Concurrency in synchronous systems *

Dumitru Potop-Butucaru

Benoit Caillaud

Albert Benveniste

IRISA, Campus de Beaulieu, 35042 Rennes, France
{Dumitru.Potop,Benoit.Caillaud,Albert.Benveniste } @irisa.fr

Abstract

In this paper we introduce the notion of weak en-
dochrony, which extends to a synchronous setting the clas-
sical theory of Mazurkiewicz traces. The notion is useful
in the synthesis of correct-by-construction communica-
tion protocols for globally asynchronous, locally syn-
chronous (GALS) systems. The independence between
various computations can be exploited here to provide com-
munication schemes that do not restrict concurrency while
still guaranteeing correctness.

1. Introduction

Dealing with concurrency, time and causality in the de-
sign of electronic systems has become increasingly difficult
as the complexity of the designs grew. The synchronous pro-
gramming model [7, 3] has had major successes at the spec-
ification level because it provides a simpler way to access
the power of concurrency in functional specification. Syn-
chronous languages like ESTEREL, LUSTRE, and SIGNAL,
the quasi-synchronous STATECHARTS modeling methodol-
ogy, and design environments like SIMULINK/STATEFLOW
all benefit from the simplicity of the synchronous assump-
tion, i.e.: (1) the system evolves through an infinite se-
quence of successive atomic reactions indexed by a global
logical clock, (2) during a reaction each component of the
system computes new events for all its output signals based
on its internal state and on the values of its input signals,
and (3) the communication of all events between compo-
nents occur synchronously during each reaction.

However, if the synchronous assumption simplifies sys-
tem specification and verification, the problem of deriving
a correct physical implementation from it does remain [3].
In particular, difficulties arise when the target implemen-
tation architecture has a distributed nature that does not
match the synchronous assumption because of large vari-
ance in computation and communication speeds and be-
cause of the difficulty of maintaining a global notion of
time. This is increasingly the case in complex microproces-
sors and Systems-on-a-Chip (SoC), and for many impor-

* Work supported by the ARTIST and COLUMBUS IST European
projects.

tant classes of embedded applications in avionics, industrial
plants, and the automotive industry.

For instance, many industrial embedded applica-
tions consist of multiple processing elements, operating at
different rates, distributed over an extended area, and con-
nected via communication buses (e.g. CAN for automotive
applications, ARINC for avionics, and Ethernet for indus-
trial automation). To use a synchronous approach in the
development of such applications, one solution is to re-
place the asynchronous buses with communication infras-
tructures® that comply with a notion of global synchro-
nization. However, such a fully synchronous implementa-
tion must be conservative, forcing the global clock to run
as slow as the slowest computation/communication pro-
cess. Consequently, the overhead implied by time-triggered
architectures and synchronous implementations is of-
ten large enough to convince designers to use the asyn-
chronous buses mentioned above.

Gathering advantages of both the synchronous and asyn-
chronous approaches, the Globally Asynchronous Lo-
cally Synchronous (GALS) architectures are emerging as
the architecture of choice for implementing complex spec-
ifications in both hardware and software. In a GALS
system, locally-clocked synchronous components are con-
nected through asynchronous communication lines. Thus,
unlike for a purely asynchronous design, the existing syn-
chronous tools can be used for most of the development
process, while the implementation can exploit the more ef-
ficient/unconstrained/required asynchronous communica-
tion schemes. We further pursue, in this paper, our quest
for correct-by-construction deployment of synchronous de-
signs over GALS architectures.

1.1. Informal discussion of theissues

In the synchronous paradigm [7, 3], execution and com-
munication progress along a sequence of reactions. A syn-
chronous run, also called trace, is a sequence rq,72,.. .,
where each reaction r; assigns values to the set of variables
U of the considered program. Not all variables need to be

1 Like the family of Timed-Triggered Architectures introduced and pro-
moted by H. Kopetz [8].

F~ @ — L > @ — L ~0—~0— =

- L > 1 > @ —| e

scheduler
scheduler

F~ @ — @ — 1 > L ~0—~0— =

synchronous
synchronous
synchronous
synchronous

-~ @ —~ @ —
-~ @ —~ @ —
tt t
= L =~ @ —
-~ @ —~ @ —

t

- @ — 1 —

N
N

scheduler

synchronous
scheduler
scheduler

synchronous
scheduler

synchronous

synchronous

#.»g*»

tt

synchronous asynchronous

Synchrony GALS

Figure 1. From synchrony to GALS. Bullets rep-
resent informative values (messages). Vertical gray
boxes represent reactions, horizontal ones represent
asynchronous signals.

involved in each reaction. However, this is taken into ac-
count by extending the domain of values of all variables
with an extra symbol L, which denotes absence. Thus, ab-
sence can be tested and used to exercise control.

No global clock exists in the asynchronous paradigm,
and therefore no notion of reaction. Asynchronous runs of
a program, also called histories, are tuples of signals, each
signal giving the sequence of values of a variable. Absence
(L) has no meaning and cannot be sensed.

Relaxing the synchronous communication to ob-
tain an asynchronous or GALS implementation — an
operation called desynchronization — consists of remov-
ing the signal absence events (L) and the synchronization
boundaries of the reactions. The desynchronization prob-
lem addressed in this paper is informally illustrated
in fig. 1, which shows how a channel of a small syn-
chronous model is substituted in the implementation
process by three asynchronous communication lines. Im-
merging the synchronous modules in an asynchronous
environment requires here the use of schedulers that (1) de-
cide when reactions are computed by each component
(e.g. when all locally-needed input is available) and (2) re-
construct synchronous inputs from their desynchronized
counterparts, and feed them to the associated compo-
nents (an operation called resynchronization)

The problem is that relaxing synchrony is clearly not in-
vertible: the three asynchronous signals in fig. 1(b) can be
reorganized in successive reactions in many ways. In other
words, resynchronization is not possible in the general case.

