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Abstract. The firing rule of Petri nets relies on a residuation operation
for the commutative monoid of natural numbers. We identify a class of
residuated commutative monoids, called Petri algebras, for which one
can mimic the token game of Petri nets to define the behaviour of gen-
eralized Petri net whose flow relation and place contents are valued in
such algebraic structures. We show that Petri algebras coincide with the
positive cones of lattice-ordered commutative groups and constitute the
subvariety of the (duals of) residuated lattices generated by the commu-
tative monoid of natural numbers. We introduce a class of nets, termed
lexicographic Petri nets, that are associated with the positive cones of
the lexicographic powers of the additive group of real numbers. This class
of nets is universal in the sense that any net associated with some Petri
algebras can be simulated by a lexicographic Petri net. All the classical
decidable properties of Petri nets however are undecidable on the class
of lexicographic Petri nets. Finally we turn our attention to bounded
nets associated with Petri algebras and show that their dynamics can be
reformulated in term of MV-algebras.

1 Introduction

The Petri net model is a graphical and mathematical modeling tool that, since
its introduction in the early sixties, have come to play a pre-eminent role in
the formal study of concurrent discrete-event dynamic systems. A Petri net
(P, T, Pre, Post) consists of a finite set P of places, a finite set T of tran-
sitions (disjoint from P ), and flow relations Pre, Post : P × T → N. Places
can contain some tokens representing the resources available in this place for
the current configuration. A configuration of a Petri net is given as a vector
M : P → N, called marking, indicating the number of tokens available in each
place. Tokens are consumed and produced by the firing of transitions according
to the so-called token game
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M [t〉M ′ ⇔ (∀p ∈ P ) M(p) � Pre(p, t) ∧ M ′(p) = (M(p)−Pre(p, t))+Post(p, t)

The token game of Petri net says that in order for a transition t to fire in mark-
ing M it should be the case that each place contains enough resources as it is
expressed by the condition M(p) � Pre(p, t) where � is the usual order relation
on N. Then the firing of transition t proceeds in two stages : a consumption of
resources (Pre(p, t) tokens are removed from place p) followed by a production
of resources (Post(p, t) tokens are added to place p). The notation M [t〉M ′ ex-
presses the fact that transition t is allowed to fire in marking M and that firing t
in marking M produces the new marking M ′. Numerous techniques, supported
and automated by software tools, can be used to verify that some required prop-
erties are met for systems specified using Petri nets. For instance reachability,
coverability, place-boundedness, deadlock and liveness can be decided on the
class of Petri nets [13].

Numerous extensions of this basic model of Petri nets have been introduced
over the years. Some of them are high level nets that allow for more compact
representations but do not increase the expressive power of Petri nets: these
high level nets can be unfolded into equivalent, even though in general much
larger, Petri nets. Some extensions however change more dramatically the se-
mantics of the original model. For instance timing constraints may be added,
as in timed Petri nets or stochastic Petri nets for the purpose of enabling per-
formance analysis. With continuous Petri nets the discrete state transition rule
is replaced by a notion of trajectory using a continuum of intermediate states.
In Fuzzy Petri nets one has a possibilistic measure of the firing of a transition
in the given marking thus enabling to deal with incertainty. Our purpose in
this paper is to put forward an axiomatisation of the token game of Petri nets.
More precisely we identify a class of commutative residuated monoids, called
Petri algebras, for which one can mimic the token game of Petri nets to define
the behaviour of generalized Petri nets whose flow relations and place contents
are valued in such algebraic structures. The sum and its associated residuation
capture respectively how resources within places are produced and consumed
through the firing of a transition. The class of usual Petri nets is associated
with the commutative monoid of natural numbers. We show that Petri alge-
bras coincide with the positive cones of lattice-ordered commutative groups and
constitute the subvariety of the (duals of) residuated lattices generated by the
commutative monoid of natural numbers. The basic Petri net model is thus as-
sociated with the generator of the variety of Petri algebras which shows that
these extended nets share all algebraic properties of Petri nets, in particular
they have the same equational and inequational theory. We however exhibit a
Petri algebra whose corresponding class of nets is strictly more expressive than
the class of Petri nets, i.e. their class of marking graphs is strictly larger. More
precisely, we introduce a class of nets, termed lexicographic Petri nets, that
are associated with the positive cones of the lexicographic powers of the addi-
tive group of real numbers. This class of nets is proved to be universal in the
sense that any net associated with some Petri algebra can be simulated by a
lexicographic Petri net. All the classical decidable properties of Petri nets how-
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ever (termination, covering, boundedness, structural boundedness, accessibility,
deadlock, liveness ...) are proved to be undecidable on the class of lexicographic
Petri nets. Finally we turn our attention to bounded nets associated with Petri
algebras and show that their dynamics can be reformulated in term of MV-
algebras.

