Virtual prototyping AADL architectures in a polychronous model of computation *

Yue Ma Jean-Pierre Talpin Thierry Gautier
INRIA, Unité de Recherche Rennes-Bretagne-Atlantique, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract system design activity is becoming increasingly essential,
since it allows prototyping and experiments without nec-
While synchrony and asynchrony are two distinct con- essarily having a physical implementation of the system
cepts of concurrency theory, effective and formally definedat hands. Meanwhile, component-based approaches pro-
embedded system design methodologies usually mix the begide a way to significantly reduce overall development costs
from both synchronous and asynchronous worlds by consid-through modularity and re-usability.
ering locally synchronous processes composed in a globally The synchronous paradigm has proved well-suited for
asynchronous way to form so called GALS architectures. Inthe design of embedded systems to significantly ease the
the avionics domain, for instance, the Architecture Analysis modeling and validation of software components. For the
and Design Language (AADL) may be used to describe bothearly validation and testing, some methods for the model-
the hardware and software architecture of an application at ing and automated translation of those complex architec-
system-level. Yet, a synchronous design formalism might baures into synchronous languages [4] have been proposed.
preferred to model and validate each of the critical com- For instance, the paradigm of “Globally asynchronous lo-
ponents of the architecture in isolation. In this paper, we cally synchronous system” (GAL$][5]) has been proposed
illustrate the use of the polychronous (multi-clocked syn- to describe general asynchronous systems, while keeping
chronous) paradigm to model partially asynchronous ap- as much as possible the advantages of synchronous compo-
plications. The specification formalisS®IGNAL is used nents. Other approaches are proposed to program separately
to describe real-world avionic applications using concepts software components using synchronous languages, and de-
of Integrated Modular Avionics (IMA). We show how an ploy them to the target architecture using classical design
AADL architecture can be automatically translated into a methods for asynchronous systems.
synchronous model iSIGNAL using these modeling con- In such cases, developing separately software compo-
cepts. We present a case study on the design of generigients using synchronous languages, and deploying them on
system architecture. The approach is being implemented inthe target architecture using classical design methods for
the framework of the ANR project TopCased. asynchronous systems, it is difficult to validate the inte-
grated system, the problem of validating the whole system
) is crucial: the execution of the software on the target archi-
1 Introduction tecture is generally asychronous, and as a consequence, this
phase of the design is the most error-phone. The validation
can be performed by testing the implementation, however,
this will result in later error detection. Furthermore, testing
gl asynchronous implementation is difficult.

It is well admitted, embedded systems affect most as-
pects of our everyday lives. New development frameworks
that allow designers to perform efficient exploration of de-
sign alternatives and analyze system properties early in th) . . .
design cycle are commonly needed. Several proposals for N Order to support the virtual prototyping, simulation
Model-driven development of embedded systems have beer@nd formal validation of early, component-based, embed-
defined, se€ [1.]2]. However, these modeling principles for ded architectures, we define a model of the AADL into the

architectural modeling of large embedded systems do notPClychronous model of computation of thec8iAL pro-
have a universal recognition. An important recent develop- 9ramming language [6]. Typical synchronous languages are
ment in this respect is the emergence of AADL. ESTEREL LUSTREand SGNAL. They mainly differ from
Architecture Analysis and Design Language (AADL [3]) ©ach other by their programming style. Esterel is control-
is a standard for providing formal modeling concepts for orlented_ state-based formalisms, and Lustre and Signal are
the description and analysis of application system architec-declarative data-flow based formalisms. The polychronous

ture in terms of distinct components and théir interactions. (-6- multi-clocked) model of the IBNAL design language

It provides support to hierarchically describe how software qffersfforbmarll suppﬁ_rt I]olr thel capture dOf behavioral abstsrac-
components are mapped onto computational hardware elelions for both very high-level system descriptions (e.g. Sys-

; ; temC/SPECC) and behavioral-level IP components (e.qg.
ments of the execution platform. The modeling aspect of .
P gasp VHDL). Its platform PoLyCHRONYprovides models and

*This work is partially supported by the ANR projeEopCased methods for a rapid, refinement-based, integration and a

formal conformance-checking of GALS hardware/software used in our example, using thaclIAL library of APEX
architectures. While AADL combines various formalisms services. Section 6 discusses related work. Finally, we sum-
and tools for the design of embedded real-time system, ourmarize the extent of our contribution to virtual prototyping
approach relies on the single semantic model of tt& S AADL, as well as the current limitations of our approach,
NAL language. This favors a uniform framework, which fa- and draw conclusions in section 7.

cilitates system validation. Other simultaneous languages,

such as VHDL/Verilog/SystemC, which are high level hard- 2 A Summary of AADL

ware description languages, restrict the set of verification

back-ends that can be applied. That's why we choose S (AADL) is a SAE standard aimed at the high level de-
NAL for the translation.

TopCased(7] is a large open-source project devoted 1oSi9n and evaluation of the architecture of embedded sys-

the design of critical embedded systems. In the TopCaseoISemS' The language is used to describe the structure of such

process, several meta-models are proposed, including thosFX stems as an assembly of software components that are
for describing architectures in AADL and those for model- apped to an execution platform. The purpose of a model

) . in AADL is to describe the execution characteristics of the
ing synchronous components. In this framework, we pro-

ose a methodoloay to describe asvnchrony using a s n_system. Because such characteristics depend on the hard-
(F:)hronous muIti-cIoglged formalism Y Y 9 YNware executing the software, an AADL model includes the
L : . o . description of both software and hardware.
The main difficulty in this translation is to model in-

trinsicall deterministi d h AADL d AADL focuses on the description of systems using the
rinsically non-geterministic and asyncnronous € component-based paradigm. A sample client-server AADL
scriptions into a polychronous model. We challenge this

o | " . X system is presented in Figure 2. The client sends a signal to
difficulty by using existing techniques and library of the o saryer which in turn sends a message containing data.
SIGNAL environment, consisting of a model of the APEX-