Metric time is not so much an issue, as revealed by
fig. 2(a), which depicts a run of a synchronous program in
which all variables are present in all reactions. The effect
of an asynchronous medium typically results in offsets be-
tween the dates of arrival of the variables that are part of
the same reaction. However, this can be easily corrected at
the receiver end thanks to a proper buffering mechanism.
Such a technique has been used in [4] for hardware circuits,
where it is referred to as latency insensitive design.

Unfortunately, this simple method does not extend to the
case of fig. 1: Since some variables can be absent in a non-
deterministic way in each reaction, the buffering mecha-

(a) latency—-insensitive systems (b) signalling absence

Figure 2. Existing solutions

nism used in [4] does not ensure the correct reconstruction
of reactions. A first solution to the general problem, illus-
trated in fig. 2(b), would consist in attaching to each vari-
able v an additional Boolean variable [v] which indicates
at each reaction whether v is present or absent. However,
this simple solution has two drawbacks: It results in twice
as many communications and, more importantly, the com-
ponents of the resulting distributed system are running at
the same pace. This is inappropriate whenever components
have dissimilar activation rates.

The main issues concerning desynchronization are cor-
rectness and efficiency. Correctness is important because the
advantages of synchrony lie with specification and verifica-
tion. We would therefore like that each asynchronous his-
tory of the GALS implementation is covered by the verifi-
cation of the initial synchronous model. Consequently, we
require that each history is the desynchronization of a trace
of the initial synchronous specification. We also expect a
GALS implementation not to restrict the functionality of
the system through tough scheduling policies aimed at en-
suring correctness in a simple way. The correct desynchro-
nization criterion is therefore:

Criterion 1 (semantics preservation, informal)
Desynchronizing the traces of the initial synchronous
system produces the exact set of asynchronous execu-
tions (histories) of the GALS implementation.

Efficiency, in terms of speed or number of exchanged
messages, is also important, because GALS embedded sys-
tems often run on architectures with few resources. The is-
sue is obviously subject to many trade-offs, but exploiting
the independence between computations or identifying exe-
cution modes to minimize communication, power consump-
tion, or to allow multi-rate computation proves useful in
most cases (thus offering criteria for comparing solutions).

1.2. Previouswork

The most general analysis of the distributed implemen-
tation problem is due to Benveniste et al. [2]. Heteroge-
neous models such as the GALS architectures are formal-
ized there along with parallel composition operators. A
comprehensive notion of correct deployment of a heteroge-
nous system (a form of semantics preservation) is then de-
fined, which covers the distributed implementation of syn-
chronous specifications.

Previous approaches to implementing synchronous
specifications over GALS architectures are respectively
based on latency-insensitive systems, on endo/isochronous
systems, and on Kahn process networks (KPN). All of them
follow a general pattern by trying to transform the com-
ponents of the initial specification into “equivalent” syn-
chronous components that have been “normalized” (by
modifying their interface) in such a way as to make triv-
ial schedulers (like those needed in fig. 2) correct.

Every such approach is basically defined by two prop-
erties, which in turn determine the scope and complexity
of the “normalizing” synthesis methods and the exact type
of schedulers to consider: Scheduling-independence char-
acterizes the “normalized” synchronous components that
know how to read their inputs, so that we can consider
them self-clocked. The scheduling-independence properties
of the previously-mentioned approaches are respectively
latency-insensitivity, endochrony, and 1/0 determinism. The
second property is the actual semantics-preservation cri-
terion, which ensures that enough signaling has been added
between the self-clocked components as to prohibit asyn-
chronous executions not corresponding to synchronous
ones. Such a property is isochrony; the KPN-based ap-
proach does not specify one, not covering correctness
aspects; the highly constrained latency-insensitivity en-
sures by itself the preservation of semantics.

In the latency-insensitive systems of Carloni et al. [4],
each synchronous component reads each input and writes
every output at each reaction (see fig. 2(a)). The communi-
cation protocols effectively simulate a single-clocked sys-
tem, which is inefficient, but simplifies implementation.

An essential improvement is brought by previous work
by Benveniste et al. on endo/isochronous systems [1]. Infor-
mally speaking, a synchronous component is endochronous
when the presence or absence of each variable can be in-
ferred incrementally during each reaction from the values
of state variables and present input variables. A pair of
synchronous components is isochronous if there exists no
pair of reactions that are not synchronizable, yet not con-
tradictory (i.e. both present with different value on some
common variable). Both endochrony and isochrony can
be model-checked and even synthesized. Unlike latency-
insensitivity, the endo/isochronous approach is able to take
into account execution modes and independence between
components in order to minimize communication and allow
multi-rate computation. The problem of the approach is that
endochrony is not compositional, mainly due to poor han-
dling of concurrency within components. This leads to in-
efficient synthesis for systems formed of more than 2 com-
ponents.

While incomplete from the point of view of the seman-
tics preserving criterion, we cite here the approach based
on Kahn process networks [9] because it is the only one

formulated in a causal framework. Here, by requiring that
each component has a deterministic input/output function,
the determinism of the global system (and thus the indepen-
dence from the scheduling scheme) is guaranteed. Giving
the approach its strength, the determinism is also its main
drawback, as non-determinism is often useful in the speci-
fication and analysis of concurrent systems.

From another point of view (detailed in section 5), our
work seems closely related to results concerning the design
of asynchronous [5] and burst-mode [11] circuits. Schedul-
ing independence, in particular, can be seen as a speed-
independence property guaranteeing correctness and deter-
minism regardless of the relative speeds of different com-
putations and communications.

1.3. Contribution

While following the same pattern, our work brings an
essential improvement over latency-insensitive design and
endo/isochrony by allowing operations within a component
to run independently when synchronization is not neces-
sary. Being formulated in a non-causal framework, our ap-
proach is also less constrained than the KPN-based one, al-
lowing nondeterminism in the less abstract causal model.
The scheduling-independence criterion is in our case weak
endochrony, while weak isochrony ensures the preservation
of semantics. The two properties form together a correct
desynchronization criterion that is decidable on finite syn-
chronous systems. Moreover, transforming a general syn-
chronous system to satisfy them is easy (although making it
in an efficient way is a difficult, yet unsolved problem).

