
Virtual prototyping AADL architectures in a polychronous model of computation ∗

Yue Ma Jean-Pierre Talpin Thierry Gautier
INRIA, Unité de Recherche Rennes-Bretagne-Atlantique, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract

While synchrony and asynchrony are two distinct con-
cepts of concurrency theory, effective and formally defined
embedded system design methodologies usually mix the best
from both synchronous and asynchronous worlds by consid-
ering locally synchronous processes composed in a globally
asynchronous way to form so called GALS architectures. In
the avionics domain, for instance, the Architecture Analysis
and Design Language (AADL) may be used to describe both
the hardware and software architecture of an application at
system-level. Yet, a synchronous design formalism might be
preferred to model and validate each of the critical com-
ponents of the architecture in isolation. In this paper, we
illustrate the use of the polychronous (multi-clocked syn-
chronous) paradigm to model partially asynchronous ap-
plications. The specification formalismSIGNAL is used
to describe real-world avionic applications using concepts
of Integrated Modular Avionics (IMA). We show how an
AADL architecture can be automatically translated into a
synchronous model inSIGNAL using these modeling con-
cepts. We present a case study on the design of generic
system architecture. The approach is being implemented in
the framework of the ANR project TopCased.

1 Introduction

It is well admitted, embedded systems affect most as-
pects of our everyday lives. New development frameworks
that allow designers to perform efficient exploration of de-
sign alternatives and analyze system properties early in the
design cycle are commonly needed. Several proposals for
Model-driven development of embedded systems have been
defined, see [1, 2]. However, these modeling principles for
architectural modeling of large embedded systems do not
have a universal recognition. An important recent develop-
ment in this respect is the emergence of AADL.

Architecture Analysis and Design Language (AADL [3])
is a standard for providing formal modeling concepts for
the description and analysis of application system architec-
ture in terms of distinct components and their interactions.
It provides support to hierarchically describe how software
components are mapped onto computational hardware ele-
ments of the execution platform. The modeling aspect of

∗This work is partially supported by the ANR projectTopCased.

system design activity is becoming increasingly essential,
since it allows prototyping and experiments without nec-
essarily having a physical implementation of the system
at hands. Meanwhile, component-based approaches pro-
vide a way to significantly reduce overall development costs
through modularity and re-usability.

The synchronous paradigm has proved well-suited for
the design of embedded systems to significantly ease the
modeling and validation of software components. For the
early validation and testing, some methods for the model-
ing and automated translation of those complex architec-
tures into synchronous languages [4] have been proposed.
For instance, the paradigm of “Globally asynchronous lo-
cally synchronous system” (GALS [5]) has been proposed
to describe general asynchronous systems, while keeping
as much as possible the advantages of synchronous compo-
nents. Other approaches are proposed to program separately
software components using synchronous languages, and de-
ploy them to the target architecture using classical design
methods for asynchronous systems.

In such cases, developing separately software compo-
nents using synchronous languages, and deploying them on
the target architecture using classical design methods for
asynchronous systems, it is difficult to validate the inte-
grated system, the problem of validating the whole system
is crucial: the execution of the software on the target archi-
tecture is generally asychronous, and as a consequence, this
phase of the design is the most error-phone. The validation
can be performed by testing the implementation, however,
this will result in later error detection. Furthermore, testing
an asynchronous implementation is difficult.

In order to support the virtual prototyping, simulation
and formal validation of early, component-based, embed-
ded architectures, we define a model of the AADL into the
polychronous model of computation of the SIGNAL pro-
gramming language [6]. Typical synchronous languages are
ESTEREL, LUSTRE and SIGNAL . They mainly differ from
each other by their programming style. Esterel is control-
oriented state-based formalisms, and Lustre and Signal are
declarative data-flow based formalisms. The polychronous
(i.e. multi-clocked) model of the SIGNAL design language
offers formal support for the capture of behavioral abstrac-
tions for both very high-level system descriptions (e.g. Sys-
temC/SPECC) and behavioral-level IP components (e.g.
VHDL). Its platform POLYCHRONYprovides models and
methods for a rapid, refinement-based, integration and a

formal conformance-checking of GALS hardware/software
architectures. While AADL combines various formalisms
and tools for the design of embedded real-time system, our
approach relies on the single semantic model of the SIG-
NAL language. This favors a uniform framework, which fa-
cilitates system validation. Other simultaneous languages,
such as VHDL/Verilog/SystemC, which are high level hard-
ware description languages, restrict the set of verification
back-ends that can be applied. That’s why we choose SIG-
NAL for the translation.

TopCased [7] is a large open-source project devoted to
the design of critical embedded systems. In the TopCased
process, several meta-models are proposed, including those
for describing architectures in AADL and those for model-
ing synchronous components. In this framework, we pro-
pose a methodology to describe asynchrony using a syn-
chronous multi-clocked formalism.

The main difficulty in this translation is to model in-
trinsically non-deterministic and asynchronous AADL de-
scriptions into a polychronous model. We challenge this
difficulty by using existing techniques and library of the
SIGNAL environment, consisting of a model of the APEX-
ARINC-653 real-time operating system services. It proves
a suitable and adequate library to model embedded archi-
tectures in the specific case of Integrated Modular Avionics
(IMA [8]) considered in the TopCased project.

