
Distributed implementations of Ramadge-Wonham supervisory control
with Petri nets

Philippe Darondeau

Abstract— The purpose of the paper is to assess the benefits
of using free labeled and bounded Petri nets as controllers,
in the context of Ramadge and Wonham’s supervisory control
theory. This theory allows, for several types of control problems
expressed with regular languages, to decide when they are
feasible and to produce finite control automata as solutions.
The state graphs of free labeled and bounded Petri nets are a
strict subclass of the finite automata. Concentrating on Petri
net controllers can only lead to a weaker theory. The compact
representation of net controllers is not a definite advantage since
modular control synthesis may be used to a comparable effect
in the framework of automata and their products. In order to
reveal the major benefits of Petri net synthesis for supervisory
control, we further impose on nets a structural constraint of dis-
tributability. Bounded and distributable nets translate to equiv-
alent systems of finite message passing automata. Distributable
net controllers induce therefore distributed control systems
for distributed discrete event systems: each DES component
receives as its local control component one of the message
passing automata, and the locally controlled subsystems interact
with one another in fully asynchronous mode. We study in this
paper the implementation of Ramadge and Wonham’s finite
state controllers by distributable net controllers.

I. INTRODUCTION

Given a finite plant-automaton A with language L(A) and
a regular behavior B⊆L(A), Ramadge and Wonham’s theory
[1] [2] [3] allows to decide whether B = L(A×C) for some
finite control automaton C subject to smooth admissibility
constraints, where A×C is the synchronized product of A and
C, and it allows to construct such C. Similar procedures apply
to the problem L(A×C) ⊆ B, yielding maximal solutions
L(A×C) under the assumption that unobservable events are
uncontrolable.

Our goal is to search for equivalent Petri net implemen-
tations of the finite state controllers produced by Ramadge
and Wonham’s constructive results. More precisely, we want
to decide in which case a finite state controller may be
implemented with a bounded Petri net with free labeling
(i.e. with injectively labeled transitions). The problem is not
trivial: it may occur that L(C) is not the language of any free
labeled and bounded Petri net whenever B = L(A×C) for
some controller automaton C. The practical interest of free
labeled and bounded Petri net controllers may be questioned,
precisely since they are weaker than finite automata. A
tentative answer is that efficient synthesis procedures exist
for free labeled nets, producing compact representations of
controllers when they succeed [4]. No comparable procedure
is known for the bounded nets with a non injective labeling
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(therefore equivalent to the finite automata) as the trivial
synthesis procedure yields nets with the same size as the
corresponding automata. Now the gain in compactness may
be deemed an insufficient reward for the lack of generality:
compact controllers may be obtained by modular control
synthesis [5] without a comparable loss of generality.

In our view, the major benefits of net synthesis appear
only after one imposes on nets a structural constraint of
distributability as follows. A Petri net with a set of transitions
T = T1 ∪ . . .∪Tl , where the Ti’s are disjoint, is distributable
if its set of places has a similar partition P = P1 ∪ . . .∪Pl ,
such that t ∈ Ti entails p ∈ Pi whenever transition t consumes
tokens from place p. Bounded and distributable nets translate
up to divergence-free branching bisimulation to equivalent
systems of finite message passing automata {C1, . . . ,Cl}, in
which no assumption is made on the order nor on the delay
of delivery of the messages and the number of messages
in transit stays bounded. When the plant automaton A is a
system of message passing automata {A1, . . . ,Al}, any dis-
tributable net controller may then be turned to a distributed
implementation as shown in Fig. 1, where each Ai and Ci

interact synchronously while the different locally controlled
subsystems Ai ×Ci interact asynchronously.

AkA1

CkC1

Fig. 1. A distributed controlled system

In the architectures we consider, each control component
Ci observes and controls subsets of the corresponding subal-
phabet Ti. Additionally, different components Ci can send to
one another finite sets of messages (not necessarily names
of observed transitions). Due to this general communication
pattern, the distributed Petri net controllers we propose
do not easily compare with the decentralized controllers
considered in [6].