2 An Axiomatisation of the Token Game

In order to obtain an axiomatisation of the token game of Petri nets we rep-
resent the marking of a net as a map M : P →

⊔
p∈P Ap that associates with

each place p ∈ P the local value of the current configuration M(p) ∈ Ap in
this place. Content of places are resources that are consumed and produced
according to the token game. Thus we assume that each place p ∈ P is asso-
ciated with a commutative divisibility monoid Ap = (Ap, ⊕, 0), i.e. a monoid
such that

the relation a � b ⇔ ∃c · a = b ⊕ c is an order relation (1)

The constant 0 represents the absence of resource and the binary operator ⊕
the accumulation of resources in places. Immediate consequences of condition
(1) are the following:

a ⊕ b � a, b
0 � a
a ⊕ b = 0 ⇒ a = b = 0

Moreover we need to have a residuation operation � such that a � b represents
the residual resource obtained by substracting b from a when b � a. Thus the
following should hold true:

b � a ⇒ a = (a � b) ⊕ b (2)

Usual Petri nets corresponds to the situation where, for every place p, Ap =
(N, +, 0) is the commutative monoid of natural numbers with the truncated dif-
ference n � m = max (0; n − m) as residuation. This operation is characterized
by the universal property that for every natural numbers n, m and p

n + m � p ⇔ n � p � m

Up to the reversal of the order relation, it is a commutative residuated monoid
i.e. a commutative monoid (A, ⊕, 0) with an order relation ≤ and a residuation
operation � which is a right adjoint to the addition, in the sense that

a ⊕ b ≤ c ⇔ a ≤ c � b (3)

It follows immediately from this definition that a commutative monoid is resid-
uated if and only if its addition is order preserving in each argument and the
inequation a ⊕ b ≤ c has a largest solution for a (namely c � b). In particu-
lar the residual is uniquely determined by the addition and the order relation.
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When the monoid is a divisibility monoid the order relation itself is defined in
terms of the addition and thus the whole structure is characterized by its monoid
reduct.

Proposition 1. Let (A, ⊕, 0, �) be a commutative monoid where the neutral
element is also the least element for the order relation, we assume that this
monoid is co-residuated in the sense that there exists a residuation operation �
such that

a ⊕ b � c ⇔ a � c � b (4)

then the following conditions are equivalent
(i) It is a divisibility monoid: a � b ⇔ ∃c · a = b ⊕ c
(ii) It is an upper semi-lattice with: a � b = (a � b) ⊕ b
(iii) b � a ⇒ a = (a � b) ⊕ b

Definition 2. A Petri pre-structure is a commutative monoid equipped with a
residuation operation (M, ⊕, 0, �) satisfying the conditions (1) and (4).

The firing of a transition proceeds in two stages: a consumption of resources
in the input places followed by a production of resources in the output places.
More precisely, the transition relation M [t〉M ′ stating that transition t can fire
in marking M and leads, when it is fired, to the new marking M ′ is given by:

M [t〉M ′ ⇔ ∀p ∈ P M(p) � Pre(p, t) ∧ M ′(p) = (M(p)�Pre(p, t))⊕Post(p, t)

A net is called homogeneous if all the algebras Ap are identical. We will
stick to homogeneous nets until Section 3 where it will be noticed that the
”multi-sorted” case adds in fact no extra generality. By the way we also re-
strict our attention in this paper to commutative algebras. With non commu-
tative monoids it would be possible [1] for example to take fifo nets [11] into
account.