Our main contribution is the definition of weak en-
dochrony — a non-trivial extension to a synchronous setting
of the classical trace theory [6]. The notion potentially sup-
ports signalization schemes that are simpler and more ef-
ficient than their latency-insensitive and endo/isochronous
counterparts. This is due to the fact that weak endochrony is
compositional (simpler synthesis schemes) and able to rep-
resent concurrency (lighter communication schemes).
Outline The remainder of the paper is organized as fol-
lows: Section 2 defines the formal framework used through-
out the paper. Section 3 is on weak endochrony. It in-
troduces the notion and the normal form results (which
show the strong relation with trace theory). Section 4 for-
mally defines our desynchronization problem, introduces
weak isochrony, and shows that weak endochrony and weak
isochrony form a decidable criterion that guarantees cor-
rect desynchronization. A technical comparison with exist-
ing results is given in section 5.

2. Definitions

We formally define in this section the notions used
throughout the paper: reactions, traces, histories, the
model of synchronous system, and parallel composi-
tion.

2.1. Variables, values, and reactions

A finite set V of variables represents the communication
channels connecting the synchronous components. With-
out losing generality, we assume that all the values ex-
changed between components belong to a single domain
D. Each variable v € V has at every moment a value
z € D=DU{L,*} Avalue z € D represents a com-
munication on the channel associated with v, z = L repre-
sents the absence of communication, and x = x tells us that
the status of the channel is not known.

The interaction between a synchronous component and
its environment is a sequence of reactions, which are map-
pings r € Reactions = V — D. The signature of a re-
action r is sig(r) = {v | r(v) # *}. Reactions of a syn-
chronous component will all have the same signature, given
by the set of variables of the component. We denote with
Reactions(U) the set of reactions of signature U C V.
The image of a reaction r through the signature U is the re-
action 7|y € Reactions(U) which equals r over variables
commonto U and sig(r) and equals L over U \ sig(r). The
support of a reaction r is supp(r) = {v | r(v) € D}. Note
that supp(r) C sig(r) for any reaction r. The stuttering re-
action Ly has empty support and signature U.

On D we define two partial orders. The first, denoted
with <, is the least partial order such that Vo € D : x <
1 < z. The second, denoted with C, is the least partial
order such that « C 1 and Vx € D : x C x. Each of
the two relations induces least upper bound and greatest
lower bound operators. We denote them, respectively, with
Vv and A (for <), and LI and 1 (for C). The operators A
and 1 are totally defined, while v and U are only partial.
Note that r; V rs is defined whenever r; U r5 is defined,
and in this case the two values are equal. The order rela-
tions < and C are extended variable-wise to reactions, and
we denote with Vv, A, LI, and M the associated least upper
bound and greatest lower bound operators on reactions. For
any ri,r2 € Reactions and 6 € {V,A,U,M}, ri0ry ex-
ists whenever r; (v)8ra (v) exists for all v € V, and in this
case Vv € V : (r10r2)(v) = r1(v)0rz(v).

We will say that the reactions r; and r, are synchro-
nizable whenever r; U ro exists. When r; V ro exists, we
say that r; and ry are non-contradictory. For any two non-
contradictory reactions r1,72 € Reactions(U) we define
r1 \ r2 € Reactions(U) by Vv € U, (r1 \ m2)(v) = r1(v)
if ro(v) = L and (r1 \ r2)(v) = L otherwise. We also de-
fine in this case 11 Ary = (r1 \ 72) V (r2 \ 71).

2.2. Tracesand histories

A synchronous trace, simply called trace in the sequel,
is a sequence of reactions having the same signature. For
U C V, we denote with Traces(U) the set of traces of sig-
nature U: Traces(U) = Reactions(U)* = {(ri)1<i<n |
n < coAVi : sig(r;) = U}. We denote with T'races the set
of all traces. The length of a trace 7 = (r;)1<i<n(n < 00)

is length(T) = n—1; its i*® element r; is denoted 7[i]. The
finite sub-trace 7;r;41 .. .7; of 7 is denoted with 74, 5] (if
i > j, then 7[4, j] = €). The suffix (r;)i<j<n Of 7 is de-
noted with 7[¢ .. .]. Any reaction is also a trace of length 1.
Two traces 71 and 75 can be concatenated if they have the
same signature and if length(m1) < oo. The trace 71 is a
prefix of = (written 7, < 73) if, by definition, 72 = 773
for some 73. The prefix relation is a partial order over traces.

The order relation C and the operators LI, and 11 are
component-wise extended to pairs of traces of the same
length. Given two traces 71 and 7» we shall say that they are
synchronizable if 71 L7 exists. We also extend component-
wise to traces the image operator 7.

A history is an asynchronous observation of one or more
synchronous components. In a history, the synchroniza-
tion constraints are forgotten, so that only the communi-
cations/values can be observed. Formally, a history is any
mapping x € Histories = V — D¥. The concatena-
tion operator over Histories is the variable-wise extension
of the concatenation operator over D“. The associated pre-
fix order, denoted with <, induces a greatest lower bound 11
and a least upper bound LI operator. The support of a his-
tory x is supp(x) = {v € V| x(v) # €}, where € denotes
the empty word over D. In the sequel, we shall also denote
with e the trace of length 0 and the empty history. The length
of a history x is length(x) = max,cy length(x(v)).

The desynchronization morphism § Traces —
Histories associates an asynchronous observation to ev-
ery synchronous trace by forgetting the synchronization
values x and L: (i) d(e) = ¢; (ii) Vr € Reactions, v € V,
o(r)(v) = r(), if r(v) € D, and §(r)(v) = ¢, oth-
erwise; (iii) 6(mim2) = 0(m1)d(72). The morphism pre-
serves the concatenation and least upper bound operators.
For x € Histories and U C V, we denote with heady (x)
the maximal reaction of signature U such that its desyn-
chronization is a prefix of .