ARINC-653 real-ti i ¢) It The server is made up of two sensors linked to a processor,
e real-ime operating System Services. 1t proves |, e, performs a certain number of calculations and sends
a suitable and adequate library to model embedded archi

tectures in the specific case of Integrated Modular Avionics_the resuit to the client when it demands. In this graphical
:) . representation, all the basic components are depicted.
(IMA [8]) considered in the TopCased project. P P P

Component categories AADL components are separated
General principles In this article, we describe the gen- into three categories: compositg components, application
eral principles of the translation for each AADL compo- software components and execution platform components.
nent. The main one is to use APEX-ARINC services. AR- Composite componentsodel components consisting of
INC 653 (Avionics Application Standard Software Inter- POth hardware and software.systemcomponent models a
face [10]) is a standard that specifies an API for software component containing execution platform, application soft-
of avionics, following the architecutre of Integrated Modu- Wareé and other composite components. Thebal_system

lar Avionics. It defines an APplication EXecutive (APEX) N Figure[2 contains two subsysten@ient andServer.

for space and time partitioning. An ARINC PARTITION Application - software componentsnclude process,

is a logical allocation unit resulting from a functional de- thread, thread group, subprogram, and data components.
composition of the system. PARTITIONSs are composed of A Processcomponent models a protected virtual address
PROCESSes (to distinguish from the AADL process and SPace, and it contains at least one threadthriéad com-
SIGNAL proces$ that represent the executive units. AADL Ponent is an abstraction of a schedulable unit of con-
components are mapped onto ARINC PARTITIONs. Each current execution. Asubprogram component models a
component corresponds to some instances of APEX serProcedure call as in imperative programming languages.
vices (Figure[1). The scheduler and communication of the TheA-sensotserver process oSServer subsystem in Fig-

AADL components are also translated tG8AL processes ~ Ure[2 contains a threa#l_sensotserver_thread, and this
using some improved APEX services. thread calls three subprograms for computaticdDom-

pute_t, Compute_p andAgregate.

Execution platform componentsodel the hardware part
I Scheduler

The Architecture Analysis and Design Language

Instances of APEX services

of the system, and it includes the processor, memory, de-
vice, and bus components. grocessorcomponent is an
abstraction of hardware and possibly embedded software
that schedules and executes threads. It may contain mem-
ory, and can access memory or device components through
a bus component. Aevicecomponent is an abstraction for

a component with complex behavior that interfaces with and
Plan The paper is organized as follows. Sections 2-4 re- represents a part of the external environmenipudcompo-
view the AADL, IMA architecture and SIGNAL. Section 2 nent is an abstraction for an execution platform component
presents an AADL example. Section 5 explains the generalwhich provides communication of data and event messages
principles of the translation for each AADL component. It between processor, memory and device components. In
is illustrated with the translation inI8NAL of components Figure[2,Sensorprocessoris a processor, and it represents

.
appng, ARING PARTITION

communication Signal process

| Signal process

Figure 1. Architecture of modeling the AADL
system using APEX services

¢ G iL'!hGl_S‘.}'S[IE:}L- Server ” -\"'\

' SETG0T SCTVEr — Ten _spngor

E_ﬂensm'_ser\er thread

“Grmpute
gregate /
‘omputet

------ = - Pressure senspr

_ A_client_processor / Iﬂ—m_—v Sensor_processor
% % A

Figure 2. An AADL client-server model

a hardware central processing unffemperature_sensor within a PARTITION. Suitable mechanisms and devices are
and Pressuresensorare two devices, they communicate provided for communication and synchronization between
with Sensorprocessorprocessor viavire bus. PROCESSes (e.gbuffer, event, semaphgrand PARTI-

. . TIONSs (e.g.portsandchannel}.
Component type and implementation Each component The APEX interface allows IMA applications to access

is described in AADL with two parts. The first one, tiype the underlying OS functionalities. The interface includes
represents the functional interface of the component and exy,oih services to achieve communications and synchroniza-

ternally observable attributes, what is visible by other com- tions, and services for the management of PROCESSes and
ponents. The second one, ingplementationdescribes the pARTITIONS.

contents of the component, as well as the connections be-
tween them|[[B]. Eachype may be associated with zero, 4 The SIGNAL Language
one or morémplementation(s)

)))) SIGNAL is a dataflow relational language that relies on
Properties A property provides information about com- the polychronous model[12]. It handles unbounded series
ponent pres, Implementatlons, Subcomponents, featuresof typed Va|ueixt)teN, Ca||edsigna|s denoted ax and
connections, flows, and subprogram calls. implicitly indexed by discrete time. At any instantsignal
may be present, at which point it holds a value; or absent
and denoted by in the semantic notation. The set of in-
potants where aignalx is present represents itkck noted

