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Chapter 1

Multi-Viewpoint State

Machines for Rich

Component Models
1

1.1 Introduction and requirements

This chapter presents the modeling effort that sustains the work related to the
IP-SPEEDS Heterogeneous Rich Component (HRC) metamodel, its associated
multiple viewpoint contract formalism and the underlying mathematical model
of machines supporting such contracts. We put the emphasis on combining
different viewpoints and providing a simple and elegant notion of parallel com-
position.

The motivations behind this work are the drastic organizational changes that
several industrial sectors involving complex embedded systems have experienced
— aerospace and automotive being typical examples. Initially organized around
large, vertically integrated companies supporting most of the design in house,
these sectors were restructured in the 80’s because of the emergence of sizeable
competitive suppliers. Original equipment manufacturers (OEM) performed
system design and integration by importing entire subsystems from suppliers.
This, however, shifted a significant portion of the value to the suppliers, and
eventually contributed to late errors that caused delays and excessive additional
cost during the system integration phase. In the past decade, these industrial
sectors went through a profound reorganization in an attempt by OEMs to re-
cover value from the supply chain, by focusing on those parts of the design
at the core of their competitive advantage. The rest of the system was instead
centered around standard platforms that could be developed and shared by oth-
erwise competitors. Examples of this trend are AUTOSAR in the automotive

1This research has been developed in the framework of the European IP-SPEEDS project
number 033471.
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6 CHAPTER 1. MULTI-VIEWPOINT STATE MACHINES

industry [10], and Integrated Modular Avionics (IMA) in aerospace [7]. This
new organization requires extensive virtual prototyping and design space explo-
ration, where component or subsystem specification and integration occur at
different phases of the design, including at the early ones [19].

Component based development has emerged as the technology of choice to
address the challenges that result from this paradigm shift. Our objective is to
develop a component-based model that is tailored to the specific requirement
of system development with a highly distributed OEM/supplier chain. This
raises the novel issue of dividing and distributing responsibilities between the
different actors of the OEM/supplier chain. The OEM wants to define and know
precisely what a given supplier is responsible for. Since components or sub-
systems interact, this implies that the responsibility for each entity in the area
of interaction must be precisely assigned to a given supplier, and must remain
unaffected by others. Thus, each supplier is assigned a design task in the form of
a goal, which we call guarantee or promise, that involves only entities for which
the supplier is responsible. Other entities entering the sub-system for design are
not under the responsibility of this supplier. Nonetheless, they may be subject
to constraints assigned to the other suppliers, that can therefore be offered to
this supplier as assumptions. Assumptions are under the responsibility of other
actors of the OEM/supplier chain but can be used by this supplier to simplify
the task of achieving its own promises. This mechanism of assumptions and
promises is structured into contracts [9], which form the essence of distributed
system development involving complex OEM/supplier chains.

In addition to contracts, supporting an effective concurrent system develop-
ment requires the correct modeling of both interfaces and open systems, as well
as the ability to talk about partial designs and the use of abstraction mecha-
nisms. This is especially true in the context of safety critical embedded systems.
In this case, the need for high quality, zero-defect software calls for techniques
in which component specification and integration is supported by clean mathe-
matics that encompass both static and dynamic semantics — this means that
the behavior of components and their composition, and not just their port and
type interface, must be mathematically defined. Furthermore, system design in-
cludes various aspects — functional, timeliness, safety and fault tolerance, etc.
— involving different teams with different skills using heterogeneous techniques
and tools. We call each of these different aspects a viewpoint of the compo-
nent or of the system. Our technology of contracts is based on a mathematical
foundation consisting of a model of system that is rich enough to support the
different viewpoints of system design, and at the same time clean and simple
enough to allow for the development of mathematically sound techniques. We
build on these foundations to construct a more descriptive state-based model,
called the Heterogeneous Rich Component (HRC) model, that describes the re-
lationships between the parts of a component in an executable fashion. It is
the objective of this chapter to present this higher level model. Nonetheless, we
also provide a quick overview of the contract model it is intended to support
— readers interested in details regarding this contract framework are referred
to [5, 6].
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Our notion of contract builds on similar formalisms developed in related
fields. For example, a contract-based specification was applied by Meyer in the
context of the programming language Eiffel [17]. In his work, Meyer uses pre-
conditions and postconditions as state predicates for the methods of a class,
and invariants for the class itself. Similar ideas were already present in seminal
work by Dijkstra [12] and Lamport [16] on weakest preconditions and predicate
transformers for sequential and concurrent programs, and in more recent work
by Back and von Wright, who introduce contracts [4] in the refinement cal-
culus [3]. In this formalism, processes are described with guarded commands
operating on shared variables. This formalism is best suited to reason about
discrete, untimed process behavior.

More recently, De Alfaro and Henzinger have proposed Interface Automata
as a way of expressing constraints on the environment in the case of synchronous
models [11]. The authors have also extended the approach to other kinds of
behaviors, including resources and asynchronous behaviors [8, 15]. Our contri-
bution here consists in developing a particular formalism for hybrid continuous-
time and discrete state machines where composition is naturally expressed as
intersection. We show how to translate our model to the more traditional hybrid
automata model [14]. In addition, we identify specialized categories of automata
for the cases that do not need the full generality of the model, and introduce
probabilities as a way of representing failures.

The chapter is structured as follows. We will first review the concepts of
component and contract from a semantic point of view in Section 1.2. We then
describe the Extended State Machine model in Section 1.3 and compare it to
a more traditional hybrid model in Section 1.4. The syntax and the expres-
sive power used for expressions in the transitions of the state-based model is
reviewed in Section 1.5, followed, in Section 1.6, by the specialization of the
model into different categories to support alternative viewpoints. Several exam-
ples complement the formalism throughout the chapter.

1.2 Components and Contracts

Our model is based on the concept of component. A component is a hierarchical
entity that represents a unit of design. Components are connected together
to form a system by sharing and agreeing on the values of certain ports and
variables. A component may include both implementations and contracts. An
implementation M is an instantiation of a component and consists of a set P
of ports and variables (in the following, for simplicity, we will refer only to
ports) and of a set of behaviors, or runs, also denoted by M , which assign a
history of “values” to ports. Because implementations and contracts may refer
to different viewpoints, as we shall see, we refer to the components in our model
as heterogeneous rich components (HRC).

We build the notion of a contract for a component as a pair of assertions,
which express its assumptions and promises. An assertion E is a property
that may or may not be satisfied by a behavior. Thus, assertions can again
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be modeled as a set of behaviors over ports, precisely as the set of behaviors
that satisfy it. An implementation M satisfies an assertion E whenever they
are defined over the same set of ports and all the behaviors of M satisfy the
assertion, i.e., when M ⊆ E.

A contract is an assertion on the behaviors of a component (the promise)
subject to certain assumptions. We therefore represent a contract C as a pair
(A,G), where A corresponds to the assumption, and G to the promise. An im-
plementation of a component satisfies a contract whenever it satisfies its promise,
subject to the assumption. Formally, M ∩ A ⊆ G, where M and C have the
same ports. We write M |= C when M satisfies a contract C. There exists
a unique maximal (by behavior containment) implementation satisfying a con-
tract C, namely MC = G ∪ ¬A. One can interpret MC as the implication
A ⇒ G. Clearly, M |= (A,G) if and only if M |= (A,MC), if and only if
M ⊆ MC . Because of this property, we can restrict our attention to contracts
of the form C = (A,MC), which we say are in canonical form, without losing
expressiveness. The operation of computing the canonical form, i.e., replacing
G with G ∪ ¬A, is well defined, since the maximal implementation is unique,
and it is idempotent. Working with canonical forms simplifies the definition of
our operators and relations, and provides a unique representation for equivalent
contracts.