2.3. Synchronoustransition systems

A labeled synchronous transition system (LSTS) is a
synchronous automaton ¥ = (U, S, —,), where U C V
is the set of variables of X (its signature), S is the set of
states, -C S x Reactions(U) x S is the transition rela-
tion, and § is the initial state of the system. The notation
s—&—=g' shall be used in the sequel to represent the tran-
sition (s,r,s') €—. For s € S and p € Reactions(U)
we denote Reactionss(s) = {r | 3s' : s—&=>¢'} and
Reactionss(s,p) = {r | Is' : s—E&=s' Ar < p}. When
confusion is not possible, the name of the LSTS can be
omitted from these notations.

The LSTS ¥ = (U,S,—,5) accepts the trace
7 € Traces(U) in the state s if there exist the states
$1 = 8,82,... such that for all i si—Zlis;11. When
n = length(r) is finite, we also write s===s,. We de-

nodul e ML:
i nput R1, R2, K;
out put Al, A2,
rel ati on R1#K R2#K;
abort
| oop await R1;
emt Al end

R1,A1,R2,A2

|
| oop await R2;
emt A2 end
when K
end nodul e

Figure 3. Small synchronous program and its
LSTS. We omitted stuttering reactions and L values.

note with Tracesx(s) the language formed by the traces
accepted by X in state s. State s' € S is reachable from
s € S if s===g' for some 7. We denote with RSS,(%)
the set of states that are reachable from s. The reach-
able state space of ¥ is RSS(X) = RSS:(X).

We only consider in the sequel stuttering-invariant sys-
tems that can take time while doing nothing. Formally,
Y = (U,S,—,3) is stuttering-invariant if s—Z>s is a
transition of ¥ for all s € RSS(§). Later in the paper
we shall also require that systems do not change their state
without interacting with their environment, so that L ;; only
labels stuttering transitions.

Figure 3 gives a small synchronous program, written in
Esterel[7], and its LSTS representation. When started, the
program answers to various R1 and R2 request events with
corresponding Al and A2 answers. The process is aborted
and the program terminates when the kill event K occurs.
The program is stuttering-invariant, but the stuttering tran-
sitions have been omitted, for the sake of clarity.

2.4. Paralld composition

The composition of LSTSs is defined by means of syn-
chronized product. Given the LSTSs X; = (U;, Si, —
,8;),4 = 1,2, their product is the LSTS: ¥; x ¥y =
(UiUU2, S1 XSQ, —, (§1, §2)), where (81, SQ)m(Sll, SIZ)
if Vi : siT‘T‘f>s;. The product operator is associative and
commutative, and: T'racess, xx,(s1,52) = {mlUn | 7; €
Tracesy,(s;)}, forall s; € S;,i =1,2.

For instance, the product of the LSTSs ML and M2 is:

R2,A2 R2,A2

O I,R1,A1 m
IK

—>(07 0) (07 1)

(1,2)
I,R1,A1,R2,A2

The function of the M2 module is here to produce one re-

quest R1 and then emit K, thus requiring that ML terminates.

One trace of the product is, for instance, (I,R1,A1)(I,K) €

Traceswixm2((0,0)).

nodul e M2:

i nput |;output R1,K;

await |:emt RL;
await |;emt K

end nodul e

L R1 Al
scheduler} ’_,schedulerrz.
M2 R2 M1

Figure 4. The M2 synchronous module, its
LSTS (top left), and a small GALS system
(bottom) formed by composing ML and M2

3. Weakly endochronous systems

The notion of weak endochrony extends the theory of
Mazurkiewicz traces to our synchronous setting. Weakly
endochronous (WE) systems have trace languages that are
closed under commutation of independent reactions, where
independence is given by the non-overlapping of supports.
To fully take into account the synchronous setting: (1) trace
languages are also closed under unification (LI) of indepen-
dent reactions and (2) overlapping non-contradictory reac-
tions can be decomposed into atomic reactions that com-
mute. WE systems satisfy the classical commutation and
normal form properties of the Mazurkiewicz traces. Unfor-
tunately, the existing theory could not be used to prove the
new results, difficulties arising mainly from the interpreta-
tion of the independence alphabet over synchronous reac-
tions. Hence, the complexity of the proofs, given in [10].

Definition 1 (weak endochrony) We say that LSTS ¥ =
(U, S, —, 8) is weakly endochronous if the following prop-
erties are satisfied for all s, s1,s2 € RSS(X), and for all
r,71,72 € Reactions(U):

W1. Determinism: s—2=81 A s—L>82 => §; = 89

W2. Transitions with disjoint signal support commute and
can be joined to form larger transitions. Formally, if
supp(ry) N supp(r2) = O then:

T1 S
5 51 = Jg': sLVT2 o
s—T2>89

b, s—Tls81—T2587 = Jg' : s— 25 ¢f

Wa3. Non-contradictory overlapping reactions can be frag-
mented into reactions of smaller supports:
S1

T1\T2
s—Tls 81

s—T2-89

71 V 19 EXiStS

= 35’ gmArg g

T2\T1

SN

2

The intuition is that we are looking for systems where
(1) all causality is implied by the sequencing of messages
on communication channels and (2) all choices are visi-
ble as choices over the value (and not present/absent sta-
tus) of some communication channel. All internal decisions
of such a system can therefore be observed or controlled
from the exterior even after desynchronization, meaning
that there is no ambiguity concerning the construction of
the schedulers (the system is self-clocked). Moreover, un-
like latency-insensitive and endochronous systems, which
ensure scheduling-independence by prohibiting all inter-
nal concurrency, WE components only expose meaningful
causality and choices. Latency-insensitive systems [4] and
endochronous systems [1] satisfy the axioms of weak en-
dochrony. Moreover, unlike classical endochrony, weak en-
dochrony is compositional:

Theorem 1 (Composition) If ¥; and X, are weakly en-
dochronous LSTSs, then ¥; x X5 is weakly endochronous.

