
From Synchrony to Asynchrony?

Albert Benveniste, Benôıt Caillaud, and Paul Le Guernic

Irisa/Inria, Campus de Beaulieu, 35042 Rennes cedex, France
firstname.lastname@irisa.fr
Web: http://www.irisa.fr/

Abstract. We present an in-depth discussion of the relationships be-
tween synchrony and asynchrony. Simple models of both paradigms are
presented, and we state theorems which guarantee correct desynchro-
nization, meaning that the original synchronous semantics can be recon-
structed from the result of this desynchronization. Theorems are given for
both the desynchronization of single synchronous programs, and for net-
works of synchronous programs to be implemented using asynchronous
communication. Assumptions for these theorems correspond to proof
obligations that can be checked on the original synchronous designs. If
the corresponding conditions are not satisfied, suitable synchronous mini-
programs which will ensure correct desynchronization can be composed
with the original ones. This can be seen as a systematic way to generate
“correct protocols” for the asynchronous distribution of synchronous de-
signs. The whole approach has been implemented, in the framework of
the SACRES project, within the Sildex tool marketed by TNI, as well
as in the Signal compiler.

1 Introduction

Synchronous programming [5, 10, 14] has been proposed as an efficient approach
for the design of reactive and real-time systems. It has been widely publicized,
using the idealized picture of “zero time” computation and instantaneous broad-
cast communication [9]. Efficient techniques for code generation and verification
have resulted [10, 20, 5, 15].

Criticisms have been addressed to this approach. It has been argued that,
very frequently, real-life architectures do not obey the ideal model of perfect syn-
chrony. Counter-examples are numerous: operating systems with multi-threading
or multitasking, distributed architectures, asynchronous hardware, etc.

However, similarities and formal links between synchrony and asynchrony
have already been discussed in the literature, thus questioning the oversimplified
vision of “zero time” computation and instantaneous broadcast communication.
Early paper [6] informally discussed the link between perfect synchrony and
token-based asynchronous data-flow networks, see in particular section V therein.
The first formal and deep study can be found in [13]. It establishes a precise
? This work is or has been supported in part by the following projects: Esprit R&D-

SACRES (Esprit project EP 20897), Esprit LTR-SYRF (Esprit project EP 22703).

Jos C.M. Baeten, Sjouke Mauw (Eds.): CONCUR’99, LNCS 1664, pp. 162–177, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

From Synchrony to Asynchrony 163

relation between so-called well-clocked synchronous functional programs and the
subset of Kahn networks amenable to “buffer-less” evaluation.

Distributed code generation from synchronous programs requires to address
the issue of the relationship between synchrony and asynchrony in a different
way. Mapping synchronous programs to a network of automata, communicat-
ing asynchronously via unbounded FIFOs, has been implemented for the Lustre
language and formalized in [12]. Mapping Signal programs to distributed ar-
chitectures was proposed in [19, 4], based on an early version of the theory
we present in this paper. The SynDEx tool [22, 21] also implements a similar
approach. Recent work [11] on the Polis system proposes to reuse the “construc-
tive semantics” approach for the Esterel synchronous language, with CFSM
(Codesign Finite State Machines) as a model for synchronous machines which
can be desynchronized; this can be seen as a refinement of [13], although the
referred model of asynchrony is not fully stated.

Independently, another approach relating synchrony and asynchrony has
been followed. In [7, 18] it is shown how nondeterministic Signal programs
can be used to model asynchronous communication media such as queues and
buffers. Reactive Modules [1] were proposed as a synchronous language for hard-
ware modeling, in which asynchrony is emulated by the way of nondeterminism.
Although this is of interest, we believe this approach is not suited to the anal-
ysis of true asynchrony, in which no notion of global synchronization state is
available, unlike for synchrony.

In this paper we provide an extensive, in depth, analysis of the links between
synchrony and asynchrony. Our vision of asynchrony encompasses distributed
systems, in which no global synchronization state is available, and communica-
tions/actions are not instantaneous. This extension allows us to handle incom-
plete designs, specifications, properties, architectures, and executable programs,
in a unified framework, for both synchronous and asynchronous semantics.

In section 2 we informally discuss the essentials of synchrony and asynchrony.
Synchronous Transition Systems are defined in section 3, and their asynchronous
counterpart is defined in section 4, where also desynchronization is formally
defined. The rest of the paper is devoted to the analysis of desynchronization
and its inverse, namely resynchronization.

2 The Essentials of the Synchronous Paradigm

There have been several attempts to characterize the essentials of the syn-
chronous paradigm [5, 14]. With some experience and after many attempts to
address the issue of moving from synchrony to asynchrony (and back), we feel
the following features are indeed essential for characterizing this paradigm:

1. Programs progress via an infinite sequence of reactions: P = Rω, where R
denotes the family of possible reactions1.

1 In fact, “reaction” is a slightly restrictive term, as we shall see in the sequel that “re-
acting to the environment” is not the only possible kind of interaction a synchronous
system may have with its environment.

164 Albert Benveniste, Benôıt Caillaud, and Paul Le Guernic

2. Within a reaction, decisions can be taken on the basis of the absence of
some events, as exemplified by the following typical statements, taken from
Esterel, Lustre, and Signal respectively:

present S else ‘stat’
y = current x
y := u default v

The first statement is self-explanatory. The “current” operator delivers the
most recent value of x at the clock of the considered node, it thus has to
test for absence of x before producing y. The “default” operator delivers
its first argument when it is present, and otherwise its second argument.