Z. A SIGNAL procesgto distinguish from the AADL pro-
cess and ARINC PROCESS) is a system of equations over
3 IMA Architecture signalsthat specifies relations between values and clocks of
thesignals A programis aprocess SIGNAL relies on six
The APEX interface, defined in the ARINC stan- primitive constructs that defirlementary processes
dard [10], provides an avionics application software with e Relationsy:= f(x1,...,xn) =t vt (g =Le
the set of basic services to access the operating-system andi xi; =1 A 3 xiy =1= Vi ziy =1L A Jwiy 1=y, =
other system-specific resources. Its definition relies on the f(z14, ..., zn;))
Integrated Modular Avionics (IMA) architecture. A main e Delay. y:= x$1 init ¢ =06l vt > 0,2, #1&
feature in an IMA architecture is that several avionics ap- y; #1L Axy L=y = 24_1,Y0 = C.
plications can be hosted on a single, shared computer sys- e Undersamplingy:= x when b whereb is Boolean
tem. This is addressed through a functional partitioning of =% y, = z, if b, = true, elsey; =1. The expression
the applications with respect to available time and memoryy:= when b is equivalentto;= b when b .
resources [11]. The allocation unit that results from this de- e Deterministic merging. z:= x default y =def
composition is the PARTITION. 2y = xy If 2y £, elsez, = y;.
A processor is allocated to each PARTITION for a fixed e CompositionP1|P2 =Y conjunction of equations of
time window within a major time frame maintained by P1andP2.
themodule-level OSA PARTITION is composed of PRO- e Hiding. P where x =%'x is local to theprocessP.
CESSes which represent the executive units. When a PAR- SIGNAL offers aprocessframe that enables the defini-
TITION is activated, its owned PROCESSes run concur- tion of sub-processe@leclared in thevhere scope).Sub-
rently to perform the functions associated with the PAR- processeshat are only specified by an interface without in-
TITION. Each ARINC PROCESS is uniquely character- ternal behavior are considered as external (e.g. C++/ JAVA
ized by information useful to thpartition-level OS$Swhich functions), and may be separately compilgdcessesor
is responsible for the correct execution of PROCESSesphysical components. Argrocesscan be abstracted by an

Connections Components can be connected and bound to
each other in a number of mannerscénnectionis a link-
age between component features that represents the co
munication of data and control between components.

interface which specifies properties on its input-ougigt PROCESS is identified by the value carried by the out-

nals These properties essentially concern clock relations put signalActive_process_ID , which is sent to each
and dependencies betwesignals All these features favor PROCESS. The other input/output signals can be referenced
modularity and reusability. in [14].

Example (counter) We consider the definition of a ARINC PROCESSES The definition of an ARINC
counter:Count. It accepts an inputesetsignaland deliv- ~ PROCESS model basically takes into account its compu-
ers the integer outpsignalval. The local variableounter tation and control parts. This is depicted in Figfife 4. Two
is initialized to 0 and stores the previous value ofsighal sub-components are clearly distinguished within the model:
val (equationcounter := val$ init 0). When an inputeset ~ CONTROLand COMPUTE Any PROCESS is seen as a re-
occurs, the signalal is reset to 0 (expressiol (vhen re- active component, which reacts whenever an execution or-

sef). Otherwise, thesignal val takes an increment of the der (denoted by the inpuctive_process ID) is re-
variablecounter (expressiongounter+1)). The activity of ceived. The inputimedout notifies PROCESSes of time-
Count is governed by the clock of its outpual which has out expiration. In addition, there are other inputs (resp. out-

higher frequency than its inpuéset puts) needed for (resp. produced by) the PROCESS com-
putations. TheCONTROL and COMPUTE sub-components
reset | { courter'=vat o |wa Contevents 16 """ & i cooperate to achieve the correct execution of the PROCESS
Lol S Owhenreset [Val [10123401230012 model.
default (counter+1) |) counter 101012340123001 The CONTROL sub-component specifies the control

. . ,)) part of the PROCESS. Basically, it is a transition sys-
SIGNAL is associated with a design environment, called tem that indicates which statements should be executed
PoLyCHRONY [12], which offers a graphical user interface, when the PROCESS model reacts. Whenever the input
a compiler and a model-checker that support the trustworthy Active _process_ID identifies the ARINC PROCESS,

design of systems. this PROCESS “executes”. Depending on the current state
: . of the transition system representing the execution flow of
4.1 Modeling ARINC concepts in SIGNAL the PROCESS, alock of actions in theCOMPUTE sub-
The PoLYCHRONY design environment includes a li- componentis selected to be executestantaneously

brary in SGNAL containing real-time executive services de-
fined by ARINC [10]. It relies on a few basic blocks |13],

which allow to model PARTITIONS: APEX-ARINC 653 Active_process_ID |
services, an RTOS model and executive entities. timedout _| _

COMPUTE

CONTROL

APEX services The APEX services modeled ini&
NAL include communication and synchronization services puts

used by PROCESSes (e3ENDBUFFER WAIT.EVENT, I I
READBLACKBOARD, PROCESS management services

Outputs
=

(e.g. START RESUMB, PARTITION management ser- Figure 4. ARINC PROCESS model.
vices (e.g. SETPARTITIONMODE), and time manage- .)
ment services (e.PERIODIC WAIT). The COMPUTE sub-component describes the actions

computed by the PROCESS. It is composedbluficks of
PARTITION-level OS The role of the PARTITION-level actions. They represent elementary pieces of code to be ex-
OS is to ensure the correct concurrent execution of PRO-ecuted without interruption. The statements associated with
CESSes within the PARTITION (each PROCESS must ablockare assumed toomplete within a bounded amount
have exclusive control on the processor). A sample modelof time In the model, &lockis executed instantaneously.
of the PARTITION-level OS is depicted in Figyrg 3.

PARTITIONS After the initialization phase, the PAR-

N Active_processib TITION gets activated (i.e. when receiving\c-
nitialize Partition-level OS ioaou tive_partition_ID). The PARTITION-level OS selects an ac-
o tive PROCESS within the PARTITION. Then, the CON-

TROL subpart of each PROCESS checks whether or not

Figure 3. Interface of the partition-level OS the concerned PROCESS can execute. In the case a PRO-
CESS is designated by the OS, this action is performed: the
In Figure[3, the inpuiActive_partition_ID rep- PROCESS executeskdock from its COMPUTE subpart,

resents the identifier of the running PARTITION selected and the duration corresponding to the execudiedk s re-

by the module-level OS, and it denotes an execution or-turned to the PARTITION-level OS in order to update time
der when it identifies the current PARTITION. Whenever counters. The execution of the model of the PARTITION
the PARTITION executes, thBARTITION_LEVEL_OS follows this basic pattern until theodule-level OSelects
selects an active PROCESS within the PARTITION. The a new PARTITION to execute.