3.1. Atoms

The first step in establishing the relation with
Mazurkiewicz trace theory is to define the alphabet of
letters and the independence relation. In our case, the let-
ters are the atomic reactions, of which all the other re-
actions are composed. Indeed, atomic reactions are those
least, but not silent, reactions enabled in a given state
of the system. Axiom W3 is the means by which atoms
are constructed, by fragmenting larger reactions. The in-
dependence relation is the non-overlapping of supports
of atoms. Formally, the set of atomic reactions en-
abled in the state s of ¥ is Atomsxs(s) = {r €
Reactionsx(s) | Vr' € Reactionss(s),r } r'},
and the set of atoms smaller than a given reaction p is
Atomsx(s,p) = {r € Atomsx(s) | r < p} (we will
omit X from notations whenever possible).

The commutation of independent reactions (and in par-
ticular atoms) is governed by the following:

Proposition 1 (Full diamond) Let ¥ = (U, S,—,3)
be a weakly endochronous LSTS, s € RSS(X), and

s—Tiss;,4 =1,2. Then:
/v\

S2

supp(r1) N supp(rs) = 0 = s’ :

More generally, the property holds for any number of mutu-
ally independent transitions or atoms in a given state, which
form a full diamond (with diagonals).

Corollary 1 (Commutation) Let ¥ = (U,S,—,3) be a
weakly endochronous LSTS, s € RSS(X), and a,b,r; €
Reactions(U),i > 1 s.t. supp(a) N supp(b) = @. Then:

e ry...7Tkabrkyy ... € Tracesy(s) &
r1...rxbargyy ... € Tracesy(s)

e ry...Tkabrg1q ... € Tracess(s) =
r1...76(aV b)rgsq ... € Tracess(s)
Let, in addition, 7 = rirsy...
Reactionss(s) such that Vi :
Then, ar € Tracesx(s).

€ Tracesx(s) and a €
supp(a) N supp(r;) = 0.

In a given state, the set of atoms indeed generates all pos-
sible reactions:
Proposition 2 (Generation) Let ¥ = (U,S,—,3) be a
weakly endochronous LSTS, and s € RSS(X). Then:
Reactionss(s) {Viiyai | n > 0AVi : a; €
Atomss;(s) AVi # j : supp(a;) N supp(a;) = 0} More-
over, the decomposition of a reaction into atoms is unique
upto permutation.

Moreover, changing the state without giving additional in-
put does not enable new atoms (or transitions), nor disable
existing ones:

Proposition 3 (Atom preservation) Let ¥ = (U, S, —, §)
be a weakly endochronous LSTS, let s € RSS(X), p €
Reactions(U), and r < p such that s—Z=g’. Then,
Atomss,(s', p\ r) = Atomss(s,p\ 7).

Finally, if the restriction of a trace to a set of variables
corresponds to a valid history, then the restriction to the
complementary set of variables is a trace of the given LSTS:

Theorem 2 (Disjoint support) Let ¥ = (U, S,—,35) be a
weakly endochronous LSTS, s € RSS(X),and V C U.
Suppose that 7,8 € T'racesx(s) such that:

[(D)), ifveV
6(0)(v) = { €, othzrwis:

Then, the traces 7/, 7" € Traces(U) defined for all ¢ > 1
by 7'[i] = (T[i]‘v)‘U and 7"'[i] = (T[i]lU\V)‘U are traces
of Tracess(s).

3.2. Normal form

Given an execution of a weakly endochronous system,
we can put it in normal form, where the atomic operations
are re-combined to form largest transitions, so that each
atom is executed as early as possible. Like for the Cartier-
Foata normal form, putting a trace in normal form keeps
unchanged the causal relations between atomic operations
(determined by support overlapping). Unlike in the classi-
cal trace theory, however, our synchronous setting facili-
tates the understanding and the manipulations, as the normal
form is a synchronous trace, and not a sequence of cliques
of atoms/letters. The normal form can be computed from the
desynchronized version of an execution. Even more, con-
structing a normal form execution from a general history x

(one that does not necessarily correspond to a trace) results
in an execution 7 which is maximal such that 6(7) < x.
This maximal execution is unique upto commutation of in-
dependent atoms and any smaller execution can be “com-
pleted” to one that is maximal.
3.2.1. Definition We explain here how the normal form
associated with a history is constructed. Let ¥ = (U, S, —
,8) be a weakly endochronous LSTS. Then, for all s €
RSS(X) and p € Reactions we denote the unique max-
imal reaction smaller than p with |p]s =V, atoms(s,p) @
Let x € Histories such that supp(x) C U. We shall
denote with N Fx;(s, x) the trace of ¥ obtained by starting
in state s and performing at each step the maximal reaction
enabled by the remainder of the history x. When no con-
fusion is possible, we will also write N F{(s, x). Formally,
NFx(s,x) = rira..., Wwhere s; = s, x1 = X, and for
alli > 1ir; = [heady(Xi)]si Xi+r = xi \ 6(ri), and
§i—Tis 841,
3.2.2. Properties Our main result states the existence of
the normal form, its maximality, and the equifinality of the
execution for a given history.

Theorem 3 (Normal form and confluence) A. Let ¥ =
(U, S, —, §) be a weakly endochronous LSTS. For all x €
Histories, s € RSS(X), 7 € Tracesx(s) such that
&(1) = x, we have 6(7) < 6(NFx(s,x))-

B. Suppose, in addition, that x is of finite length and
s=DExlsx)y o Then, if 7 is chosen such that o(7) is max-
imal, we have 6(7) = 6(NFx(s, x)) and s==>4'.

Moreover, any trace that is not maximal under a given
history can be completed with transitions:
Proposition 4 (Completion) Let ¥ = (U,S,—,3)
be a weakly endochronous LSTS, s € RSS(X),
T € Tracesx(s), finite, and x € Histories such
that 6(7) < x. Then, if §(7) # 6(NFx(s,x)), there ex-
ists a reaction » € Reactions(U), r # Ly such that
7r € Tracess(s) and §(7r) < x.

