
Integration of Polychrony and QGen Model Compiler

Christophe Junke, Thierry Gautier, Jean-Pierre Talpin
INRIA, Rennes-Bretagne-Atlantique Research Centre, France

firstname.lastname@inria.fr

Loïc Besnard
CNRS, IRISA, Rennes, France

loic.besnard@irisa.fr

Abstract We present the development of a model transformation
tool between the synchronous Signal language and QGen model com-
piler’s intermediate language as well as an alternative block sequenc-
ing implementation for QGen which supports strict partial and total
orders. We discuss our contributions and their possible applications
in the field of reactive system design as well as some experiments

1 Introduction
The work presented in this paper is about providing a se-
mantic bridge between the data-flow language Signal and a
model compiler named QGen developed by Adacore. QGen
is the result of a collaborative work made in a project funded
by the French FUI funding framework1, named P, which
was initiated to continue the work made in the Geneauto
project [15]. Signal [3, 1] is a synchronous data-flow lan-
guage for designing reactive systems. The language manip-
ulates clocks and dependencies to perform a static schedul-
ing of computations and data exchanges. Our objective
in the P project was to use the Polychrony toolset of the
Signal language to compute fined-grained static scheduling
of computations and communications for P models based
on architectural properties, as demonstrated in a previous
work [19]. In this paper, we show a translation scheme be-
tween the formalism used by QGen, named P, and the Sig-
nal metamodel, SSME2.

1.1 P project and QGen
The goal of the P project was to develop a qualifiable model
compiler in the context of critical systems, which would
group several existing heterogenous modelling formalisms
under a single language, referred to as P language. The set
of input languages envisioned for P was ranging from ar-
chitecture description languages, such as AADL [11], Sys-
ML [13], Marte [21], to control and command languages
such as Matlab Simulink [8] and SCADE [10]. The motiva-
tion behind the P project and in particular its goals regarding
qualification is explained in details in [4, 5].

QGen is the compiler resulting from this combined ef-
fort and its first version was released February, 2015. It
can import a subset of discrete Simulink models (models
with a fixed time-step) and produce MISRA C [20] or Ada
Ravenscar [6] code along with traceability information and
formal annotations. The P language is layered as multiple
languages describing different views of a same system. (i)
Code Model is a model representation of imperative state-
ments and functions. This language is an intermediate target
before code optimizations and the actual code generation to

1Fonds Unique Interministériel, http://competitivite.gouv.fr/
2Signal’s Syntactic Model under Eclipse

C and Ada. (ii) System Model is inspired by Simulink and
other block diagram formalisms, where systems are orga-
nized as data-flow graphs, connecting blocks by their data
and control ports through signals. (iii) Block library Model
is a configuration language describing block types. Block
types are identified by names (e.g. "Gain", "Product") and
can contain additional parameters. For example, the Sum
block has different meaning depending on the number and
type of its arguments (scalars, vectors, matrices). The QGen
compiler is responsible for translating block instances as
Code Model elements.

Typically, a model is first designed as a System Model
and is gradually refined upto a point where imperative Code
Model elements are generated and optimized. The QGen
compiler is organized as multiple optional steps of trans-
formations. The first one is a preprocessing step which
removes organizational and visual features: for example,
from/goto blocks, used for simplifying data-flow routing
in a model, can be replaced by actual signals; also, artifi-
cial boundaries defined by virtual subsystems are removed,
so that blocks previously grouped in a virtual system are
moved as direct elements of the removed system’s parent.
Another interesting step is block sequencing. As a hierar-
chical data-flow graph, the System Model defines a partial
order among blocks, which must be respected at execution
time. The purpose of the block sequencer is to compute a
sequential execution order for all blocks in a system accord-
ing to data-flow dependencies and other attributes. Finally,
a compilation step transforms System Model elements into
Code Model elements. Without getting into details, each
system is implemented as a function manipulating global
variables, whereas blocks of a system are run in accordance
to the total execution order computed at the previous step.
Nested subsystems are implemented as function calls in the
enclosing system’s associated body. At any stage of the pro-
cessing, the current model can be exported as XMI. Various
options modify the behavior of the whole compilation pro-
cess.

1.2 Signal and Polychrony
Signal is a synchronous data-flow language for designing
reactive systems, based on infinite discrete flows of values
and events called signals. A signal x represents an un-
bounded series (xt)t∈N of values at each logical instant t.
At any instant, a signal may be present, at which point it
holds a value, or absent, which is denoted by ⊥. Signal val-
ues can be constructed from previously known values using
a delay operator denoted $ which shifts values of a signal
by a fixed number of steps.

For each signal s is defined a clock ŝ which can be rep-

1

http://competitivite.gouv.fr/

resented as a boolean variable in the domain of clocks. A
clock ŝ denotes the set of logical instants at which the sig-
nal s has a value. The null clock 0̂ is always absent. Signal
programs are described as processes (written here P or Q)
which define relations between clocks and values of signals
through signal equations. (P | Q) denotes the synchronous
composition of processes P and Q where equations repre-
sented by both P and Q are simultaneously considered: it
corresponds to a union of constraints. The process P/x re-
stricts the lexical scope of signal x to the process P .

Signal provides polychronous operators that are inter-
preted as clock constraints on signals, such as when or de-
fault. For example, a when b is an expression over signals
whose clock is â ∧ b̂: this boolean formula means that the
signal a when b is present exactly when both signals a and b
are present. Similarly, a default b has the clock â∨ b̂, which
means that, if during the execution of system being de-
signed, either signal a or b is present, the signal a default b
is also present. Signals having equivalent clocks are said to
be synchronous and can be combined with monochronous
operators, which include numerical operators (e.g. a + b)
and spatial operators (e.g. array access).

A clock d̂ is said to be a child clock of ĉ if d̂ → ĉ:
whenever d̂ is present, its parent clock ĉ is also necessarily
present. The signal compiler organizes clocks into a hierar-
chy during a static analysis called clock calculus. The com-
piler ensures that a signal is computed only when its clock
can be determined to be true: it is the case if the clock is
associated with a concrete boolean signal which is already
known to be present and whose value is true at a particu-
lar reactive step. But it is also possible to infer that a clock
variable is true based on other values and clocks, thanks to
clock constraints. If there are enough constraints on clocks
to generate a deterministic reactive system where clocks are
always known to be either present or absent at runtime the
system is said to be endochronous.