The combination of contracts associated to different components can be ob-
tained through the operation of parallel composition. If C1 = (A1, G1) and
C2 = (A2, G2) are contracts (possibly over different sets of ports), the compos-
ite must satisfy the guarantees of both, implying an operation of intersection.
The situation is more subtle for assumptions. Suppose first that the two con-
tracts have disjoint sets of ports. Intuitively, the assumptions of the composite
should be simply the conjunction of the assumptions of each contract, since
the environment should satisfy all the assumptions. In general, however, part
of the assumptions A1 will be already satisfied by composing C1 with C2, act-
ing as a partial environment for C1. Therefore, G2 can contribute to relaxing
the assumptions A1. And vice-versa. The assumption and the promise of the
composite contract C = (A,G) can therefore be computed as follows:

A = (A1 ∩ A2) ∪ ¬(G1 ∩ G2), (1.1)

G = G1 ∩ G2, (1.2)

which is consistent with similar definitions in other contexts [11, 13, 18]. C1

and C2 may have different ports. In that case, we must extend the behaviors
to a common set of ports before applying (1.1) and (1.2). This can be achieved
by an operation of inverse projection. Projection, or elimination, in contracts
requires handling assumptions and promises differently, in order to preserve
their semantics. For a contract C = (A,G) and a port p, the elimination of p
in C is given by

[C]p = (∀pA, ∃pG) (1.3)

where A and G are seen as predicates. Elimination trivially extends to finite
sets of ports, denoted by [C]P , where P is the considered set of ports. For
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inverse elimination in parallel composition, the set of ports P to be considered
is the union of the ports P1 and P2 of the individual contracts.

Parallel composition can be used to construct complex contracts out of sim-
pler ones, and to combine contracts of different components. Despite having to
be satisfied simultaneously, however, multiple viewpoints associated to the same
component do not generally compose by parallel composition. We would like,
instead, to compute the conjunction ⊓ of the contracts, so that if M |= Cf ⊓Ct,
then M |= Cf and M |= Ct. This can best be achieved by first defining a partial
order on contracts, which formalizes a notion of substitutability, or refinement.
We say that C = (A,G) dominates C ′ = (A′, G′), written C ¹ C ′, if and only
if A ⊇ A′ and G ⊆ G′, and the contracts have the same ports. Dominance
amounts to relaxing assumptions and reinforcing promises, therefore strength-
ening the contract. Clearly, if M |= C and C ¹ C ′, then M |= C ′.

Given the ordering of contracts, we can compute greatest lower bounds and
least upper bounds, which correspond to taking the conjunction and disjunction
of contracts, respectively. For contracts C1 = (A1, G1) and C2 = (A2, G2) (in
canonical form), we have

C1 ⊓ C2 = (A1 ∪ A2, G1 ∩ G2), (1.4)

C1 ⊔ C2 = (A1 ∩ A2, G1 ∪ G2). (1.5)

The resulting contracts are in canonical form. Conjunction of contracts amounts
to taking the union of the assumptions, as required, and can therefore be used
to compute the overall contract for a component starting from the contracts
related to multiple viewpoints. The following example illustrates the need for
two different composition operators.

Example 1 (viewpoint synchronization) We discuss here an example of
viewpoint synchronization. Assume two contracts Ci, i = 1, 2 modeling two
different viewpoints attached to a same rich component C. For example, let
C1 = (A1, G1) be a viewpoint in the functional category and C2 = (A2, G2) be
a viewpoint of the timed category.

Assumption A1 specifies allowed data pattern for the environment, whereas
A2 sets timing requirements for it. Since contracts are in canonical forms, the
promise G1 itself says that, if the environment offers the due data pattern, then
a certain behavioural property can be guaranteed. Similarly, G2 says that, if
the environment meets the timing requirements, then outputs will be scheduled
as wanted and deadlines will be met. Thus, both Gi, i = 1, 2 are implications.

The greatest lower bound C1⊓C2 can accept environments that satisfy either
the functional assumptions, or the timing assumptions, or both. The promise of
C1 ⊓C2 is the conjunction of the two implications: if the environment offers the
due data pattern, then a certain behavioural property can be guaranteed, or, if
the environment meets the timing requirements, then outputs will be scheduled
as wanted and deadlines will be met, or, if both the environment offers the due
data pattern and the environment meets the timing requirements, then both a
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certain behavioural property can be guaranteed and outputs will be scheduled
as wanted and deadlines will be met.

To have a closer look at the problem, assume first that the two viewpoints
are orthogonal or unrelated, meaning that the first viewpoint, which belongs to
the functional category, does not depend on dates, while the second viewpoint
does not depend on the functional behaviour (e.g., we have a dataflow network
of computations that is fixed regardless of any value at any port). Let these two
respective viewpoints state as follows:

• if the environment alternates the values T, F, T, . . . on port b, then the value
carried by port x of component C never exceeds 5.

• if the environment provides at least one data per second on port b, then
component C can issue at least one data every two seconds on port x.

These two viewpoints relate to the same rich component. Still, having the two
contracts (Ai, Gi), i = funct , timed for C should mean that: if the environment
satisfies the functional assumption, then C satisfies the functional guarantees.
Also, if the environment satisfies the timing assumption, then C satisfies the
timing guarantees. Figure 1.1 illustrates the greatest lower bound of the view-
points belonging to two different categories, and compares it with their parallel
composition, introduced in Section 1.2. For this case, the correct definition for
viewpoint synchronization is the greatest lower bound.

The four diagrams on the top are the truth tables of the functional category
Cf and its assumption Af and promise Gf , and similarly for the timed category
Ct. Note that these two contracts are in canonical form. In the middle, we
show the same contracts lifted to the same set of variables b, db, x, dx, combining
function and timing. On the bottom, the two tables on the left-hand side are
the truth tables of the greatest lower bound Cf ⊓Ct. For comparison, we show
on the right-hand side the truth tables of the parallel composition C1 ‖ C2,
revealing that the assumption is too restrictive and not the one expected.

So far we discussed the case of non interacting viewpoints. But in general,
viewpoints may interact as explained in the following variation of the same
example. Assume that the viewpoints (the first one belonging to the functional
category, while the other one belongs to the timed category) interact as follows:

• if the environment alternate the values T, F, T, . . . on port b, then the value
carried by port x of C never exceeds 5; if x outputs the value 0, then an
exception is raised and a handling task T is executed;

• if the environment provides at least one data per second on port b, then
C can issue at least one data every two seconds on port x; when executed,
task T takes 5 seconds for its execution.