Finally, the normal form operator is monotonous and
commutes with the limit operator on histories:

Proposition 5 (Monotonicity and limit on histories)
Let ¥ = (U,S,—,§) be a weakly endochronous LSTS,
s € RSS(X),and x, x', x; € Histories,i > 1. Then:

a Ifx' 2 x then6(NFx(s,x')) 2 6(NFs(s,x))

b. If (x&)r>1 is monotonous such that | |,~; xx = x then
U1 0N Fs(s, X)) = 6(NFs(s, X))

4. Application to GALS systems

Traditionally, the synchronous paradigm has been used
in hardware, where the clock-driven execution model and
the instantaneous communication abstraction are natural.

Later, it has been introduced in the development of safety-
critical embedded software, where the deterministic concur-
rency of the model results in better verification capabilities.
Synchronous languages have been developed, along with
compilation methods able to generate efficient monolithic
implementations in both software and digital circuits.

The implementation of a synchronous specifica-
tion, however, may have to be distributed to some extent.
This is obviously true when the target is distributed soft-
ware. Less obvious, this is increasingly the case in complex
microprocessors and Systems-on-a-Chip. As complex-
ity and speed grow, controlling such a chip using a sin-
gle global clock becomes increasingly difficult. Future
large-scale circuits will likely be composed of several tim-
ing domains (each domain being either asynchronous, or
locally clocked).

Globally Asynchronous Locally Synchronous (GALS)
architectures are emerging as the architecture of choice for
implementing complex specifications in both hardware and
software. Starting from synchronous specifications, our ob-
jective is to derive GALS implementations where the syn-
chronous components are connected through bounded loss-
less FIFOs (which can be easily implemented in both hard-
ware and software). We exemplify on the small system of
fig. 4c. The modules ML and M2 are connected here through
FIFOs that transmit the signals R1 and K as they are emit-
ted by M22. As the synchronous modules cannot be directly
run in an asynchronous environment, small executives are
used to read the inputs and schedule them into sequences of
synchronous reactions (thus defining the local clock of each
module).

The work presented in this paper aims at automatically
synthesizing such executives that are both efficient (in terms
of speed and number of exchanged messages) and correct.
With the previous definitions, correctness criterion 1 can be
rephrased as the following two properties: (1) for any asyn-
chronous run (history) x of the GALS system, there exists
a trace 7 of the synchronous model s.t. §(7) = x (recall
that the desynchronization morphism & only retains the se-
quence of values of each variable) and (2) for any trace 7 of
the synchronous model, its desynchronization () is a his-
tory of the GALS system. Recall that these properties en-
sure that the verification of the synchronous model covers
all the executions of the GALS system and that the execu-
tives (the schedulers) do not restrict the functionality w.r.t.
the synchronous model.

Note that not any scheduler is a good one. In our exam-
ple (fig. 4c), the module M2 produces the outputs R1 and K
that are transmitted on separate channels. If ML is sched-

2 For brevity, we considered here data-less programs, so that the FIFOs
carry only present values. In real examples, however, the signals may
also carry more complex data like integers. The signal presence acts
in these cases as a data ready indicator.

uled so that K is read before R1L (e.g. (K)(R1)), then ML
terminates execution before reading R1. Moreover, R1 will
never be read, the system deadlocks, and the execution his-
tory does not correspond to a synchronous trace.

4.1. Semantics-preservation criteria

As the results of section 3 show, weak endochrony
is a scheduling-independence property characteriz-
ing a large class of self-clocked synchronous components
that can be embedded into GALS systems using very sim-
ple schedulers. Weak endochrony generalizes existing
scheduling-independence criteria (latency-insensitivity, en-
dochrony) by allowing concurrency between computations
of a synchronous component. Thus, it potentially sup-
ports the use of lighter, more efficient communication
schemes in the development of GALS systems.

Two more steps need to be taken in order to define devel-
opment schemes based on weak endochrony. First, we need
to define complementary correctness criteria characterizing
the synchronous models (formed of weakly endochronous
components) whose semantics is preserved in the GALS
implementation. Such a semantics-preservation criterion is
weak isochrony, defined later in this section. Second, we
must develop synthesis algorithms able to put general syn-
chronous systems in a weakly endo/isochronous form. This
aspect is not covered in the current paper (work in progress).

Our contribution — the definition of weak endochrony
and weak isochrony — is done at the level of LSTSs. In this
non-causal framework, the operation representing the asyn-
chronous composition through FIFOs of arbitrary length is
the upper bound operator on histories LI (recall that x1, x2 €
Histories are composable if for every variable v x1 (v) isa
prefix of x2(v) or x2(v) is a prefix of x4 (v)). Furthermore,
we do not use LI to compose arbitrary executions. More ex-
actly, we only consider deadlock-free executions that com-
plete with empty FIFOs, and to identify such executions we
introduce the notion of asynchronous composability:

Definition 2 (asynchronous composability) The syn-
chronous traces 7; of ¥; = (U;, S;, —4,8:),i = 1,2 are
asynchronously composable, denoted 71 > 73, if, by defini-
tion, 6(71)(v) = §(m)(v) for all v € Uy N Us.

With this notation, we can finally formalize the global se-
mantics preservation criterion given in section 1 (a variant
of that defined by Benveniste et al. [1]):

Criterion 2 (Benveniste et al., 2000) For all
(s1,82) € RSS(X1 x X3): §(Tracesy, xs,(51,52)) =
{0(m1) Ud(72) | 5 € Tracess, (s;) A 11 X T2}

Unfortunately, criterion 2 cannot serve as an effec-
tive semantics preservation criterion, being undecidable
for LSTSs that are weakly endochronous and finite (the
reader interested in the rather complex proofs of the re-
sults of this section is once more referred to [10]).

