TVA : Techniques de Vérification Avancées

Nathalie Bertrand nathalie.bertrand@inria.fr

Master 2 Recherche en Informatique

Automne 2013

Nathalie Bertrand

Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References

Part I

Timed automata

Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
Outline					

1 Introduction to timed automata

- Model
- Timed language
- Examples

2 Region abstraction

- Regions
- Region automaton
- Reachability problem
- **3** Limits of the finite abstraction
- 4 TCTL model checking
- **5** Algorithmics and implementation

Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
000000					
The model	, informally				

Timed automaton: Finite automaton enriched with clocks.

Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
0000000					
The model,	informally				

Timed automaton: Finite automaton enriched with clocks.

Transitions are equipped with guards

Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
0000000					
The model,	informally				

Timed automaton: Finite automaton enriched with clocks.

Transitions are equipped with guards and sets of reset clocks.

Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
0000000					
Syntax					

Timed automata

A timed automaton is a tuple $\mathcal{A} = (L, L_0, L_{acc}, \Sigma, \mathcal{X}, E)$ with

L finite set of locations
L = {ℓ_0, ℓ_1, ℓ_2}
L_0 ⊆ L initial locations
L_{acc} ⊆ L set of accepting locations
∑ finite alphabet
∑ finite set of clocks
X finite set of clocks
E ⊆ L × G × ∑ × 2^X × L set of edges where G = {∧ x ⋈ c | x ∈ X, c ∈ ℕ} is the set of guards.
(with ⋈ ∈ {<, ≤, =, ≥, >})
L = {ℓ_0, ℓ_1, ℓ_2}
L_0 = {ℓ_0}

Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
000000					
Outline					

1 Introduction to timed automata

- Model
- Timed language
- Examples

2 Region abstraction

- Regions
- Region automaton
- Reachability problem
- **3** Limits of the finite abstraction
- 4 TCTL model checking
- **5** Algorithmics and implementation

Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
0000000					
Semantics					

Valuation: $v \in \mathbb{R}^{\mathcal{X}}_+$ assigns to each clock a clock-value

State: $(\ell, v) \in L \times \mathbb{R}^{\mathcal{X}}_+$ composed of a location and a valuation.

Transitions between states of \mathcal{A} :

• Delay transitions: $(\ell, v) \xrightarrow{\tau} (\ell, v + \tau)$

• Discrete transitions:
$$(\ell, v) \xrightarrow{a} (\ell', v')$$

if
$$\exists (\ell, g, a, Y, \ell') \in E$$
 with $v \models g$ and $\begin{cases} v'(x) = 0 & \text{if } x \in Y, \\ v'(x) = v(x) & \text{otherwise.} \end{cases}$

/

Run of \mathcal{A} : $(\ell_0, v_0) \xrightarrow{\tau_1} (\ell_0, v_0 + \tau_1) \xrightarrow{a_1} (\ell_1, v_1) \xrightarrow{\tau_2} (\ell_1, v_1 + \tau_2) \xrightarrow{a_2} \cdots \xrightarrow{a_k} (\ell_k, v_k)$ or simply: $(\ell_0, v_0) \xrightarrow{\tau_1, a_1} (\ell_1, v_1) \xrightarrow{\tau_2, a_2} \cdots \xrightarrow{\tau_k, a_k} (\ell_k, v_k)$

Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
0000000					
Semantics	(cont.)				

Time sequence: $\mathbf{t} = (t_i)_{1 \le i \le k}$ finite non-decreasing sequence over \mathbb{R}_+ .

Timed word: $w = (\sigma, \mathbf{t}) = (a_i, t_i)_{1 \le i \le k}$ where $a_i \in \Sigma$ and \mathbf{t} time sequence.

Accepted timed word

A timed word $w = (a_0, t_0)(a_1, t_1) \dots (a_k, t_k)$ is accepted in \mathcal{A} , if there is a run $\rho = (\ell_0, v_0) \xrightarrow{\tau_0, a_0} (\ell_1, v_1) \xrightarrow{\tau_1, a_1} \dots (\ell_{k+1}, v_{k+1})$ with $\ell_0 \in L_0$, $\ell_{k+1} \in L_{acc}$, and $t_i = \sum_{j < i} \tau_j$.