Our work has admittedly two main limitations. First,
we cannot synthesize labeled distributable Petri nets more
compact than automata. Second, we cannot synthesize Petri
nets from products of automata without computing these
products, hence we cannot exploit the distributed structure of
plant automata: net synthesis occurs downstream from finite
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state controller synthesis, and it takes monolithic controllers
as inputs.

The rest of the paper is organized as follows. Section 2 is a
brief recall of Ramadge and Wonham’s basic results. Section
3 enumerates the problems posed by an adaptation to Petri
net controllers. Section 4 presents Petri net synthesis as a tool
for controller synthesis. Section 5 brings distributable Petri
nets and focusses on their application to distributed control.

II. RAMADGE AND WONHAM’S BASIC THEORY

The short reminder below is inspired from [1] [2] [3].
A Discrete Event System or DES is a tuple (Σ,L,Lm)

where Σ is a finite alphabet, Lm ⊆ L ⊆ Σ∗, and L is equal
to its prefix closure L. Lm is the marked sublanguage of L.
Two independent bi-partitions of the alphabet are assumed,
namely Σ = Σc∪Σuc and Σ = Σo ∪Σuo. The event symbols in
Σc (resp. in Σo) are controlable (resp. observable).

A controller is a partial map f : L ⇀ P (Σ) such that f s ⊇
Σuc whenever f s is defined and f s = f s′ whenever πo s =
πo s′, where πo : Σ∗ → Σ∗

o projects sequences of events to
observable subsequences.

The f -controlled DES is the tuple (Σ,Lf ,Lf
m) where Lf

m =
Lf ∩Lm and Lf is the least language containing ε (the empty
word) such that sσ ∈ Lf for all s ∈ Lf , σ ∈ f s, and sσ ∈ L.
The controller f is non-blocking if Lf = L

f
m.

A behavior B ⊆ L may be enforced by supervision (	 B)
if B = Lf for some controller f .

A marked behavior B ⊆ Lm may be enforced by non-
blocking supervision (	m B) if B = Lf

m for some non-blocking
controller f .

In order to characterize the behaviors that may be enforced
by supervision, Ramadge and Wonham introduce the key
concepts of controlability and observability. A sublanguage
S ⊆ L is controlable if S Σuc∩L ⊆ S (the prefix closure of S).
It is observable if sσ ∈ L \ S ⇒ s′σ �∈ S for all σ ∈ Σc and
for all s,s′ ∈ S with equal projections πo s = πo s′.

The characterization is as follows.
For B ⊆ L, 	 B iff B = B and B is controlable and observable.
For B ⊆ Lm, 	m B iff B = B∩Lm and B is controlable and
observable.

Ramadge and Wonham moreover propose sufficient condi-
tions ensuring that whenever some non empty behavior B′ ⊆
B can be enforced by supervision, the set of these behaviors
has a supremum. This holds in particular if Σuo ⊆ Σuc, i.e.
when the unobservable events are uncontrolable. In this case
the following hold:
if B = B ⊆ L then 	 ∪{B′ ⊆ B | 	 B′},
if B = B∩Lm then 	m ∪{B′ ⊆ B | 	m B′}.

All results above have constructive versions when L and B
are languages or marked languages of finite automata. Given
L = L(A) and B ⊆ L, one can construct a finite automaton
C such that L(A×C) = ∪{B′ ⊆ B | 	 B′} and the induced
partial map f : L ⇀ P (Σ) defined with f (s) = {σ ∈ Σ |sσ ∈
L(C)} for s ∈ L(C) is a controller. Similarly, given Lm =
Lm(A) (the language recognized be the final states of A) and
B ⊆ Lm, one can construct a finite automaton C such that

Lm(A×C) = ∪{B′ ⊆ B | 	m B′} and f is a non-blocking
controller.

