , and the

notation is extended to traces).
µWE2(independence): if l1 and l2 are disjoint and if

l1, l2 6= τ , then:

s1

s0
◦

l1
=={{{{{

◦

l2 !!C
CC

CC

s2

⇒ ∃s3 :

s1
◦ l2

!!C
CC

CC

s0
◦

l1
=={{{{{

◦

l2 !!C
CC

CC
◦

l1tl2 // s3

s2
◦ l1

=={{{{{

µWE3(clock properties): assume thats0 ◦
<τ> // s1 and

ϕ ∈ TracesΣ(s0) with τ 6∈ supp(ϕ). Then:

1) ϕ ∈ TracesΣ(s1)
2) if ϕ < τ >∈ TracesΣ(s0), thenϕ < τ >∈

TracesΣ(s1) and s0.ϕ < τ > = s1.ϕ < τ >
3) if ϕψ < τ >∈ TracesΣ(s1), then there exists

ψ′ ≤ ψ such thatϕψ′ < τ >∈ TracesΣ(s0).
4) if ϕ < τ >, θ < τ >∈ TracesΣ(s0) and ϕ ./

θ, thenϕ(θ \ ϕ) < τ >∈ TracesΣ(s0)
µWE4(choice): if ϕi < v = xi >∈ TracesΣ(s), i = 1, 2

andϕ1 ./ ϕ2, thenϕ1 < v = x2 >∈ TracesΣ(s).

Similar in intuition and in function to its macrostep counterpart
[10], weak endochrony is nevertheless specific to our more
concrete causal, microstep framework. Thus, while choice
can only occur at the level of atomic variable assignments,
concurrency (more precisely confluence) must also deal with
full reactions and clock transitions (through axiomsµWE2
and µWE3, and their consequences of lemma 3). Axiom
µWE4 insures that a choice between two concurrent execution

paths does not hide a “real” choice between non-concurrent
assignments.

Lemma 3 (confluence)LetΣ = (S, ŝ, V, τ, ◦→ ) be a weakly
endochronousµSTS, lets ∈ S, and letϕi ∈ TracesΣ(s), i =
1, 2 such thatϕ1 ./ ϕ2. Then:

1) If τ 6∈ supp(ϕi), i = 1, 2, then s.ϕ1(ϕ2 \ ϕ1) and
s.ϕ2(ϕ1 \ ϕ2) are defined and equal.

2) If ϕi complete, i = 1, 2, then s.ϕ1(ϕ2 \ ϕ1) and
s.ϕ2(ϕ1 \ ϕ2) are defined and equal.

Note that the classical independence (full commutation) re-
sults are recovered by considering the case wheresupp(ϕ1)
and supp(ϕ2) share no directed variable. However, the finer
microstep notion allows us to consider systems likeΣ3 where
the classical macrostep independence does not apply (in state
s0, the macrostep transitionsab andar do not commute, yet
the system is I/O deterministic). The confluence properties of
an endochronous system are even stronger, as stated by the
following:

Theorem 4 (determinism) (a) Let Σ = (S, ŝ, V, τ, T ) be a
weakly endochronousµSTS,s ∈ S, and letϕ1, ϕ2 be complete
traces ofTracesΣ(s) such thatϕ1 ∼ ϕ2. Then,s.ϕ1 = s.ϕ2.
(b) Moreover, ifϕ3 ∈ TracesΣ(s) with ϕ3 ≤ ϕ1, then there
existsϕ′3 complete such thats.ϕ3ϕ

′
3 = s.ϕ1 andϕ1 ∼ ϕ3ϕ

′
3.

In fact, these strong confluence properties allow us to put any
trace of of a weakly endochronous system innormal form, in
which every transition is maximal and the number of reactions
minimal (but we shall not develop the subject here).

Instead, we conclude the presentation of weak endochrony
by stating the very important compositionality result that al-
lows us to incrementally build complex weakly endochronous
systems.