Apart from clocks, Signal also allows to declare depen-
dencies between signals: {a –> b} when c is a conditioned
dependency that is active only when the formula â∧ b̂∧ ĉ∧c
is true: (i) clocks â, b̂ and ĉ must be present, and (ii) the
guard c itself must be true. When this relation holds, the
value of b cannot be computed before the value of a is com-
puted first.

The Polychrony toolset3 provides a model-driven envi-
ronment for the Signal language, including in particular a
compiler, a front-end in the Eclipse platform4, a model-
checker for formal verification and other translators. The
Signal compiler organizes computations as a conditional
directed acyclic graph where arcs are labelled with clock
expressions. Clocks and dependencies allow to easily dis-
tribute computations across multiple processing units (e.g.
threads), while preventing deadlocks and using a miminum
set of communications between units: since clock presence
or absence can often be inferred from exchanged values, it
is not always necessary to reify them as concrete boolean
signals.

3http://polychrony.inria.fr
4Open-source framework POP with the Polarsys Industry Working

Group: https://www.polarsys.org/projects/polarsys.
pop

1.3 Outline
In section 2, we present our work on an unambiguous static
block scheduler for QGen which can compute both partial
and total orders based on user preferences. This scheduler
was developed to help QGen interoperate with other tools
which work on data-flow graphs, like Signal. In section 3,
we describe our transformation function from the P lan-
guage to SSME. In section 4, we discuss some experimental
results with respect to our initial objectives.

2 Block sequencing
In the System Model subset of the P formalism, blocks rep-
resent computation nodes with input and output ports and
signals describe values flowing between ports. Data-flow
graphs encode a partial order of block executions: block
sequencing is the action of finding a strict total order that
refines the partial one. A strict total order is required when
compiling reactive systems into sequential code. A com-
piler that would produce parallel sequences of code would
not necessarily have to produce a total order, as long as
dependencies are satisfied. A block sequencer must also
ensure that circular dependencies are detected and should
reject malformed models. A formally verified sequencer
was implemented for the previous Geneauto [14] project
but could not be used in QGen, which provides its own se-
quencer.

In the particular case of QGen, System Models are in-
spired by the Simulink language and as such, systems are
hierarchical and may be given user-defined priorities (in-
tegers). Moreover, blocks are not necessarily always acti-
vated but subject to activation condition and control signals.
QGen’s earliest version provided a block sequencer that we
will call here sequencer O (“original”). We will also de-
scribe our alternative sequencer implementation called N
(“new” sequencer). Even though sequencer N is not inte-
grated as-is into the current version of QGen, most of the
problems found and reported to the development team of
QGen while working on sequencer N are now addressed in
sequencer O.

2.1 System Model language
2.1.1 Blocks and ports

A system in P is a functional view of a model represented by
a hierarchical data-flow graph of blocks linked by directed
connections called signals. Blocks can be either system
blocks, interface blocks or elementary blocks. Blocks have
input and output ports, which may be either data or control
ports. Signals represent an ordered pair of ports. All blocks
are named and typed according to an external predefined
set of block definitions called a Block library. Block types
are represented by a string and accept generic key/value pa-
rameters which are understood by the compiler to generate
Code Models elements. Elementary blocks provide the ac-
tual computations and are implementation-defined. Inter-
face blocks are used to represent the “port-block” family
of blocks: for each input and output data or control port
of a system, there is a block which represents that port in-
side that system. For example, an Inport block In inside
a system S is an interface block having exactly one out-

2

http://polychrony.inria.fr
https://www.polarsys.org/projects/polarsys.pop
https://www.polarsys.org/projects/polarsys.pop

put port o(In) which represents the value received from the
input port in(S)n of S. Interface blocks differ from ele-
mentary blocks in that they hold an attribute called portRe-
ference which represents the interface port associated with
the block. Also, interface blocks implementw some of the
ports’s semantics: the value of output ports can be held or
reset when a port has been deactivated; enabling input con-
trol ports are used to trigger events when the input value is
either raising, falling or changing.

2.1.2 Atomic systems

A system block is a container for nested blocks, and is as-
sumed to be atomic in this section (we assume that models
we consider have been preprocessed): (i) an atomic sys-
tem can be computed only when all of its inputs are avail-
able; (ii) blocks that rely on outputs of an atomic system
can be computed only when all the outputs of the atomic
system have been computed; (iii) finally, while an atomic
block is being computed, computation must not exit this
block until all outputs are computed. See for example the
blocks in figure 1: i1, i2 and i3 (resp. o1, o2 and o3) are
three inputs (resp. outputs) of current subsystem. Blocks
A, B and C are elementary blocks (interface blocks are not
represented). Both blocks A and B are grouped into an
atomic subsystem we call here S. Simple arrows represent
actual signals whereas bold arrows which form crosses rep-
resent the dependencies implied by atomicity. The property
(iii) above means that it is not possible to compute C be-
tween the computations of A and B, even though there is
no dependency required by signals. In other words, the se-
quence (A,C,B) is not a compatible execution order for
those three blocks. We cannot express atomicity with static
partial dependencies because both (A,B,C) and (C,A,B)
are compatible execution orders.

2.1.3 Datatypes

The P language defines a hierarchy of values to represent
types in the target language of a compiled model. Types are
either primitive, array or pointer types. Arrays represent
multi-dimensional arrays and are composed of a base type
and a list of dimensions. Among primitive types, there is a
class of numeric types as well as boolean, string, void and
custom types. Numeric types are divided into complex and
real types (but complex are currently not used in QGen),
where real types include both integer, fixed-point and ei-
ther single or double floating-point values. Numeric types
are described by a boolean value which indicates signed-
ness (returned by isSigned()) as well as a width represent-
ing the number of bits available for this type (returned by
getNBits()). Custom types designate external types. The
QGen compiler provides C and Ada definitions for expected
types, such as GAUINT8 for unsigned 8-bits integers, as
well as wrappers around mathematical and logical opera-
tors for those types.

2.2 Partial ordering of blocks
We defined the sequencer N to help QGen fulfill its inter-
operability objectives. QGen is expected to fit into existing
methodological processes, which explains the strong em-
phasis put on separating concerns in the compiler: this can
be witnessed by the existence of compiler flags for choosing

i1

i2

i3

A

B

C

o1

o2

o3

Figure 1: dependencies implied by atomicity of system block (in bold)

which transformations are applied on a model, as well as for
exporting it as an XMI document between steps. In partic-
ular, it can be desirable to delegate block sequencing to an
external tool, such as SynDEX [12, 17] or Polychrony. The
reason is that block sequencing is a type of static scheduling
of resources, which can be optimized by specialized tools,
especially with distributed code.