It is worth noting that the above control automata C may
easily be transformed into equivalent finite automata where
all unobservable events induce partial identities on the set
of states. It suffices indeed to replace each transition q

σ−→ q′

such that q �= q′ and σ∈Σuo with q −→ q′ and q′ σ−→ q′, and to
apply determinization using the classical subset construction.

III. TOWARDS CONTROLLER NETS

In the sequel, N = (P,T,F,M0) denotes a Petri net, where
F : (P×T )∪ (T ×P) → IN defines the weights of the arcs
and M0 : P → IN defines the initial marking. We assume that
the net firing rule is known to the reader. We let L(N) ⊆ T ∗
denote the (free) language of N. Since we consider Petri nets
with free labeling, we let T = Σ.

A. Optimal Controller Nets

Let B and L be regular languages, such that B = B⊆ L = L,
and let S = ∪{B′ ⊆ B | 	 B′}. It is assumed throughout the
section that either S = B (this holds iff B is controlable and
observable) or S is regular and 	 S (this holds whenever
Σuo ⊆ Σuc). Thus, in all cases under consideration, S (for
“supremal”) is a regular prefix closed language, and it is
controlable and observable. Since S = Lf for some controller
f , one may wonder whether S = L∩L(N) for some bounded
net N “implementing” f . Clearly, the following relations
must hold:

S ⊆ L(N) ⊆ S∪C (L) (1)

where C denotes complementation in Σ∗. Now, defining net
implementations of controllers is not that obvious.

A first and easy issue is with uncontrolable events. In this
respect, N should fulfil the condition stated as:

L(N)Σuc ⊆ L(N)∪C (L) (2)

Since S is controlable and L is prefix closed, condition 2
follows as a straightforward consequence of condition 1,
hence we shall not set it as an explicit requirement on
controller nets.

A second issue and problematic is with unobservable
events. In order to show the problem, let us consider the
automata A and A′ shown in figure 2 (the initial state is in
black).

a

b c

b

e

d d

e

Fig. 2. A (all transitions) and A′ (solid transitions only)

Let L = L = L(A), B = B = L(A′), and Σuo = {a,c} =
Σuc. The considered behavior B is clearly controlable and
observable, hence S = B. A Petri net N satisfying condition
1 is shown in figure 3.
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Fig. 3. A tentative net implementation of the controller

It may be verified that sσ ∈ L(N) ⇔ s′ σ ∈ L(N) for all
σ ∈ Σc and s,s′ ∈ L(N) such that πo s = πo s′. However, each
occurrence of an unobservable event a or c changes the
marking of N. It must be the same in every net N satisfying
condition 1. Actually, if e and abcbe belong to L(N) and a
and c do not change the markings of N, M0[e〉 and M2[e〉
at both extremities of some firing sequence M0[b〉M1[b〉M2,
and M1[e〉 follows by convexity, entailing that abe ∈ L(N).
We consider that no Petri net implementation of controllers
exists in this case. We shall therefore impose on controller
nets N the following requirement:

(∀p ∈ P) (∀σ ∈ Σuo) F(p,σ) = F(σ, p) (3)

A third and last issue is with the boundedness of controller
nets. Imposing on N to be bounded according to the usual
definition is overly restrictive, since the firing sequences of
N which are not in L cannot be fired anyway in the closed
loop system formed of the plant and the controller net. We
shall therefore set on controller nets the weaker requirement
of boundedness relative to L (L-boundedness) as follows:

(∀p ∈ P)(∃n)(∀s ∈ L∩L(N)) M0[s〉M ⇒ M(p) ≤ n (4)

Altogether, a controller net enforcing S should satisfy the
conditions 1, 3, and 4.

We look now briefly at marked languages. Let B and Lm

be regular languages, with B = B∩Lm, and let S = ∪{B′ ⊆
B | 	m B′}. Assume that S = B (this holds iff B is controlable
and observable) or S is regular and 	m S (this holds is
Σuo ⊆ Σuc). Thus, S is a regular prefix closed language,
and it is controlable and observable. Searching for a non-
blocking controller net enforcing S amounts to constructing
N satisfying conditions 1, 3, and 4 (with L = Lm).