For this case, the activation port αT of task T is an output port of the functional
view, and an input port of the timed view. This activation port is boolean; it
is output every time the component is activated and is true when an exception



1.2. COMPONENTS AND CONTRACTS 11

TFT !TFT

<5

>5

>1ds
TFT !TFT

>5

<5

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<5

>5

>1ds
TFT !TFT

>5

<5

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<5

>5

>1ds
TFT !TFT

>5

<5

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<5

>5

>1ds
TFT !TFT

>5

<5

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<5

>5

>1ds
TFT !TFT

>5

<5

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<5

>5

>1ds
TFT !TFT

>5

<5

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<5

>5

>1ds
TFT !TFT

>5

<5

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<5

>5

>1ds
TFT !TFT

>5

<5

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

>5

<5

TFT !TFT

>5

<5

<1ds>1ds

<.5ds

>.5ds

<1ds>1ds

<.5ds

>.5ds

Af Gf At Gt

Af lifted Gf lifted At lifted Gt lifted

Figure 1.1: Truth tables for the synchronization of categories.

is raised. Then, the timed viewpoint will involve αT and dαT
as inputs, and

will output the date dT of completion of the task T according to the following
formula: dT = (dαT

+ 5) when (αT = T). Note that dαT
has no meaning when

αT = F.
Here we had an example of connecting an output of a functional viewpoint to

an input of a timed viewpoint. Note that the converse can also occur. Figure 1.2
illustrates the possible interaction architectures for a synchronization viewpoint.

⋄

Discussion. So far we have defined contracts and implementations in terms
of abstract assertions, i.e., sets of runs. In the next sections, we describe in
more precise terms the mathematical nature of these abstract assertions.

To provide intuition for our design choices, we start by comparing two alter-
native views of system runs, illustrated in Figure 1.3. In the classical approach,
shown on the left in the figure, transitions take no time; time and continuous dy-
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Figure 1.2: Illustrating the synchronization of viewpoints.
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Figure 1.3: Runs. Left: classical approach. Right: alternative approach. State
invariants on the left, or thick transitions on the right, involve the progress of
time and continuous dynamics such as differential equations.

namics progress within states; they are specified by state invariants and guarded.
The alternative approach is dual: states are snapshot valuations of variables and
take no time; time and continuous dynamics progress within “thick” transitions
that are guarded.

The two approaches have advantages and disadvantages. The classical ap-
proach is preferred for abstractions based on regions, which are valid for certain
classes of models. The alternative approach makes it much easier to deal with
composition and is able to capture open systems, as we shall see. Clearly, the
two approaches are dual and can be exchanged without harm.

We shall develop the two approaches and relate them throughout this chap-
ter.

1.3 Extended State Machines

Extended State Machines (ESM) follow the second approach illustrated in Fig-
ure 1.3. They are our preferred model, because of the simplicity of its associated
parallel composition.
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1.3.1 Variables and Ports, Events and Interactions, Con-

tinuous Dynamics

Interaction between viewpoints and components is achieved by synchronizing
events and variables involved in both discrete and continuous dynamics. Syn-
chronization events take place on ports. Dynamic creation or deletion of ports
or variables is not supported by the model.

Values are taken in a unique domain D that encompasses all usual data types
(booleans, enumerated types, integers, real numbers, etc.). We shall distinguish
a subdomain Dc ⊂ D in which variables involved in continuous evolutions take
their values; Dc collects all needed Euclidean spaces to deal with differential
equations or inclusions. Other type consistency issues are dealt with in the
static semantics definition of HRC and are disregarded in the sequel.

We are given a finite set V of variables; the set of variables is partitioned into
two subsets V = Vd⊎Vc: the variables belonging to Vd are used exclusively in the
discrete evolutions, and those belonging to Vc can be used in both continuous
and discrete evolutions. States correspond to the assignment of a value to each
variable: s : V → D.

A finite set of ports P is then considered. Events correspond to the assign-
ment of a value to a port; therefore an event is a pair (p, d) ∈ P×D. Interactions,
also called labels in the sequel, are sets of events. The only restriction is that
a given port may yield at most one event in an interaction. Hence interactions
are partial mappings λ : P ⇀ D. The set of all interactions is denoted by Λ
(= P ⇀ D). The empty interaction εP over ports P is the unique mapping
εP : P ⇀ D that is undefined for any p ∈ P.

Regarding continuous dynamics we restrict ourselves to the case where a
unique global physical time is available, denoted generically by the symbols t or
τ and called the universal time. Other time bases can be used, but need to be
related to this universal time as part of the assertion specification. Investigating
the consequences of relaxing this restriction is part of our future work.

Similarly, for Vc ⊆ Vc, the domain of continuous evolutions on Vc, denoted
by C(Vc), is the set of all functions

C(Vc) =def {ϕ | ϕ : R+ ⇀ Vc → Dc } (1.6)

such that (we write ϕ(t, v) instead of ϕ(t)(v)):

1. dom(ϕ) = [0, t| for some t > 0, where symbol | denotes either ] or ); call t
the duration of ϕ and denote it generically by tϕ.

2. For every v ∈ Vc, τ → ϕ(τ, v) is smooth enough (typically at least differ-
entiable on (0, t)) and possesses a left limit Exit (ϕ) ∈ DVc defined by

Exit (ϕ, v) =def lim
τրt

ϕ(τ, v) (1.7)
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Each ϕ ∈ C(Vc) can be decomposed, for all t ∈ (0, tϕ), as the concatenation

ϕ = ϕ1 • ϕ2, where
ϕ1(τ) = ϕ(τ) for 0 ≤ τ < t, dom(ϕ1) = [0, t)
ϕ2(τ) = ϕ(t + τ) for 0 ≤ τ < tϕ − t, dom(ϕ2) = [0, tϕ − t)

(1.8)

We denote these two evolutions by ϕ<t and ϕ≥t, respectively. We thus have the
decomposition

ϕ = ϕ<t • ϕ≥t (1.9)

1.3.2 ESM Definition

Having defined variables, ports, labels and interactions, it is possible to intro-
duce extended state machines, as a syntactic means of defining assertions in
HRC components.

Definition 1.3.1 (ESM) An extended state machine is a tuple with the fol-
lowing components:

E = (V, P, ρ, δ, I, F ) , where:

P ⊆ P , V = Vd ⊎ Vc, Vd ⊆ Vd, Vc ⊆ Vc

S =def DV is the set of states, projecting to

Sd =def DVd the set of discrete states, and

Sc =def DVc the set of continuous states,

ρ ⊆ S × Λ × S, where Λ =def (P ⇀ D), is the discrete transition relation

δ ⊆ S × C(Vc) × S is the continuous transition relation

I ⊆ S is the set of initial states.

and F ⊆ S is the set of final states.

where we require that δ does not modify discrete states:

∀(s, ϕ, s′) ∈ δ,∀v ∈ Vd ⇒ s′(v) = s(v). (1.10)

For convenience, we shall denote the disjoint union of sets of ports and variables
by W =def P ⊎ V .

Runs. The runs recognized by an ESM are arbitrary finite interleavings of
discrete and continuous evolutions, separated by snapshot states:

σ =def s0, w1, s1, w2, s2, . . . , sk−1, wk, sk, . . . (1.11)

where

s0 ∈ I

∀k > 0 :

{

either wk = (sk−1, λk, sk) ∈ ρ
or wk = (sk−1, ϕk, sk) ∈ δ
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Infinite runs are captured by considering their finite approximations. Accepted
runs are finite runs ending in F . To capture nonterminating computations, just
take F = S. In run σ, time progresses as follows: discrete transitions take no
time and continuous evolutions are concatenated. Formally:

• State sk is reached at time
∑k

i=1 twi
, where tw denotes the duration of w;

by convention, tw is equal to tϕ (the duration of ϕ) if w = (s, ϕ, s′), and
is equal to zero if w = (s, λ, s′).