For any non empty sequence of transitions u = a0 . . . an−1 ∈ T +we let
M [u〉M ′ state the existence of markings M = M0, M1, . . ., Mn = M ′ such
that Mi [ai〉Mi+1 for every 0 ≤ i< n. Moreover we set M [ε〉M where ε ∈ E∗

is the empty sequence and M an arbitrary marking. We use M [u〉 (respectively
[u〉M ′) as a shorthand for ∃M ′ M [u〉M ′ (resp. ∃M M [u〉M ′). If a, b ∈ T are
transitions in a (n usual) Petri net we have the following equivalences (using the
vectorial notations P (t) = (P (p, t) ; p ∈ P ) ∈ N

P for P ∈ {Pre, Post})

M [ab〉 ⇔ M � Pre(a) and (M − Pre(a)) + Post(a) � Pre(b)
⇔ M � max (Pre(a); Pre(a) + (Pre(b) − Post(a)))
⇔ M � Pre(a) + max (0; Pre(b) − Post(a))
⇔ M � Pre(a) ⊕ (Pre(b) � Post(a))

This suggests to let Pre(uv) = Pre(u)⊕(Pre(v)�Post(u)) for any sequences
u, v ∈ T ∗ and symmetrically Post(uv) = (Post(u)�Pre(v))⊕Post(v). For these
definitions to make sense however, it remains to show that they do not depend
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upon the specific chosen decomposition w = uv ; otherwise stated, the product
defined on A × A by (x, y) ⊗ (x′, y′) = (x ⊕ (x′ � y), (y � x′) ⊕ y′) should be
associative.

Theorem 3. For any Petri pre-structure, the following conditions are equivalent:
(i) Operation ⊗ is associative,
(ii) the identity (b ⊕ c) � a = (b � (a � c)) ⊕ (c � a) holds,
(iii) the monoid is cancellable: a ⊕ b = a ⊕ c ⇒ b = c, and
(iv) the identity (a ⊕ b) � b = a holds.

Definition 4. A Petri algebra is a Petri pre-structure with a cancellable monoid
reduct.

Corollary 5. Petri algebras satisfy the following equivalence

a � b ⊕ c ⇔ a � b and a � b � c (5)

Identity (ii) of Theorem 3 is an internalization of (5) using the axiomatization
of the order relation: a � b ⇔ a � b = 0.

Let us consider a net over a Petri algebra A, then we can inductively define the
applications Pre, Post : P ×T ∗ → A by letting ϕ(p, u) = (Pre(p, u), Post(p, u))
where ϕ(p, −) : T ∗ → A × A is the unique monoid morphism such that the
images ϕ(p, t) = (Pre(p, t), Post(p, t)) of the generators t ∈ T be given by the
flow relations of the net. Then the following holds:

Pre(p, ε) = Post(p, ε) = 0
Pre(p, uv) = Pre(p, u) ⊕ (Pre(p, v) � Post(p, u))
Post(p, uv) = (Post(p, u) � Pre(p, v)) ⊕ Post(p, v)

Theorem 6. The generalized transition relation M [u〉M ′ stating the existence
of a sequence u of transitions leading from M to M ′ is given by any of the three
following equivalent conditions

1. ∀p ∈ P M(p) � Pre(p, u) and M ′(p) = (M(p) � Pre(p, u)) ⊕ Post(p, u)
2. ∀p ∈ P M ′(p) � Post(p, u) and M(p) = (M ′(p) � Post(p, u)) ⊕ Pre(p, u)
3. ∀p ∈ P M(p) � Pre(p, u) ; M ′(p) � Post(p, u) and M(p) � Pre(p, u) =

M ′(p) � Post(p, u)

We have so far identified the set of conditions that should be fulfilled by
Petri algebras so that we can play the token game and the resulting firing rule
is associative. To sum up, these structures are duals of commutative residuated
lattices whose joins and meets are given by the formulas a � b = a � (a � b)
and a � b = b ⊕ (a � b) . Moreover this lattice is integral in the sense that the
neutral element for the sum is also the least element of the lattice. Finally the
underlying monoid is cancellable and this condition is equivalent to the identity
(a ⊕ b) � b = a.