It will be shown that one can decide whether exist and
then construct such controller nets. Note that the parameter
S in 1 is a regular language, obtained through the use
of Ramadge and Wonham’s construction of the “maximal
permissive” (finite state) controller. Thus, in the situations
considered so far, the synthesis of Petri nets appears as a
final phase for implementing finite state controllers produced
by independent means.

B. Non Optimal Controller Nets

We consider in this section the cases where the supremal
controlable and observable sublanguage S of the “legal”
behavior B does not exist or cannot be enforced by controller
nets (they are strictly weaker than finite state controllers).

Following [1], it is recommended in such situations to specify
the “minimal acceptable behavior” Bmin which is expected.

Given regular languages B and L such that B = B ⊆ L = L
and a regular language Bmin ⊆B, the question is then to find a
controller f such that Bmin ⊆ Lf ⊆ B. An obvious adaptation
of this problem is to search for a controller net N satisfying
conditions 2, 3, 4 and the relations:

Bmin ⊆ L(N) ⊆ B∪C (L) (5)

Here we cannot dispense with condition 2 because it does not
follow from condition 5 (Bmin is in general not controlable
and it may differ from B). Unfortunately, deciding whether
there exists some net satisfying the conditions 2, 3, 4, and 5
is an open problem, linked with the synthesis of Petri nets
from modal automata [7]. Therefore, in place of 2, we set
on controller nets the stronger requirement:

(∀p ∈ P) (∀σ ∈ Σuc) F(p,σ) = 0 (6)

Condition 6 states that no uncontrolable transition consumes
tokens from any place, hence it entails L(N)Σ∗

uc ⊆ L(N).
If the requirement of boundedness of N had not been made
relative to L, condition 6 would also have entailed:

(∀p ∈ P) (∀σ ∈ Σuc) F(σ, p) = 0 (7)

Then, uncontrolable events would have been dealt with as
unobservable events, which is a severe limitation. To sum
up, searching for a controller net enforcing the “tolerance”
[Bmin,B] on the behaviors of the plant amounts to construct-
ing N satisfying conditions 3, 4, 5, and 6.

Let us consider have a glance at marked languages. When
Lm is a marked language and B = B∩ Lm, searching for a
non-blocking controller net enforcing the tolerance [Bmin,B]
amounts to constructing N satisfying conditions 3, 4, 5, and
6 (with L = Lm).

It will be shown that the existence of such controller nets
can be decided. Here, the synthesis of controller nets does
not rely at all upon Ramadge and Wonham’s constructive
results.

C. Outline of the Decision Procedures

All problems we have met may be abstracted to a common
form with three parameters: a prefix-closed regular language
L, a regular subset R⊆ L, and a regular language R′. Namely,
they all reduce to finding among the L-bounded Petri nets
some net N such that:

R ⊆ L(N) ⊆ R′ ∪C (L) (8)

and N moreover conforms to the structural condition 3 (or
6 and 3). We shall construct a net N, conforming to these
conditions, such that R⊆L(N) and L(N) is the least possible
net language. It will then remain only to check the relation
L(N) ∩ L ⊆ R′, which amounts to comparing two regular
languages, because N is L-bounded.
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IV. PETRI NET SYNTHESIS

We proceed in two steps. In the first step, we show how
computing an unbounded net N such that R ⊆ L(N) and
L(N) is the least possible. We observe that linear constraints
on places of N (such as conditions 6 and 3) can be added
without changing the algorithm. In the second step, L-
boundedness is taken care of. For this purpose, we run
the above algorithm iteratively for increasing sets of linear
constraints until an L-bounded net is obtained. The number
of iterations is at most one plus twice the size of the alphabet.