A requirement of this approach is that the external tool
must provide an ordering that is compatible with QGen’s
ordering of blocks. However, this requires to define a com-
patibility criterion. For example, is the total order provided
by an external tool said to be compatible if that tool ignores
user-defined priorities? Similarly, let us consider control
signals (see section 2.4.2): QGen’s compiler considers that
a block B triggered by a control signal emitted from block
A is implemented as-ifB’s code was inlined inside the body
of A’s code. That semantics leads to additional dependen-
cies which could be seen as artificial for other tools but
should be respected when working with QGen.

In order to satisfy different interpretations of what is the
minimal set of dependencies the sequencer should consider,
we let the user provide a sorting policy list made of prede-
fined sort criteria. Those criteria are names of refinement
steps to be applied on the dependency graph being built. For
example, the DF criterion introduces data-flow dependen-
cies implied by data-flow signals, whereas UP represents
those implied by user-defined priorities. The TR criterion
forces dependencies of triggered blocks to be dependen-
cies of calling blocks (recursively): this criterion is applied
whenever the model is to be compiled by QGen, since it
represents the specific way the tool deals with block acti-
vations, but is optional because one might want to give a
model to another tool. Some criteria represent actions to
perform during block sequencing: LOAD reads all the de-
pendencies currently stored in a model and introduces them
in the dependency graph stored in memory. Another crite-
rion is ENSURE_TOTAL, which makes the sequencer abort
if that graph still represents a partial order at the moment the
criterion is applied. Also, we proposed to modify the exist-
ing sequencer so that it can produce either a partial or total
order, based on those input parameters.

With this approach, we can avoid the problem of hav-
ing to implement multiple block sequencers and we can
apply the following methodology when working with ex-
ternal toolchains: for some input model M1, run QGen’s
sequencer with a given sorting policy P1, which results in
a partial order, exported in model M2. Pass M2 to some
external tool, which can refine block ordering and produce
model M3. In order to check that M3 has a compatible
order with M2, run QGen on model M3 with a modified
policy P2 defined as P1 followed by a LOAD operation and
possibly other refinement steps. Incompatible orderings are

3

then defined as those which introduce circular dependencies
in a model. They are detected during the LOAD operation,
which could introduce errors if other tools did not respect
the original partial order.

This approach needs to be able to represent partial or-
ders in P models. This is done by adding a block attribute
named nextExecutableBlocks, the list of all blocks that de-
pend on a particular block. We also tried to adapt the orig-
inal sequencer O so that it could compute partial orders,
but there were shortcomings with the existing approach that
made it easier to write a more general sequencer N . Se-
quencer N , unlike O, is split into two parts (two Ada pack-
ages): (i) a dedicated yet generic graph data-structure repre-
senting partial and total orders and (ii) the actual sequencer
which translates blocks and their attributes as a graph while
processing the sorting policy given by the user. We detail
these in the following sections.

2.3 Graph data-structure
The original sequencerO used to compute dependencies by
assigning a rank to blocks. More precisely, blocks with no
predecessors are assigned rank 0, and blocks for which all
their predecessors have a rank are assigned a rank M + 1,
where M is the maximal rank of those predecessors. This
first step admitted a simple implementation and ensured that
data-flow dependencies were respected. However, ranks
are natural numbers and give an over-constrained view of
data-flow dependencies. In other terms, ranks are already
a refinement of the minimal partial order consisting only of
data-flow dependencies. While this approach was appro-
priate in the context of providing a total execution order of
blocks, as it was the case for sequencer O, it was difficult to
change the implementation to let it represent partial orders.

There are many optimized data-structures for dynam-
ically computing transitive reachability [9]. We imple-
mented a simple graph data-structure based on a dense ma-
trix representation with a fixed set of vertices, for the incre-
mental computation of both the transitive closure and tran-
sitive reduction of a graph while dynamically adding links.

Thus, the size required for a matrix with n nodes is
Θ(n2). Adding links between nodes requires a propaga-
tion step which costs Θ(n2) in time. This propagation step
also detects circular dependencies and maintains both the
transitive closure and the transitive reduction of dependen-
cies. Getting the list of all pairs of blocks that are unrelated
has a complexity of Θ(n2). Checking whether current order
is total is a constant operation. In practice, each cell in the
matrix requires 2 bits of memory5. The number of blocks in
a subsystem is generally low enough to not be problematic
with respect to the space complexity of our approach.

2.3.1 Invariants and properties

A graph of n nodes is represented by a square matrix M of
size n2. Each number k from 0 to n − 1 is associated to a
node named nk. We note < the strict order between nodes
that is represented by a graph. Each cell Mi,j of the matrix
represents whether the relationship ni < nj holds between
nodes ni and nj . Mi,j is one of the three following values:
none, direct or indirect. We ensure that the following in-
variants hold in a matrix: (i) a value of none at cell Mx,z

5Actual size reported by GNAT when providing the Pack directive.

means that nx < nz does not hold; (ii) when the nx < nz
relationship holds, then Mx,z is direct if and only if there
is no indice y such that nx < ny and ny < nz; (iii) other-
wise,Mx,z is indirect. Moreover, the graph is never allowed
to contain circular dependencies. The implementation de-
scribed hereafter maintains the above invariants, which give
us the following properties: (1) The set of cells where
Mi,j ∈ {direct, indirect} represents the transitive closure
of the < dependency relationship. For all indices i and j, a
non-none value at Mi,j means that ni < nj . (2) The set of
cells where Mi,j = direct is a transitive reduction of the <
dependency relationship. For all pair of indices (i, j) such
thatMi,j is indirect, there is a sequence of indices k1, ..., kp
(p > 0) such as Mi,k1 = Mk1,k2 = · · · = Mkp,j = direct.
(3) If and only if the order represented by < is total, then
for all indices i, j either Mi,j = none or Mj,i = none, but
not both. In other words, for a matrix of size n, then < is
total if and only if there are exactly n(n−1)

2 non-none values
in the matrix (more than this number would imply a circu-
lar path; less would leave at least a pair of nodes unrelated).
We rely on the third property above to easily check whether
an order is total.