Using [3, 9] we can conclude that Petri algebras coincide with the (duals
of) integral, cancellative and commutative GMV-algebras. These algebras form
a sub-variety of the variety of residuated lattices and the following result is a
direct consequence of [10–Theorem 5.6 and corollaries].



Petri Algebras 747

Theorem 7. Petri algebras coincide with the positive cones of lattice-ordered
abelian groups. Moreover lattice-ordered abelian groups constitute the subvari-
ety of lattice-ordered groups generated by the group Z of integer, and their pos-
itive cones (i.e. Petri algebras) is the subvariety of residuated lattices gener-
ated by N.

3 Lexicographic Petri Nets

We define a (generalized) Petri net as a structure N = (P, T, Pre, Post, M0)
where P is a finite set of places with a Petri algebra Ap associated with each place
p ∈ P , T is a finite set of transitions disjoint from P and Pre, Post : P × T →⊔

p∈P Ap, the flow relations, are such that ∀p ∈ P ∀t ∈ T Pre(p, t), Post(p, t) ∈
Ap. A marking is a map M : P →

⊔
p∈P Ap that associates with each place p ∈ P

the local value of the current configuration M(p) ∈ Ap in this place. M0 is some
fixed marking, called the initial marking. The transition relation M [t〉M ′ stating
that transition t can fire in marking M and leads, when it is fired, to the new
marking M ′ is given by:

M [t〉M ′ ⇔ ∀p ∈ P M(p) � Pre(p, t) ∧ M ′(p) = (M(p)�Pre(p, t))⊕Post(p, t)

This relation can be extended inductively to sequences u ∈ T ∗ of transitions by
letting M [ε〉M for every marking M and M [t · u〉M ′ if and only if there exists
some marking M ′′ such that M [t〉M ′′ and M ′′ [u〉M ′ for every t ∈ T and u ∈ T ∗.
The set of reachable markings is Reach(N ) = {M | ∃u ∈ T ∗ M0 [u〉M}, and the
marking graph of a generalized net N = (P, T, Pre, Post, M0) is the labelled
graph ΓN = (V, Λ, v0) whose set of vertices is given by the set V = Reach(N )
of reachable markings with v0 = M0 and whose set of arcs Λ ⊆ V × T × V is
the restriction of the transition relation to the set of reachable markings: Λ =
{(M, t, M ′) | M, M ′ ∈ V ∧ M [t〉M ′}. Two generalized Petri nets are termed
equivalent when they have isomorphic marking graphs.

We immediately see that a place p whose type Ap is a sub-algebra of a product
of Petri algebras (Ap ⊆ A1 × · · · × An) can be replaced by n places p1, . . . , pn

with respective types A1, . . . , An without changing the marking graph (at least
up to isomorphism). A classical result of universal algebra says that any algebra
of a variety is a sub-direct product of sub-directly irreducible algebras. Thus
we can assume without loss of generality that all algebras Ap are sub-directly
irreducible algebras in the variety of Petri algebras. Now any M(p) belongs to the
sub-algebra of Ap generated by the set {M0(p)} ∪

⋃
t∈T {Pre(p, t), Post(p, t)}.

Thus:

Theorem 8. Every generalized Petri net is equivalent to a generalized Petri
net all of whose types are sub-directly irreducible and finitely generated Petri
algebras.

Let Irr (V ) denote the set of sub-directly irreducible algebras of a variety V ,
then if V is a subvariety of W one has Irr(W ) ∩ V = Irr(V ); using the fact
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that the sub-directly irreducible commutative GMV-algebras are chains (totally
ordered sets) we deduce that

Proposition 9. sub-directly irreducible Petri algebras are chains.