3. Parallel composition is given by taking the pairwise conjunction of associated
reactions, whenever they are composable: P1‖P2 = (R1 ∧ R2)

ω. Typically,
if specifying is the intention, then the above formula is a perfect definition
of parallel composition. In contrast, if programming is the intention, then
the need for this definition to be compatible with an operational semantics
complicates very much the “when it is defined” prerequisite2 .

Of course, such a characterization of the synchronous paradigm makes the class of
synchronous formalisms much larger than usually considered. But it has been our
experience that these were the key features for the techniques we have developed
so far. Clearly, this calls for a simplest possible formalism with the above features,
on which fundamental questions should be investigated: The design of the sts
formalism3 described in the next section has been guided by these objectives.

Keeping in mind the essentials of the synchronous paradigm, we are now
ready to discuss informally how asynchrony relates to synchrony. Referring to
points 1, 2, and 3 above, the following can be stated about asynchrony:

1. Reactions cannot be observed any more: since no global clock exists, global
synchronization barriers which indicate the transition from one reaction to
the next one are no more observable. Instead, a reliable communication
medium is assumed, in which messages are not lost, and for each individual
channel, messages are sent and received in the same order. We call a flow the
totally ordered sequence of values sent or received on a given communication
channel.

2. Absence cannot be detected, and thus cannot be used to exercise control.
3. Composition occurs by means of unifying each flow shared between two

processes. This models in particular the communications via asynchronous
unbounded FIFOs, such as those in Kahn networks. Rendez-vous type of
communication can also be abstracted in this way.

Synchrony and asynchrony are formalized in sections 3 and 4, respectively. Sec-
tion 7 details how these results can be put into practice.
2 For instance, most of the effort related to the semantics of Esterel has been directed

toward solving this issue satisfactorily [10].
3 We thank Amir Pnueli for having proposed this formalism, in the course of the

SACRES research project, as a minimal framework capturing the paradigm of perfect
synchrony.

From Synchrony to Asynchrony 165

3 Synchronous Transition Systems (sts)

Synchronous Transition Systems (sts). We assume a vocabulary V which is a
set of typed variables. All types are implicitly extended with a special element
⊥, interpreted as absence. Among the types we consider, there are the type of
pure signals with domain {t}, and the boolean type with domain {t, f} (recall
both types are extended with the distinguished element ⊥). We define a state s
to be a type-consistent interpretation of V, assigning a value to each variable.
We denote by S the set of all states. For a subset of variables V ⊆ V, a V -state
is a type-consistent interpretation of V . Thus a V -state s assigns a value s[v] to
each variable v in set V ; the tuple of values assigned to the set of variables V is
denoted by s[V].

We define a Synchronous Transition System (sts) to be a tuple Φ = 〈V, Θ, ρ〉
consisting of the following components: V is a finite set of typed variables, Θ is
an assertion on V -states characterizing the set of initial states {s|s |= Θ} and ρ is
the transition relation relating past and current V -states, s− and s, by referring
to both past4 and current values of variables in V . For example the assertion
x = x− + 1 states that the value of x in s is greater by 1 than its value in s−. If
(s−, s) |= ρ then we say that state s− is a ρ-predecessor of state s.

Runs. A run σ : s0, s1, s2, . . . is a sequence of states such that s0 |= Θ
∧ ∀i >

0 , (si−1, si) |= ρ.

Composition. The composition of two sts Φ = Φ1 ‖ Φ2 is defined as follows:
Φ = 〈V = V1 ∪ V2, Θ = Θ1 ∧ Θ2, ρ = ρ1 ∧ ρ2〉. The composition is thus the
pairwise conjunction of initial and transition relations. It should be noticed that,
in sts composition, interaction occurs through common variables only.

Notations for sts. For the convenience specification, sts will have a set of
reactive variables written Vr, implicitly augmented with associated auxiliary
variables: the whole constitutes the set V of variables. We shall use the following
generic notations in the sequel:

– b, c, v, w, . . . denote reactive variables, and b, c are used to refer to variables
of boolean type.

– for v a variable, hv ∈ {t,⊥} denotes its clock: [hv 6= ⊥] ⇔ [v 6= ⊥]
– for v a reactive variable, ξv denotes its associated state variable, defined by:

if hv then ξv = v else ξv = ξ−v

Values can be given to s0[ξv] as part of the initial condition. Then, ξv is
always present after the first occurrence of v. Finally, ξξv = ξv, therefore
“state variables of state variables” need not be considered.

4 Usually, variables and primed variables are used to refer to current and next states.
This is equivalent to our present notation. We have preferred to consider s− and s,
just because the formulas we shall write mostly involve current variables, rather than
past ones. Using the standard notation would have resulted in a burden of primed
variables in the formulas.

166 Albert Benveniste, Benôıt Caillaud, and Paul Le Guernic

As modularity is desirable, every sts should be permitted to do nothing while
its environment is possibly working. This feature has been yet identified in the
literature and is known as stuttering invariance or robustness [16, 17]. For a sts
Φ, stuttering invariance is defined as follows: If σ = s0, s1, s2, . . . is a run of Φ,
so is

σ′ = s0, ⊥s0 , . . . ,⊥s0︸ ︷︷ ︸
0≤ #{⊥s0} <∞

, s1,⊥s1, . . . ,⊥s1 , s2,⊥s2 , . . . ,⊥s2 , . . .

where, for s an arbitrary state, symbol ⊥s denotes the silent state associated
with s, defined by

∀v ∈ Vr :
{ ⊥s[v] = ⊥
⊥s[ξv] = s[ξv]

meaning that state variables are kept unchanged whenever their associated reac-
tive variables are absent. It should be noticed that stuttering invariance allows
for runs possessing only a finite number of present states. We shall require in
the sequel that all sts we consider are stuttering invariant. They should indeed
satisfy: (s−, s) |= ρ ⇒ (s−,⊥s−) |= ρ and (⊥s− , s) |= ρ. When this condition is
not satisfied, we extend ρ minimally so that stuttering invariance is satisfied. By
convention, we shall simply write ⊥ instead of ⊥s when mentioning a particular
state s is not required.