• At time t, the number of transitions completed is max{k |
∑k

i=1 twi
≤ t}.

Projection. For W = P⊕V a set of ports and variables, ρ a discrete transition
relation defined over W , δ a continuous transition relation defined over W , and
W ′ ⊆ W , let projW,W ′ (ρ) and projW,W ′ (δ) respectively denote the projections
of ρ and δ over W ′, obtained by existential elimination of ports or variables not
belonging to W ′. The results are discrete and continuous transition relations
defined over W ′, respectively. Corresponding inverse projections are denoted
by proj−1

W,W ′ (. . . ).

Product. The composition of ESM is by intersection; interaction can occur
via both variables and ports:

E1 × E2 = (V, P, ρ, δ, I, F ) , where:

Vd = Vd,1 ∪ Vd,2 discrete variables can be shared

Vc = Vc,1 ∪ Vc,2 continuous variables can be shared

P = P1 ∪ P2 ports can be shared

ρ =def proj−1
W,W1

(ρ1) ∩ proj−1
W,W2

(ρ2)

δ =def proj−1
W,W1

(δ1) ∩ proj−1
W,W2

(δ2)

I =def proj−1
W,W1

(I1) ∩ proj−1
W,W2

(I2)

F =def proj−1
W,W1

(F1) ∩ proj−1
W,W2

(F2)

where we recall that W = P ⊎ V . ESMs synchronize on discrete transitions
thanks to shared ports and variables. Continuous evolutions synchronize only
via shared variables. If W = W1 = W2, then ρ = ρ1∩ρ2 and δ = δ1∩δ2, whence
the name of “composition by intersection”. When specialized to continuous
dynamics made of differential equations, this boils down to systems of differential
equations like in undergraduate mathematics.

Our interpretation of runs with snapshot states and thick transitions (see
Figure 1.3) is instrumental in allowing for the above simple and elegant defini-
tion of parallel composition “by intersection”. With thick states and zero-time
transitions, it is more difficult to define composition, because synchronization
takes place both on states and transitions.
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Union or Disjunction. The union of two sets of runs can be obtained from
two ESMs by taking the union of their variables, and by adding a distinguished
variable # ∈ Vc that indicates the particular state space in which we are op-
erating (# = 0 for the first ESM, # = 1 for the second). Then, we simply
take the union of the transition relations after inverse projection. Formally, for
i indexing the set of components involved in the considered union, let

ρ
∣

∣

V
#=i =def {(s, λ, s′) ∈ S × Λ × S | s(#) = i and s′(#) = i}

δ
∣

∣

V
#=i =def {(s, ϕ, s′) ∈ S × C(Vc) × S | s(#) = i and s′(#) = i}

be the transition relation that is true everywhere variable # is evaluated to i.
Then,

E1 ∪ E2 = (V, P, ρ, δ, I, F )

Vd = Vd,1 ∪ Vd,2 ⊎ {#}

Vc = Vc,1 ∪ Vc,2 ⊎ {#}

P = P1 ∪ P2

ρ =def

(

proj−1
W,W1

(ρ1) ∩ ρ|V#=1

)

∪
(

proj−1
W,W2

(ρ2) ∩ ρ|V#=2

)

δ =def

(

proj−1
W,W1

(δ1) ∩ ρ|V#=1

)

∪
(

proj−1
W,W2

(δ2) ∩ ρ|V#=2

)

I =def

{

s ∈ S | s|W1
∈ I1 ∧ s(#) = 1

}

∪
{

s ∈ S | s|W2
∈ I2 ∧ s(#) = 2

}

F =def

{

s ∈ S | s|W1
∈ F1 ∧ s(#) = 1

}

∪
{

s ∈ S | s|W2
∈ F2 ∧ s(#) = 2

}

Inputs and Outputs. Whenever needed we can distinguish inputs and out-
puts, which we also call uncontrolled and controlled ports. In this paragraph
we define the corresponding algebra. Ports and variables are partitionned into
inputs and outputs:

P = P I ⊎ PO

V = V I ⊎ V O

Regarding products, the set of ports of a product is again the union of the set
of ports of each component. However, outputs cannot be shared.2 That is, the
product of two ESMs E1 and E2 is defined if and only if

PO
1 ∩ PO

2 = ∅
V O

1 ∩ V O
2 = ∅

(1.12)

In that case,

P I = (P I
1 ∪ P I

2 ) − (PO
1 ∪ PO

2 ),
PO = PO

1 ∪ PO
2 ,

(1.13)

with the corresponding rules for variables.

2we could allow sharing of outputs, and declare a failure whenever two components set a
different value on an output port.
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Receptiveness. For E an ESM, and P ′ ⊆ P, V ′ ⊆ V a subset of its ports and
variables, E is said to be (P ′, V ′)-receptive if and only if for all runs σ′ restricted
to ports and variables belonging to (P ′, V ′), there exists a run in σ of E such
that σ′ and σ coincide over P ′ ⊎ V ′.

Receptiveness is a semantic concept. It is often implicitly meant that an
ESM should be receptive with respect to its inputs. However, the example in
Figure 1.4 shows that receptiveness is generally not preserved by composition,
even when Condition (1.12) is satisfied and Rule (1.13) is used for the compo-
sition. This example aims at modeling an electric circuit with two components
(Figure 1.4, left-hand side) , a resistor R and a voltage sensitive switch that is
opened when v < 1 and has resistance R′ when v ≥ 1. The ESM for resistor R
(Figure 1.4, right-hand side) inputs voltage u and current i and outputs volt-
age v. The switch ESM inputs voltage v and outputs current i. Each ESM is
receptive: v = u − Ri is the output of the first ESM for avery value of u and
i. The second ESM outputs i = v/R′ when v ≥ 1 and i = 0 otherwise. The
composition of these two ESMs has u as only input and v and i as outputs. The
system of equations admits a solution when u < 1, in wich case v = u and i = 0,
and when u ≥ 1 + R/R′, in which case v = R′/(R + R′)u and i = u/(R + R′).
However, it has no solution when u ∈ [1; 1 + R/R′). Clearly, the composition of
the two ESMs is not receptive.

i

u v

R

R′

v ≥ 1

u

v

i

v =
u − Ri

i = 0
when
v < 1

i = v/R′

when
v ≥ 1

Figure 1.4: Non-receptive composition of two receptive ESMs. Left: electric
circuit with two components. Right: modeling of the circuit with two receptive
ESMs.

Openness. The ability to handle open systems is an important feature of
extended state machines. This can be achieved by requiring that the following
conditions hold for discrete and continuous transitions:

{(s, εP , s) | s ∈ S} ⊆ ρ (1.14)

(s, ϕ, s′) ∈ δ
t < tϕ

}

⇒

{

(s, ϕ<t,Exit (ϕ<t)) ∈ δ
(Exit (ϕ<t) , ϕ≥t, s

′) ∈ δ
(1.15)

where, by abuse of notation, we extend Exit (ϕ<t) to the set of discrete variables
by copying the value they had in state S.