An algebra is sub-directly irreducible if and only if it admits a least non trivial
congruence [4]. Now we know [5, 6] that the congruences of Petri algebras are
in bijective correspondance with their convex sub-monoids. On the one hand we
can associate each congruence θ of a Petri algebra A with the class of the neutral
element which is a convex sub-monoid Mθ = [0]θ of A. Conversely we associate
each such monoid M to the congruence θM = {(a, b) ∈ A2 | b � a, a � b ∈ M}.
The correspondances θ �→ Mθ and M �→ θM are inverses to each other and
they establish an isomorphism between the lattice of congruences of A and the
lattice of the convex sub-monoids of A. Moreover for every a ∈ A, the principal
congruence generated by the equation a = 0 corresponds to the convex sub-
monoid generated by a. A Petri algebra is then sub-directly irreducible if and
only if it admits a least non trivial convex sub-monoid. Let us assume that A is
a totally ordered Petri algebra. Let

M(x) = {y ∈ A | ∃k ∈ N · y � k · x = x ⊕ · · · ⊕ x
︸ ︷︷ ︸
k times

}

denote the principal convex sub-monoid generated by x ∈ A. M(x) is non-trivial
if and only if x �= 0. Now if x is some element of a convex sub-monoid M of A
one necessarily has M(x) ⊆ M ; thus a minimal convex sub-monoid is principal
and is generated by any of its non null elements. Since A is totally ordered and
x ≤ y ⇒ M(x) ⊆ M(y) we deduce that A admits at most one minimal non
trivial sub-monoid. M(x) is minimal if and only if y � x ⇒ y = 0 where
relation � is given by y � x ⇔ ∀k ∈ N · k · y � x. Otherwise stated y � x
if and only if y � x and M(y) is strictly included in M(x). Therefore A has
no non trivial minimal sub-monoid if and only if for every x ∈ A \ {0} one can
find some y ∈ A \ {0} such that y � x . Under that condition one can form an
infinite strictly decreasing chain thus proving that the order relation � is not
well-founded. Conversely if this order is well-founded then any non empty subset
of A, and thus in particular A \ {0} if A is not trivial, admits a least element for
this order which shows the existence of a minimal non trivial sub-monoid. We
thus have established the following:

Theorem 10. A Petri algebra is sub-directly irreducible if and only if it is a
chain and the order relation y � x ⇔ ∀k ∈ N · k · y � x is well-founded.

The lexicographic product G◦H of two ordered groups G and H is the product
group G × H equipped with the lexicographic order relation:

(x, y) ≤G◦H (x′, y′) ⇔ x <G x′ or (x = x′ and y ≤H y′)

If G and H are simply ordered abelian groups then the same holds for their
lexicographic product. This product is associative and we can define inductively
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Ln (G) = (Gn)+ for every simply ordered abelian group G and integer n ∈ N by
letting G

0 = {0} be the trivial group and G
n+1 = G

n ◦ G, and where G
+ denote

the positive cone of group G. The group G
n naturally embedds into G

m when
n ≤ m ; the projective limit of this sequence of embeddings is the group G

ω

whose elements are the infinite sequences of elements in G, with componentwise
composition and the lexicographic order relation defined as follows: u ≤lex v ⇔
u <lex v or u = v where u <lex v ⇔ ∃n ∈ N ∀m ≤ n um = vm and un <G

vn. The inductive limit, or ”union”
⋃

n<ω G
n, is the subgroup of G

ω consisting
of the sequences u of finite support (supp(u) = sup {k ∈ N | uk �= 0} < ω) with
G

n identified with the subgroup of u ∈ G
ω such that supp(u) ≤ n.

Definition 11. The set Lex (G) of lexicographic Petri nets based on a totally
ordered abelian group G is the set of (homogeneous) generalized Petri net of type
(Gω)+. Lex (G, n) ⊆ Lex (G) is the set of n-dimensional lexicographic Petri nets
with type Ln (G) = (Gn)+ ⊆ (Gω)+, i.e. all flow arc inscriptions and initial place
contents, and hence all place contents in every accessible marking, are elements
in (Gn)+.

If K and L are subclasses of generalized Petri nets we let K � L when every net in
K is equivalent to some net in L. This is a pre-order relation, we let ≈ denote its
associated equivalence relation and � the corresponding strict relation: K � L
when every net in K is equivalent to some net in L but there exists some net
in L not equivalent to any net in K. Notice that Lex(G, n) � Lex(H, m) when
G ⊆ H and n ≤ m ; and that Lex(Z, 1) is the class of Petri nets.

Lemma 12. Any finitely generated sub-directly irreducible Petri algebra A is
isomorphic to a sub-algebra of the positive cone of some finite power of the
additive group of real numbers: A ⊆ (Rn)+.