2.3.2 Link addition in a graph

A graph structure is implemented as an Ada package where
size is a generic parameter. A connectivity matrix of size n2

is initialized with none values. Also, a variable named Re-
maining_Cells is initialized to n(n−1)

2 . Everytime a none
cell in the matrix is changed into another value, Remain-
ing_Cells is decreased. Thus, we can implement Is_Total as
a function which returns whether Remaining_Cells is zero.
Adding a link between two nodes requires a propagation
mechanism to maintain the invariants previously seen. Link
addition is split into two procedures, Basic_Link, which
checks for any circular dependency and decrements Re-
maining_Cells, and Link, which propagates the relation-
ship being added to all predecessors and successors. The
Check_Cycles procedure raises an exception in case of cir-
cular dependencies and is defined as follows:
procedure Check_Cycles
(Self : in out Graph; From, To : Matrix_Index)
is
begin

if From = To or Self.Matrix (To, From) > NONE then
raise Cyclic_Graph;

end if;
end Check_Cycles;

The above is a simplified version of the actual code, which
also logs the offending cyclic path. Basic_Link is defined
as follows:
procedure Basic_Link (Self : in out Graph;

From, To : Matrix_Index;
Link : Link_Type)

is
Previous : constant Dependency :=
Self.Matrix (From, To);

begin
if Previous = NONE then

Self.Check_Cycles (From, To);
Self.Remaining_Cells := Self.Remaining_Cells - 1;

end if;
if Previous = DIRECT or Previous = NONE then

Self.Matrix (From, To) := Link;
end if;

end Basic_Link;

Link_Type is a subtype of Dependency with excludes none.
The above procedure ensures that it is not possible to put a

4

direct link if the link was previously known to be indirect.
Indeed, we only add a direct link if there was previously
no link between nodes, to be sure that cells with a direct
value represent the minimal set of edges covering the whole
graph. It is also possible to change a direct link to an indi-
rect one, during the propagation initiated by the addition of
a new, more direct link. The previously direct relationship
can then be deduced transitively, which is why it should be
replaced by an indirect one. This is done by propagating
indirect relationships inside the Link procedure below (the
Self.Precedes function simply checks that there is a non-
none value in the matrix).

procedure Link
(Self : in out Graph; From : Matrix_Index;
To : Matrix_Index; Link : Link_Type := DIRECT)
is

Previous : constant Dependency :=
Self.Matrix (From, To);

begin
-- Add the "from < to" relationship
Self.Basic_Link (From, To, Link);
if Previous > NONE then
return; -- Exit early (*)

end if;

-- Compute transitive connectivity
for Y in Matrix_Index’Range loop
for X in Matrix_Index’Range loop
declare
DX : constant Boolean := Self.Precedes (X, From);
DY : constant Boolean := Self.Precedes (To, Y);
begin
if DX then
-- (x < from) => (x < to)
Self.Basic_Link (X, To, INDIRECT);
end if;
if DY then
-- (to < y) => (from < y)
Self.Basic_Link (From, Y, INDIRECT);
end if;
if DX and DY then
-- (x < from),(to < y) => (x < y)
Self.Basic_Link (X, Y, INDIRECT);
end if;
end;

end loop;
end loop;
end Link;

The above procedure assumes that the graph initially re-
spects the properties expressed in the previous sections and
ensures that they hold after adding the new link. When the
previous value in our matrix at indices From and To was
none, we can exit the procedure early (*). Indeed, by con-
struction a none value means that there are no direct or in-
direct relationship such as From < To. Moreover, if pre-
viously the inverse relationship To < From held, then Ba-
sic_Link would have raised an exception due to a cyclic
dependency, which is not the case at this point. We can then
safely assume that no link propagation is required.

The two nested loops add the required links between
predecessors and successors of our nodes. Even though this
can seem counter-intuitive, nodes previously known as di-
rect are unconditionally changed into indirect ones. This
is because the new direct link being added replaces a none
value in the matrix, which, thanks to cycle detection, im-
plies that the two nodes being linked were previously un-
related. Hence, the new link is currently the only one that
allows to link From and To and cannot be removed. How-
ever, if a predecessor x of From used to be a direct prede-
cessor of a successor y of To, then we have to change it to
an indirect one since now there is another path from x to y

a

b

c

d

(a) Initial graph

a

b

c

d

(b) Addition of b < c

Figure 2: Direct links (thick) being changed as indirect ones (dotted).

(the previous direct link between x and y is not the unique
one anymore). This does not have an impact on links which
already were indirect. See figure 2 for an example of this
behavior.

2.3.3 Internal nodes

We allow to declare additional nodes in a graph, not bound
to actual blocks. For example, an internal node could be
used to model the set of all input ports of a block: the in-
ternal node would have outgoing links to each input port of
the block and we could refer to this node whenever we want
to add dependencies for all inputs. We use internal nodes to
model trigger dependencies, as detailed in section 2.4.2. In
order to handle those nodes, we allowed the size of the ma-
trix n to be defined in terms of two parameters, b (blocks)
and e (extra), such that n = b + e. The range 0..(b − 1)
represent nodes associated with actual blocks, called block
nodes, whereas b..(n−1) represents additional nodes called
internal nodes: only block nodes are taken into account
when checking whether current order is total. The overall
square matrix is divided into two main zones: a square ma-
trix B from (0, 0) to (b−1, b−1) containing links between
block nodes, and the remaining L-shaped region I contain-
ing links involving at least one internal node. We updated
the graph structure with a normalization operation which
projects all links inside I as links in the B area. This opera-
tion may change indirect links to direct ones inB and clears
area I , while preserving the previous properties. Normal-
ization is automatically applied when collecting all links,
before saving current graph. It first clears the I area by
resetting all cells to none, then recompute actual dependen-
cies for block nodes. Computing the actual dependencies
has an effect only on matrix cells Mx,z that are set to indi-
rect. If there is no index y such that nx < ny < nz , then
the dependency is changed as a direct one.

2.4 Converting dependencies as links
Thanks to the graph structure defined previously, the role of
the sequencer is simplified: we only need to convert block
relationships and attributes as links. We first show the gen-
eral approach used when adding dependencies as graph, and
then discuss the particular case of trigger dependencies.