Theorem 4 (Undecidability) Criterion 2 is undecidable,
even on finite weakly endochronous LSTS with variables
taking their values in finite domains.

Given this undecidability result, our goal has been to find
decidable sufficient conditions for criterion 2 that charac-
terize, at the same time, meaningful classes of LSTSs. The
first step in this direction has been to note that criterion 2
can be largely simplified when we apply it (as we want) to
systems whose components are weakly endochronous:

Criterion 3 For all (s1,s2) € RSS(X1 x X2) and for all
7; € Tracess,(s;),% = 1,2 such that 7, > 5 and §() U
d(m2) # €, the following holds:

1 Vre # Luuu,
(5(7‘1) j 6(7—1)72 = 17 2
r1 U raexists

3r; € Reactionsx(s;),i =1,2:

The equivalence between criteria 2 and 3 is important, as
it replaces the synchronization of full traces (impossible to
compute for infinite traces) with the existence of a pair of
synchronizable initial transitions. Nevertheless, the unde-
cidability of criterion 2 on weakly endochronous systems
also implies the undecidability of criterion 3 (which is there-
fore not effective).

4.2. Weak isochrony

Intuitively, the undecidability of criterion 3 is due to the
quantification over asynchronously composable traces. To
derive a decidable criterion, we over-approximate by quan-
tifying over traces whose asynchronous prefixes of length 1
are synchronously composable. Formally, we start by de-
noting for all ¥ = (U,S,—,3§), and s € RSS(s) the
set of asynchronous prefixes of depth 1: heads(s) =
{heady (6(7)) | T € Tracess(s)}. Note that the elements
of heady(s) are not necessarily reactions of X, but that
heady (s) can be computed for any finite LSTS X, for in-
stance through a depth-first search. With this definition, the
semantics preservation property that will imply correctness
criterion 3 shall be:

Criterion 4 (weak isochrony) Two LSTSs ¥; and X, are
weakly isochronous if, by definition, for all (s1,s2) €
RSS(X1 x X5) and for all r; € heads, (s;),i = 1,2 such
that r; Ll ro exists we have:

37; € Reactions(s;),i =1,2:

It is obvious that weak isochrony implies criterion 3, and
therefore the main result of our paper:

Theorem 5 (correct desynchronization) Let ¥; and
¥, be weakly endochronous LSTSs such that (¥q,X2)
is weakly isochronous. Then, ¥; and X, satisfy Ben-
veniste’s correct desynchronization criterion 2.

\‘

Figure 5. Versions of the LSTSs M1 (left) and
M2 (right) that are weakly endochronous and
weakly isochronous

R1,A1,R2,A2,U=V=0

Note that weak isochrony can only be used in conjunction
with weak endochrony to form a correctness criterion. In
the following example the LSTSs are weakly isochronous,
but not weakly endochronous, and the semantics preserva-
tion criterion is not satisfied:

—>e-l.e 2o

a

i —>et-e boo Yo
[]

Example Fig. 5 gives a possible solution to the toy prob-
lem defined in fig. 4. Making the system ML weakly en-
dochronous requires the use of supplementary signals, to
make the choice/priority between Kand R1A1 (respectively
K and R2A2) visible as choice over a value. To this end,
we use in fig. 5 the extra signal U (respectively V). Note
that concurrency between the (atomic) transitions RLA1 and
R2A2 is preserved by the new signaling scheme. System
M is sequential, therefore weakly endochronous, but we
need to enrich its interface to make the pair (M1, M2) weakly
isochronous. Also note that the (non-causal) LSTSs do not
specify the direction of the newly-added signals. Signal U,
for instance, can be produced by M2 (to inform ML about
the inputs to read), but can also be produced by ML (to re-
quest a given input). Obviously, the decision is essential in
the actual synthesis process, but the aspect is not covered in
the current paper.

5. Comparison with existing work

Weak endochrony and trace theory. As the results of
section 3 show, weak endochrony is indeed an exten-
sion to a synchronous setting of the classical trace theory.
More exactly, if we consider the formalization of [6], chap-
ter 11, the dependence alphabet is interpreted in our case
over synchronous reactions, while the dependence rela-
tion is given by a syntactic relation over such reactions (the
non-overlapping of supports). The traces of a weakly en-
dochronous system correspond to real dependency graphs
having atoms as vertices, and the trace language of a sys-
tem is closed under commutation of independent atoms.
Easily defined, the extension is nevertheless non-trivial.
The new synchrony relation leads, when joined to the classi-
cal independence and causality, to stronger results, but also
complexifies proofs. This is particularly obvious in the case
of the normal form result: The formulation is in our case

stronger, in the sense where the normal form of a trace
is indeed another trace of the weakly endochronous sys-
tem, and not a decomposition of the initial trace into a se-
quence of cliques of independent letters®. Moreover, weak
endochrony also covers state-related determinism aspects
through its strong confluence properties (theorem 3). On
the other side, the proof of the normal form theorem has
been challenging, as the classical results of [6], which do
not cover the synchrony relation, cannot be used.

Going beyond classical trace properties, our normal form
operator is also continuous with respect to the complete par-
tial order structures on the sets of traces and histories (cf.
proposition 5). We can therefore consider that networks of
weakly endochronous components satisfy a relational form
of the Kahn principle [9] where the determinism and con-
tinuity of the normal form operator on components implies
the determinism (upto commutation of independent opera-
tions) of the system evolution for a given history.
Desynchronization results. As mentioned in section 1.2,
the latency-insensitive paradigm [4] features no concur-
rency, nor execution modes. The communication protocols
of a latency-insensitive system simulate a single-clocked
system where all signals are transmitted during each reac-
tion. This is inefficient, but easily supports causality and
simple synthesis algorithms. By comparison, our approach
takes into account execution modes and independence be-
tween computations, and allows multi-rate computation.
This means that it potentially supports lighter communi-
cation protocols that minimize communication and power
consumption.