4 Desynchronizing sts, and Two Fundamental Problems

From the definition of a run of a sts, we can say that a run is a sequence of
tuples of values in domains extended with the extra symbol ⊥. Desynchronizing
a run amounts to discarding the synchronization barriers defining the successive
reactions. Hence, for each variable v ∈ V , we only know the ordered sequence of
present values. Thus desynchronizing a run amounts to mapping a sequence of
tuples of values in domains extended with the extra symbol ⊥, into a tuple of
sequences of present values, one sequence per variable. This is formalized below.

For σ = s0, s1, s2, . . . a run of Φ, we decompose state sk as sk = (sk[v])v∈V .
Thus we can rewrite run σ as follows: σ = (σ[v])v∈V , where σ[v] = s0[v], s1[v],
. . . , sk[v], Now, each σ[v] is compressed by deleting those sk[v] that are
equal to ⊥. Formally, let k0, k1, k2, . . . be the subsequence of k = 0, 1, 2, . . .
such that sk[v] 6= ⊥. Then we set: σa = (σa[v])v∈V , where σa[v] = sk0 [v],
sk1 [v], sk2 [v], This defines our desynchronization mapping σ 7−→ σa, and
each σa[v] = sk0 [v], sk1[v], sk2 [v], . . . is called a flow in the sequel.

The asynchronous abstraction of a sts Φ = 〈V, Θ, ρ〉, is defined as follows:

Φa =def 〈V, Σa〉 , (1)

where Σa is the family of all (asynchronous) runs σa, with σ ranging over the
set of (synchronous) runs of Φ. For Φi = 〈Vi, Θi, ρi〉 , i = 1, 2, we define:

Φa
1 ‖a Φa

2 =def 〈V, Σa〉 , where
{

V = V1 ∪ V2

Σa = Σa
1 ∧a Σa

2
(2)

From Synchrony to Asynchrony 167

and ∧a denotes conjunction of sets of asynchronous runs, which we define now.
For σa

i ∈ Σa
i , i = 1, 2, we say that σa

1 and σa
2 are unifiable, written σa

1 ./a σa
2 ,

if the following condition holds: ∀v ∈ V1 ∩ V2 : σa
1 [v] = σa

2 [v]. If σa
1 and σa

2 are
unifiable, then we define σa =def σa

1 ∧a σa
2 as:

∀v ∈ V1 ∩ V2 : σa[v] = σa
1 [v] = σa

2 [v]
∀v ∈ V1 \ V2 : σa[v] = σa

1 [v]
∀v ∈ V2 \ V1 : σa[v] = σa

2 [v]

Finally, Σa is the set of the so defined σa. Thus asynchronous composition
proceeds via unification of shared flows.

Synchrony vs. Asynchrony? At this point two natural questions arise, namely:

Question 1 (Desynchronizing a Single sts). Is resynchronization feasible
and uniquely defined? More precisely, is it possible to reconstruct uniquely a
synchronous run σ of our sts from a desynchronized run σa?

Question 2 (Desynchronizing a Communication). Does communication be-
have equivalently for both the synchronous and asynchronous compo-
sitions? More precisely, does the following property hold:

Φa
1 ‖a Φa

2 = (Φ1 ‖ Φ2)
a ? (3)

If question 1 had a positive answer, then we could desynchronize a run of the
considered sts, and then still recover the original synchronous run. Thus a pos-
itive answer to question 1 would guarantee that the synchronous semantics is
preserved when desynchronization is performed on a single sts.

On the other hand, if question 2 had a positive answer, then we could inter-
pret our sts composition equivalently as synchronous or asynchronous.

Unfortunately, neither 1 nor 2 have positive answers in general, due to the
possibility of exercising control by the way of absence in synchronous composition
‖ . In the following section, we show that questions 1 and 2 have positive answers
under certain sufficient conditions, in which the two notions of endochrony (for
point 1) and isochrony (for point 2) play a central role.

5 Endochrony and Re-synchronization

5.1 Formal Results

In this section, we use notations from section 3. For an sts Φ = 〈V, Θ, ρ〉, and
s a reachable state of Φ, the clock-abstraction of s (denoted by sh) is defined as
follows:

∀v ∈ V : sh[v] ∈ {⊥,>}, and sh[v] = ⊥ ⇔ s[v] = ⊥ (4)

For a sts Φ = 〈V, Θ, ρ〉, s− a reachable state for Φ, and W ′ ⊆ W ⊆ V , we
say that W ′ is a clock inference of W given s−, written W ′ ↪→s− W , if for
each state s of Φ, reachable from s−, knowing the presence/absence and actual

168 Albert Benveniste, Benôıt Caillaud, and Paul Le Guernic

value carried by each variable belonging to W ′, allows us to determine exactly
the presence/absence of each variable belonging to W . In other words s[W ′]
uniquely determines sh[W].