2.4.1 Two-step refinement

We strictly apply the following two-step approach when re-
fining a graph according to a sort criterion: first, compute
the list of all pairs of blocks that are currently unrelated;
then try to add a link between each pair of blocks according
to current criterion. This separation allows us to prevent
modifying the graph while looking for unrelated pairs of
blocks, which would let the order by which pairs are visited
influence block sequencing. For example, let A, B and C

5

BA
β(B)α(A)

(a) Data signals

B

A

β(B)

β(A)

α(B)

α(A)

(b) Control signals

Figure 3: Converting data and control signals as dependencies

be three blocks; a data-flow signal connects A to B. With
u(x) being defined as the user-defined priority of a block x,
we set block priorities as follows: u(A) = 2, u(B) = 0 and
u(C) = 1.

A

B

C

(2)

(0)

(1)

According to priorities, we have both C < A and B < C.
In sequencer N , when introducing user-defined priorities,
we first collect both (A,C) and (B,C) and then try to add
links for each pair. This leads to a cyclic path in the graph
which is reported to the user. With the original sequencer
O, comparisons are made in an arbitrary order, which de-
pends on implementation details, and eventually give ei-
ther (A,B,C) or (C,A,B) as an execution order: instead
of reporting a circular dependency, sequencing terminates
normally. Note however that the order by which sort crite-
ria are processed in a sort policy matters, because some of
them are intended to refine a graph (e.g. priorities) whereas
others unconditionally add all possible dependencies (e.g.
data-flow dependencies).

2.4.2 Trigger dependencies

For each block b, we denote dp(b) (resp. cp(b)) the set
of direct predecessor blocks according to data-flow (resp.
control-flow) dependencies. Those sets are determined by
visiting incoming control-flow and data-flow signals, while
ignoring blocks like UnitDelay which have no instanta-
neous dependency between input and output ports.

We convert data-flow and control-flow dependencies as
links inside our dependency matrix. In order to do so, we
need to propagate control-flow dependencies so that block
activation follows a function-call semantics: when a block
A is activated, any block B it controls is also activated and
executed during the execution of block A. That means that
(i) all the predecessor blocks in dp(B) must already have
been executed, and (ii) no block C such that B ∈ dp(C)
can be executed before A itself finishes its execution.

In order to express those constraints, we introduce inter-
mediate nodes in our matrix. For all blocks, we define β(B)
(“before”) as either the nodeB or the node which is directly
preceding B with respect to node dependencies. Likewise
α(B) (“after”) is either B itself or the node directly suc-
ceeding B. Here, “directly” means that by construction we
guarantee that no other node is ever scheduled between an
intermediate node and the node of the block it represents.

By definition, β(B) = B for all block B such that
cp(B) = ∅, and α(A) = A for all block A such as there
is no block B in current system block such as A ∈ cp(B).

In other cases, a new node is created and linked to its asso-
ciated block.

Once those nodes are created, we iterate over all blocks
in current system and transform data and control signals as
two different patterns of links, as shown in figure 3. Data-
flow signals between blocks A and B simply add a link be-
tween α(A) and β(B). Control-flow signals are translated
in such a way that predecessor (resp. successor) blocks of
controlled blocks are placed as predecessors (resp. succes-
sors) of the controlling blocks. In figure 3b we can see that
a trigger between blocks A and B introduces links: (i) be-
tween A and B, because B cannot be computed before A,
(ii) between β(B) and β(A) and (iii) between α(B) and
α(A). This transformation scheme is done locally, for each
block, but dependencies are eventually applied transitively
by the underlying data-structure. For example, if block B
was controlling a block C, the predecessors and successors
of C would be scheduled respectively before and after A.
Figure 4 shows an example of transformation from the orig-
inal data-flow diagram to the resulting dependency graph.

B

AX

Y

Z

T

(a) Original data-flow diagram
with a control signal going from
A and controlling the activation of
B (dashed arrow).

b

ax

y

z

t
β(b)

α(a)

(b) Dependency graph built ac-
cording to transformation rules.
∀n ∈ x, y, z, t, β(n) = α(n) =
n. Also β(a) = a and α(b) = b.

ba

x

y

z

t

(c) Equivalent data-flow graph af-
ter transitive reduction, as com-
puted by the sequencer.

Figure 4: Elimination of trigger dependencies

3 Conversion of System Models
We provide a transformation mechanism from the System
Model subset of P to SSME. For that purpose, we also de-
veloped a high-level library on top of the generated EMF
classes.

3.1 Definitions
For each element p in the P language we define 〈p〉 the
unique identifier of p. In practice, 〈p〉 is built from
the unique XMI identifier of element p, which is always
the string representation of a natural number, prefixed
with "P". This naming scheme produces valid SSME identi-
fiers which can be used to link Signal elements to the origi-
nal P elements from which they are generated. Also, for any
symbol m in {label, local}, 〈p〉m is a valid Signal identifier
derived from 〈p〉 but distinct from it.

The translation of an element x of type T as an SSME
element S, with a modifierm and with respect to an environ-

6

ment E, is defined by equations of the form Tm(E, x:T) =
S. The result of applying the translation is denoted
Tm(E, x). Modifiers are a way to implement return-type
polymorphism, where the behavior of T is specialized ac-
cording to desired type of the value to be returned. Not all
modifiers are meaningful for all types of inputs. A modifier
m is an optional symbol: we define T(E,P) = T∅(E,P),
where ∅ is the empty modifier. The returned type of the
translation when using the empty modifier is either a pro-
cess expression or a signal expression, whichever is the
most relevant for a given parameter: arithmetic expressions
are translated as signal expressions, whereas data-flow con-
nections are translated as equations.

An environment E is a set of zero or more bindings
si 7→ vi from symbols si to values vi. We note E.s the
value bound to symbol s in environment E. We define
F = E [v1 7→ s1, . . . , vn 7→ sn] any environment F de-
rived from E such that for all i between 1 and n, F.si = vi;
for any symbol w different from all symbols s1 to sn,
F.w = E.w. For conciseness, Tm(P) represents Tm(E,P)
when the environment E can be unambiguously inferred
from the context. There is an implicit default environment
from which other environments are derived where global
options are defined.