Condition (1.14) on discrete evolutions is the usual stuttering invariance
condition for discrete transition systems. It requires that it is always possible,
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for an ESM, to perform a discrete stuttering transition that emits no event and
leaves states unchanged. This leaves room for other components to perform
discrete transitions.

Condition (1.15) on continuous evolutions expresses that it is always possible
to interrupt a continuous evolution and resume it immediately. The reason for
doing this is to allow for other components to perform a discrete transition
(which takes no time) in the middle of a continuous evolution of the considered
component.

Observe that conditions for openness imply that any finite run can be ex-
tended to an infinite one; whence our definition for accepted runs.

Locations or macro-states. Certain aggregations of states are useful for use
in actual syntax. For example, hybrid systems locations contain the continuous
evolutions. Also, macro-states are considered when glueing states together.
Locations or macro-states are obtained in our framework by

1. selecting a subset V ′
d ⊂ Vd of discrete variables, and

2. grouping together all states s having the same valuation for all w ∈ V ′
d .

For example, one could have one particular discrete variable w ∈ Vd, of enumer-
ated type, that indexes the locations; in this case we would take V ′

d = {w}. Note
that the description of the dynamics still requires the discrete and continuous
transitions as above. This is further elaborated on in Section 1.4.

1.4 HRC State Machines

In this section we introduce the model that corresponds to the first (classical)
approach illustrated in Figure 1.3. Its interest is that it more closely fits the type
of model in use when considering Timed Automata [1] or their generalization
Hybrid Automata [14]. We call this model HRC State machines. Then we show
how to translate between HRC State machines and ESMs, thus providing a way
to switch to the best framework depending on the considered activity (analy-
sis or composition). To simplify our presentation, we consider only flat HRC
State Machines that do not include hierarchical or-states such as in Statecharts.
Extension to hierarchical or-states raises no difficulty.

Inspired by the definition of Hybrid Automata in Henzinger [14], we define:

Definition 1.4.1 (HRC State Machine) A HRC State Machine is a tuple

H = (V, P ;G, init , inv ,flow ,final ; trans) (1.16)

where:

• V = Vd ⊎ Vc is a finite set of variables, decomposed into discrete and
continuous variables; set S = DV , where D is the domain of values;

• P is a finite set of ports;
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• G is a finite directed multigraph G = (L,E), where L is a finite set of
locations and E is a finite set of switches;

• Four vertex labeling functions init , inv ,flow, and final, that assign to each
location ℓ ∈ L four predicates; init(ℓ), inv(ℓ), and final(ℓ) are expressions
of boolean type over V , and flow(ℓ) ⊆ C(Vc), see (1.6);

• An edge labeling function trans that assigns to each switch e ∈ E a relation
trans(e) ⊆ S × Λ × S, where Λ =def (P ⇀ D).

HRC State Machine H can be re-expressed as the following equivalent ESM (in
that they possess identical sets of runs):

EH = (V ⊎ {loc}, P, ρ, δ, I, F ) ,

where:

• V is as in (1.16) and loc is an additional location variable taking values in
the finite set L; a value for loc is therefore a location ℓ; the corresponding
set of states is the set of all possible configurations of the tuple (V, loc);
such states are generically written as pairs (s, ℓ).

• P is as in (1.16).

• The discrete transition relation ρ is defined as follows:

(

(s, ℓ), λ, (s′, ℓ′)
)

∈ ρ

if and only if there exists a switch e with source ℓ and target ℓ′ and such
that (s, λ, s′) ∈ trans(e).

• The continuous transition relation δ is defined as follows:

(

(s, ℓ), ϕ, (s′, ℓ′)
)

∈ δ

if and only if ℓ′ = ℓ and continuous evolution ϕ satisfies both predicates
inv(ℓ) and flow(ℓ).

• (s0, ℓ0) ∈ I if and only if inv(ℓ0)(s0) = T and init(ℓ0)(s0) = T.

• (sf , ℓf ) ∈ F if and only if inv(ℓf )(sf ) = T and final(ℓf )(sf ) = T.

Conversely, let E = (V, P, ρ, δ, I, F ) be an ESM in which a subset loc ⊂ Vd of
discrete variables has been distinguished. Then, E can be represented as the
following HRC State Machine:

HE = (W,P ;G, init , inv ,flow ,final ; trans) (1.17)

where W =def V − loc and:

• G = (L,E), where L = Dloc and e = (ℓ, ℓ′) ∈ E if and only if there exists
an event λ ∈ Λ of E, such that (ℓ, λ, ℓ′) ∈ projV,loc (ρ).
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• For e = (ℓ, ℓ′) ∈ E, (s, λ, s′) ∈ trans(e) if and only if ((s, ℓ), λ, (s′, ℓ′)) ∈ ρ.

• For ℓ ∈ L, inv(ℓ) is satisfied by state s if and only if ((s, ℓ), λ, (s′, ℓ′)) ∈ ρ,
for some event λ, some switch e = (ℓ, ℓ′) ∈ E, and some state s′ ∈ DW .

• Since, by (1.10), continuous transition relation δ does not modify discrete
states, it does not modify locations. Therefore, if (s, ϕ, s′) ∈ δ, then
s(loc) = s′(loc), we denote it by ℓ; then flow(ℓ) is the set of ϕ ∈ C(Vc)
such that there exists a pair of states (s, s′) with ℓ = s(loc) = s′(loc) and
(s, ϕ, s′) ∈ δ.

• init(ℓ) is satisfied by state s ∈ DW if and only if the pair (ℓ, s) belongs to
I.

• final(ℓ) is satisfied by state s ∈ DW if and only if the pair (ℓ, s) belongs
to F .

The following are natural questions: how does HEH
relate to H? and how

does EHE
relate to E? These are not strictly identical but “almost” so. More

precisely:

• HEH
is identical to H.

• EHE
identifies with E in which the subset loc ⊆ Vd of discrete variables

has been replaced by a single variable whose domain is the product of the
domains of variables belonging to loc.

Having the translation of HRC State Machines into ESMs allows them to inherit
from the various operators associated with ESMs. In particular

H1 ×H2 = HEH1
×EH2

where, in defining HEH1
×EH2

, we take loc = loc1 ⊎ loc2. This is an indirect
definition for the product — it can also be used to define other operators on
HRC State Machines. It involves the (somehow complex) process of translating
HRC State Machines to ESMs and vice-versa. But one should remember that
defining the product directly on HRC State Machines is complicated as well.
Our technique has the advantage of highlighting the very nature of product,
namely by intersection.

1.5 Mathematical syntax for the labeling func-

tions of HRC State Machines

In this section we refine the definition of the labeling functions occurring in
Definition 1.4.1 of HRC State Machines. Location or vertex labeling functions
init , inv , final , and flow are specified by using expressions we introduce now.
Switch or edge labeling function trans will be specified via a pair (guard, action),
where the guard is composed of a predicate over locations and variables, and a
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set of triggering events on ports; the action consists in assigning the next state
following the transition. Guards and actions will also be specified by means of
expressions.

1.5.1 Expressions and differential expressions

We consider two distinct copies V and V ′ of the set of all variables, where each
V ′ ∈ V ′ is the primed version of V ∈ V.