Accepted timed language: $\mathcal{L}(\mathcal{A}) = \{w \mid w \text{ accepted by } \mathcal{A}\}.$

Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
00000000					
Outline					

1 Introduction to timed automata

- Model
- Timed language
- Examples

2 Region abstraction

- Regions
- Region automaton
- Reachability problem
- **3** Limits of the finite abstraction
- 4 TCTL model checking
- **5** Algorithmics and implementation

NB: In the examples, we omit

- the guard when it is equivalent to tt, and
- the reset set when it is empty.

w = (b, 0.1)(b, 0.3)(a, 1.3)(b, 1.5)(a, 1.5)(b, 2.5) is an accepted timed word An accepting run for w is

$$\begin{array}{c} (\ell_0, 0, 0) \xrightarrow{0.1, b} (\ell_0, 0.1, 0) \xrightarrow{0.2, b} (\ell_0, 0.3, 0) \xrightarrow{1, a} (\ell_0, 1.3, 1) \\ & \xrightarrow{0.2, b} (\ell_0, 1.5, 0) \xrightarrow{0, a} (\ell_1, 0, 0) \xrightarrow{1, b} (\ell_2, 1, 1) \end{array}$$

Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
0000000					
More exam	ples				

 $\mathcal{L}(\mathcal{A}) = \{(a, t_1) \cdots (a, t_k) | \exists i < j, t_j - t_i = 1\}$

Does there exist an accepted timed word containing action b?

ntro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
	00000000				
Outline					

1 Introduction to timed automata

- Model
- Timed language
- Examples

2 Region abstraction

- Regions
- Region automaton
- Reachability problem
- 3 Limits of the finite abstraction
- 4 TCTL model checking
- **5** Algorithmics and implementation

tro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
	000000000				
Region par	titioning				

Let \mathcal{A} be a timed automaton with set of clocks \mathcal{X} and set of constraints \mathcal{C} . Let \mathcal{R} be a finite partition of $\mathbb{R}^{\mathcal{X}}_{+}$, the set of valuations.

Set of regions

 ${\mathcal R}$ is a set of regions (for ${\mathcal C}$) if

- 1. for every $g \in C$ and for every $R \in \mathcal{R}$, $R \subseteq \llbracket g \rrbracket$ or $\llbracket g \rrbracket \cap R = \emptyset$,
- 2. for all $R, R' \in \mathcal{R}$, if there exists $v \in R$ and $t \in \mathbb{R}$ with $v + t \in R'$ then for every $v' \in R$ there exists $t' \in \mathbb{R}$ with $v' + t' \in R'$, and
- 3. for all $R, R' \in \mathcal{R}$, for every $Y \subseteq \mathcal{X}$ if $R_{[Y \leftarrow 0]} \cap R' \neq \emptyset$, then $R_{[Y \leftarrow 0]} \subseteq R'$.

Let *M* be the maximal constant in A.

The following equivalence relation yields the set of standard regions:

$$\mathbf{v} \equiv^{\mathbf{M}} \mathbf{v}'$$
 if for every $x, y \in \mathcal{X}$

- $v(x) > M \Leftrightarrow v'(x) > M$
- ► $v(x) \le M \Rightarrow \left(\left(\lfloor v(x) \rfloor = \lfloor v'(x) \rfloor \right) \text{ and } \left(\{ v(x) \} = 0 \Leftrightarrow \{ v'(x) \} = 0 \right) \right)$
- ► $(v(x) \le M \text{ and } v(y) \le M) \Rightarrow (\{v(x)\} \le \{v(y)\} \Leftrightarrow \{v'(x)\} \le \{v'(y)\})$

ntro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
	00000000				
Regions wi	th 2 clocks				

- $\mathbf{v} \equiv^{\mathbf{M}} \mathbf{v}'$ if for every $x, y \in \mathcal{X}$
- $v(x) > M \Leftrightarrow v'(x) > M$

►
$$v(x) \le M \Rightarrow \left(\left(\lfloor v(x) \rfloor = \lfloor v'(x) \rfloor \right) \right)$$

and $\left(\{ v(x) \} = 0 \Leftrightarrow \{ v'(x) \} = 0 \right)$

►
$$(v(x) \le M \text{ and } v(y) \le M)$$

⇒ $(\{v(x)\} \le \{v(y)\} \Leftrightarrow \{v'(x)\} \le \{v'(y)\})$

ntro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
	00000000				
Regions wi	th 2 clocks				