If both W ′ ↪→s− W1 and W ′ ↪→s− W2 hold, then W ′ ↪→s− (W1 ∪ W2)
follows, thus there exists a greatest W such that W ′ ↪→s− W holds. Hence we
can consider the unique maximal increasing sequence of subsets of V , for a given
s−,

∅ = V (0) ↪→s− V (1) ↪→s− V (2) ↪→s− . . . (5)

in which, for each k > 0, V (k) is the greatest set of variables such that V (k −
1) ↪→s− V (k) holds. As ∅ = V (0), V (1) consists in the subset of variables that
are present as soon as the considered sts gets activated or which are always
absent in successor states of s−. Of course sequence (5) must become stationary
at some finite kmax: V (kmax + 1) = V (kmax). In general, we only know that
V (kmax) ⊆ V . Sequence (5) is called the synchronization sequence of Φ in state
s−.

Definition 1 (Endochrony). A sts Φ is said to be endochronous if, for each
reachable state s− of Φ, V (kmax) = V , i.e., if the synchronization sequence:

∅ = V (0) ↪→s− V (1) ↪→s− V (2) ↪→s− . . . converges to V (6)

Condition (6) expresses that presence/absence of all variables can be inferred
incrementally from already known values carried by present variables and state
variables of the sts in consideration. Hence no test for presence/absence on the
environment is needed. The following theorem justifies our approach:

Theorem 1. Consider a sts Φ = 〈V, Θ, ρ〉.
1. Conditions (a) and (b) given below are equivalent:

(a) Φ is endochronous.
(b) For each δ ∈ Σa, we can reconstruct the corresponding synchronous run

σ such that σa = δ, in a unique way up to silent reactions.
2. Let us assume Φ is endochronous and stuttering invariant. If Φ′ = 〈V, Θ, ρ′〉

is another endochronous and stuttering invariant sts then

(Φ′)a = Φa ⇒ Φ′ = Φ (7)

Proof. We prove successively points 1 and 2.

1. We consider a previous state s− and prove the result by induction. We pick
out a δ ∈ Σa, and assume for the moment that it can be decomposed in:

s1 , s2 , . . . , sn︸ ︷︷ ︸
initial segment of σ of length n

,δn (8)

i.e., into a sequence of length n, made of non-silent states si (the head of
the synchronous run σ we wish to reconstruct), followed by the tail of the

From Synchrony to Asynchrony 169

asynchronous run δ, which we denote by δn , and we assume that such a
decomposition is unique. Then we claim that

(8) is also valid with n substituted by n + 1. (9)

To prove (9), we note that, whenever sts Φ is activated in the considered
state, the presence/absence of each variable belonging to V (1) is known. By
assumption, the state sh

n+1[V (1)] resulting from clock-abstraction, having
V (1) as variables, is uniquely determined. In the sequel we write sh

n+1(1)
for short instead of sh

n+1[V (1)]. Thus, presence/absence of variables for state
sn+1(1) is known, the values carried by present variables still have to be
determined.
For any v ∈ V1, we simply take the value carried by the minimal element of
the sequence associated with variable v in δn. Values carried by correspond-
ing state variables are updated accordingly. Thus we know the presence or
absence and the value of each individual variable in state sn+1(1).
Next we move on constructing sn+1(2). From sn+1(1) we know sh

n+1(2). Thus
we know how to split V2 into present and absent variables for the considered
state. We pick up the present ones, and repeat the same argument as before
to get sn+1(2).
Repeating this argument until V (k) = V for some finite k (by endochrony
assumption), proves claim (9).
Given the initial condition for δ, we get from (9), by induction, the desired
proof that (a) ⇒ (b).
We shall now prove (b) ⇒ (a). We assume that Φ is not endochronous, and
show that condition (b) cannot be satisfied. If Φ is not endochronous, there
must be some reachable state s− for which sequence (6) does not converge
to V . Thus, again, we pick out a δ ∈ Σa, decomposed in the same way as in
formula (8):

s1 , s2 , . . . , sn︸ ︷︷ ︸
n−initial segment of σ

,δn

and we assume in addition that sn = s−, the given state for which en-
dochrony is violated. We now show that (9) is not satisfied. Let k∗ ≥ 0 be
the smallest index such that V (k) = V (k + 1), we know Vk∗ 6= V . Thus
we can apply the algorithm of case 1 for reconstructing the reaction, until
variables of Vk∗ . Then presence/absence for variables belonging to V \ Vk∗
cannot be determined based on the knowledge of variables belonging to Vk∗ .
This means that there exist several possible extensions of sh

n+1(k∗ + 1) and
the (n + 1)-th reaction is not determined in a unique way. Hence condition
(b) does not hold.

2. Let us assume Φ is endochronous, and consider Φ′ as in point 2 of the the-
orem. As both Φ and Φ′ are stuttering invariant, point 2 is an immediate
consequence of point 1. �

170 Albert Benveniste, Benôıt Caillaud, and Paul Le Guernic

Comments.

1. Endochrony is not decidable in general. However, it is decidable for sts only
involving variables with finite domains of values, and model checking can
be used for that. For general sts, model checking can be used, in combi-
nation with abstraction techniques. The case of interest is when the chain
V (0), V (1), . . . does not depend upon the particular state s−, and we write
simply V (k) ↪→ V (k + 1) in this case. This abstraction yields to a sufficient
condition of endochrony.

2. The proof of this theorem in fact provides an effective algorithm for the on-
the-fly reconstruction of the successive reactions from a desynchronized run
of an endochronous program.

(Counter-)examples.