A. Unbounded Net Synthesis

From now on N = (P,T,F,M0), T = Σ, and R is a non
empty prefix closed regular language of Σ∗ = T ∗ (this may
be assumed w.l.o.g. for net languages are prefix closed).

Let T = {t1, . . . ,tn}. A place p of a net N may be
represented as a (2n + 1)-vector of non negative integers

< M0(p),F(p,t1), . . . ,F(p,tn),F(t1, p), . . . ,F(tn, p) >

Assume R⊆L(N). Let st j ∈ R with s ∈ Σ∗ and let [s]i denote
the occurrence count of ti in s, then:

M0 +
n

∑
i=1

[s]i × (F(ti, p)−F(p,ti)) ≥ F(p,t j) (9)

Therefore, the set of all the places of all the nets N with
languages larger than R coincides with the set of the vectors
�x =< x0,x1, . . . ,xn,xn+1, . . . ,x2n > such that for all st j ∈ R:

x0 +
n

∑
i=1

[s]i × (x(n+i)− xi) ≥ x j (10)

When st j ranges over R \ {ε}, we get an infinite set of
linear inequality constraints on the variables x0 (= M0(p)),
xi (= F(p,ti)) and x(n+i) (= F(ti, p)). Using the fact that
R is a regular language, this set may be reduced to a
finite equivalent set of constraints. Two properties of the
regular languages are crucial to the reduction. First, for
any j ∈ {1, . . . ,n}, the quotient R/t j = {s ∈ T ∗ |st j ∈ R} is
regular. Second, for any regular language S ⊆ T ∗, the set
[S] = {[s] |s ∈ S} (where [s] =< [s]1, . . . , [s]n >) is a semi-
linear subset of INn. Let us recall definitions. INn is a monoid,
with the componentwise addition of vectors as the product
operation and the all-zeroes vector as the neutral element. A
subset of INn is linear if it may be expressed in this monoid
as �e ·F ∗, where �e ∈ INn and F is a finite subset of INn (F ∗
is the least submonoid of INn containing F ). A subset of INn

is semi-linear if it is a finite union of linear subsets.
For each j ∈ {1, . . . ,n} and for each linear subset �e ·F ∗

of [R/t j], all instances of 10 that arise from words s ∈ R/t j

such that [s] ∈�e ·F ∗ may be replaced equivalently with the
following finite system, where f ranges over F :

n

∑
i=1

�e[i]× (x(n+i)− xi) ≥ x j − x0 (11)

n

∑
i=1

�f [i]× (x(n+i)− xi) ≥ 0 (12)

Therefore, the set of all places of all nets N with languages
larger than R may be represented as the set of the non
negative integer solutions�x = < x0,x1, . . . ,xn,xn+1, . . . ,x2n >
of a finite system of linear homogeneous inequalities 11 and
12. Let S0 denote this system. Chernikova’s algorithm [8]
allows to compute a finite family of non negative integer
vectors �x1 . . .�xm such that the set of non negative solutions
of S0 is the set of linear combinations �x = ∑m

l=1 ql�xl with
non-negative rational coefficients ql .

This family of vectors �x1 . . .�xm induces a Petri net N0 =
(P,T,F,M0) with a set of places P = {p1, . . . , pm} as follows:
M0(p j) is the first component of �x j, and for all i, F(ti, p j)
and F(ti, p j) are the (1+ i)-th and (n+1+ i)-th components
of �x j, respectively. L(N0) is actually the least net language
larger than R. We refer the reader to [9] for a complete proof
of this fact. The argument is as follows. Given any s ∈ T ∗
and t j ∈ T , if the linear inequality (9) does not hold for some
place p of some net N such that L(N) ⊇ R, then it does not
hold for at least one place in the set {p1, . . . , pm}, because
the integer vector �x representing p must be a solution of S0

and hence it is a non negative linear combination of �x1 . . .�xm.
The above construction of N0 stays unchanged when the

condition 3 (or 6 and 3) is added as a constraint on controller
nets N. It suffices indeed to augment the linear system S0

with one equation xi = xn+i for each ti ∈Σuo (and if necessary,
with one equation xi = 0 for each ti ∈ Σuc). We assume from
now on that these equations are comprised in S0.