General principles In this article, we describe the gen-
eral principles of the translation for each AADL compo-
nent. The main one is to use APEX-ARINC services. AR-
INC 653 (Avionics Application Standard Software Inter-
face [10]) is a standard that specifies an API for software
of avionics, following the architecutre of Integrated Modu-
lar Avionics. It defines an APplication EXecutive (APEX)
for space and time partitioning. An ARINC PARTITION
is a logical allocation unit resulting from a functional de-
composition of the system. PARTITIONs are composed of
PROCESSes (to distinguish from the AADL process and
SIGNAL process) that represent the executive units. AADL
components are mapped onto ARINC PARTITIONs. Each
component corresponds to some instances of APEX ser-
vices (Figure 1). The scheduler and communication of the
AADL components are also translated to SIGNAL processes
using some improved APEX services.

Figure 1. Architecture of modeling the AADL
system using APEX services

Plan The paper is organized as follows. Sections 2-4 re-
view the AADL, IMA architecture and SIGNAL. Section 2
presents an AADL example. Section 5 explains the general
principles of the translation for each AADL component. It
is illustrated with the translation in SIGNAL of components

used in our example, using the SIGNAL library of APEX
services. Section 6 discusses related work. Finally, we sum-
marize the extent of our contribution to virtual prototyping
AADL, as well as the current limitations of our approach,
and draw conclusions in section 7.

2 A Summary of AADL

The Architecture Analysis and Design Language
(AADL) is a SAE standard aimed at the high level de-
sign and evaluation of the architecture of embedded sys-
tems. The language is used to describe the structure of such
systems as an assembly of software components that are
mapped to an execution platform. The purpose of a model
in AADL is to describe the execution characteristics of the
system. Because such characteristics depend on the hard-
ware executing the software, an AADL model includes the
description of both software and hardware.

AADL focuses on the description of systems using the
component-based paradigm. A sample client-server AADL
system is presented in Figure 2. The client sends a signal to
the server, which in turn sends a message containing data.
The server is made up of two sensors linked to a processor,
which performs a certain number of calculations and sends
the result to the client when it demands. In this graphical
representation, all the basic components are depicted.
Component categories AADL components are separated
into three categories: composite components, application
software components and execution platform components.

Composite componentsmodel components consisting of
both hardware and software. Asystemcomponent models a
component containing execution platform, application soft-
ware and other composite components. TheGlobal system
in Figure 2 contains two subsystems:Client andServer.

Application software componentsinclude process,
thread, thread group, subprogram, and data components.
A processcomponent models a protected virtual address
space, and it contains at least one thread. Athread com-
ponent is an abstraction of a schedulable unit of con-
current execution. Asubprogram component models a
procedure call as in imperative programming languages.
TheA sensorserver process ofServer subsystem in Fig-
ure 2 contains a threadA sensorserver thread, and this
thread calls three subprograms for computation:Com-
pute t, Compute p andAgregate.

Execution platform componentsmodel the hardware part
of the system, and it includes the processor, memory, de-
vice, and bus components. Aprocessorcomponent is an
abstraction of hardware and possibly embedded software
that schedules and executes threads. It may contain mem-
ory, and can access memory or device components through
a bus component. Adevicecomponent is an abstraction for
a component with complex behavior that interfaces with and
represents a part of the external environment. Abuscompo-
nent is an abstraction for an execution platform component
which provides communication of data and event messages
between processor, memory and device components. In
Figure 2,Sensorprocessoris a processor, and it represents

Figure 2. An AADL client-server model

a hardware central processing unit.Temperature sensor
and Pressuresensorare two devices, they communicate
with Sensorprocessorprocessor viawire bus.

Component type and implementation Each component
is described in AADL with two parts. The first one, thetype,
represents the functional interface of the component and ex-
ternally observable attributes, what is visible by other com-
ponents. The second one, theimplementation, describes the
contents of the component, as well as the connections be-
tween them [9]. Eachtype may be associated with zero,
one or moreimplementation(s).

Properties A property provides information about com-
ponent types, implementations, subcomponents, features,
connections, flows, and subprogram calls.

Connections Components can be connected and bound to
each other in a number of manners. Aconnectionis a link-
age between component features that represents the com-
munication of data and control between components.

3 IMA Architecture

The APEX interface, defined in the ARINC stan-
dard [10], provides an avionics application software with
the set of basic services to access the operating-system and
other system-specific resources. Its definition relies on the
Integrated Modular Avionics (IMA) architecture. A main
feature in an IMA architecture is that several avionics ap-
plications can be hosted on a single, shared computer sys-
tem. This is addressed through a functional partitioning of
the applications with respect to available time and memory
resources [11]. The allocation unit that results from this de-
composition is the PARTITION.

A processor is allocated to each PARTITION for a fixed
time window within a major time frame maintained by
themodule-level OS. A PARTITION is composed of PRO-
CESSes which represent the executive units. When a PAR-
TITION is activated, its owned PROCESSes run concur-
rently to perform the functions associated with the PAR-
TITION. Each ARINC PROCESS is uniquely character-
ized by information useful to thepartition-level OS, which
is responsible for the correct execution of PROCESSes

within a PARTITION. Suitable mechanisms and devices are
provided for communication and synchronization between
PROCESSes (e.g.buffer, event, semaphore) and PARTI-
TIONs (e.g.portsandchannels).

The APEX interface allows IMA applications to access
the underlying OS functionalities. The interface includes
both services to achieve communications and synchroniza-
tions, and services for the management of PROCESSes and
PARTITIONs.