Expressions. We assume a family Expr of expressions over unprimed vari-
ables, primed variables, and ports. Thus all (partial) functions we introduce
below are expressed in terms of Expr . Expressions are generically denoted by
the symbol E. Whenever needed, we shall define subfamilies Expr ′ ⊂ Expr .
This mechanism will be useful when we need to make the mathematical syntax
of special families of expressions precise.

Expressions over ports. In particular, we shall distinguish Exprpure, the
family of expressions over ports of type pure (carrying no value) which involve
the special operator present and the three combinators ∨,∧,⊖:

present(p) is true iff p occurs
p1 ∨ p2 occurs iff p1 occurs or p2 occurs
p1 ∧ p2 occurs iff p1 occurs and p2 occurs
p1 ⊖ p2 occurs iff p1 occurs but p2 does not occur

(1.18)

where the expression “p occurs” means that p is given a value in the considered
transition, see the last bullet in Definition 1.4.1.

Differential expressions. Let

Expr |Vc
⊂ Expr

be the subfamily of expressions involving only variables belonging to Vc. Let
Expr cont be the set of differential expressions, recursively defined as:

Expr cont ⊇ Expr |Vc

∀E ∈ Expr cont ⇒
d

dt
(E) ∈ Expr cont (1.19)

where d
dt

(E) denotes the time derivative dE
dt

of the continuous evolution of the
valuation of E. Thus, expressions such as E ∈ C, where E ∈ Expr cont and C is
a subset of Dc, specify differential inclusions [2]. Continuous evolutions defined
in (1.6) are specified with the following syntax:

E ∈ C where E ∈ Expr cont and C ⊆ Dc

For E ∈ Expr cont, let Exit (E) be the left limit of the valuation of E at the
maximal instant t of its domain, see (1.7).
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1.5.2 Invariants

An invariant is the association to a location of a pair (inv ,flow), see Definition
1.4.1. Invariants are generically denoted by symbol ι (the greek letter “iota”).
Invariant inv is expressed by means ot expressions, whereas invariant flow uses
differential expressions.

1.5.3 Mathematical syntax for transition relation trans

Referring to the last bullet of Definition 1.4.1, the switch labeling function trans
is specified as a pair (γ, α) of a guard γ and an action α so that

(s, λ, s′) ∈ trans
iff

(s, λ) |= γ (the guard) ∧ s′ ∈ α(s, λ) (the action)

The pair (γ, α) must be such that

dom(α) ⊇
{

(s, λ) ∈ S
∣

∣ (s, λ) |= γ
}

,

where S, guards γ, and actions α, are defined next.

Guards. Guards consist of a predicate over (previous) states, and a set of
triggering events on ports. We group the two by introducing the notion of
extended states, which consist of states augmented with valuations of ports.
Formally (see Definition 1.4.1):

S =def DV ⊎ Λ

A guard is a predicate over extended states:

γ : S → {F, T}

We say that an extended state (s, l) satisfies γ, written (s, l) |= γ, if γ(s) = T.
Guards can be defined as boolean valued expressions involving (unprimed) state
variables and ports. Expressions over ports introduced in (1.18) are important
for guards, in order to be able to refer to the presence/absence of certain ports
in a given transition.

Actions. An action is a partial nondeterministic function over extended states:

α : S ⇀ ℘(S′)

where ℘ denotes power set. Actions assign values to primed variables, nondeter-
ministically. It is allowed for actions to be nondeterministic in order to support
partial designs.

Whereas guards generally need to use Exprpure over ports, this is not needed
for actions. Thus, the action language can be “classical”, in that it does not
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need to involve Exprpure over ports, i.e., the presence/absence of selected ports
in defining the considered action. Specifying this is the role of the guard, whereas
the action that follows can be restricted to refer only to values carried by ports
that are known to be present in the considered transition. Whenever needed,
auxiliary ports of the form p = p1 ∨ p2 or p′ = p1 ⊖ p2 can be introduced for
that purpose, when defining the guard.

1.5.4 Products in terms of guards and actions

We return now to our formalism of ESM, where products are naturally defined.
The above mathematical syntax for HRC State Machines induces a correspond-
ing mathematical syntax for ESMs. Accordingly, the product of two ESMs
E = E1 × E2 is refined as follows:

invariants: ι = ι1 ∧ ι2
guards: γ = γ1 ∧ γ2

actions: α = proj−1
W,W1

(α1) ∩ proj−1
W,W2

(α2)
(1.20)

This formula has several interesting special cases:

• If γi, i = 1, 2 involves only ports of type “pure”, then γ1 ∧ γ2 in (1.20)
expresses that the two ESMs must synchronize on their shared ports.

• If ιi, i = 1, 2 involves only flows, then ι1 ∧ ι2 in (1.20) denotes the system
consisting of the continuous evolutions for the two ESMs.

• If γi, i = 1, 2 involves only ports x, y, z, where y is shared, and have the
form:

γ1 : y = f(x)
γ2 : z = g(y)

then γ1 ∧ γ2 in (1.20) denotes the conjunction of y = f(x) and z = g(y).
This case captures the composition mechanism of dataflow formalisms —
thus the composition mechanism of dataflow formalisms is supported by
guards, not by actions. Note that the dependency of z on x through y is
immediate, i.e., involves no logical delay.

• If γi, i = 1, 2 have the form

γ1 : y = f(x)
γ2 : z = g(vy)

where y is a port and vy is a state variable storing the value of y at previous
transition:

α2 : v′
y := y

then γ1 ∧ γ2 introduces a logical delay in the composition of the two sys-
tems.

Thus, we see here a simple syntactic condition to ensure the existence of a logical
delay from input ports to output ports while composing two ESMs.
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1.6 Categories as specialization of HRC State

Machines

We now specialize our model of HRC State Machine into several categories of
assertions, or viewpoints, generically denoted by the symbol Γ. This is achieved
by

1. restricting the subset of ports and variables that characterize a category;
formally, we define subsets PΓ ⊆ P and VΓ ⊆ V;

2. specializing how the two transition relations ρ and δ restrict to these ports
and variables.

We do not need to define the synchronization of different assertions/viewpoints,
as this is just a particular case of product of HRC State Machine. In fact, our
HRC State Machine model has built-in cross-category heterogeneity. In the next
subsections we define basic categories considered within HRC.

Semantic atoms. For categories other than “discrete”, we also provide the
semantic atoms, i.e., the minimal set of building blocks that are sufficient for
building any model belonging to the considered viewpoint. Semantic atoms
must be combined with a suitable model that belongs to the discrete viewpoint.
They will be defined in terms of the mathematical syntax of Section 1.5. (The
paragraphs on atoms can be skipped for a first reading.)