B. L-bounded Net Synthesis

Let A = (Q,Σ,δ,q0) be a finite deterministic automaton
with the language L(A) = L. Since L is prefix closed, all
states q ∈ Q are accepting states.

Let N0 = (P,T,F,M0), where T = Σ, be the net with the
least net language larger than R. It can be decided whether N0

is L-bounded, in which case L(N0) is clearly the infimum of
the L-bounded net languages larger than R (the language Σ∗
is always in this family since a net with no place is bounded).

The decision relays on the well known Karp and Miller’s
construction of a covering tree [10]. Starting from a root
vertex v0 labeled with (M0,q0), one constructs as many
successor vertices as transitions t ∈ T such that M0[t〉M for
some M in N0 and δ(q0,t) = q for some q ∈ Q. Each new
vertex v is labeled with the pair (M,q) determined by the
corresponding t, and the incoming edge is labeled with t.
This process is iterated from the new vertices, thus producing
a tree. The expansion of the tree is stopped at each leaf
vertex v with a label (M,q) greater than or equal to the label
(M′,q′) of some ancestor vertex v′, where (M′,q′) ≤ (M,q)
iff M′ ≤ M and q′ = q. The sequence s ∈ T ∗ read along the
path from v′ to v in the tree is then a repetitive sequence of
N0 ×A. Since Q and T are finite and by Dickson’s lemma,
the tree is finite. The net N0 is L-bounded iff for each leaf
vertex v, the label (M,q) of v is identical with the label of
some ancestor vertex v′. In this case, the tree may be turned
into a finite automaton that accepts the language L(N0)∩L:
it suffices to identify each leaf vertex v with the ancestor
vertex v′ that bears the same label.
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If N0 is not L-bounded, one may consider the set of the
repetitive sequences s that increase the marking of N0, i.e.
that lead from some vertex v′ to some leaf vertex v with a
greater label. This set S is finite. For any sequence s ∈ S
from v′ to v in the covering tree, let s′ be the sequence read
on the path from v0 to v, then by construction of the tree,
s′s∗ ⊆L(N0)∩L. Since L(N0) is the least net language larger
than R, a similar relation s′s∗ ⊆ L(N)∩L holds for any Petri
net N with language larger than R. Therefore, in order that
N should be L-bounded, the following must hold for every
place p of N:

n

∑
i=1

[s]i × (F(ti, p)−F(p,ti)) = 0 (13)

Let S1 be the linear system formed of all equations and
inequalities in S0, plus a new equation for each s ∈ S, as
follows:

n

∑
i=1

[s]i × (x(n+i)− xi) = 0 (14)

If some of the new equations was as a linear consequence of
the constraints in S0, the corresponding sequence s would not
increase the markings of N0. Therefore, the new equations
are independent of S0. Moreover, S1 is a finite linear system.
After replacing S0 with S1, a new net N1 may be computed
following the algorithm described in IV-A. After replacing
S0 and N0 with S1 and N1, respectively, one is back to the
situation met at the beginning of IV-B, hence one can iterate
the algorithm described in this section.

The iteration produces a sequence of pairs (Sk,Nk) for
increasing k, starting with k = 0. We claim that it must stop
at k ≤ 2n + 1 where n is the size of the alphabet. To show
this, it suffices to recall that at each step, one adds at least
one equation that does not depend on the equations already
present. As places of nets are represented with vectors in
IN2n+1, this can occur at most 2n+1 times, establishing the
claim. In the particular case when the iteration stops at k =
2n + 1, the resulting net has no place at all, since only the
all-zeroes vector can be a solution of S2n+1.