4 The SIGNAL Language

SIGNAL is a dataflow relational language that relies on
the polychronous model [12]. It handles unbounded series
of typed values(xt)t∈N, calledsignals, denoted asx and
implicitly indexed by discrete time. At any instant, asignal
may be present, at which point it holds a value; or absent
and denoted by⊥ in the semantic notation. The set of in-
stants where asignalx is present represents itsclock, noted
x̂. A SIGNAL process(to distinguish from the AADL pro-
cess and ARINC PROCESS) is a system of equations over
signalsthat specifies relations between values and clocks of
thesignals. A program is aprocess. SIGNAL relies on six
primitive constructs that defineelementary processes:
•Relations.y:= f(x1,...,xn) ≡def ∀t: (yt =⊥⇔

∀i xit =⊥ ∧ ∃i xit =⊥⇒ ∀i xit =⊥ ∧ ∃xit 6=⊥⇒ yt =
f(x1t, ..., xnt))
• Delay. y:= x$1 init c ≡def ∀t > 0, xt 6=⊥⇔

yt 6=⊥ ∧ xt 6=⊥⇒ yt = xt−1, y0 = c.
•Undersampling.y:= x when b whereb is Boolean

≡def yt = xt if bt = true, elseyt =⊥. The expression
y:= when b is equivalent toy:= b when b .
• Deterministic merging. z:= x default y ≡def

zt = xt if xt 6=⊥, elsezt = yt.
• Composition.P1|P2 ≡def conjunction of equations of

P1 andP2.
• Hiding. P where x ≡def x is local to theprocessP.
SIGNAL offers aprocessframe that enables the defini-

tion of sub-processes(declared in thewhere scope).Sub-
processesthat are only specified by an interface without in-
ternal behavior are considered as external (e.g. C++ / JAVA
functions), and may be separately compiledprocessesor
physical components. Anyprocesscan be abstracted by an

interface which specifies properties on its input-outputsig-
nals. These properties essentially concern clock relations
and dependencies betweensignals. All these features favor
modularity and reusability.

Example (counter) We consider the definition of a
counter:Count. It accepts an inputresetsignaland deliv-
ers the integer outputsignalval. The local variablecounter
is initialized to 0 and stores the previous value of thesignal
val (equationcounter := val$ init 0). When an inputreset
occurs, the signalval is reset to 0 (expression (0 when re-
set)). Otherwise, thesignal val takes an increment of the
variablecounter (expression (counter+1)). The activity of
Count is governed by the clock of its outputval which has
higher frequency than its inputreset.

SIGNAL is associated with a design environment, called
POLYCHRONY [12], which offers a graphical user interface,
a compiler and a model-checker that support the trustworthy
design of systems.

4.1 Modeling ARINC concepts in SIGNAL

The POLYCHRONY design environment includes a li-
brary in SIGNAL containing real-time executive services de-
fined by ARINC [10]. It relies on a few basic blocks [13],
which allow to model PARTITIONS: APEX-ARINC 653
services, an RTOS model and executive entities.

APEX services The APEX services modeled in SIG-
NAL include communication and synchronization services
used by PROCESSes (e.g.SENDBUFFER, WAIT EVENT,
READBLACKBOARD), PROCESS management services
(e.g. START, RESUME), PARTITION management ser-
vices (e.g. SETPARTITIONMODE), and time manage-
ment services (e.g.PERIODICWAIT).

PARTITION-level OS The role of the PARTITION-level
OS is to ensure the correct concurrent execution of PRO-
CESSes within the PARTITION (each PROCESS must
have exclusive control on the processor). A sample model
of the PARTITION-level OS is depicted in Figure 3.

Active_partition_ID

dt

Timedout

Active_process_ID

Partition−level OSinitialize

Figure 3. Interface of the partition-level OS

In Figure 3, the inputActive_partition_ID rep-
resents the identifier of the running PARTITION selected
by the module-level OS, and it denotes an execution or-
der when it identifies the current PARTITION. Whenever
the PARTITION executes, thePARTITION_LEVEL_OS
selects an active PROCESS within the PARTITION. The

PROCESS is identified by the value carried by the out-
put signalActive_process_ID , which is sent to each
PROCESS. The other input/output signals can be referenced
in [14].

ARINC PROCESSES The definition of an ARINC
PROCESS model basically takes into account its compu-
tation and control parts. This is depicted in Figure 4. Two
sub-components are clearly distinguished within the model:
CONTROLandCOMPUTE. Any PROCESS is seen as a re-
active component, which reacts whenever an execution or-
der (denoted by the inputActive_process_ID) is re-
ceived. The inputtimedout notifies PROCESSes of time-
out expiration. In addition, there are other inputs (resp. out-
puts) needed for (resp. produced by) the PROCESS com-
putations. TheCONTROL andCOMPUTEsub-components
cooperate to achieve the correct execution of the PROCESS
model.

The CONTROL sub-component specifies the control
part of the PROCESS. Basically, it is a transition sys-
tem that indicates which statements should be executed
when the PROCESS model reacts. Whenever the input
Active_process_ID identifies the ARINC PROCESS,
this PROCESS “executes”. Depending on the current state
of the transition system representing the execution flow of
the PROCESS, ablock of actions in theCOMPUTE sub-
component is selected to be executedinstantaneously.

....

....

.....

....

Inputs

Outputs

Active_process_ID

timedout dt

CONTROL

COMPUTE

Block

Block

Block

Block

Figure 4. ARINC PROCESS model.

The COMPUTE sub-component describes the actions
computed by the PROCESS. It is composed ofblocksof
actions. They represent elementary pieces of code to be ex-
ecuted without interruption. The statements associated with
a blockare assumed tocomplete within a bounded amount
of time. In the model, ablock is executed instantaneously.