Examples:
– a single-clocked sts.
– sts “ if b = t then get u ”, where b, u are the two inputs, and b is

boolean. The clock of b coincides with the activation clock for this sts,
and thus V (1) = {b}. Then, knowing the value for b indicates whether
or not u is present, thus V (2) = {b, u} = V .

Counter-example: sts “if ([present a] ‖ [present b]) then . . .” is not
endochronous, as the environment is free to offer any combination of pres-
ence/absence for the two inputs a, b. Thus ∅ = V (0) = V (1) = V (2) =

. . .
⊂
6= V , and endochrony does not hold.

5.2 Practical Consequences

A first use of endochrony is shown in the following figure:

1 Φ2

Ψ1,2

Φ

In this figure, a pair (Φ1, Φ2) of sts is depicted, with W as the set of shared
variables. Their composition is rewritten as follows: Φ1 ‖ Φ2 = Φ1 ‖ Ψ1,2 ‖ Φ2,
where Ψ1,2 is the restriction of Φ1 ‖ Φ2 to W , hence Ψ1,2 models a synchronous
communication medium. We obtain by using property Φ ‖ Φ = Φ for every sts
Φ:

Φ1 ‖ Φ2 = (Φ1 ‖ Ψ1,2)︸ ︷︷ ︸
Φ̃1

‖ (Ψ1,2 ‖ Φ2)︸ ︷︷ ︸
Φ̃2

= Φ̃1 ‖ Φ̃2 (10)

This model of communication medium Ψ1,2 is endochronous, and composition
Φ1 ‖ Φ2 is implemented by the (equivalent) composition Φ̃1 ‖ Φ̃2. Since all runs of
Ψ1,2 are also runs of Φ̃1 and the former is endochronous, then communication can
be equivalently implemented according to perfect synchrony or full asynchrony.

From Synchrony to Asynchrony 171

This answers question 2, however it does not extend to networks of sts
involving more than two nodes. The following figure shows a counter-example:

1 Φ2Φ Φ

ΨΨ1 2
Transition systems Ψ1 and Ψ2 are assumed to be endochronous. Then com-

munication between Φ1 and Φ on the one hand, and Φ and Φ2 on the other hand,
can be desynchronized. Unfortunately, communication between Φ1 and Φ2 via Φ
cannot, as it is not true in general that Ψ1 ‖ Φ ‖ Ψ2 is endochronous. The problem
is that endochrony is not compositional, hence even ensuring in addition that
Φ itself is endochronous does not work out. Thus we would need to ensure that
Ψ1, Ψ2 as well as Ψ1 ‖ Φ ‖ Ψ2 are all endochronous. This cannot be considered
as an adequate solution when networks of processes are considered. Therefore
we move on introducing the alternative notion of isochrony, which focusses on
communication, and is compositional.

6 Isochrony, and Synchronous/Asynchronous
Compositions

The next result addresses the question of when property (3) holds. We are given
two sts Φi = 〈Vi, Θi, ρi〉 , i = 1, 2. Let W = V1 ∩ V2 be the set of their common
variables, and Φ = Φ1 ‖ Φ2 their synchronous composition. For each reachable
state s of Φ, we denote by s1 =def s[V1] and s2 =def s[V2] the restrictions of
state s respectively to Φ1 and Φ2. It should be reminded that, for i = 1, 2, si is
a reachable state of Φi. Corresponding notations s−, s−1 , s−2 for past states are
used accordingly.

Definition 2 (Isochrony). Let (Φ1, Φ2) be a pair of sts and Φ = Φ1 ‖ Φ2

be their parallel composition. Transitions of Φi, i = 1, 2, are written (s−i , si).
The following conditions (i) and (ii) are defined on pairs ((s−1 , s1), (s−2 , s2)) of
transitions of (Φ1, Φ2):

(i) 1. s−1 = s−[V1] and s−2 = s−[V2] holds for some reachable state s− of Φ, in
particular s−1 and s−2 are unifiable;

2. none of the states si, i = 1, 2 are silent on the common variables, i.e., it
is not the case that, for some i = 1, 2: si[v] = ⊥ holds for all v ∈ W ;

3. s1 and s2 coincide over the set of present common variables5, i.e.:

∀v ∈ W : (s1[v] 6= ⊥ and s2[v] 6= ⊥) ⇒ s1[v] = s2[v] ;

(ii) States s1 and s2 coincide over the whole set of common variables, i.e., states
s1 and s2 are unifiable, i.e.,

s1 = s[V1] and s2 = s[V2] holds for some reachable state s for Φ .

The pair (Φ1, Φ2) is said to be isochronous if and only if for each pair ((s−1 , s1),
(s−2 , s2)) of transitions of (Φ1, Φ2), condition (i) implies condition (ii).

5 By convention this is satisfied if the set of present common variables is empty.

172 Albert Benveniste, Benôıt Caillaud, and Paul Le Guernic

Comment. Roughly speaking, condition of isochrony expresses that unifying
over present common variables is enough to guarantee the unification of the two
considered states s1 and s2. Condition of isochrony is illustrated on the following
figure:

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

1
s [w]
2

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

s [w]

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

The figure depicts, for unifiable previous states s−1 , s−2 , the corresponding
states s1, s2 where (s−i , si) is a valid transition for Φi. The figure depicts the
interpretation of s1 (circle on the left) and s2 (circle on the right) over shared
variables W . White and dashed areas represent absent and present values, re-
spectively. The two left and right circles are superimposed in the mid circle. In
general, vertically and horizontally dashed areas do not coincide, even if s1 and
s2 unify over the subset of shared variables that are present for both transitions
(double-dashed area). Pictorially, unification over double-dashed area does not
imply in general that dashed areas coincide. Isochrony indeed requires that uni-
fication over double-dashed area does imply that dashed areas coincide, hence
unification of s1 and s2 follows.