- $\mathbf{v} \equiv^{\mathbf{M}} \mathbf{v}'$ if for every $x, y \in \mathcal{X}$
- $v(x) > M \Leftrightarrow v'(x) > M$
- ► $v(x) \le M \Rightarrow \left(\left(\lfloor v(x) \rfloor = \lfloor v'(x) \rfloor \right) \\$ and $\left(\{ v(x) \} = 0 \Leftrightarrow \{ v'(x) \} = 0 \right) \right)$

►
$$(v(x) \le M \text{ and } v(y) \le M)$$

⇒ $(\{v(x)\} \le \{v(y)\} \Leftrightarrow \{v'(x)\} \le \{v'(y)\})$

ntro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
	00000000				
Regions wi	th 2 clocks				

- $\mathbf{v} \equiv^{\mathbf{M}} \mathbf{v}'$ if for every $x, y \in \mathcal{X}$
- $v(x) > M \Leftrightarrow v'(x) > M$
- $v(x) \le M \Rightarrow \left(\left(\lfloor v(x) \rfloor = \lfloor v'(x) \rfloor \right) \right)$ and $\left(\{ v(x) \} = 0 \Leftrightarrow \{ v'(x) \} = 0 \right)$

►
$$(v(x) \le M \text{ and } v(y) \le M)$$

⇒ $(\{v(x)\} \le \{v(y)\} \Leftrightarrow \{v'(x)\} \le \{v'(y)\})$

ntro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
	00000000				
Regions wi	th 2 clocks				

- $v \equiv^M v'$ if for every $x, y \in \mathcal{X}$
- $v(x) > M \Leftrightarrow v'(x) > M$
- ► $v(x) \le M \Rightarrow ((\lfloor v(x) \rfloor = \lfloor v'(x) \rfloor))$ and $(\{v(x)\} = 0 \Leftrightarrow \{v'(x)\} = 0))$
- ► $(v(x) \le M \text{ and } v(y) \le M)$ ⇒ $(\{v(x)\} \le \{v(y)\} \Leftrightarrow \{v'(x)\} \le \{v'(y)\})$

The partition is compatible with constraints, time elapsing and resets.

 Intro to timed automata
 Region abstraction
 Limits
 TCTL
 Implementation
 References

 Operations on region
 0000
 0000
 00000
 00000
 0

For two clocks, the (bounded) regions have the following shapes:

 $R_{[Y \leftarrow 0]} \text{ denotes the region obtained from } R \text{ by resetting clocks in } Y \subseteq \mathcal{X}.$

 $\mathcal{R}_{[Y \leftarrow 0]}$ denotes the region obtained from *R* by resetting clocks in $Y \subseteq \mathcal{X}$. *R'* is a time-successor of *R* if there exists $v' \in R'$, $v \in R$, $t \in \mathbb{R}_+$ with v' = v + t.

 Intro to timed automata
 Region abstraction
 Limits
 TCTL
 Implementation
 References

 Operations on region
 0000
 0000
 00000
 00000
 0

For two clocks, the (bounded) regions have the following shapes:

 $R_{[Y \leftarrow 0]} \text{ denotes the region obtained from } R \text{ by resetting clocks in } Y \subseteq \mathcal{X}.$

 $\mathcal{R}_{[Y \leftarrow 0]}$ denotes the region obtained from *R* by resetting clocks in $Y \subseteq \mathcal{X}$. *R'* is a time-successor of *R* if there exists $v' \in R'$, $v \in R$, $t \in \mathbb{R}_+$ with v' = v + t.

For two clocks, the (bounded) regions have the following shapes:

 $R_{[Y \leftarrow 0]}$ denotes the region obtained from R by resetting clocks in $Y \subseteq \mathcal{X}$. R' is a time-successor of R if there exists $v' \in R'$, $v \in R$, $t \in \mathbb{R}_+$ with v' = v + t.

 Intro to timed automata
 Region abstraction
 Limits
 TCTL
 Implementation
 References

 Operations on region
 0000
 0000
 00000
 00000
 0

For two clocks, the (bounded) regions have the following shapes:

 $R_{[Y \leftarrow 0]}$ denotes the region obtained from R by resetting clocks in $Y \subseteq \mathcal{X}$. R' is a time-successor of R if there exists $v' \in R'$, $v \in R$, $t \in \mathbb{R}_+$ with v' = v + t.