3.2 General approach
The conversion function is recursively applied on P hierar-
chical data-flow graphs. Subsystems and blocks are trans-
lated as two nested Signal processes where input and output
ports are represented by input and output signals. The outer
process accepts inputs and outputs as given from the envi-
ronment whereas the inner process is only called when a
particular block is activated. The outer process is thus re-
sponsible for filtering inputs and providing default outputs
according to the expected Simulink semantics of blocks.
We define an auxiliary Signal process which dynamically
computes if a block is active given the block’s control-port,
enable and edge-enable ports:

1 process simulink_control =
2 (? event tick, sample, cp; boolean en, eden;
3 ! event active)
4 (| ckeden := ^eden | cken := ^en
5 | enabled := (eden default tick) and
6 (en default tick)
7 | active := cp ^+ ([:enabled] ^* sample)
8 | active ^# ^0
9 | cp ^# (ckeden ^+ cken)

10 |) where event ckeden, cken; boolean enabled; end;

The above process also accepts input tick and sample
events. The sample event is related to multirate models
which are currently not considered in QGen: as a conse-
quence, the sample event is always present in practice. The
simulink_control process encodes some constraints related
to blocks through clock relations: for example, line 9 rep-
resents the fact that if a block has a control-port, it cannot
also have either an edge-enable or an enable port. Line 7
states that a block is active either if an event is present on
its control-port or if the block is both enabled and at a tick
where it should be computed. The enabled boolean is false
soon as one of the enable (en) or edge-enable (eden) port
has a false value (this value is computed elsewhere). The
[:enabled] expression denotes an event that is present only
when the boolean enabled is true. The above encoding can

be used for all variations of system blocks, even if they do
not have control-ports or enable ports. Indeed, when gen-
erating code for system blocks, it is sufficient to bind some
input signals to the null clock to specify that a port is absent,
which is then simplified by constant folding.

3.3 Dependencies and atomicity
We convert block-level dependencies as computed by QGen
as signal dependencies between labelled process. A labelled
process is a call of a process (e.g. a process representing
a block) where all inputs and outputs are virtually associ-
ated with a label. The label, when used in a dependency,
can be used to schedule all the input and output signals of
a block before or after those of another process. We con-
vert dependencies according to either the nextExecutable-
Blocks or executionOrder attributes of blocks. In order to
model atomicity, we add a particular pragma, namely Un-
expanded, to system blocks. This pragma is sufficient to
instruct the Signal compiler to not interleave computations
inside an atomic block with computations that exist outside
that block.

3.4 System Model
A System Model element is a root element in P. Let s be a
System Model containing n elements ei, 0 ≤ i < n. s is
translated in SSME as a list containing a single module M
named 〈s〉 which contains a declaration D and and process
definition P :

T(E, s : System Model) = [M]

M = module(〈s〉 , [D,P])

According to whether E.type is p or signal, declaration
D is respectively either (i) an import statement to a prede-
fined Signal library, namely import("P") or (ii) a predefined
list of external types τ : type(τ, external). P is a process
q = process("main",S,B) with a signature S and a process
bodyB. The P process accepts as many input signals as the
union of input ports of all ei elements and provide as many
outputs as the union of output ports. S is thus defined as
io(∪ni=0Ii,∪ni=0Oi), where for each i such that 0 ≤ i < n:

Ii = ∪p∈In(ei)Tdecl(p) Oi = ∪q∈Out(ei)Tdecl(q)

The body B is a new Signal process defined as:

B = restriction(composition([]), [])

We recall that Signal defines two kinds of expressions: (i)
signal expressions, which are equations over data-flow vari-
ables and (ii) process expressions, which include notably
composition and restriction processes. The B process is
a restriction process, which holds both a sub-expression e
and a set of lexically scoped declarations d. Declarations
made in d are only visible in d and e. Here, e is a com-
position process, i.e. a set of zero or more parallel pro-
cesses. The declarations and expressions in B are initially
empty but eventually populated by the translation of inner
elements. For all elements ei contained in s, we apply
T(E [module 7→M, subproc 7→ q] , ei). The module and
subproc symbols respectively represent the root element of
the generated SSME element and the process associated
with current subssytem: here the “main” process is refer-
enced.

7

3.5 System blocks
System blocks contain zero or more children blocks. A sys-
tem block s converted as an expression represents a labelled
call to the process representing s. The arguments of the pro-
cess call are translations of the input ports of s, which are
variables declared in current scope. Likewise, the mutliple
results of the process call are bound to the signals resulting
from the translations of output ports of s.

T(s:System) = labelled(〈s〉label , call(Tdecl(s), I, O))

I = ∪p∈In(s)T(p) O = ∪q∈Out(s)T(q)

The declaration associated with a system block is a process
definition. Each system block is translated as one control
process c calling a body process b. The control process c is
responsible for determining if the block is currently active
and feeds the internal body bwith filtered inputs. Moreover,
the outputs from b are repeated (or replaced by default val-
ues) so that c can provide outputs at the same rate as inputs
are given: c takes care of merging outputs from b either with
a default value or the previous value of each output port, ac-
cording to each port’s resetWhenDisabled attribute.

Tdecl(s:System) = c = node(〈s〉 , S,X)
X = restriction(Y, [D, ldecl])
Y = composition([ldeps, lclock, event, in, out, call])

The signature S is computed as above by converting all in-
puts and outputs of s. The set of declarations of the control
process c holds a label declaration ldecl and a declaration
D for the body process b, detailed thereafter. There are 6
parallel processes being composed, each of them having a
specific purpose: call is a process call to the body process b;
ldeps holds a list of inter-label dependencies, which allows
to encode the partial order provided by the input model;
lclock contains clock equalities for labels, indicating that all
contained blocks are executed synchronously; event calls
the simulink_control external process and contained trans-
lations of control, enable and edge-enable ports according
to their attributes; in and out correspond respectively to fil-
tering and merging equations, where local variables are de-
clared for all input and output data-ports. That process b is
declared in D in a modified environment F :

F = E

[
subproc 7→ b, ll 7→ ldecl,
ls 7→ ldeps, lc 7→ lclock

]
In addition to subproc, other symbols keep a reference to
other parts of the control process where convert can add in-
formation for each block contained in s. Then, D holds a
process definition for b with the same input/output signa-
ture as c and the recursive conversion of each block of s as
expressions in environment F . During this conversion, con-
vert populates the labels declarations and constraints held in
the control process c.