By Theorem 8 we deduce the following result.

Theorem 13. Every generalized Petri net is equivalent to some lexicographic
Petri net, more precisely : GenPetri ≈ Lex (R)

We provide an example showing that Lex(Z, 1) � Lex(Z, 2), i.e. that lexico-
graphic Petri nets based on the group of integers of dimension 2 are already
strictly more expressive than the class of Petri nets. Let us consider the net
of type L2 = (Z ◦ Z)+ = {(n, m) | (n = 0 and m ≥ 0) or (n > 0 and m ∈ Z)}.

(1,0)
a b

(0,1)
(1,0)

From the initial marking (1, 0) transition a can fire once (1, 0) [a〉 (0, 0) and tran-
sition b can fire an infinite number of time leading to the infinite firing sequence
(1, 0) [b〉 (1, −1) [b〉 (1, −2) . . . [b〉 (1, −n) . . . and there are no other transitions in
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the marking graph of the net. Suppose there exists some Petri net with an
isomorphic marking graph. Since transition b can fire an infinite number of time,
and

M0 [bn〉Mn ⇒ ∀p ∈ P Mn(p) = M0(p) − n × (Pre(p, b) − Post(p, b))

we deduce that for every place p it is the case that Post(p, b) � Pre(p, b) and
thus Mn(p) � M0(p) . By monotony of the firing rule, any transition that can
fire in the initial marking M0 can also fire in any of the markings Mn obtained
by firing b. Transition a is in contradiction with this property. Thus

Proposition 14. Petri = Lex(Z, 1) � GenPetri

It can also be shown that Lex(Z, n) � Lex(Z, m) � Lex(Z) for n < m < ω, and
Lex(Z, n) ≈ Lex(Q, n) � Lex(R, n).

It appears to be difficult to obtain strict extensions of the class of Petri nets
that preserve all of its decidable properties. Many of these extensions, like the
class of Petri nets with inhibitor arcs, are indeed Turing-powerful. We recall
that an inhibitor arc from a place p to a transition t (one such arc is depicted
in Fig. 1) is intended to inhibit the firing of transition t as long as place p is not
empty.

Theorem 15. Lexicographic Petri nets are a strict extension of the class of
Petri nets with inhibitor arcs. Thus Reachability, Coverability, Place-boundedness,
Boundedness, Deadlock and Liveness are undecidable for the class of lexico-
graphic Petri nets.

The translation of a Petri net with inhibitor arcs N into an equivalent lexico-
graphic Petri net N , illustrated in Fig. 1, consists in splitting every place p with

p
m

t t

p
(0,m)

p’
(1,−m)

(0,y)

(1,0)

(1,−y)

y

t

p
m

p’
(1,−m)

t

p
(0,m)

yx
(0,y)

(0,x)

(0,max(0,y−x))

(0,max(0,x−y))  

Fig. 1. A translation from Petri nets with inhibitor arcs into lexicographic Petri nets
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initial marking m ∈ N of the original net into two places denoted p and p′ with
initial markings (0, m) ∈ (Z ◦ Z)+ and (1, −m) ∈ (Z ◦ Z)+respectively.

4 Bounded Nets

A net is bounded if we can find an upper bound on the possible values of places
in any accessible marking. Let us start our study on the algebraization of the
dynamic of bounded nets by the following observation.

Proposition 16. Any non trivial commutative Petri algebra is an unbounded
lattice.

However we can enforce boundedness by modifying the rule of the token game.
Let us consider first the case of the usual Petri nets: assume that each place
p ∈ P is associated with a capacity kp ∈ N and that we want to ensure that the
value of a place p of a Petri net be bounded from above by its capacity kp. For
that purpose we modify the firing rule as follows (where all computations are
performed in Z)

M [t〉M ′ ⇔ ∀p ∈ P

{
M(p) � Pre(p, t) ∧ (M(p)−Pre(p, t))+Post(p, t)�kp

M ′(p) = (M(p) − Pre(p, t)) + Post(p, t)

this rule can be reformulated as:

M [t〉M ′ ⇔ ∀p ∈ P

{
Pre(p, t) � M(p) � (kp + Pre(p, t)) − Post(p, t)
M ′(p) = (M(p) − Pre(p, t)) + Post(p, t)

Petri algebras are the positive cones G+ of lattice-ordered abelian groups G =
(G, +, 0, �, �). It is an algebra with the following operations: the sum (restriction
of the group operation x ⊕ y = x + y), and the truncated difference (x � y =
(x − y) � 0).