1.6.1 Discrete functional category

In a pure discrete HRC State Machine the continuous dynamics is trivial. Al-
lowed ports and variables for this category are:

PΓ = P

VΓ = Vd

flow = Triv

Since Vd = ∅, continuous evolutions ϕ : R+ ⇀ ∅ → ∅ are all trivial: they
just let time progress until their duration tϕ has elapsed and perform nothing
else. Call Triv the set of all trivial continuous evolutions — note that these are
entirely parameterized by their duration. Composing with Triv has no effect
for continuous evolutions.
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1.6.2 Timed category

In a timed viewpoint, only clocks are considered in combination with enumerated
state variables for the discrete part:

PΓ = P

VΓ = V

Sd : finite set

∀ℓ ∈ L, ϕ |= flow(ℓ) ⇒
dϕ

dt
≡ 1 (corresponds to the clocks)

Semantic atoms. Atoms for timed systems are simply timers with their ac-
tivation guard. Thus timers are HRC State Machine having two variables: the
clock c (a continuous variable) and a trigger bc, a discrete variable of boolean
type. In addition, a continuous guard γc is provided as a constraint of the form
c ∈ C, where C is some subset of the positive real line (typically, c ≤ cmax, for
some threshold cmax). Clock c is active whenever γc ∧ [bc = T].

A timed system will be obtained by composing clocks with a discrete HRC
State Machine providing the bc’s as outputs, and taking the exit values of the
clocks as inputs. The use of this category in expressing contracts is illustrated
by the following example.

Example 2 (timing pattern, Figure 1.5) Consider the timing pattern on
the left hand side of Figure 1.5. It aims at specifying a timed communication
medium. Its intended (informal) meaning is that, whenever the delay between
the two events sb and tb is less than τb, then it is guaranteed that the delay
between the two events sa and ta is less than τa. On the right hand side of
this figure, we show two assertions: A, and ¬G. The pair (A,G) constitutes
contract C. Ports of C are: sa, sb, tb, ta, e. Among these ports, sa and tb are
uncontrollable. The two clocks ha and hb are local variables of the contract;
they satisfy the dynamics dh

dt
= 1. Assertion A emits e whenever the desired

pattern is completed with the due timing constraint on the pair sb, tb. Assertion
G ensures that, whenever e is received, then the timing constraint on the pair
sa, ta is satisfied. This contract is not in canonical form. To make it in canonical
form, simply replace ¬G by the product A × ¬G. ⋄

1.6.3 Hybrid category

The hybrid category simply corresponds to the general case of HRC State Ma-
chines.

Semantic atoms. Atoms for hybrid systems are differential inclusions with
their guard. Differential inclusions are HRC State Machines having two sets
of variables: a set X = {X1, . . . ,Xn} of continuous variables and the trigger
bX , a discrete variable of boolean type. In addition, a continuous guard γX
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A

¬G

≤ τb≤ τa

a

ta

sa

b

tb

sb

sa sb/hb := 0 [hb ≤ τb]tb

sa ∨ sb ∨ tasa ∨ ta ∨ tb

sa ∨ sb ∨ tb

ta/e

sa/ha := 0

[ha ≤ τa](ta ∧ e)

[ha > τa](ta ∧ e)

ta

sa/ha := 0

[hb > τb]tb

sa

sb ∨ ta ∨ tb

Figure 1.5: Assumption/Promise. Left: represented informally as a timing
pattern. Right: represented as the contract C = (A,G) (the black circle is an
accepting state).

is provided as a constraint of the form expc(X1, . . . ,Xn) ∈ C, where expc is
some differential expression with values in R

p and C is some subset of R
p. The

differential inclusion is active whenever γX ∧ bX holds.
A hybrid system is obtained by composing clocks with a discrete HRC State

Machine providing the bX ’s as outputs, and taking the exit values of the differ-
ential inclusions as inputs. Figure 1.6 gives such a decomposition for a variant
of the electric circuit presented in Figure 1.4. The switch is modeled with three
hybrid atoms: one for each state of the switch (opened and closed) and one
for controlling the two former atoms. Consider the hybrid atom j = v/R′.
When clock b is true, variable j is controlled by this atom, otherwise it is not
constrained by this atom.

1.6.4 Safety or Probabilistic category

Probabilistic ESMs specify what is considered random in a given ESM. Such
a framework is useful when dealing with reliability models in which reliability
properties interact with functional properties. For example, the risk for a com-
ponent to fail may become zero in certain operating modes. In this category
we provide means to specify such systems in a flexible yet simple way. More
precisely, we assume that randomness will apply only to a specified subset p of
ports. To be consistent with our approach, p must consist of ports that make
the considered ESM receptive. The idea is that the environment will be the
source of randomness for these ports. An element of the safety category thus
consists of the following:
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dv/dt =

u − v − Rj

RC

i =

(u − v)/R

b = (v ≥ 1)

b bu

j = v/R′

j = 0

j

i

u

u

i

R

R′

v ≥ 1

v

j

C

v

i

(u − v)/R

u − v − Rj

RC

v

j

j = 0
when
v < 1

j = v/R′

when
v ≥ 1

dv/dt =

i =

Figure 1.6: Use of clocked hybrid atoms. Top-left: Electric circuit. Top-right:
Modeling of the circuit as a composition of ESMs. Bottom: Composite state
machine with clocks to control hybrid atoms.

• An HRC State Machine H with set of ports P .

• A subset p ⊆ P of probabilistic ports, such that H is p-receptive, see
Section 1.3.2 the definition of receptiveness.

• For each p ∈ p, an activation port ap ∈ P of pure type. Each event
received on port ap triggers the emission of an event on port p with a
value drawn at random from some distribution µp. The different random
trials are independent between different probabilistic ports.

Probabilistic ports are categorized into time-related and value-related. If port
p is time-related, then µp is a distribution on R+ or N+ and the value emitted
by p is interpreted as a timing delay (e.g., for use in modeling the occurrence of
failures). The probabilistic semantics is straightforward. Since H is p-receptive:

1. one can draw at random the entire random sequence for each probabilistic
port p (it need not be an independent sequence, it can be Markov, or even
general);

2. these random sequences are stored for feeding the probabilistic ports of
H;

3. each probabilistic sequence of data is then offered to H when activation
port ap requests these.
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Comments. Note that this is still compatible with nondeterminism. And
other ways of modeling failure generation can be considered. For some appli-
cations, failures can be state-dependent. If there are only finitely many such
dependencies, then just provide one random source per different possible failure,
and select the right one in a state-dependent way. If correlation between fail-
ures must be covered, this can be generally achieved by generating appropriate
joint distributions by transforming joint distributions for independent random
variables. Of course, all these tricks have a cost, and it will be the role of the
use cases to check feasibility of this simple and pragmatic approach.

Semantic atoms. Semantic atoms for the safety category consist of an HRC
State Machine Hp having one probabilistic port p, the associated activation port
ap, associated distribution µp, and no variable.

Composing probabilistic ESMs. For i = 1, 2, let Pi = (Hi, Pi,pi, (µ
i
p)p∈pi

)
be two probabilistic ESMs. Their parallel composition P1 ‖ P2 is defined only
if

p1 and p2 are two disjoint sets of uncontrolled ports in H1 ‖ H2. (1.21)

Then,

P1 ‖ P2 = (H, P,p, (µp)p∈p) where







H = H1 ‖ H2

p = p1 ⊎ p2

µp = µi
p, where i is such that p ∈ pi

Comments regarding Condition (1.21) and a technique of wrappers.
The reason for Condition (1.21) is to keep composition simple for probabilistic
systems. If this condition does not hold, then indirect coupling between the
probabilities may occur, due to constraints resulting from taking the product
H1 ‖ H2. Condition (1.21) allows us to capture failure models, as well as random
timing models for input signals.