The subclauses of an ARINCI&AL system declara-
tion can be summarized as follows:

SYSTEM::= procesglefining systemidentifier =

DEFINITION_OF.INTERFACE
{PARTITION}+ {MODULE_LEVEL_OS}

[PARTITION_INTERACTION(samplingport | queuingport)] end;

DEFINITION_OF.INTERFACE:= [PARAMETERJ[INPUTS[OUPUTY
PARAMETER:={type parameteidentifer;}*
INPUTS::=?{typeinputidentifier;}*

OUTPUTS:=!{typeoutputidentifier;}*
PARTITION::= processlefining partition.identifier =

DEFINITION_OF_INTERFACE
{PROCESS$+ {PARTITION_LEVEL_OS}

[GLOBAL _OBJECT Sbuffer|blackboardsemaphore)] end;

PROCESS= processlefining processidentifier =

DEFINITION_OF.INTERFACE

{CONTROL} {COMPUTE} end;

CONTROL::= processiefining.controlidentifier =

DEFINITION_OFINTERFACE {CONTROLBODY} end;

COMPUTE:= processiefining.computeidentifier =

DEFINITION_OFINTERFACE {BLOCK}+ end;

5 From AADL models to SIGNAL processes

Here we present general rules to translate AADL sys-

tems into the 8NAL programming language. We put our
translation to work by studying the similarity relationship
between AADL and APEX-ARINC services.

An AADL system model describes the architecture and
runtime environment of an application system in terms of

its constituent software and execution platform components
and their interactions.

In the following, we present the

For instance, the client system (Figlrie 5 left) has one
input port, one output port and two subcomponents. The
corresponding &NAL model is a PARTITION (Figurg]5
right):

ﬂ Active_Partitiop_ID Active_Procesg—+5- requ
Client PARTITION_ CUENT.
<<Event>z|request |nitaije | LEVEL_OS~ | tmedout | ppocegs |€SPorse
A_client_process | ind_processing| —
<<EventData>> fresponse A]
) —
SHARED_

Figure 5. Mapping an AADL system

e The addtional two other inputsinitialize and ac-
tive_partition _ID are generated by the PARTITION sched-
uler.

e The SHAREDRESOURCE includebuff andsema
used for the ARINC PROCESS communication.

Here an AADL system can only contain one processor,
the case in which one system contains several processors
is not considered yet. So that one AADL system can be
mapped into one PARTITION.

5.2 Software components

Each software component (except data and thread group)
is mapped into a ®NAL processwvhose inputs/outputs are
made of the component input/output ports. For component
implementations, theISNAL procesalls result from their
inner connections.

translation rules from four main categories: system, soft-5.2.1 Process

ware components, hardware components and componentinThe AADL process component represents a protected ad-
teractions. For each category, we select some classical comdress space, a space partitioning where protection is pro-
ponents. And for each component, we present a generalided from other components accessing anything inside the
mapping rule, show how its correspondingsBAL process process.

is, then describe some details of the translation, and an ex- Here we consider that the AADL processes executed on
ample translation for the system presented in Figure 2 isthe same processor constitute a PARTITION (on the as-

given.
5.1 System

The system is the top-level component of the AADL
model, It can be mapped into a top-leveRAL process
General rules

1.

2.

Each system can correspond to an ARINC PARTI-
TION.

Each input (output) port of the system is mapped into
an input(output) of the PARTITION.

. For system implementations, each sub-component is

mapped into a ®&NAL process for example, an
AADL process can be mapped as an ARINC PRO-
CESS, a thread can bebtock and all the PROCESS
andblock can be modeled inIBNAL as described in
section 4.2.

sumption that a system only has one processor), in other
words, the processes in one system are mapped into one
PARTITION.
General rules
1. Each AADL process represents an ARINC PROCESS.

2. The input (output) ports of the AADL process become
the inputs (outputs) of the PROCESS.

3. The AADL process is responsible for scheduling and
for executing threads, while the CONTRQdrocess
schedules thévlocks which are translated from the
threads and sub-programs.

4. An AADL process must contain a thread, so the corre-
sponding ARINC PROCESS has to contaihlackin
the COMPUTE sub-program.

Figure[6 is a simple example of AADL process mapping

4. The SGNAL processcalls result straightforwardly (the same example as described in section 2):
from their inner connections. e The ARINC PROCESS attribute (process property in
5. The connections between systems are implemented a®\ADL) must be recorded in the PARTITIONEVEL _OS

the communications between the PARTITIONS, that
are theportsandchanneldn APEX.

which is the scheduler for the PROCESSes in the PARTI-
TION.

e The CONTROL input timedout notifies PRO- COMFITE

CESSes of time-out expiration, and the other inpot e e e eact. 2rm b roquest H—
tive_processID notifies current active PROCESS which o e SAMPUNG. BORTIar s port,
is scheduled by PARTITIONEVEL_OS. The output e = 2
end_processingis emitted by the PROCESS after comple- ([siggerd -= when (active_black=1) _ |ohr
tion, andactive_block is transfered to the COMPUTE part e Srca i ggr . mess.3ce when gt [l
to activate the correspondirdock =

e There are other inputs needed for the ARINC PRO-
CESS computations in actual programming.

e The input (output) ports of the AADL process compo-
nent which correspond to the parent system inputs/outputs
are translated as the ARINC PROCESS inputs (outputs);5 2 3 Supprogram
the other ports which are used for communication betweenTpe subprogram is a callable component with or without pa-
AADL processes are not translated directly as PROCESS,ameters that operates on data or provides functions to com-

Figure 7. Mapping an AADL thread

inputs (outputs), they can be translatedbaffer or black- honents that call it. Subprogram components represent ele-
boardfor the PROCESS communication, that will be repre- mentary pieces of code that processes inputs to produce out-
sented in detail in component interaction section. puts. Calls to subprograms are declared in call sequences in
threads and subprogram implementations. Only their inter-
R _bjck faces are given in the AADL model; subprogram implemen-

IActive_BlocK biff

/,” Aclent thread fequest , —FM o TROL ,m e Cor Java).