V. DISTRIBUTABLE CONTROLLER NETS

In this section, we add other constraints on Petri nets,
reflecting distributed control architectures. We assume for
this purpose that the alphabet Σ = Σc∪Σuc = Σo ∪Σuo comes
equipped with a map λ : Σ → {1, . . . l} assigning to each
event the unique location where it may occur. This map
induces a partition Σ = Σ1 ∪ . . .∪Σl where Σk = λ−1(k). The
goal is to implement Ramadge and Wonham’s supervisory
control with message passing automata C1 . . .Cl such that
each component automaton Ck controls (resp. observes) only
the subset of events in Σc∩Σk (resp. in Σo∩Σk), and the local
controllers Ck act and communicate in fully asynchronous
mode. Distributable Petri nets and their synthesis are a
possible way to reach this goal.

A. Distributable Petri Nets

The short presentation below is inspired from [11]. We
refer the reader to this paper for the detailed constructions
and for the proofs.

Given a locating map from Σ to {1, . . . l}, a distributable
Petri net on Σ is a 5-tuple N = (P,T,F,M0,λ) where T = Σ,
(P,T,F,M0) is a Petri net, λ : (P∪T )→{1, . . . l} extends the
locating map, and F(p,t) �= 0 ⇒ λ(p) = λ(t) for every place
p ∈ P and for every transition t ∈ T .

Any distributable Petri net N = (P,T,F,M0,λ) may be
expanded to a Petri net N′ = (P′,T ′,F ′,M′

0) as follows (see
figure 4 for an illustration). Each place p of N is split to l +1
copies: a local place (p,k) for each location k ∈ {1, . . . l},
and a channel (p,0), thus P′ = P×{0, . . . l}. For t ∈ T , let
F ′((p,k),t) = F(p,t) if λ(t) = k, 0 otherwise. Similarly, let
F ′(t,(p,k)) = F(t, p) if λ(t) = k, 0 otherwise. For each place
p of N and for each location k �= λ(p), a send transition k!p
is added, such that F ′((p,k),k!p) = F ′(k!p,(p,0)) = 1 and
k!p is not connected to any other place. Finally, for each
place p of N with the location λ(p) = k, a receive transition
k?p is added, such that F ′((p,0),k?p) = F ′(k?p,(p,k)) = 1
and k?p is not connected to any other place.

p

p’

t t’

(p,2)(p,0)(p,1)

location = 1

t t’

(p’,0) (p’,2)(p’,1)

2!p1?p

1!p’ 2?p’

location = 1 location = 2

location = 2

Fig. 4.

It has been proved in [11] that when send and receive
transitions k!p and k?p are dealt with as silent transitions
(hence labeled with ε), N′ is divergence-free (every sequence
of silent transitions is finite) and branching bisimilar to N.
This means that there exists a binary relation ∼ between the
reachable markings of N and N′, respectively, such that:
M0 ∼ M′

0
M1 ∼ M′

1 ∧ M′
1[∗〉M′

2 ⇒ M1 ∼ M′
2

M1 ∼ M′
1 ∧ M′

1[t〉M′
2 ⇒∃M2 · M1[t〉M2 ∧ M2 ∼ M′

2
M1 ∼ M′

1 ∧ M1[t〉M2 ⇒∃M′
2 · M′

1[∗〉[t〉M′
2 ∧ M2 ∼ M′

2
where t ∈ T and M′[∗〉 means the firing of some sequence
of silent transitions. It was moreover shown that the relation
M ∼ M′ iff ∀p ∈ P M(p) = ∑{M′(p,k) |0 ≤ k ≤ l} satisfies
all these conditions.
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B. Distributed Implementations

We come back to supervisory control. Let Σ = Σc ∪Σuc =
Σo ∪Σuo. Consider a plant where the events in Σ may occur
at l different locations. Let λ : Σ → {1, . . . l} be the locating
map, and let Σk = λ−1(k) for k ∈ {1, . . . , l}. Suppose this
plant has a regular language L. Consider some supervisory
control objective, and suppose that it may be enforced by a
controller net N which is both L-bounded and distributable.
The net N may be translated as follows to a system of
message passing automata C1 . . .Cl , where each automaton
Ck controls (observes) the events in Σc ∩Σk (Σo ∩Σk).