PARTITIONS After the initialization phase, the PAR-
TITION gets activated (i.e. when receivingAc-
tive partition ID). The PARTITION-level OS selects an ac-
tive PROCESS within the PARTITION. Then, the CON-
TROL subpart of each PROCESS checks whether or not
the concerned PROCESS can execute. In the case a PRO-
CESS is designated by the OS, this action is performed: the
PROCESS executes ablock from its COMPUTE subpart,
and the duration corresponding to the executedblock is re-
turned to the PARTITION-level OS in order to update time
counters. The execution of the model of the PARTITION
follows this basic pattern until themodule-level OSselects
a new PARTITION to execute.

The subclauses of an ARINC SIGNAL system declara-
tion can be summarized as follows:

SYSTEM::= processdefiningsystemidentifier =
DEFINITION OF INTERFACE
{PARTITION}+ {MODULE LEVEL OS}
[PARTITION INTERACTION(samplingport | queuingport)] end;

DEFINITION OF INTERFACE::= [PARAMETER][INPUTS][OUPUTS]

PARAMETER::={typeparameteridentifer;}*

INPUTS::=?{typeinput identifier;}*

OUTPUTS::=!{typeoutput identifier;}*
PARTITION::= processdefiningpartition identifier =

DEFINITION OF INTERFACE
{PROCESS}+ {PARTITION LEVEL OS}
[GLOBAL OBJECTS(buffer|blackboard|semaphore)] end;

PROCESS::= processdefiningprocessidentifier =
DEFINITION OF INTERFACE

{CONTROL} {COMPUTE} end;
CONTROL::= processdefiningcontrol identifier =

DEFINITION OF INTERFACE {CONTROL BODY} end;
COMPUTE::= processdefiningcomputeidentifier =

DEFINITION OF INTERFACE {BLOCK}+ end;

5 From AADL models to SIGNAL processes

Here we present general rules to translate AADL sys-
tems into the SIGNAL programming language. We put our
translation to work by studying the similarity relationship
between AADL and APEX-ARINC services.

An AADL system model describes the architecture and
runtime environment of an application system in terms of
its constituent software and execution platform components
and their interactions. In the following, we present the
translation rules from four main categories: system, soft-
ware components, hardware components and component in-
teractions. For each category, we select some classical com-
ponents. And for each component, we present a general
mapping rule, show how its corresponding SIGNAL process
is, then describe some details of the translation, and an ex-
ample translation for the system presented in Figure 2 is
given.

5.1 System

The system is the top-level component of the AADL
model, It can be mapped into a top-level SIGNAL process.

General rules:
1. Each system can correspond to an ARINC PARTI-

TION.
2. Each input (output) port of the system is mapped into

an input(output) of the PARTITION.
3. For system implementations, each sub-component is

mapped into a SIGNAL process, for example, an
AADL process can be mapped as an ARINC PRO-
CESS, a thread can be ablock, and all the PROCESS
andblock can be modeled in SIGNAL as described in
section 4.2.

4. The SIGNAL processcalls result straightforwardly
from their inner connections.

5. The connections between systems are implemented as
the communications between the PARTITIONs, that
are theportsandchannelsin APEX.

For instance, the client system (Figure 5 left) has one
input port, one output port and two subcomponents. The
corresponding SIGNAL model is a PARTITION (Figure 5
right):

Figure 5. Mapping an AADL system

• The addtional two other inputs:initialize and ac-
tive partition ID are generated by the PARTITION sched-
uler.
• The SHAREDRESOURCE includesbuff andsema,

used for the ARINC PROCESS communication.
Here an AADL system can only contain one processor,

the case in which one system contains several processors
is not considered yet. So that one AADL system can be
mapped into one PARTITION.

5.2 Software components

Each software component (except data and thread group)
is mapped into a SIGNAL processwhose inputs/outputs are
made of the component input/output ports. For component
implementations, the SIGNAL processcalls result from their
inner connections.

5.2.1 Process
The AADL process component represents a protected ad-
dress space, a space partitioning where protection is pro-
vided from other components accessing anything inside the
process.

Here we consider that the AADL processes executed on
the same processor constitute a PARTITION (on the as-
sumption that a system only has one processor), in other
words, the processes in one system are mapped into one
PARTITION.

General rules:
1. Each AADL process represents an ARINC PROCESS.
2. The input (output) ports of the AADL process become

the inputs (outputs) of the PROCESS.
3. The AADL process is responsible for scheduling and

for executing threads, while the CONTROLprocess
schedules theblocks which are translated from the
threads and sub-programs.

4. An AADL process must contain a thread, so the corre-
sponding ARINC PROCESS has to contain ablock in
the COMPUTE sub-program.

Figure 6 is a simple example of AADL process mapping
(the same example as described in section 2):
• The ARINC PROCESS attribute (process property in

AADL) must be recorded in the PARTITIONLEVEL OS
which is the scheduler for the PROCESSes in the PARTI-
TION.

• The CONTROL input timedout notifies PRO-
CESSes of time-out expiration, and the other inputac-
tive processID notifies current active PROCESS which
is scheduled by PARTITIONLEVEL OS. The output
end processingis emitted by the PROCESS after comple-
tion, andactive block is transfered to the COMPUTE part
to activate the correspondingblock.
• There are other inputs needed for the ARINC PRO-

CESS computations in actual programming.
• The input (output) ports of the AADL process compo-

nent which correspond to the parent system inputs/outputs
are translated as the ARINC PROCESS inputs (outputs);
the other ports which are used for communication between
AADL processes are not translated directly as PROCESS
inputs (outputs), they can be translated asbuffer or black-
boardfor the PROCESS communication, that will be repre-
sented in detail in component interaction section.