A P St End_procegsing request The ARINC blockrepresents elementary pieces of code
/ to be executed without interruption. The statements as-

sociated with ablock are assumed to complete within a

bounded amount of time. The subprogram component can

be mapped into Alock the code should be executed with-

out interruption. The detailed implementation of the func-

client_process _ COMPUTE . . h
f_“_'__"‘f_______, / AdtiveProcesp 10 [Btock tations ought to be provided in some host language (such as
<«<Event>>

Figure 6. Mapping an AADL process

5.2.2 Thread tion can be programmed in C/JAVA language.
Thread component is an abstraction of software responsible
for scheduling and for executing sub-programs. compute_temperature Active_blodi

(| trigger0 .= when (active_block = 0) T| data
| rep0 ;= COMPUTE_T{}{when trigger0,
|:> t_data when trigger0) |)

When several threads run under the same AADL proces:
the sharing of the process is managed by a runtime sche { raw data fitered_data
uler. Threads are responsible for the subprogram executiol
so the thread component can be translated as the executi
of the ARINC PROCESS, that is the COMPUTE part of the
PROCESS. i ;

Figure 8. Mapping an AADL sub-program

General rules g PPINg prog

1. The threads that belong to the same AADL process
constitute the COMPUTIprocess

2. Each thread can beldockor severablocksaccording
to the subprograms it contains.

3. The inputs/outputs of COMPUTE correspond to the
inputs/outputs of the parent PROCESS.

4. One more important input is needeattive_block, for
activating the selectelolock

5. Some communication services may be needed, in such .
case, more inputs will be added, likart and buffer The same small example is used for subprogram transla-

names for identifying the communication scheme. tion (see Figurg]8). For this exampiock theBLOCK _ID
is 0, so when thective_block equals to 0, it is activated.

A generic interface of theIBNAL procesghat specifies Here COMPUTE _T processes the incoming dafadata
the COMPUTE sub-component mapping is given in Fig- when thisblock is triggered to produce some output data,
ure[7. Twoblocksare made from the two subprograms. The the detailed output data producing is programmed in an-
blocks are scheduled by the CONTROL part. other SGNAL processwhich can be provided by a&GNAL

The dispatch_protocol property is used to specify the program or some C program.
activation of a thread, it can be periodic/ aperiodic/ spo- When a thread is made of several subprograms, the call
radic/ background. This must be recorded in the PARTI- sequence is determined by the subprogram calls declaration
TION_LEVEL _OS as an attribute of the parent process.

Fy

General rules

1. Each subprogram becomeblackschema in 8NAL.
Theblockis part of the COMPUTprocess

2. Eachblockis identitied by aBBLOCK _ID. Only when
the currenactive_block equals to it8LOCK _ID, this
blockis executed.

3. Somesubprocessnay be needed for detailed compu-
tation of the execution of the subprogram.

order. In other words, the calls order is static and linear. In 5.3.2 Processor
the SGNAL library of ARINC services, thdlockscan be Processor component is an abstraction of hardware and soft-
controlled to be activated in sequence. This is implementedware responsible for executing and scheduling threads. Ba-
by the PROCESS CONTROL part. Thdockis activated sically, each processor has its own clock, which is the base
only when theactive_block equals to itBLOCK _ID. De- time of the components running on the processor. Several
pending on the current state of the transition system rep-processes or threads that run on the same processor have to
resenting the execution flow of the PROCESSilack of share the resources such as CPU. The sharing is managed
actions in the COMPUTE sub-component is selected to beby a runtime scheduler.
executed instantaneously. Taetive_block is computed in The processor propertySchedulingProcotol de-
CONTROL,the ID value is increased each time the previousfines the way the processor will be shared between the
one is terminated, so that eaalockis executed in turn (see threads of the application. The possible scheduling pro-
Figure[9). Theblock sequence can be arranged according tocols include: RatéMonotonic, EarliesDeadlineFirst,
to the call sequence order, so that blecksare computed DeadlineMonotonic, Leasi axity_First, and Highi-
sequentially from top to bottom. estPriority_First. we consider the most commonly used
scheduler Ratdonotonic for ouw translation, with which
Active.prosess ID = PIlp—ctive blocEI e fietive bJoclT e }_7 the task with the lowest period is the task with the highest

. = : periority.
In ARINC services, PROCESSES run concurrently and
Figure 9. Blockscheduler sequence execute functions associated with the PARTITION in which

they are contained. The PARTITIONEVEL _OS selects
an active PROCESS within the PARTITION whenever the
PARTITION executes, that is to say, at any time, there is
Hardware components represent computational and in-only one PROCESS that is activated. The scheduling pol-
terfacing resources within a system. Each hardware com-icy for PROCESSES is priority preemptive. The proces-
ponent can be mapped into aGSIAL processthe transla- sor can be translated as the scheduler of the AADL pro-
tion is more intricate than software components. Here we cesses/threads which are bounded to the processor, corre-
consider some basic components for the translation. Thesponding to the PARTITIONLEVEL _OS in SGNAL. For
device component is translated as an external interface, thehe RateMonotonic scheduler, we can set the ARINC PRO-
processor as a scheduler, and the bus as a communicatio@ESS priorities according to the thread period, then the pri-

5.3 Hardware components

component. ority preemptive scheduler can be used.
, The subclauses of PARTITIONEVEL _OS declaration
5.3.1 Device can be summarized as follows:

Device components are used to interface the AADL model
with its environment. Devices are not translated as the other PARTITION.LEVEL_OS::= processlefining PLOS identifier =
components, they are modeled outside the PARTITION, the DEFINITION OFINTERFACE {PROCESSCREATION -+

; ! . : {PROCESSSTART}+ {PROCESSSCHEDULINGREQUEST
implementation can be provided in some host language. {PROCESSGETACTIVE} {UPDATE.COUNTERS
General rules {SUSPENDSELF} end;
. . PROCESSCREATION ::=
1. The device can be ai&NAL procesoutside the PAR- processlefining PROCESSCREATION.identifier =
TITION. DEFINITION_.OF INTERFACE ~ {PROCESSRECORDING}+

2. Theprocessnputs/outputs are mapped from the com- {ATTRIBUTE-RECORDINGt+ end;

ponent input/output ports. The inputs are considered as

PARTITION outputs, and the outputs as PARTITION ~ General rules _
inputs. 1. The processor is translated as a PARTI-

TION_LEVEL_OS of the PARTITION.
Figure[10 is a device example which has one output data 2 Al the ARINC PROCESSes must be recorded and cre-
porttemperature_output, in SIGNAL it becomes g@rocess ated in it.
with an outputemperature, and this output is transfered to 3. When the PARTITION is activated, the PROCESS
the corresponding PARTITION as one input. scheduling starts, a priority preemprive scheduling
policy is provided.
a_temperature_sensor Active_Partition_ID 4. The PROCESS will suspend when it finishes.

input
E> Initializd PARTITION]output A SIGNAL translation for the example server part

termperature_output # - . .)
Be\nce_ tempe,atl%re processor is given and commented below:
rocess 1

process PARTITIONZEVEL_OS ={ integer PartitionD; }

(? PartitionIDtype activepartition.ID; event initialize, endorocessing;

! ProcesslDtype activeprocessiD;

. . . [MAX _-NUMBER_OF_PROCESSES]boolean timedout;)

Figure 10. Mapping an AADL device (| pid1 := PROCESSS.CREATION(initialize) %create the PROCESSes%

| returncodel := START }(pid1) 3. The source and destination PARTITIONS need to de-

%any created PROCESS needs to be started to be active% H '
| partitionLis_running := when (activgpartition.ID = Partition.ID) Cl,are _the use of SAMPI‘,INCPORT’ and |dent|fy the
success = PROCESSCHEDULINGREQUEST} (when nparti- direction: source or destination.

tion_is_running) %0On receiving the input active signal, a priority preemptive
scheduling is tried to be performed%

| (activeprocessiD,status) := PROCESSETACTIVE{ }(when success)oin-
voked after each rescheduling request to get the current active PROCESS%

| timedout := UPDATECOUNTERY }()

%manage the time counters associated with PROCESSes%

| timedout "= when partitioris_running Messagd Message Messagd

| returncode? := SUSPENISELF{ } (7.0 when encprocessing)

|) where

boolean success; event partititmrunning; ProcessStatugpe status;

ProcessiDtype pid1; ReturnCodéype returncodel, returrcode?;

PARTITION 1 PARTITION 2 PARTITION 3

Sending port Receving Receving|port

process PROCESS.CREATION = .
(? event initialize; ! ProcesslBype pid1;)
(| recorded1 := PROCESBECORDING{ } (“processserver” when initialize)
| attl.Name := “processerver”| attl.EntryPoint := 0.1 \L

< Channel D

| attl.StackSize := 1| attl.BasePriority := 3

| attl.Period := -1.0 attl.TimeCapacity := 1.0

| attl.Deadline := #SOFTattl "= when recordedl
| (pid1,retl) := CREATEPROCESS }(attl1)
%record the PROCESS attributes% A A
|) where Figure 11. ARINC port mechanism
boolean recordedl; ProcessAttributgpe attl; ReturnCodgype retl;
end; end%end of PARTITIONILEVEL_OS%

Following is an example for the CRE-
The priority of the ARINC PROCESS must be consid- ATE_.SAMPLING_PORT interface. ~ Here three new

ered carefully. The PROCESS with the lowest period is setinputs (it maybe that more than three properties need
to be the highest priority. The PROCESS period attribute is 0 be checked) are addedtransmissiontime, mes-

set to -1.0 when it's aperiodic. sageSize accessprotocol, which correspond separately
to Transmissiormime, AllowedMessageSize, Al-
5.3.3 Bus lowed AccessProtocol property in AADL. For the other

A bus component represents hardware and associated COMAPEX SAMPLING_PORT interfaces, similar property
munication protocols that enable interactions among otherchecking must be added.

execution platform components (ie., memory, processor and

device). For example, a connection between two threads, buslan

each executing on a separate processor, is through a bus be- SSS i'ﬁ'},]ememanon lan.ethernet

tween those processors. This communication is specified in ~ properties N
TransmissionlTime => 1ms .. 5ms;

AADL using accessandbinding declarations to a bus. Be- Allowed_MessageSize =>1b .. 100kb;
cause memory is ignored in this article, we only discuss the end lan etﬁgm?fiﬁccesspmcoml = DeviceAccess;
bus interaction between processor and device components. ' ’
. . process CREATESAMPLING_PORT =
Bus between two processors In this case, it means that (? CommComponentNamgype samplingPorName;
H _ ; SamplingPortSizg¢ype samplingPorBize;
the bus connects two dlffe_ren_t sub-systems. Th(_a bus is used PortDirectiontype portdirection.
for exchange of communication data. As mentioned, each SystemTimetype refrestperiod;
_ i _ SystemTimetype transmissiotime;
sub systemis mapped as an ARINC_ PARTITION, the com SamplingMessageSitgpe messagsize:
munication between PARTITIONs in ARINC services is SamplingPortAccessProtocol accgsstocol;
via ports and channels(Figure[I]). There are two trans- !ngﬁgg%’g’y';”ﬁg{g&?gp"“QPOHD'
fer modes in whictchannelsmay be configuredsampling (| (| (| exceeded := SAMPLINGPORTHECKCAPACITY()
mode andjueuingmode. In the former, no message queu- | sizeOK := (samplingPoriSize <= MAX_SAMPLING_PORT.SIZE)