The following theorem justifies introducing this notion of isochrony.

Theorem 2.

1. If the pair (Φ1, Φ2) is isochronous, then it satisfies property (3).
2. Conversely, we assume in addition that Φ1 and Φ2 are both endochronous.

If the pair (Φ1, Φ2) satisfies property (3), then it is isochronous.

Thus, isochrony is a sufficient condition of property (3), and it is also in fact
necessary when the components are endochronous.

Comments:

1. We have already discussed the importance of enforcing property (3). Now,
why is this theorem interesting? Mainly because it replaces condition (3),
which involves infinite runs, by condition (i) ⇒ (ii) of isochrony, which only
involves pairs of reactions of the considered pair of sts.

2. Comment 1 about endochrony also applies for isochrony.

Proof. We successively prove points 1 and 2.

1. Isochrony Implies Property (3). The proof proceeds from two steps:

1. Let Φa be the desynchronization of Φ, defined in equation (1), and δ ∈ Σa be
an asynchronous run of Φa. There is at least one corresponding synchronous
run σ of Φ such that δ = σa. Any such σ is clearly the synchronous com-
position of two unifiable runs σ1 and σ2 for Φ1 and Φ2, respectively. Hence
associated asynchronous runs σa

1 and σa
2 are also unifiable, and their asyn-

chronous composition σa
1 ∧a σa

2 belongs to Σa
1 ∧a Σa

2 . Thus we always have
the inclusion:

Φa
1 ‖a Φa

2 ⊇ (Φ1 ‖ Φ2)
a (11)

From Synchrony to Asynchrony 173

Proving (3) now amounts to the proof of the converse inclusion. So far we
have only used the definition of desynchronization and asynchronous com-
position, isochrony has not yet been used.

2. Proving the opposite inclusion, requires to prove that, when moving from
asynchronous composition to the synchronous one, the additional constraints
resulting from a reaction-per-reaction matching of unifiable runs will not
result in rejecting pairs of runs that otherwise would be unifiable in the
asynchronous sense. This is where isochrony is used.
A pair (δ1 , δ2) of asynchronous runs is picked out such that δ1 ./a δ2:
they can be combined with the asynchronous composition to form some
run δ = δ1 ∧a δ2 (cf. (2)). By definition of desynchronization (cf. section
4), there exist a (synchronous) run σ1 of Φ1, and a (synchronous) run σ2 of
Φ2, such that δi is obtained by desynchronizing σi, i = 1, 2 (as we do not
assume endochrony at this point, run σi is not uniquely determined). Thus
each run σi is a succession of states. Clearly, inserting finitely many silent
states between successive states of σi would also provide valid candidates for
recovering δi after desynchronization. We shall show, by induction over the
set of runs, that:

properly inserting such silent states in the appropriate component
produces two runs which are unifiable in the synchronous sense. (12)

This means that, from a pair (δ1, δ2) such that δ1 ./a δ2, we can reconstruct
(at least) one pair (σ1, σ2) of runs of Φ1 and Φ2 that are unifiable in the
synchronous sense, and thus it proves the converse inclusion:

Φa
1 ‖a Φa

2 ⊆ (Φ1 ‖ Φ2)
a

. (13)

From (11) and (13) we then deduce property (3). Thus we move on proving
(12) by induction over pairs of runs.
Let (σ1, σ2) be a pair of runs of Φ1 and Φ2. the induction hypothesis is:

σa
1 ./a σa

2 ⇒ ∃(ρ1 , ρ2) runs ofΦ1 andΦ2, s.t.σa
i = ρa

i and ρ1 ./ ρ2 (14)

Let us assume that (14) holds for every pair of runs of ordinal strictly less
than that of (σ1, σ2) and that σa

1 and σa
2 are asynchronously composable.

These two runs may start with infinitely or finitely many silent states over
the common variables W , therefore three cases may occur:
Case 1 : Both runs contain some non silent state over W , therefore they

can be decomposed as follows: σ1 = s1,1, . . . s1,k1 , s1,k1+1, σ
′
1 and σ2 =

s2,1, . . . s2,k2 , s2,k2+1, σ
′
2, where the first k1 states of σ1 and the first k2

states of σ2 are all silent over W and s1,k1+1, s2,k2+1 are both non-
silent over W . We concentrate on those variables v ∈ W that are present
in both states s1,k1+1 and s2,k2+1. As σa

1 ./a σa
2 holds, then we must

have s1,k1+1[v] = s2,k2+1[v] for any such v. Thus points 1,2 and 3 of
condition (i) of isochrony are satisfied. Hence, by isochrony, s1,k1+1 and
s2,k2+1 are indeed unifiable in this case. Moreover σ′a

1 ./a σ′a
2 and since

the ordinal of (σ′
1, σ

′
2) are strictly less than that of (σ1, σ2), induction

hypothesis (14) holds, and there exists (ρ′1 , ρ′2) a pair of composable runs

174 Albert Benveniste, Benôıt Caillaud, and Paul Le Guernic

such that σ′a
i = ρ′ai , i = 1, 2. We now define two runs by inserting silent

states in σ1 and σ2:

ρ1 = s1,1, . . . s1,k1, ⊥, . . .⊥︸ ︷︷ ︸
h1 silent states

, s1,k1+1, ρ
′
1

ρ2 = s2,1, . . . s2,k2, ⊥, . . .⊥︸ ︷︷ ︸
h2 silent states

, s2,k2+1, ρ
′
2

Where h1 = max(0, k2−k1), h2 = max(0, k1−k2). The first max(k1, k2)
states of ρ1 and ρ2 are composable because they are silent over W .
Recall that s1,k1+1 and s2,k2+1 are composable states and that ρ′1 ./ ρ′2.
Therefore ρ1 and ρ2 are composable and ρa

i = σa
i .