Figure 6. Mapping an AADL process

5.2.2 Thread
Thread component is an abstraction of software responsible
for scheduling and for executing sub-programs.

When several threads run under the same AADL process,
the sharing of the process is managed by a runtime sched-
uler. Threads are responsible for the subprogram execution,
so the thread component can be translated as the execution
of the ARINC PROCESS, that is the COMPUTE part of the
PROCESS.

General rules:
1. The threads that belong to the same AADL process

constitute the COMPUTEprocess.

2. Each thread can be ablockor severalblocksaccording
to the subprograms it contains.

3. The inputs/outputs of COMPUTE correspond to the
inputs/outputs of the parent PROCESS.

4. One more important input is needed:active block, for
activating the selectedblock.

5. Some communication services may be needed, in such
case, more inputs will be added, likeport andbuffer
names for identifying the communication scheme.

A generic interface of the SIGNAL processthat specifies
the COMPUTE sub-component mapping is given in Fig-
ure 7. Twoblocksare made from the two subprograms. The
blocks are scheduled by the CONTROL part.

The dispatch protocol property is used to specify the
activation of a thread, it can be periodic/ aperiodic/ spo-
radic/ background. This must be recorded in the PARTI-
TION LEVEL OS as an attribute of the parent process.

Figure 7. Mapping an AADL thread

5.2.3 Subprogram
The subprogram is a callable component with or without pa-
rameters that operates on data or provides functions to com-
ponents that call it. Subprogram components represent ele-
mentary pieces of code that processes inputs to produce out-
puts. Calls to subprograms are declared in call sequences in
threads and subprogram implementations. Only their inter-
faces are given in the AADL model; subprogram implemen-
tations ought to be provided in some host language (such as
C or Java).

The ARINCblock represents elementary pieces of code
to be executed without interruption. The statements as-
sociated with ablock are assumed to complete within a
bounded amount of time. The subprogram component can
be mapped into ablock, the code should be executed with-
out interruption. The detailed implementation of the func-
tion can be programmed in C/JAVA language.

Figure 8. Mapping an AADL sub-program

General rules:
1. Each subprogram becomes ablockschema in SIGNAL .

Theblock is part of the COMPUTEprocess.
2. Eachblock is identitied by aBLOCK ID . Only when

the currentactive block equals to itsBLOCK ID , this
block is executed.

3. Somesubprocessmay be needed for detailed compu-
tation of the execution of the subprogram.

The same small example is used for subprogram transla-
tion (see Figure 8). For this exampleblock, theBLOCK ID
is 0, so when theactive block equals to 0, it is activated.
Here COMPUTE T processes the incoming dataT data
when thisblock is triggered to produce some output data,
the detailed output data producing is programmed in an-
other SIGNAL process, which can be provided by a SIGNAL
program or some C program.

When a thread is made of several subprograms, the call
sequence is determined by the subprogram calls declaration

order. In other words, the calls order is static and linear. In
the SIGNAL library of ARINC services, theblockscan be
controlled to be activated in sequence. This is implemented
by the PROCESS CONTROL part. Theblock is activated
only when theactive block equals to itsBLOCK ID . De-
pending on the current state of the transition system rep-
resenting the execution flow of the PROCESS, ablock of
actions in the COMPUTE sub-component is selected to be
executed instantaneously. Theactive block is computed in
CONTROL,the ID value is increased each time the previous
one is terminated, so that eachblock is executed in turn (see
Figure 9). Theblock sequence can be arranged according
to the call sequence order, so that theblocksare computed
sequentially from top to bottom.

Figure 9. Blockscheduler sequence

5.3 Hardware components

Hardware components represent computational and in-
terfacing resources within a system. Each hardware com-
ponent can be mapped into a SIGNAL process, the transla-
tion is more intricate than software components. Here we
consider some basic components for the translation. The
device component is translated as an external interface, the
processor as a scheduler, and the bus as a communication
component.

5.3.1 Device
Device components are used to interface the AADL model
with its environment. Devices are not translated as the other
components, they are modeled outside the PARTITION, the
implementation can be provided in some host language.

General rules:
1. The device can be a SIGNAL processoutside the PAR-

TITION.
2. Theprocessinputs/outputs are mapped from the com-

ponent input/output ports. The inputs are considered as
PARTITION outputs, and the outputs as PARTITION
inputs.

Figure 10 is a device example which has one output data
port temperature output, in SIGNAL it becomes aprocess
with an outputtemperature, and this output is transfered to
the corresponding PARTITION as one input.

Figure 10. Mapping an AADL device

5.3.2 Processor
Processor component is an abstraction of hardware and soft-
ware responsible for executing and scheduling threads. Ba-
sically, each processor has its own clock, which is the base
time of the components running on the processor. Several
processes or threads that run on the same processor have to
share the resources such as CPU. The sharing is managed
by a runtime scheduler.

The processor propertySchedulingProcotol de-
fines the way the processor will be shared between the
threads of the application. The possible scheduling pro-
tocols include: RateMonotonic, EarliestDeadlineFirst,
DeadlineMonotonic, LeastLaxity First, and Highi-
estPriority First. we consider the most commonly used
scheduler RateMonotonic for ouw translation, with which
the task with the lowest period is the task with the highest
periority.