3.6 Elementary blocks
By default, elementary blocks are expressed as external pro-
cesses in Signal. The reason for this is that we do not aim to
provide a complete implementation of Simulink’s semantics
in parallel to the one currently implemented by QGen. In-
deed, there are over a hundred of blocks defined in QGen’s

default Block library and each of them allows multiple set
of configurations that may have an important impact on
their behavior. For example, the Sum block can process
scalars, vectors and matrices depending on the data linked
to its input ports. We would rather reuse the existing code
generation mechanism of the compiler to produce target
code. Indeed, QGen’s Block library defines, for each block,
a set of functions that provide the imperative statements im-
plementing the different steps of computation of this block,
namely Make_Memory_Variables(), Get_InitStatements(),
Get_ComputeStatements() and
Get_MemUpdateStatements(). Those functions encode the
actual semantics of each block according to its parameters
and provide statements or declarations in a subset of P ex-
pressing code, called Code Model (e.g. statements, opera-
tors, functions). Thus, we are interested in converting the
generated Code Model elements as signal expressions in-
stead of providing an ad-hoc implementation of each pos-
sible block. We currently support only a small subset of
Code Model elements. The approach consisting in compil-
ing Code Model elements requires to build a control-flow
graph, as commonly done in compilers [16]. However, we
cannot currently assume that Code Model programs gen-
erated by QGen are in a static single assignment (SSA)
form [7], which would simplify data-flow analysis [18] and
could let us exploit our previous results with translation
from C/C++ to Signal [2].

3.7 Datatypes
We propose two different ways of translating P data-types
to SSME. First, we can treat all types as external types and
translate mathematical operations as call to external pro-
cesses. Alternatively, we can translate types as Signal types
whenever possible, which tend to produce simpler code that
does not depend on the external library of types provided
by QGen. In both cases, it is sometimes necessary to con-
vert values directly as Signal constants, like in array indices
for which QGen does not define a specialized type. There
are however limitations with this approach, because Signal
does not define unsigned types nor 64 bits integers. The
translation is straightforward, except that when an unsigned
type is requested, we use a larger signed type so that all val-
ues can be represented. Also, we produce warnings if the
required number of bits is too large for Signal.

4 Validation and applications
We validated our approach with the test suite used by
QGen which is composed of over two-hundred small-sized
Simulink models. We tested both block sequencing and
model transformations.

4.1 Side-by-side testing of sequencers
We ensured that our implementation did not regress from
the previous one by (i) developing a dedicated sorting pol-
icy and a ranking function for our implementation that repli-
cated the behavior of the existing sequencer, and (ii) com-
paring the results of both implementations with side-by-
side tests. Those tests showed discrepancies for exactly ten
models which were acknowledged to be due to some de-
fects in sequencer O: (i) the failure to reject models where

8

some blocks cannot be unambiguously sorted, either be-
cause there were circular dependencies or because blocks
were treated as equal (we found out that the tie-breaking
comparison functions on block names could fail because
systems could contain blocks having the same name after
preprocessing; this was fixed by using the fully qualified
name of blocks) and (ii) the incompatibility between the
computed order and the compilation strategy regarding trig-
gered blocks (sequencer O would produce an order which
would not describe how triggers are implemented).

4.2 From P to SSME
We managed to load and process a public use case provided
by Rockwell Collins France composed of safety-critical
components implementing display logic for helicopter data.
The XMI file resulting from QGen’s compilation weights
9.7MiB and is loaded as an EMF runtime object in our Clo-
jure environment in over 9 seconds; Comparatively, trans-
lation to SSME takes between 1 and 2 seconds, which is
the same time required for pretty-printing the same model
as a Signal textual file; exporting the runtime model as an
XMI document takes a little less than 500ms. The pro-
duced model is made of 287 Signal processes which mir-
ror the hierarchical organization of the original model. It
represents the data-flow and control-flow constraints among
blocks inside the system. We can process that model with
Polychrony in order to compute a flattened network of
blocks grouped by common dependencies into 109 sepa-
rate clusters of sequential code. Polychrony can produce
multithreaded code from clusters where threads synchro-
nize themselves either with a message-passing protocol or
with signal/wait operations [3].

We also experimented with the balance drive controller
model present in QGen’s test suite. We modified the input
model so that each subsystem is declared to be atomic in
order to obtain a hierarchy of Signal processes after trans-
lation. Then, we collected all original P subsystems and
generated a map from their unique identifiers to a unique
natural number, starting from zero and increasing. With
this temporary map, we dynamically added RunOn direc-
tives [3] in our SSME model to each of its processes in order
to bind subsystems to distinct execution units. This manual
step requires fifteen lines of interactive code and simulates
a partitioning of our system according to a possible archi-
tectural description of it. Then, the distributed Signal model
can be used to generate distributed code that complies with
RunOn directives. An automatic translation of architectural
P elements could be eventually feasible in future versions:
even though there is an existing architecture description lan-
guage in P which allows to declare processors and buses,
as well as non-functional properties such as the period and
deadline of a task, there is currently no way to map System
Models to architectural ones.

4.3 From SSME to P
Our original intent when integrating Signal and QGen was
to use Signal as a model optimizer for P, with respect to
static block scheduling, timing and architectural properties.
For example, starting from a multirate model, i.e. a model
where blocks are sampled at different periods, we could
group blocks into different asynchronous components while

preserving or adding synchronization flows when necessary.
In order to perform this task, our tool is expected to return
modified P models. In practice, we effectively have access
to a model m, its translation s in SSME and the model
sp obtained by running Polychrony on s with specific pa-
rameters p. With the known mapping between m and s,
we can determine whether an element in sp was originally
present in s or if that element is introduced by Polychrony
itself. However, we do not have a systematic transformation
scheme to build a meaningful copy ofm taking into account
the modifications of s brought by sp at the model level. In-
stead of trying to modify existing models, we are now im-
plementing a general purpose transformation from Signal
to P, as part of Polychrony, which systematically converts
endochronous processes as a hierarchy of triggered subsys-
tems following the original clock hierarchy. Alternatively,
it would be easier to directly generate P Code Model instead
of System Models.

5 Conclusion
We developed an alternative block sequencer for QGen for
the purpose of computing both partial and total orders from
input models. The purpose of this sequencer is to allow
QGen to interoperate with external sequencing tools while
providing guarantees about the compatibility of external
block execution orders with respect to both QGen’s com-
pilation scheme and user expectations. This sequencer is
available as a separate tool and not fully integrated inside
QGen. Our work contributed nonetheless to test and fix the
existing codebase of QGen.