Case 2 : Both runs σ1 = s1,1, . . . s1,i, . . . and σ2 = s2,1, . . .s2,i, . . . are silent
over W . Therefore they are synchronously composable.

Case 3 : One of the two runs σ1, σ2 is silent over W , while the other contains
a non-silent state. This violates the left-hand part of the implication in
the induction hypothesis (14): σa

1 ./a σa
2 does not hold.

This proves that induction hypothesis (14) holds for runs (σ1, σ2). By induc-
tion principle it also holds for every pair of runs.

2. Under Endochrony of the Components, Property (3) Implies Isochrony. From
Theorem 1 we know that, in our proof of point 1 of theorem 2, the synchronous
runs σi are uniquely defined, up to silent states, from their desynchronized coun-
terparts σa

i . If isochrony is not satisfied, then, for some pair (σa
1 , σa

2) of unifiable
asynchronous runs, and their decompositions σi = (si,j)j>0, i = 1, 2, of them, it
follows that points 1,2,3 of condition (i) of isochrony are satisfied, and there ex-
ists n > 0 such that states s1,n and s2,n are not unifiable. As our only possibility
is to try to insert silent states in the two components our process of incremental
unification on a per reaction basis fails. Thus (13) is violated, and so is property
(3). This finishes the proof of the theorem. �

An interesting immediate byproduct is the extension of these results on
desynchronization to networks of communicating synchronous components:

Corollary 1 (Desynchronizing a Network of Components). Let
(Φk)k=1,...,K be a family of sts. Let us assume that each pair (Φk, Φk′) is
isochronous, then:

1. For each disjoint subsets I and J of set {1, . . . , K}, the pair(‖k∈I Φk , ‖k′∈J Φk′
)

(15)

is isochronous.
2. Also, desynchronization extends to the network:

(Φ1 ‖ . . . ‖ ΦK)a = Φa
1 ‖a . . . ‖a Φa

K . (16)

Proof. 1. It is sufficient to prove the following restricted case of (15):

(Ψ, Φ1) and (Ψ, Φ2) are isochronous ⇒ (Ψ, Φ1 ‖ Φ2) is isochronous (17)

From Synchrony to Asynchrony 175

as (15) follows via obvious induction on the cardinality of sets I and J . Thus
we focus on proving (17). Let (s−, s) and (t−, t) be two pairs of successive
states of Ψ and Φ1 ‖ Φ2 respectively, which satisfy condition (i) of isochrony,
in definition 2. Let t be the composition (unification) of the two states s1

and s2 of Φ1 and Φ2, respectively. By point 2 of (i), at least one of these two
states is not silent, and we assume s1 is not silent. From point 3 of (i), s and
s1 coincide over the set of present common variables, and thus, since pair
(Ψ, Φ1) is isochronous, states s and s1 coincide over the whole set of common
variables of Ψ and Φ1. Thus s and s1 are unifiable. But, on the other hand,
s1 and s2 are also unifiable since they are just restrictions of the same global
state t of Φ1 ‖ Φ2. Thus states s and t are unifiable, and pair (Ψ, Φ1 ‖ Φ2) is
isochronous. This proves (17).

2. The second statement is proved via induction on the number of components:
(Φ1 ‖ . . . ‖ ΦK)a =((Φ1 ‖ . . . ‖ ΦK−1) ‖ ΦK)a =(Φ1 ‖ . . . ‖ ΦK−1)

a ‖a Φa
K ,

and the induction step follows from (15). �
(Counter-)examples.

Examples:
– a single-clocked communication between two sts.
– the pair (Φ̃1, Φ̃2) of formula (10).

Counter-example: Two sts communicating with one another through two
unconstrained reactive variables x and y. Both sts exhibit the following
reactions: x present and y absent, or alternatively x absent and y present.

7 Getting gals Architectures

In practice, only partial desynchronization of networks of communicating sts
may be considered. This means that system designers may aim at generating
Globally Asynchronous programs made of Locally Synchronous components com-
municating with one another via asynchronous communication media — this is
referred to as gals architectures.

In fact, theorems 1 and 2 provide the adequate solution to this problem. Let
us assume that we have a finite collection Φi of sts such that

1. each Φi is endochronous, and
2. each pair (Φi, Φj) is isochronous.

Then, from corollary 1 and theorem 1, we know that

(Φ1 ‖ . . . ‖ ΦK)a = Φa
1 ‖a . . . ‖a Φa

K

and each Φa
k is in one-to-one correspondence with its synchronous counterpart

Φk. Here is the resulting execution scheme for this gals architecture:

– For communications involving a pair (Φi, Φj) of sts, each flow is preserved
individually, but global synchronization is loosened.

– Each sts Φi reconstructs its own successive reactions by just observing its
(desynchronized) environment, and then locally behaves as a synchronous
sts.

– Finally, each Φi is allowed to have an internal activation clock which is
faster than communication clocks. Resulting local activation clocks evolve
asynchronously from one another.