In ARINC services, PROCESSES run concurrently and
execute functions associated with the PARTITION in which
they are contained. The PARTITIONLEVEL OS selects
an active PROCESS within the PARTITION whenever the
PARTITION executes, that is to say, at any time, there is
only one PROCESS that is activated. The scheduling pol-
icy for PROCESSES is priority preemptive. The proces-
sor can be translated as the scheduler of the AADL pro-
cesses/threads which are bounded to the processor, corre-
sponding to the PARTITIONLEVEL OS in SIGNAL . For
the RateMonotonic scheduler, we can set the ARINC PRO-
CESS priorities according to the thread period, then the pri-
ority preemptive scheduler can be used.

The subclauses of PARTITIONLEVEL OS declaration
can be summarized as follows:

PARTITION LEVEL OS::= processdefiningPLOS identifier =
DEFINITION OF INTERFACE {PROCESSCREATION}+
{PROCESSSTART}+ {PROCESSSCHEDULINGREQUEST}
{PROCESSGETACTIVE} {UPDATE COUNTERS}
{SUSPENDSELF} end;

PROCESSCREATION::=
processdefiningPROCESSCREATION identifier =
DEFINITION OF INTERFACE {PROCESSRECORDING}+

{ATTRIBUTE RECORDING}+ end;

General rules:
1. The processor is translated as a PARTI-

TION LEVEL OS of the PARTITION.
2. All the ARINC PROCESSes must be recorded and cre-

ated in it.
3. When the PARTITION is activated, the PROCESS

scheduling starts, a priority preemprive scheduling
policy is provided.

4. The PROCESS will suspend when it finishes.

A SIGNAL translation for the example server part
processor is given and commented below:

process PARTITION2LEVEL OS ={ integer PartitionID; }
(? PartitionIDtype activepartition ID; event initialize, endprocessing;
! ProcessIDtype activeprocessID;

[MAX NUMBER OF PROCESSES]boolean timedout;)
(| pid1 := PROCESSS CREATION(initialize)%create the PROCESSes%

| returncode1 := START{}(pid1)
%any created PROCESS needs to be started to be active%
| partition is running := when (activepartition ID = Partition ID)
| success := PROCESSSCHEDULINGREQUEST{} (when parti-

tion is running) %On receiving the input active signal, a priority preemptive
scheduling is tried to be performed%

| (activeprocessID,status) := PROCESSGETACTIVE{}(when success)%in-
voked after each rescheduling request to get the current active PROCESS%

| timedout := UPDATECOUNTERS{}()
%manage the time counters associated with PROCESSes%
| timedout ˆ= when partitionis running
| returncode2 := SUSPENDSELF{}(7.0 when endprocessing)
|) where
boolean success; event partitionis running; ProcessStatustype status;
ProcessIDtype pid1; ReturnCodetype returncode1, returncode2;

process PROCESSS CREATION =
(? event initialize; ! ProcessIDtype pid1;)
(| recorded1 := PROCESSRECORDING{}(“processserver” when initialize)
| att1.Name := “processserver”| att1.EntryPoint := 0.1
| att1.StackSize := 1| att1.BasePriority := 3
| att1.Period := -1.0| att1.TimeCapacity := 1.0
| att1.Deadline := #SOFT| att1 ˆ= when recorded1
| (pid1,ret1) := CREATEPROCESS{}(att1)
%record the PROCESS attributes%
|) where
boolean recorded1; ProcessAttributestype att1; ReturnCodetype ret1;
end; end;%end of PARTITION1LEVEL OS%

The priority of the ARINC PROCESS must be consid-
ered carefully. The PROCESS with the lowest period is set
to be the highest priority. The PROCESS period attribute is
set to -1.0 when it’s aperiodic.

5.3.3 Bus
A bus component represents hardware and associated com-
munication protocols that enable interactions among other
execution platform components (ie., memory, processor and
device). For example, a connection between two threads,
each executing on a separate processor, is through a bus be-
tween those processors. This communication is specified in
AADL using accessandbinding declarations to a bus. Be-
cause memory is ignored in this article, we only discuss the
bus interaction between processor and device components.

Bus between two processors In this case, it means that
the bus connects two different sub-systems. The bus is used
for exchange of communication data. As mentioned, each
sub-system is mapped as an ARINC PARTITION, the com-
munication between PARTITIONs in ARINC services is
via ports and channels(Figure 11). There are two trans-
fer modes in whichchannelsmay be configured:sampling
mode andqueuingmode. In the former, no message queu-
ing is allowed. A message remains in the source port until
it is transmitted by thechannelor it is overwritten by a new
occurrence of the message. During transmissions,channels
ensure that messages leave source ports and reach destina-
tion ports in the same order. A received message remains
in the destination port, until it is also overwritten. In the
queuingmode,portsare allowed to store messages from a
source PARTITION in queues, until they are received by the
destination PARTITION.

A simple way to implement bus access in SIGNAL is to
use theport mechanism.

General rules:
1. The APEX SAMPLINGPORT mechanism can be

used for AADL bus.
2. Some property checking must be added.

3. The source and destination PARTITIONs need to de-
clare the use of SAMPLINGPORT, and identify the
direction: source or destination.