Let k � 0 be some element of this positive cone; we suppose that it is a
strong unit in the sense that ∀g ∈ G ∃n ∈ N · n · k � g. We can by modifying
the firing rule ensure that the values of places stay within the interval I =
[0, k] = {g ∈ G | 0 � g � k}. This interval with induced order is a bounded
lattice that can be equipped with the following operations: the truncated sum (
x � y = (x + y) � k), the truncated difference (x � y = (x − y) � 0), the product
(x • y = ((x + y) − k) � 0), the implication (x → y = ((y + k) − x) � k), and the
negation (¬x = (x → 0) = k � x).

Such a structure is called an MV-algebra. MV-algebras are generalizations
of boolean algebras used in the algebraic analysis of Lukasiewicz infinite-valued
propositional logic and this class of algebras admits several equivalent definitions
[7, 12]. We then state that the firing relation of a so-called bounded net associated
with some MV-algebras is given by:

M [t〉M ′ ⇔ ∀p ∈ P

{
Pre(p, t) � M(p) � Post(p, t) → Pre(p, t)
M ′(p) = (M(p) � Pre(p, t)) � Post(p, t)
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The boolean algebra 2 = {0, 1} is an MV-algebra where x � y = x � y and
x • y = x � y. Let P be the set of places of a net and B = 2P = ℘(P ) the corre-
sponding product structure, the preceding firing rule can be reformulated as:

M [a〉 M ′ ⇔ M ⊇ Pre(a) ∧ M ∩ Post(a) ⊆ Pre(a) ∧ M ′ = (M \ Pre(a)) ∪ Post(a)

which is the usual firing rule of 1-safe nets. If we replace the boolean algebra
2 = {0, 1} by the interval [0, 1] of the additive group of real numbers, i.e. with
x � y = min(1, x + y) and x • y = max(0, x + y − 1) then we obtain the firing
rule of some kind of 1-safe ”fuzzy” nets :

M [a〉M ′ ⇔ ∀p ∈ P

{
Pre(a, p) � M(p) � Pre(a, p) + 1 − Post(a, p)
M ′(p) = min(1, M(p) + Post(a, p) − Pre(a, p))

Mundici [12] proved that MV-algebras coincide with [0, k] intervals of abelian
lattice-ordered groups where k is a strong unit. More precisely if G = (G, +, 0)
is an abelian lattice-ordered group with strong unit k then Γ (G, k) =
(A, �, 0, •, k, ¬) where A = [0, k] = {x ∈ G | 0 � x � k}, x � y = (x + y) � k,
x • y = ((x + y) − k) � 0, and ¬x = k − x is an MV-algebra such that the
restriction of the order relation of the group on the unit interval [0, k] coin-
cides with the order relation of the MV-algebra: x � y ⇔ x � y = 0 (where
x�y = x•¬y = (x − y)�0). Moreover Γ extends into an equivalence between the
respective categories, i.e. it induces a bijective correspondence between isomor-
phism classes of abelian lattice-ordered groups with strong unit and isomorphism
classes of MV-algebras. Now we have seen that Petri algebras corresponds bijec-
tively, up to isomorphism, to the positive cones of abelian lattice-ordered groups,
we thus have a Petri algebra canonically associated with each MV-algebra. The
following result shows that, by using complementary places, we can simulate a
bounded Petri net by a generalized Petri net defined on the associated Petri
algebra.

Theorem 17. Any bounded net can be simulated by a generalized Petri net.