176 Albert Benveniste, Benôıt Caillaud, and Paul Le Guernic

8 Conclusion

We have presented an in depth study of the relationship between synchrony and
asynchrony. The overall approach consists in characterizing those networks of
sts which can be safely desynchronized, without semantic loss. Actual imple-
mentation of the communications only requests that 1/ message shall not be
lost, and 2/ messages on each individual channel are sent and delivered in the
same order. This type of communication can be implemented either by FIFOs
or by rendez-vous.

The next questions are: 1/ how to test for endo/isochrony? and, 2/ if such
properties are not satisfied, how to modify the given network of sts in order to
guarantee them? It turns out that both points are easily handled on abstractions
of synchronous programs, using the so-called clock calculus which is part of the
Signal compiler. We refer the reader to [2, 3, 8] for additional details. Enforcing
endo/isochrony amounts to equipping each sts with a suitable additional sts
which can be regarded as a kind of “synchronization protocol”. When this is
done, desynchronization can be performed safely.

This method has been implemented in particular in the Sildex tool for the
Signal language, marketed by TNI, Brest, France. It is also implemented in the
Signal compiler developed at Inria, Rennes.

References

[1] R. Alur and T. A. Henzinger. Reactive modules. In Proceedings of the 11th
IEEE Symposium on Logic in Computer Science, LICS’96, pages 207–218, 1996.
extended version submitted for publication.

[2] T. P. Amagbegnon, L. Besnard, and P. Le Guernic. Arborescent canonical form
of boolean expressions. Technical Report 2290, Inria Research Report, June 1994.

[3] T. P. Amagbegnon, L. Besnard, and P. Le Guernic. Implementation of the
dataflow language signal. In Proceedings of the ACM SIGPLAN Conference on
Programming Languages Design and Implementation, PLDI’95, pages 163–173,
1995.

[4] P. Aubry. Mises en œuvre distribuées de programmes synchrones. PhD thesis,
université de Rennes 1, 1997.

[5] A. Benveniste and G. Berry, editors. Proceedings of the IEEE, volume 79, chapter
The special section on another look at real-time programming, pages 1268–1336.
IEEE, September 1991.

[6] A. Benveniste and G. Berry. Real-time systems design and programming. Another
look at real-time programming, special section of Proc. of the IEEE, 79(9):1270–
1282, September 1991.

[7] A. Benveniste and P. Le Guernic. Hybrid dynamical systems theory and the signal
language. IEEE Transactions on Autom. Control, 35(5):535–546, May 1990.

[8] A. Benveniste, P. Le Guernic, and P. Aubry. Compositionality in dataflow syn-
chronous languages: specification & code generation. research report RR–3310,
INRIA, November 1997. http://www.inria.fr/RRRT/publications-eng.html,
see also a revised version co-authored with B. Caillaud, March 1998.

[9] G. Berry. Real time programming: Special purpose or general purpose languages.
In Proceedings of the IFIP World Computer Congress, San Francisco, 1989.

[10] G. Berry. The constructive semantics of esterel. Draft book,
http://www.inria.fr/meije/esterel, December 1995.

From Synchrony to Asynchrony 177

[11] G. Berry and E. M. Sentovich. An implementation of construtive synchronous
programs in polis. manuscript, November 1998.

[12] B. Caillaud, P. Caspi, A. Girault, and C. Jard. Distributing automata for
asynchronous networks of processors. European Journal on Automated Systems,
31(3):503–524, 1997.

[13] P. Caspi. Clocks in dataflow languages. Theoretical Computer Science, 94:125–
140, 1992.

[14] N. Halbwachs. Synchronous programming of reactive systems. Kluwer Academic
Pub., 1993.

[15] N. Halbwachs, F. Lagnier, and Ratel C. Programming and verifying real-time
systems by means of the synchronous dataflow language lustre. IEEE Trans. on
Software Engineering, 18(9):785–793, September 1992.

[16] L. Lamport. Specifying concurrent program modules. ACM Transactions on
Programming Languages and Systems, 5(2):190–222, 1983.

[17] L. Lamport. What good is temporal logic? In R. E. A. Mason, editor, Proc. IFIP
9th World Congress, pages 657–668. North Holland, 1983.

[18] P. Le Guernic, T. Gautier, M. Le Borgne, and Le Maire C. Programming real-
time applications with SIGNAL. Another look at real-time programming, special
section of Proc. of the IEEE, 79(9):1321–1336, September 1991.

[19] O. Maffeis and P. Le Guernic. Distributed implementation of Signal : scheduling
and graph clustering. In 3rd International School and Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems, volume 863 of Lecture Notes
in Computer Science, pages 149–169. Springer Verlag, September 1994.

[20] EP-ATR Project. Signal : a formal design environment for real time systems. In
6th International Joint Conference on Theory and Practice of Software Develop-
ment, TAPSOFT ’95, volume 915 of Lecture Notes in Computer Science, Aarhus,
Denmark, 1995. Springer-Verlag.

[21] Y. Sorel. Sorel: Real-time embedded image processing applications using the a3
methodology. In Proc. IEEE International Conf. on Image Processing, Lausanne,
September 1996.

[22] Y. Sorel and C. Lavarenne. Syndex v4.2 user guide.
http://www-rocq.inria.fr/syndex/.articles/doc/doc/SynDEx42.html.

	Introduction
	The Essentials of the Synchronous Paradigm
	Synchronous Transition Systems (STS)
	Desynchronizing STS, and Two Fundamental Problems
	Endochrony and Re-synchronization
	Formal Results
	Practical Consequences

	Isochrony, and Synchronous/Asynchronous Compositions
	Getting GALS Architectures
	Conclusion
	References