ing is allowed. A message remains in the source port until when present.....}) |) |);
it is transmitted by thehannelor it is overwritten by a new Bus bet d a deviceln thi th
occurrence of the message. During transmissicimsnnels us between a processor and a deviceln this case, the

ensure that messages leave source ports and reach destinBrOcessor and device are in the same sub-system, it is the

tion ports in the same order. A received message remainscomr_nuglgatlon tfm?e? a PASSST'%N and a devprg—
in the destination port, until it is also overwritten. In the CESSIN SIGNAL. A Set of new NAL Processess

; rovided:
queuingmode,ports are allowed to store messages from a P)
source PARTITION in queues, until they are received by the | ° SREATF‘t.BUS' create a new bus, record the prede-
destination PARTITION. ¢ arewgﬁ%eg'sg ot w0 the b .
A simple way to implement bus access irGEAL is to M N - INput Some messages 1o the bus, make

: property checking.
us%t:r?;?; :Eclaé:ganlsm. ¢ READ_BUS: read the current message from the bus.

1. The APEX SAMPLINGPORT mechanism can be __1he detailed programming can be implemented in C
used for AADL bus. code. In the programming, two things must be done: check

2. Some property checking must be added. the property whether the message is available for transfer,

and if available then record the message in the bus, other- 1. For data port, queuing is not allowed, and the connec-
wise ignore it. tion can be either immediate or delayed. APBEIAck-
board is used to display and read messages: no mes-

5.4 Component Interactions sage queues are allowed, and any message written on

An AADL port represents a communication interface for ablackboardremains there until the message is either
the directional exchange of data, events, or both between Cléared or overwritten by a new instance of the mes-
components. Ports are classified as: sage [T#]. That is to say, the output message is ei-

e data port: interfaces for typed state data transmission ther synchronous with the input or delayed of several
among components without queuing. Connections between ~ 1ks. So data port connection communication can be
data ports are either immediate or delayed. mapped as read/writdackboard

« event port: interfaces for the communication of events ~ 2- For event data port, queuing is allowed. APBffer
raised by subprograms, threads, processors, or devices that ~ allows to send and receive messages following a FIFO

may be queued. policy. Sobuffercan be used for event data port con-

e event data port interfaces for message transmission nection. _ _ .
with queuing. These interfaces enable the queuing of the 3. Foreventport, it may be queued. For simple, we image
data associated with an event. it is queued, and consider it the same as event data port.

A port connection instance represents the actual flow of
data and control between components of a system ingtanc% Related work
model. In case of a fully specified system, this flow is a
transfer between two thread instances, a thread instance and A number of related approaches have been proposed.
a processor instance, or a thread instance and a device inBissaux[[15] presents an approach for AADL model trans-
stance, at least one thread must be included. Each input porformations. This approach concentrates on the analysis of
has a fresh variable to define the state of the port, if a portcomponents from legacy code aimed specifically towards
has not received anything between two thread dispatchesuse with the HOOD Stood tool [15]. Bertolino and Mi-
this variable is set to false. A buffer (to distinguish from randola [16] propose an approach for the specification and
the ARINC buffermechanism) is also associated with each analysis of performance related properties of AADL com-
input port, when an output port sends a data or an event itponents using the RT-UML profile. Although the approach
modifies these buffers. On the dispatch of a thread, thesealso uses a UML profile, it is not targeted towards model
buffers are copied into the local memory of the thread. driven development.

For the AADL port connection translation, we define a Also, a number of tools are available that address the is-
thread and its parent process parent sub-system as-an sues discussed in this paper. CHEDDAR|[17] is a free real-
closing set The port connection can be divided into two time scheduling tool. It is designed for checking task tem-
types: poral constraints of a real time application/system which is

e Type A: the sequence of data connection is within an described with AADL or a CHEDDAR specific language.
enclosing set, for example from a thread to its parent pro- CHEDDAR provides a number of features to ease the de-
cess, or from process to thread (within the same enclosingvelopment of specific schedulers and task models, and it
set) (see Figure 12 left). relies on OCARINA [18] to provide schedulability analy-

e Type B: the sequence of data connection is betweensis of AADL models. OCARINA allows model manipu-
two enclosing sets, for example, the sequence of data confation, generation of formal models, to perform schedul-
nection from a thread to its parent process, to the secondng analysis and generate distributed applications. OCA-
process, and to the thread contained in the second procesRINA allows code generation from AADL descriptions to
(see Figurg 12 right). Ada. GME [19] is engaged in work on a DARPA-sponsored
metamodeling framework, AADL capture and role-based
system security analysis, model transformation and integra-
tion.

Some related approaches are proposed to modeling non-
synchronous systems using synchronous languages and de-
veloping system level design methodology. For instance,

Figure 12. Port connection AADL2SYNC [20] tool is an AADL to synchronous pro-
grams translator, which is extended in the framework of

For type A, we just consider it as usual connection, like the European project ASSERT, resulting in the system-level
parameter transfering. tool box translating AADL to LUSTRE. Although the ap-

For type B, it can be translated bckboardor buffer, proach also translates AADL to a synchronous language, it
according to the communication scheme. If it is queuing, considers a purely synchronous model of computation (that
then it can be mapped intwiffer; if queuing is not allowed, of LUSTRE) in which clocks need to be totally ordered (by
thenblackboardcan be used. A more detailed description contrast to the relational, multi-clocked MoC considered
of type B mapping in the following: here). This limitation requires the emulation of asynchrony

by using a specific protocol of quasi-synchronous commu-
nication. This protocol correctly emulates asynchrony by
simulating variable drifts using random-number generators.
Still its expressive capability is limited compared to simply
abstracting asynchrony using partially-ordered clock rela-
tions, which the MoC of &NAL allows, and yields a com-
positional translation of AADL constructs.