The endo/isochronous systems of Benveniste et al.
[1, 2] take into account execution modes and indepen-
dence between system components. Meanwhile, there
is no independence between computations at compo-
nent level. Our work improves over the endo/isochronous
approach by allowing operations within a component
to run independently when no synchronization is nec-
essary. For instance, the following two systems are
both weakly endochronous and weakly isochronous,
meaning that no further synchronization is necessary:

RN
—0 []

X /

[]

However, making X, endochronous, and then isochronous
with 3; would require the removal of the non-determinism
either by removing transitions of X5 or by introducing sup-
plementary signalization channels.

T e %Ce i, Yo

3 the relation between the two normal forms is straightforward: the de-
composition as a sequence of cliques (the trace theory normal form)
is given by the sequence of reactions of the weakly endochronous nor-
mal form, each reaction being transformed into the clique of atoms
that generate it.

Weak endochrony generalizes endochrony, which in turn
generalizes the notion of latency insensitivity. On the other
hand, neither endochrony, nor weak endochrony take into
account causality in the computation of reactions, and effi-
cient synthesis algorithms have yet to be defined for both
of them. Last, but not least, weak endochrony is composi-
tional, while endochrony is not?.

In a Kahn process network, the input/output determinism
of each component implies the determinism of the global
system, and thus the independence from the scheduling
scheme is guaranteed. Giving the approach its strength, the
determinism is also its main drawback, as non-determinism
is often useful in the specification and analysis of concur-
rent systems. By comparison, weakly endochronous sys-
tems also guarantee the deterministic re-synchronization
upto commutation, but in a non-causal setting. Thus, ora-
cles can be used (in the more concrete causal model) as soon
as the environment is informed about the non-deterministic
internal decisions. As mentioned in the previous section,
weak endochrony can be seen as a generalization of the
Kahn processes to a relational (non-causal) setting, giving
the actual implementations a supplementary degree of free-
dom that can be exploited by more flexible protocols.

Weak endochrony and speed independence Weakly en-
dochronous LSTSs being self-clocked, we can consider
them not only as synchronous specifications, but also as
asynchronous finite state machines allowing multiple vari-
able changes on each transition. From this point of view,
our work is closely related with previous work on (ex-
tended) burst-mode circuits, like that of Yun and Dill [11].
By comparison, our approach is not hardware-centric, nor
takes into account I/O causality. On the other hand, weak
endochrony can be viewed as a generalization of the ex-
tended burst-mode machines, because it allows concurrency
between independent transitions (bursts), while not specify-
ing/constraining the computation of the transitions.

In fact, weak endochrony can be considered as a general-
ization of the notion of speed-independence [5] to multiple-
changes asynchronous automata. Indeed, one atomic tran-
sition of an LSTS can disable another only if the two tran-
sitions are contradictory (present with different values on
some variable). An atomic transition that is enabled at some
point under a given history will eventually fire (cf. theorem
3, which states the equifinality of all maximal executions).
This property is a form of semi-modularity.

6. Conclusion

In this paper we introduced the notion of weak en-
dochrony and we explained how it can be used to advance

4 In consequence, synthesizing endo-isochronous communication pro-
tocols for systems composed of more than 2 synchronous components
involves “endochronization” steps resulting in heavy synchronization

the state of the art in the deployment of synchronous spec-
ifications over GALS architectures. Weak endochrony gen-
eralizes over previous work on endochronous and latency-
insensitive systems by introducing a notion of independence
(derived from the classical trace theory) between operations
within a synchronous component. This potentially allows
the use of lighter, more efficient synchronization schemes in
the synthesis of GALS implementations. Weak endochrony
and weak isochrony form a criterion guaranteeing the cor-
rect distribution of synchronous specifications in the sense
of Benveniste et al. [2]. Moreover, the criterion can be de-
cided on general finite LSTSs.

The current paper only represents a first step in our quest
for effective deployment methods. Our future research di-
rections will include (1) the definition of efficient synthesis
algorithms ensuring the properties of weak endochrony and
weak isochrony and (2) the extension of the model to take
into account causality (and thus support the synthesis of ac-
tual GALS implementations).

References

[1] A.Benveniste, B. Caillaud, and P. Le Guernic. Composition-
ality in dataflow synchronous languages: Specification and
distributed code generation. Information and Computation,
(163):125-171, 2000.

[2] A. Benveniste, L. Carloni, P. Caspi, and A. Sangiovanni-
Vincentelli. Heterogenous reactive systems modeling and
correct-by-construction deployment. In Proceedings of EM-
SOFT' 03, Philadelphia, Pennsylvania, USA, 2003.

[3] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs,
P. Le Guernic, and R. de Simone. The Synchronous Lan-
guages Twelve Years Later. Proceedings of the |EEE, 2003.

[4] C. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli.
The theory of latency-insensitive design. |EEE Transactions
on Computer-Aided Design of Integrated Circuits and Sys-
tems, 20(9):1059-1076, 9 2001.

[5] J. Cortadella, M. Kishinevsky, A. Kondratiev, L. Lavagno,
and A. Yakovlev. Logic Synthesis of Asynchronous Con-
trollers and Interfaces. Springer, 2002.

[6] V. Diekert and G. Rozenberg, editors. The Book of Traces.
World Scientific, 1995.

[7] N. Halbwachs. Synchronous programming of reactive sys-
tems. Kluwer Academic Publishers, 1993.

[8] H. Kopetz. Real-Time Systems, Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Publish-
ers, 1997.

[9] N. Lynch and E. Stark. A proof of the Kahn principle
for input/output automata. Information and Computation,
82(1):81-92, 1989.

[10] D. Potop-Butucaru, B. Caillaud, and A. Benveniste. Con-
currency in synchronous systems. RR 5110, INRIA, 2004.
http://www.inria.fr/rrrt/rr-5110.html.

[11] K. Yun and D. Dill. Automatic synthesis of extended burst-
mode circuits. |EEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 18(2):101-132, feb.
1999.