Since N is distributable, it may be expanded to a branching
bisimilar net N′ as defined in V-A. Let the product of N′ and
the plant be defined such that events in this product are either
pairs < t,t > where t is a transition of N or silent transitions
k!p or k?p. Since N is L-bounded, and the relation M ∼ M′
iff ∀p ∈ P M(p) = ∑{M′(p,k) |0 ≤ k ≤ l} is a branching
bisimulation between N and N′, N′ is L-bounded, and each
place (p,k) inherits the bound of p in N ×L.

Removing all channels (p,0) from N′ yields net compo-
nents N′

1 . . .N′
l such that all places of N′

k have the form (p,k).
For each k ∈ {1, . . . l}, an automaton Ck may be obtained by
computing the reachability graph of N′

k within the bounds
on places (p,k) inherited from the bounds of places p in
N ×L. Thus, if N and N′ are the nets from figure 4, C1 is
the automaton shown in figure 5, where the initial state is the
marking (2,0) (2 tokens in (p,1) and no token in (p′,1)).

(1,0)

(0,0)

(2,0) (0,2)(1,1)

(0,1)

1!p’ 1!p’

1!p’

tt

t

1?p

1?p

1?p

Fig. 5.

The message passing automata C1 . . .Cl send (receive)
messages to (from) an asynchronous communication network
which is only assumed not to loose any message. They yield
the distributed implementation of the controller net N we
were searching for. The naive algorithm we used to expand
a distributable Petri net into a Petri net results in a high cost
of communications. A more economic transformation, where
each message contains more information, is defined in [11].

C. Distributable Petri Net Synthesis

It remains to show that for any instance of the problem 8,
where L is a regular language over Σ and λ : Σ → {1, . . . l},
one can construct an L-bounded and distributable net N such
that 3 (or 6 and 3) hold, R ⊆ L(N), and these properties do
not hold for any net N′ unless L(N) ⊆ L(N′).

This can be done with a straightforward adaptation of the
algorithm presented in IV-B. Every place p of a distributable
net N = (P,T,F,M0), where T = Σ, must satisfy

(∃k ∈ {1, . . . , l}) (∀t �∈ λ−1(k)) F(p,t) = 0

Therefore, instead of considering the linear system S0 defined
in IV-A, we consider now as many linear systems S k

0 as there
are locations k ∈ {1, . . . , l}. Each linear system S k

0 is formed
by augmenting S0 with one instance of the equation x j = 0
for each t j ∈ T such that λ(t j) �= k.

For each k ∈ {1, . . . , l}, a net Nk
0 may be constructed from

S k
0 as indicated in IV-A. Let N0 be the net which is obtained

by gluing together all nets Nk
0 on each transition t ∈ T .

Clearly, L(N0) is the least distributable net language larger
than R. Given any automaton A with the language L(A) = L,
one may decide whether N0 is L-bounded by constructing a
covering tree for N0×A. If N0 is not L-bounded, one instance
of the equation 14 is added to every system S k

0 for each
repetitive sequence s which increases the markings of N0.
This yields a new family of linear systems S k

1 . The iteration
proceeds like in IV-A and it converges similarly in at most
2n + 1 steps, where n is the size of the alphabet.

As a final remark, it may be observed that any boolean
combination of linear constraints x j = 0 or xn+ j = 0 may
be dealt with in a similar way, after is has been set to
the disjunctive normal form: one constructs as many linear
systems S d

0 as there are disjuncts d, formed by augmenting
S0 with the constraints in the disjunct d.

Specific architectures of distributed controllers may there-
fore be taken into account within Petri net synthesis. For
instance, if the communication network does not allow
messages to be sent from location k to location h, one sets
the constraint ∧λ(ti)=k ∧λ(t j)=h (xn+i = 0∨ x j = 0).
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