7 Conclusion

We are interested in a representation of the AADL
meta model, which permits us to specify and prove cor-
rect transformations of AADL models. The aim of our ap-
proach, which is illustrated on a simple example, is to sup-
port the virtual prototyping and formal validation of early,

component-based embedded architectures. Our approach

has two main characteristics: 1) itis incremental, as it needs

to support and trace model evolution, 2) itis based on model [10]

transformation, from AADL dependability models tocS
NAL that can be processed by existing technologies and ser-
vices.

In this paper, we presented a way to use the APEX-
ARINC services modeling of asynchronous systems, to pro-

(4]

(5]

(6]

[7]

(8]

(9]

(11]

A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le
Guernic, and R. de Simon&he synchronous languages
12 years later, Proc of the IEEE, 91(1), January 2003

M. Krstic, E. Grass, F.K. Grkaynak, P. Vivet,Globally
Asynchronous, Locally Synchronous Circuits: Overview
and Outlook, IEEE Design and Test of Computers, vol. 24,
no. 5, pp. 430-441, September-October, 2007

P. Le Guernic, J.-P. Talpin, and J.-C. Le LaRwlychrony
for system design Journal for Circuits, Systems and Com-
puters, Special Issue on Application Specific Hardware De-
sign, World Scientific, April 2003

TopCased projedt, http://www.topcased|org

Airlines Electronic Engineering CommitteBesign Guid-
ance for Integrated Modular Avionics. ARINC Report
651-1, November 1997

J. Hudak, P. FeilerThe SAE Architecture Analysis &
Design Language (AADL) Standard: A Language Sum-
mary, AADL Standard Document, 2006

Airlines Electronic Engineering Committe@vionics Ap-
plication Software Standard Interface. Arinc Specifcation
653, January 1997

A. Gamate, T. GautierSynchronous Modeling of Modu-
lar Avionics Architectures using the SIGNAL Language,
Technical Report, IRISA, December 2002

duce automatically a usable model of synchronous architec-[12] L. Besnard, T. Gautier, P. Le GuernBIGNAL V4-INRIA

ture. Our technique efficiently reuses most of existing AR-
INC libraries and services in order to implement our pro-
posal, which justifies presenting it in sufficient details in the
present article.

The advantage of our mapping modeling approach is
that it provides a quite systematic way of modeling asyn-
chronous behaviors, and it allows a significant reduction of

the mapping cost, since the synchronous description generq15)

ally reuses the existing concepts and components.

Not all components and properties are supported at this[16]

moment. The following AADL concepts can be supported:

(14

system, sub-system, device, process, processor, thread, sub-

program, bus and port. It remains to provide a library of
standard components(memory, flow, property,...) iB-S
NAL, to alleviate the task of the user. It is one of our objec-
tives.

After having defined the approach, the main purpose of
the work carried out until now is to assess its feasibility. The
next step of the work concerns the formalisation of transfor-

mation rules in order to automate model transformation and [19]

support additional features.

References

[20] AADL2SYNC project,

[1] R. Chen, M. Sgroi, L. Lavagno, G. Martin, A. Sangiovanni-
Vincentelli, and J. Rabaembedded system design using
UML and platforms , In Forum on Specification and Design
Languages, September 2002

M. Edwards and P. GreetJML for hardware and soft-
ware object modeling In UML for real: design of embed-
ded real-time systems, Kluwer Academi Publishers, 2003
P.H. Feiler, D.P. Gluch, J.J. Hudakhe Architecture Anal-

ysis & Design Language (AADL): An Introduction, Tech-
nical Note CMU/SEI-2006-TN-011, February 2006

(2]

(3]

(17]

(18]

|

version: Reference Manua) IRISA, June 2006

[13] A. Gamaté, and T. GautierSynchronous modeling of

avionics applications using the Signal languagén Proc
of the 9th IEEE RTAS’2003, May 2003, IEEE Press

A. Gamaté, T. Gautier, P. Le Guernic and J.-P. Talpgro)y-
chronous Design of Embedded Real-Time Applications
ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM), April 2007

P. Dissaux,AADL model transformations, Proc DASIA
2005 Conference in Edinburgh, UK, 2005

A. Bertolino, R. Mirandola,Modeling and Analysis of
Non-functional Properties in Component-Based Sys-
tems Electronic Notes in Theoretical Computer Science
82(6), 2003

F. Singhoff, J. Legrand, L. Nana, L. Ma@acCheddar: a
Flexible Real Time Scheduling Framework Proc of the
ACM SIGAda International Conference, Atlanta, US, 2004
J. Hugues, B. Zalila, L. PauteRapid Prototyping of Dis-
tributed Real-Time Embedded Systems Using the AADL
and Ocarina, Proc of the 18th IEEE/IFIP International
Workshop on RSP’07, Brazil, 2007

A. Ledeczi, M. Maroti, and P. VolgyesiThe Generic
Modeling Environment, Technical Report, Van-
derbilt University, [http://www.isis.vanderbilt.edu
[/projects/igme/GME20000verview.pdf, 2002

available from [_hitp:/lwwW-

[verimag.imag.fr/"synchron/index.php?page=aadldsync

	Introduction
	A Summary of AADL
	IMA Architecture
	The Signal Language
	Modeling ARINC concepts in Signal

	From AADL models to SIGNAL processes
	System
	Software components
	Process
	Thread
	Subprogram

	Hardware components
	Device
	Processor
	Bus

	Component Interactions

	Related work
	Conclusion