Figure 11. ARINC port mechanism

Following is an example for the CRE-
ATE SAMPLING PORT interface. Here three new
inputs (it maybe that more than three properties need
to be checked) are added:transmission time, mes-
sageSize, accessprotocol, which correspond separately
to TransmissionTime, Allowed MessageSize, Al-
lowed AccessProtocol property in AADL. For the other
APEX SAMPLING PORT interfaces, similar property
checking must be added.

bus lan
end lan;
bus implementation lan.ethernet
properties

TransmissionTime => 1ms .. 5ms;
Allowed MessageSize =>1b .. 100kb;
Allowed AccessProcotol => DeviceAccess;

end lan.ethernet;

process CREATESAMPLING PORT =
(? CommComponentNametype samplingPortName;

SamplingPortSizetype samplingPortSize;
PortDirectiontype portdirection;
SystemTimetype refreshperiod;
SystemTimetype transmissiontime;
SamplingMessageSizetype messageSize;
SamplingPortAccessProtocol accessprotocol;

! Comm ComponentIDtype samplingPortID;
ReturnCodetype returncode;)

(| (| (| exceeded := SAMPLINGPORTCHECKCAPACITY()

| sizeOK := (samplingPortSize <= MAX SAMPLING PORTSIZE)

when present|) |) |);

Bus between a processor and a deviceIn this case, the
processor and device are in the same sub-system, it is the
communication between a PARTITION and a devicepro-
cessin SIGNAL . A set of new BUS SIGNAL processesis
provided:
• CREATE BUS: create a new bus, record the prede-

clared properties.
• WRITE BUS: input some messages to the bus, make

property checking.
• READ BUS: read the current message from the bus.
The detailed programming can be implemented in C

code. In the programming, two things must be done: check
the property whether the message is available for transfer,

and if available then record the message in the bus, other-
wise ignore it.

5.4 Component Interactions

An AADL port represents a communication interface for
the directional exchange of data, events, or both between
components. Ports are classified as:
• data port: interfaces for typed state data transmission

among components without queuing. Connections between
data ports are either immediate or delayed.
• event port: interfaces for the communication of events

raised by subprograms, threads, processors, or devices that
may be queued.
• event data port: interfaces for message transmission

with queuing. These interfaces enable the queuing of the
data associated with an event.

A port connection instance represents the actual flow of
data and control between components of a system instance
model. In case of a fully specified system, this flow is a
transfer between two thread instances, a thread instance and
a processor instance, or a thread instance and a device in-
stance, at least one thread must be included. Each input port
has a fresh variable to define the state of the port, if a port
has not received anything between two thread dispatches,
this variable is set to false. A buffer (to distinguish from
the ARINCbuffermechanism) is also associated with each
input port, when an output port sends a data or an event it
modifies these buffers. On the dispatch of a thread, these
buffers are copied into the local memory of the thread.

For the AADL port connection translation, we define a
thread and its parent process parent sub-system as anen-
closing set. The port connection can be divided into two
types:
• Type A: the sequence of data connection is within an

enclosing set, for example from a thread to its parent pro-
cess, or from process to thread (within the same enclosing
set) (see Figure 12 left).
• Type B: the sequence of data connection is between

two enclosing sets, for example, the sequence of data con-
nection from a thread to its parent process, to the second
process, and to the thread contained in the second process
(see Figure 12 right).

Figure 12. Port connection

For type A, we just consider it as usual connection, like
parameter transfering.

For type B, it can be translated asblackboardor buffer,
according to the communication scheme. If it is queuing,
then it can be mapped intobuffer; if queuing is not allowed,
thenblackboardcan be used. A more detailed description
of type B mapping in the following:

1. For data port, queuing is not allowed, and the connec-
tion can be either immediate or delayed. APEXblack-
board is used to display and read messages: no mes-
sage queues are allowed, and any message written on
a blackboardremains there until the message is either
cleared or overwritten by a new instance of the mes-
sage [14]. That is to say, the output message is ei-
ther synchronous with the input or delayed of several
ticks. So data port connection communication can be
mapped as read/writeblackboard.

2. For event data port, queuing is allowed. APEXbuffer
allows to send and receive messages following a FIFO
policy. Sobuffer can be used for event data port con-
nection.

3. For event port, it may be queued. For simple, we image
it is queued, and consider it the same as event data port.

6 Related work

A number of related approaches have been proposed.
Dissaux [15] presents an approach for AADL model trans-
formations. This approach concentrates on the analysis of
components from legacy code aimed specifically towards
use with the HOOD Stood tool [15]. Bertolino and Mi-
randola [16] propose an approach for the specification and
analysis of performance related properties of AADL com-
ponents using the RT-UML profile. Although the approach
also uses a UML profile, it is not targeted towards model
driven development.

Also, a number of tools are available that address the is-
sues discussed in this paper. CHEDDAR [17] is a free real-
time scheduling tool. It is designed for checking task tem-
poral constraints of a real time application/system which is
described with AADL or a CHEDDAR specific language.
CHEDDAR provides a number of features to ease the de-
velopment of specific schedulers and task models, and it
relies on OCARINA [18] to provide schedulability analy-
sis of AADL models. OCARINA allows model manipu-
lation, generation of formal models, to perform schedul-
ing analysis and generate distributed applications. OCA-
RINA allows code generation from AADL descriptions to
Ada. GME [19] is engaged in work on a DARPA-sponsored
metamodeling framework, AADL capture and role-based
system security analysis, model transformation and integra-
tion.

Some related approaches are proposed to modeling non-
synchronous systems using synchronous languages and de-
veloping system level design methodology. For instance,
AADL2SYNC [20] tool is an AADL to synchronous pro-
grams translator, which is extended in the framework of
the European project ASSERT, resulting in the system-level
tool box translating AADL to LUSTRE. Although the ap-
proach also translates AADL to a synchronous language, it
considers a purely synchronous model of computation (that
of LUSTRE) in which clocks need to be totally ordered (by
contrast to the relational, multi-clocked MoC considered
here). This limitation requires the emulation of asynchrony

by using a specific protocol of quasi-synchronous commu-
nication. This protocol correctly emulates asynchrony by
simulating variable drifts using random-number generators.
Still its expressive capability is limited compared to simply
abstracting asynchrony using partially-ordered clock rela-
tions, which the MoC of SIGNAL allows, and yields a com-
positional translation of AADL constructs.