We also presented a model transformation tool from
the P language used inside the QGen model compiler to
the SSME language representing synchronous Signal pro-
grams. This work is based on a high-level API designed
on top of SSME and can be used to transform a subset of
Simulink to Signal. We ran the conversion tool and the set
of models used by QGen for its regression tests and success-
fully converted medium to large models. The P language is
capable of representing a useful subset of Simulink. That
is why it is an interesting tool to help interpreting Simulink
models and possibly architectural properties as executable
Signal programs. Our perspective for this tool is to add
support for the conversion of more Code Model elements,
as generated by QGen, in order to produce executable pro-
grams with Signal. The programs currently produced with
our transformation tool can be compiled by Polychrony and
reorganized as clusters of smaller processes. We expect
QGen to eventually provide an architecture description lan-
guage inside P, and our perspective with regard to P remains
to be able to automatically distribute models given some of
their architectural properties while preserving synchroniza-
tion constraints.

6 Acknowledgments
We thank the anonymous reviewers and especially our
“shepherd” Eric Jenn for their helpful feedback.

References
[1] Albert Benveniste, Paul Le Guernic, and Christian

Jacquemot. Synchronous programming with events

9

and relations: the SIGNAL language and its seman-
tics. Science of computer programming, 16(2):103–
149, 1991.

[2] Loï Besnard, Thierry Gautier, Matthieu Moy, Jean-
Pierre Talpin, Kenneth Johnson, and Florence Maran-
inchi. Automatic translation of C/C++ parallel code
into synchronous formalism using an SSA interme-
diate form. In Ninth International Workshop on Au-
tomated Verification of Cirtical Systems (AVOCS’09),
2009.

[3] Loïc Besnard, Thierry Gautier, Paul Le Guernic, and
Jean-Pierre Talpin. Compilation of polychronous data
flow equations. In Synthesis of Embedded Software,
pages 1–40. Springer, 2010.

[4] Matteo Bordin and Franco Gasperoni. Towards veri-
fying model compilers. In 5th International Congress
and exhibition ERTS2, 2010.

[5] Matteo Bordin, Tonu Naks, Andres Toom, and Marc
Pantel. Compilation of heterogeneous models: Moti-
vations and challenges. In European symposium on
Real Time Software and Systems (ERTS), Toulouse,
volume 29, pages 08–01. Citeseer, 2008.

[6] Alan Burns. The ravenscar profile. ACM SIGAda Ada
Letters, 19(4):49–52, 1999.

[7] Ron Cytron, Jeanne Ferrante, Barry K. Rosen,
Mark N. Wegman, and F. Kenneth Zadeck. Efficiently
computing static single assignment form and the con-
trol dependence graph. ACM Trans. Program. Lang.
Syst., 13(4):451–490, October 1991.

[8] James B Dabney and Thomas L Harman. Mastering
simulink. Pearson, 2004.

[9] Camil Demetrescu and Giuseppe F. Italiano. Dy-
namic shortest paths and transitive closure: Algorith-
mic techniques and data structures. Journal of Dis-
crete Algorithms, 4(3):353 – 383, 2006. Special issue
in honour of Giorgio Ausiello.

[10] Francois-Xavier Dormoy. Scade 6: a model based so-
lution for safety critical software development. In Pro-
ceedings of the 4th European Congress on Embedded
Real Time Software (ERTS’08), pages 1–9, 2008.

[11] Peter H Feiler, David P Gluch, and John J Hudak.
The architecture analysis & design language (AADL):
An introduction. Technical report, DTIC Document,
2006.

[12] Oussama Feki, Thierry Grandpierre, Mohamed Akil,
Nouri Masmoudi, and Yves Sorel. SynDEx-Mix:
A hardware/software partitioning CAD tool. In Sci-
ences and Techniques of Automatic Control and Com-
puter Engineering (STA), 15th International Confer-
ence, pages 247–252. IEEE, 2014.

[13] Sanford Friedenthal, Alan Moore, and Rick Steiner. A
practical guide to SysML: the systems modeling lan-
guage. Morgan Kaufmann, 2014.

[14] Nassima Izerrouken, Olivier Ssi Yan Kai, Marc Pantel,
and Xavier Thirioux. Use of formal methods for build-
ing qualified code generator for safer automotive sys-
tems. In Proceedings of the 1st Workshop on Critical
Automotive applications: Robustness & Safety, pages
53–56. ACM, 2010.

[15] Nassima Izerrouken, Xavier Thirioux, Marc Pantel,
and Martin Strecker. Certifying an Automated Code
Generator Using Formal Tools : Preliminary Experi-
ments in the GeneAuto Project. In European Congress
on Embedded Real-Time Software (ERTS), Toulouse,
29/01/2008-01/02/2008, 2008.

[16] Uday Khedker, Amitabha Sanyal, and Bageshri Sathe.
Data flow analysis: theory and practice. CRC Press,
2009.

[17] Christophe Lavarenne, Omar Seghrouchni, Yves
Sorel, and Michel Sorine. The syndex software envi-
ronment for real-time distributed systems design and
implementation. In European Control Conference,
volume 2, pages 1684–1689. Citeseer, 1991.

[18] Alexandre Lenart, Christopher Sadler, and Sandeep
K. S. Gupta. SSA-based flow-sensitive type analysis:
combining constant and type propagation. In Proceed-
ings of the ACM Symposium on Applied Computing,
pages 813–817, 2000.

[19] Yue Ma, Jean-Pierre Talpin, and Thierry Gautier.
Virtual prototyping AADL architectures in a poly-
chronous model of computation. In Formal Meth-
ods and Models for Co-Design, 2008. MEMOCODE
2008. 6th ACM/IEEE International Conference on,
pages 139–148. IEEE, 2008.

[20] MISRA-C MISRA. Guidelines for the use of the C
Language in vehicle based software. Motor Industry
Research Association, UK, 1998.

[21] Jorgiano Vidal, Florent De Lamotte, Guy Gogniat,
Philippe Soulard, and Jean-Philippe Diguet. A co-
design approach for embedded system modeling and
code generation with UML and MARTE. In Design,
Automation & Test in Europe Conference & Exhibi-
tion, 2009. DATE’09., pages 226–231. IEEE, 2009.

10

	Introduction
	P project and QGen
	Signal and Polychrony
	Outline

	Block sequencing
	System Model language
	Blocks and ports
	Atomic systems
	Datatypes

	Partial ordering of blocks
	Graph data-structure
	Invariants and properties
	Link addition in a graph
	Internal nodes

	Converting dependencies as links
	Two-step refinement
	Trigger dependencies

	Conversion of System Models
	Definitions
	General approach
	Dependencies and atomicity
	System Model
	System blocks
	Elementary blocks
	Datatypes

	Validation and applications
	Side-by-side testing of sequencers
	From P to SSME
	From SSME to P

	Conclusion
	Acknowledgments