The consequences of Condition (1.21) regarding compositionality are, how-
ever, non trivial, as the following example shows. Consider a situation where
we have a component having a port x which is either a source of failure, or is
subject to failure propagation from another component. In the first case, the
model of this component should look like P = (H, P,p, µ), where p = {x} and
port x is uncontrolled. The second case, on the other hand, may be obtained
by composing P with another ESM in which x is an output and therefore con-
trolled. This is ruled out by our Condition (1.21), however. Thus, it seems that
this definition prevents us from capturing the above natural situation.

However, a simple mechanism of wrappers solves the problem as we ex-
plain next. Isolate the non probabilistic part H of our probabilistic ESM
P = (H,p, µ). Next, wrap H with the following small probabilistic ESM Px,
which has one controlled port x and three uncontrolled ports: xsource , xherit ,
and an additional port c taking values in the set {source, herit}. The only
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probabilistic port of Px is xsource , we equip it with the original probability
distribution µ. There is no assumption for ESM Px, and its guarantee is the
following assertion

E =def x = xsource if c = source else x = xherit if c = herit ,

which specifies a selector. Wrapping our original ESM in this way prepares it
for the desired parallel composition in a valid way.

This is illustrated in Figure 1.7. In this figure, thick triangles denote prob-

x

x

c

x

xherit

xsource

x

C =
(C,p, P)

C
Cx

Figure 1.7: Illustrating the wrapper mechanism.

abilistic ports. The incorrect composition is shown at the top; it gives rise to
a mismatch between thick and thin triangles. The corrected version, with its
wrapper Px, is shown at the bottom. Probabilistic ESM Px has one probabilistic
port xsource with probability µ, and one uncontrolled port xherit ; uncontrolled
boolean port c selects which input is propagated to the wrapped ESM H. The
design can be prepared for composition by this mechanism of wrapping. Wrap-
ping must be performed manually, however.

1.6.5 Illustrating multi-viewpoint composition

Our approach aims at supporting component based development of heteroge-
neous embedded systems with multiple viewpoints, both functional and non-
functional. The following simple example illustrates this for the case of func-
tional, timed, and safety viewpoints. The overall system architecture is shown
on Figure 1.8. It consists of a simple controller that can let the underlying
plant “start”, “stop”, or “work” (signals r, s, and w). The controller is sub-
ject to “failure” f of fail/stop type. The underlying plant has limited capacity
and thus the controller should not accumulate in excess of w messages during
a certain period. This is ensured by the supervisor. The supervisor monitors
the flow of w’s. When they get too frequent, an “overloaded” message o is sent
to the controller, which reduces the controller’s pace. When appropriate, the
human operator can decide to switch the controller back to its nominal mode,
by sending the “cleaned” message c to the pair controller/supervisor.
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supervisor controller

f

o

r

s

wc

Figure 1.8: The overall system architecture.

This system involves three viewpoints: functional, Quality of Service (QoS)
of timed nature, and safety. In designing her system, the designer may follow
three different methodologies. She may consider each of the two components
with its three viewpoints, implement each of them and then compose the result.
Alternatively, she may perform a first design by ignoring the safety viewpoint.
The safety aspect is then added in a second stage. Finally, she may consider all
contracts for all components in a flat manner. The semantics of our framework
has been designed to yield consistent results when following these trhee methods.
For more details on this aspect, we refer the interested reader to [5].

The different contracts. Figure 1.9 depicts the set of contracts associated to
the controller. For each contract, we show its assumption (top) and promise
(bottom). The third contract has trivial, empty assumption. Assumptions
are specified as observers, meaning that the corresponding diagrams define the
negation of these assumptions. In these diagrams, the circles filled in black
denote accepting states.

The first contract Cfunct describes the functional aspect under the no failure
assumption: the controller is activated by commands r (“run”) and s (“stop”),
and it can let the controlled system (not shown) work, by performing action w.
This contract holds in absence of a failure — shown by its assumption.

Contract CQoS indicates that, under the no failure assumption, there exist
two modes: nominal and degraded. Event o (for “getting overloaded”) is not
controlled by this component; in turn, when in overloaded mode, the human
operator (not shown) can decide to perform “cleaning”, corresponding to input
event c to the system. This contract holds in absence of a failure — shown by
its assumption. Contract CQoS relates to timing. When in nominal mode, the
controller performs its task (whose termination is abstracted with the action w)
in at most τn milli-seconds. When in degraded mode, the controller performs
its task in at least τd milli-seconds, with τd > τn.

Finally, contract Csafety specifies the safety aspect, which under no assump-
tion states that a fault can occur at any time.

Figure 1.10 depicts the QoS contract for the supervisor in charge of avoiding
system collapse by turning it to degraded mode. The assumption is trivial since
the supervisor is not subject to failure. The promise is specified in terms of a
hybrid automaton of the timed category. This hybrid automaton uses a timer
x bound to physical time, thus satisfying the differential equation ẋ = 1 (x
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safety
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⇓

⇓

⇓

Figure 1.9: The three contracts Cfunct , CQoS , and Csafety specifying the three
viewpoints of the controller. The assumption is put on top of the promise and

both are separated by the implication symbol ⇓ .

increases with constant speed 1). The behavior of this timer is depicted on the
second diagram. When action w occurs too frequently in the long range, timer
x starts decreasing and eventually reaches zero, which causes the emission of
message o and switches the mode to “overloaded”, where latency is at least τd.
At some point, the cleaning message c is input by the operator, which resets
the timer to 0 and brings the system back to its nominal mode.

1.7 Conclusion

We have briefly presented a framework for multiple viewpoint contracts. This
framework is supported by the Heterogeneous Rich Component (HRC) meta-
model, for which we have presented an underlying mathematical model of ma-
chine. We have emphasized how to support the combination of different view-
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ẋ = 1
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o c
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⇓

Figure 1.10: Contract Cs of the supervisor and its behaviour.

points and have provided a simple and elegant notion of parallel composition.
In order to support partial designs, we have favored a constrained, non

functional, style for our model. Also, we have considered that our systems are
open, i.e., are subject to further combination with other, yet to be defined,
subsystems. Our mathematical model is stratified in that it is progressively
refined by detailing more and more its mathematical objects — from abstract
transitions to combinations of guards and assignments.

One important feature of this model is that it has two equally important (and
equivalent) versions. In the first version, states are snapshots whereas transi-
tions are “thick” — transitions support continuous progress and invariants. For
this version, parallel composition is by intersection, which is particularly simple
and elegant. In the second version, transitions are snapshots whereas states are
“thick” — states support continuous progress and invariants. This second ver-
sion conforms to region based models of systems, which are preferred by model
checking tools. We have shown how the two versions can be intertranslated.
Since the notions of state and transition are in fact interchanged between the
two versions, it was essential not to constrain the way systems can interact. We
have thus chosen to support both common state variables and common ports as
vehicles for interaction.

Finally, we have characterized categories, i.e., subclasses of systems focusing
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on a particular aspect or viewpoint. One particular category required specific
attention in dealing with parallel composition, namely the probabilistic one.

The resulting mathematical model is the basis for a precise behavioral se-
mantics for the HRC metamodel and provides a precise semantic for component
composition, an often neglected issue in the design of frameworks for component
based design.
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