Theorem 5 (compositionality) Let Σi, i = 1, n be compos-
able weakly endochronousµSTSs. Then,|ni=1 Σi is weakly
endochronous.

Weak endochrony is illustrated by theµSTSsΣ2, Σ3, and
Σ3 | Σ2 of section 3.1, and by all the examples of the sections
3.2 and 3.3. TheµSTSΣ1 is not weakly endochronous because
the non-deterministic choice in states1 cannot be observed in
an asynchronous environment, so that other components, like
Σ4, cannot adjust their behavior to preserve the synchronous
semantics. The transformation ofΣ1 in Σ′

1 illustrates the type
of instrumentation required to transform a generalµSTS into
a weakly endochronous one.

4.2. Correctness results
Weak endochrony is compositional, but the weak en-

dochrony of the components does not guarantee the correct-
ness (non-blocking) of the global synchronous specification,
nor the correctness (semantics preservation) of the GALS
implementation model. This can be easily checked on the
systems formed by composingΣ′

1 andΣ2.



The most important result of this paper is the following
theorem, which states that the correctness of the synchronous
composition implies the correctness of the GALS implemen-
tation.

Theorem 6 (correctness)Let Σi, i = 1, n be composable
weakly endochronousµSTSs. If|ni=1 Σi is non-blocking, then
||ni=1 Σi is correctw.r.t. |ni=1 Σi in the sense of criterion 1.

The result goes in fact beyond the requirements of criterion
1, by also ensuring a strong confluence property (given by the
following lemma):

Lemma 7 (completion, GALS) Let Σ1, . . . ,Σn be compos-
able weakly endochronousµSTSs, lets be a synchronizing
state of|ni=1 Σi, and letψ ∈ Traces|ni=1Σi

(s), complete, and
ϕ ∈ Traces||ni=1Σi

(ι(s)) such thatϕ ≤ ι(ψ). Then, there
existsθ ∈ Traces||ni=1Σi

(ι(s).ϕ) such thatϕθ ∼ ι(ψ) and
ι(s).ϕθ = ι(s).ι(ψ)

Our result implies that for large classes of components for
which simple wrappers exist, the correctness of the GALS
implementation is implied by the correctness of the global
synchronous specification. Thus, no extra signalization is
needed to insure semantics preservation (and no costly syn-
thesis algorithms). The GALS implementation is correct by
construction.

5. Conclusion
We introduced a new model for the representation of

asynchronous implementations of synchronous specifications.
The model covers implementations where a notion of global
synchronization is preserved by means of signaling, and GALS
implementations, where global synchronization is relaxed. The
model takes into account computation and communication
causality, and allows us to reason about semantics-preservation
and absence of deadlocks in the GALS deployment of syn-
chronous specifications. As the model captures the internal
concurrency of the synchronous specification, our correctness
criteria support implementations that are less constrained and
more efficient than existing ones.

The results of section 4 suggest that our model offers a
good abstraction level for reasoning about desynchronization.
In particular, the level of detail is essential in revealing the in-
tricate relation between (1) causal dependencies, concurrency
and conflicts in the micro-step semantics of a synchronous
specification and (2) the correctness (semantics preservation)
of its GALS implementation.
Future work. Thanks to this new model, we are exploring
the development of GALS circuits made of synchronous IPs.
Our work aims at using asynchronous logic wrappers to
encapsulate the components of a modular synchronous circuit
into delay insensitive components. Our model seems well-
suited to analyze designs involving both synchronous and
asynchronous circuit specifications.

We are also considering symbolic analysis techniques that
would allow us to translate the theory detailed in this paper

to high-level synchronous languages like Signal or Esterel,
instead of simple finite state automata. The objective is to
derive efficient algorithms transforming general high-level
specifications into weakly endochronous ones.

A third research direction concerns the (still not sufficiently
clear) relations between classical, macro-step synchronous
models and more operational models like ours, or like the ones
covering the implementations of various languages, especially
when desynchronization is involved.
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