The translation of a bounded net N into an equivalent generalized Petri net
N , illustrated in Fig. (2), consists in splitting every place p with initial marking
m ∈ Ap of the bounded net into two places denoted p and p′ with initial markings
m ∈ (Gp)

+ and kp −m ∈ (Gp)
+respectively where (Gp, kp) is the lattice-ordered

abelian group with strong unit associated with the MV-algebra Ap � Γ (Gp, kp).

t

m
p

t

xy

x y

m

yx
y

x

p
m

p’

Fig. 2. Translation from bounded nets to generalized Petri nets
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5 Conclusion

In this paper we have put forward an axiomatization of the token game of Petri
nets by identifying a class of commutative residuated monoids, called Petri alge-
bras, for which one can generalize the rule of token game of Petri nets to define
the behaviour of generalized Petri net whose flow relation and place contents are
valued in such algebras. In this way we have put the basis for a uniform presen-
tation of various families of Petri nets by recasting them as particular instances
of a generic class of Petri nets parametric in algebraic structures representing
some concrete notion of resources. We thus have followed the line of research
best illustrated in [8], a special issue of Advances in Petri nets, dedicated to the
development of uniform approaches to Petri nets. However the present approach,
centered on the notion of resources, is probably too concrete to be of practical
interest in many situations. For instance even though one can describe continu-
ous Petri nets in this framework the obtained semantics is too much extensional.
We see two directions that can be used in order to derived more abstract rep-
resentations for the behaviour of these generic nets. First, one can abstract of
the flow arc inscriptions. Such an inscription takes its value in some algebra of
abstract properties. A precondition then appears as a guard stating that some
property has to be satisfied by the resources contained in the corresponding place
and a postcondition is interpreted as adding resources to enforce some property.
Second, one can abstract on the firing relation itself by giving the measure in
some adequate semiring of the ”firability” of a transition in some marking.

Acknowledgement. The first author thanks Nikolaos Galatos for fruitful dis-
cussions on totally ordered commutative GMV algebras. The second author was
supported by a grant from the University of Douala, Cameroon.

References

1. E. Badouel, J. Chenou. Nets Enriched over Closed Monoidal Structures. In Proc.
ICATPN’03, Eindhoven, Lecture Notes in Computer Science vol. 2679 (2003), 64-
81.

2. E. Badouel, J. Chenou, G. Guillou. Petri Algebras. Inria Research Report 5355,
November 2004. http://www.inria.fr/rrrt/rr-5355.html

3. P. Bahls, J. Cole, N. Galatos, P. Jipsen, C. Tsinakis. Cancellative residuated lat-
tices. Algebra Universalis 12:42 (2003), 1-24.

4. G. Birkhoff. Lattice Theory. Third edition, AMS Colloquium Publications, vol.
XXV (American Mathematical Society, Providence, 1967).

5. K. Blount. On the structure of residuated lattices. Ph. D. Thesis, Dept. of Math-
ematics, (Vanderbilt University, Nashville, Tennessee, 1999).

6. K. Blount, C. Tsinakis. The structure of Residuated Lattices, International Journal
of Algebra and Computation (to appear).

7. R. Cignoli, I. D’Ottaviano, D. Mundici. Algebraic foundations of many-valued
reasoning. Trends in Logic-studia Logica Library 7. (Kluwer Academic Publishers,
Dordrecht, 2000).



754 E. Badouel, J. Chenou, and G. Guillou

8. H. Ehrig, G. Juhas, J. Padberg, G. Rozenberg (Eds.). Unifying Petri Nets. Ad-
vances in Petri Nets. Volume 2128 of Lecture Notes in Computer Science (2001).

9. N. Galatos. Varieties of Residuated Lattices. Ph. D. Thesis, Dept. of Mathematics,
(Vanderbilt University, Nashville, Tennessee, 2003).

10. P. Jipsen, C. Tsinakis. A survey of Residuated Lattices. In Ordered Algebraic Struc-
tures, J. Martinez, editor (Kluwer Academic Publishers, Dordrecht, 2002), 19-56.

11. G. Memmi, A. Finkel. An introduction to fifo nets - monogeneous nets: a subclass
of fifo nets. Theoretical Computer Science 35 (1985), 191-214.

12. D. Mundici. Interpretation of AF C*-algebras in Lukasiewicz sentential calculus.
Journal of Functional Analysis 65:1 (1986), 15-63.

13. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, Vol. 77, No. 4 (1989), 541-580.


	Introduction
	An Axiomatisation of the Token Game 
	Lexicographic Petri Nets
	Bounded Nets
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