7 Conclusion

We are interested in a representation of the AADL
meta model, which permits us to specify and prove cor-
rect transformations of AADL models. The aim of our ap-
proach, which is illustrated on a simple example, is to sup-
port the virtual prototyping and formal validation of early,
component-based embedded architectures. Our approach
has two main characteristics: 1) it is incremental, as it needs
to support and trace model evolution, 2) it is based on model
transformation, from AADL dependability models to SIG-
NAL that can be processed by existing technologies and ser-
vices.

In this paper, we presented a way to use the APEX-
ARINC services modeling of asynchronous systems, to pro-
duce automatically a usable model of synchronous architec-
ture. Our technique efficiently reuses most of existing AR-
INC libraries and services in order to implement our pro-
posal, which justifies presenting it in sufficient details in the
present article.

The advantage of our mapping modeling approach is
that it provides a quite systematic way of modeling asyn-
chronous behaviors, and it allows a significant reduction of
the mapping cost, since the synchronous description gener-
ally reuses the existing concepts and components.

Not all components and properties are supported at this
moment. The following AADL concepts can be supported:
system, sub-system, device, process, processor, thread, sub-
program, bus and port. It remains to provide a library of
standard components(memory, flow, property,...) in SIG-
NAL , to alleviate the task of the user. It is one of our objec-
tives.

After having defined the approach, the main purpose of
the work carried out until now is to assess its feasibility. The
next step of the work concerns the formalisation of transfor-
mation rules in order to automate model transformation and
support additional features.

References

[1] R. Chen, M. Sgroi, L. Lavagno, G. Martin, A. Sangiovanni-
Vincentelli, and J. Rabaey,Embedded system design using
UML and platforms , In Forum on Specification and Design
Languages, September 2002

[2] M. Edwards and P. Green,UML for hardware and soft-
ware object modeling, In UML for real: design of embed-
ded real-time systems, Kluwer Academi Publishers, 2003

[3] P.H. Feiler, D.P. Gluch, J.J. Hudak.The Architecture Anal-
ysis & Design Language (AADL): An Introduction , Tech-
nical Note CMU/SEI-2006-TN-011, February 2006

[4] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le
Guernic, and R. de Simone,The synchronous languages
12 years later, Proc of the IEEE, 91(1), January 2003

[5] M. Krstić, E. Grass, F.K. G̈urkaynak, P. Vivet,Globally
Asynchronous, Locally Synchronous Circuits: Overview
and Outlook, IEEE Design and Test of Computers, vol. 24,
no. 5, pp. 430-441, September-October, 2007

[6] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann,Polychrony
for system design, Journal for Circuits, Systems and Com-
puters, Special Issue on Application Specific Hardware De-
sign, World Scientific, April 2003

[7] TopCased project, http://www.topcased.org
[8] Airlines Electronic Engineering Committee.Design Guid-

ance for Integrated Modular Avionics. ARINC Report
651-1, November 1997

[9] J. Hudak, P. Feiler,The SAE Architecture Analysis &
Design Language (AADL) Standard: A Language Sum-
mary, AADL Standard Document, 2006

[10] Airlines Electronic Engineering Committee.Avionics Ap-
plication Software Standard Interface. Arinc Specifcation
653, January 1997

[11] A. Gamatíe, T. Gautier.Synchronous Modeling of Modu-
lar Avionics Architectures using the SIGNAL Language,
Technical Report, IRISA, December 2002

[12] L. Besnard, T. Gautier, P. Le Guernic.SIGNAL V4-INRIA
version: Reference Manual, IRISA, June 2006

[13] A. Gamatíe, and T. Gautier,Synchronous modeling of
avionics applications using the Signal language. In Proc
of the 9th IEEE RTAS’2003, May 2003, IEEE Press

[14] A. Gamatíe, T. Gautier, P. Le Guernic and J.-P. Talpin,Poly-
chronous Design of Embedded Real-Time Applications,
ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM), April 2007

[15] P. Dissaux,AADL model transformations , Proc DASIA
2005 Conference in Edinburgh, UK, 2005

[16] A. Bertolino, R. Mirandola,Modeling and Analysis of
Non-functional Properties in Component-Based Sys-
tems, Electronic Notes in Theoretical Computer Science
82(6), 2003

[17] F. Singhoff, J. Legrand, L. Nana, L. Marcé, Cheddar: a
Flexible Real Time Scheduling Framework, Proc of the
ACM SIGAda International Conference, Atlanta, US, 2004

[18] J. Hugues, B. Zalila, L. Pautet,Rapid Prototyping of Dis-
tributed Real-Time Embedded Systems Using the AADL
and Ocarina, Proc of the 18th IEEE/IFIP International
Workshop on RSP’07, Brazil, 2007

[19] A. Ledeczi, M. Maroti, and P. Volgyesi,The Generic
Modeling Environment, Technical Report, Van-
derbilt University, http://www.isis.vanderbilt.edu
/projects/gme/GME2000Overview.pdf, 2002

[20] AADL2SYNC project, available from http://www-
verimag.imag.fr/˜synchron/index.php?page=aadl2sync

	Introduction
	A Summary of AADL
	IMA Architecture
	The Signal Language
	Modeling ARINC concepts in Signal

	From AADL models to SIGNAL processes
	System
	Software components
	Process
	Thread
	Subprogram

	Hardware components
	Device
	Processor
	Bus

	Component Interactions

	Related work
	Conclusion