 Intro to timed automata
 Region abstraction
 Limits
 TCTL
 Implementation
 References

 Operations on region
 0000
 0000
 00000
 00000
 0

For two clocks, the (bounded) regions have the following shapes:

 $R_{[Y \leftarrow 0]}$ denotes the region obtained from R by resetting clocks in $Y \subseteq \mathcal{X}$. R' is a time-successor of R if there exists $v' \in R'$, $v \in R$, $t \in \mathbb{R}_+$ with v' = v + t.

For two clocks, the (bounded) regions have the following shapes:

 $R_{[Y \leftarrow 0]}$ denotes the region obtained from R by resetting clocks in $Y \subseteq \mathcal{X}$. R' is a time-successor of R if there exists $v' \in R'$, $v \in R$, $t \in \mathbb{R}_+$ with v' = v + t.

For two clocks, the (bounded) regions have the following shapes:

 $R_{[Y \leftarrow 0]}$ denotes the region obtained from R by resetting clocks in $Y \subseteq \mathcal{X}$. R' is a time-successor of R if there exists $v' \in R'$, $v \in R$, $t \in \mathbb{R}_+$ with v' = v + t.

For two clocks, the (bounded) regions have the following shapes:

 $R_{[Y \leftarrow 0]}$ denotes the region obtained from R by resetting clocks in $Y \subseteq \mathcal{X}$. R' is a time-successor of R if there exists $v' \in R'$, $v \in R$, $t \in \mathbb{R}_+$ with v' = v + t.

For two clocks, the (bounded) regions have the following shapes:

 $R_{[Y \leftarrow 0]}$ denotes the region obtained from R by resetting clocks in $Y \subseteq \mathcal{X}$. R' is a time-successor of R if there exists $v' \in R'$, $v \in R$, $t \in \mathbb{R}_+$ with v' = v + t.

ntro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
	0000000000				
Outline					

1 Introduction to timed automata

- Model
- Timed language
- Examples

2 Region abstraction

- Regions
- Region automaton
- Reachability problem
- 3 Limits of the finite abstraction
- 4 TCTL model checking
- **5** Algorithmics and implementation

	timed	automata

Limits 0000 TCTL 00000 Implementation 00000

Reference:

Region automaton: construction

From a timed automaton ${\mathcal A}$ we build a finite automaton $\alpha({\mathcal A})$ as follows:

- ▶ States: $L \times \mathcal{R}$ Initial: $L_0 \times \mathcal{R}$ Final: $L_{acc} \times \mathcal{R}$
- ► Transitions:
 - ▶ $(\ell, R) \xrightarrow{a} (\ell', R')$ if there exists $\ell \xrightarrow{g,a,Y} \ell'$ in \mathcal{A} , there exists R'' time-successor of R with $R'' \subseteq \llbracket g \rrbracket$ and $R' = R''_{[Y \leftarrow 0]}$.

Example Region automaton for the second timed automaton of Slide 17.

ntro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
	0000000000				
Region aut	omaton: propert	ies			

The number of states in $\alpha(\mathcal{A})$ is bounded by

 $|L| \cdot 2^{|\mathcal{X}|} \cdot |\mathcal{X}|! \cdot (2M+2)^{|\mathcal{X}|}$

 $\mathsf{Untime}(\mathcal{L}(\mathcal{A})) = \{\sigma | (\sigma, \mathbf{t}) \in \mathcal{L}(\mathcal{A})\} \subseteq \Sigma^* \text{ is the untimed language of } \mathcal{A}.$

Property Untime($\mathcal{L}(\mathcal{A})$) = $\mathcal{L}(\alpha(\mathcal{A}))$

Consequence: the untimed language of \mathcal{A} is regular.

Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
	0000000000				

Justification of the region automaton

Time-abstract bisimulation

Let \mathcal{A}_1 and \mathcal{A}_2 be timed automata. $\equiv \subseteq (L_1 \times \mathbb{R}_+^{\mathcal{X}_1}) \times (L_2 \times \mathbb{R}_+^{\mathcal{X}_2}) \text{ is a time-abstract bisimulation between } \mathcal{A}_1 \text{ and } \mathcal{A}_2 \text{ if}$

- ▶ if $(\ell_1, v_1) \equiv (\ell_2, v_2)$ and $(\ell_1, v_1) \xrightarrow{\tau_1} (\ell_1, v_1 + \tau_1)$ for some $\tau_1 \in \mathbb{R}_+$, then there exists $\tau_2 \in \mathbb{R}_+$ with $(\ell_2, v_2) \xrightarrow{\tau_2} (\ell_2, v_2 + \tau_2)$ and $(\ell_1, v_1 + \tau_1) \equiv (\ell_2, v_2 + \tau_2)$
- ▶ if $(\ell_1, v_1) \equiv (\ell_2, v_2)$ and $(\ell_1, v_1) \xrightarrow{a} (\ell'_1, v'_1)$ for some $a \in \Sigma$, then there exists (ℓ'_2, v'_2) with $(\ell_2, v_2) \xrightarrow{a} (\ell'_2, v'_2)$ and $(\ell'_1, v'_1) \equiv (\ell'_2, v'_2)$
- ▶ and vice versa.

Let A be a timed automaton with maximal constant M. Regions and time-abstract bisimulation The relation \equiv_M is a time-abstract bisimulation with finite index.

ntro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
	0000000000				
Outline					

1 Introduction to timed automata

- Model
- Timed language
- Examples

2 Region abstraction

- Regions
- Region automaton
- Reachability problem
- **3** Limits of the finite abstraction
- 4 TCTL model checking
- **5** Algorithmics and implementation

ntro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
	00000000				
Reachabilit	y problem				

Input: \mathcal{A} timed automaton, ℓ location of \mathcal{A} Question: is location ℓ reachable in \mathcal{A} ?

Reachability problem

Reachability is decidable for timed automata. It is a PSPACE-complete problem.

Proof

- PSPACE-membership:
 - ℓ is reachable in \mathcal{A} if and only if (ℓ, R) is reachable in $\alpha(\mathcal{A})$ for some R.
 - reachability is in NLOGSPACE for finite automata
 - $\alpha(\mathcal{A})$ has exponentially more states than \mathcal{A}
- PSPACE-hardness: reduction of the termination problem for a Turing machine with linearly bounded work space.

ntro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
Outline					

1 Introduction to timed automata

- Model
- Timed language
- Examples

2 Region abstraction

- Regions
- Region automaton
- Reachability problem

3 Limits of the finite abstraction

- 4 TCTL model checking
- 6 Algorithmics and implementation

Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
		0000			
1.1.2		1.			

Universality and language inclusion

Universality

Input: \mathcal{A} timed automaton Question: does \mathcal{A} accept all timed words?

Undecidability result

Universality is undecidable for timed automata.

Language inclusion Input: A_1 , A_2 timed automata Question: $\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$? Corollary: Language inclusion in undecidable for timed automata.
Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
		0000			
Complemer	itation				

Non-closure

Timed automata are not closed under complement.

Proof hint The automaton below accepts a timed language whose complement cannot be recognized by a timed automaton.

Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
		0000			
Determiniz	ation				

Deterministic TA

 $\mathcal{A} \text{ is deterministic if } |L_0| = 1 \text{ and for each } \ell \in L, \text{ for every } a \in \Sigma, \ \ell \xrightarrow{g_1, a, Y_1} \ell_1 \\ \text{and } \ell \xrightarrow{g_2, a, Y_2} \ell_2 \text{ implies } \llbracket g_1 \rrbracket \cap \llbracket g_2 \rrbracket = \emptyset.$

If $\ensuremath{\mathcal{A}}$ is deterministic, there is at most one run on each timed word.

Closure

Deterministic timed automata are closed under complementation.

Expressivity
Timed automata are strictly more expressive than deterministic ones.

Example The automaton below accepts a timed language which cannot be recognized by a deterministic timed automaton.

Determinizability

Telling whether a timed automaton can be determinized is undecidable.

ntro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
Outline					

1 Introduction to timed automata

- Model
- Timed language
- Examples

2 Region abstraction

- Regions
- Region automaton
- Reachability problem

3 Limits of the finite abstraction

4 TCTL model checking

5 Algorithmics and implementation

ro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
			00000		
Timed Cor	nputation Tree L	ogic			

Real-time variant of CTL to express properties on timed automata where locations are labeled with sets of atomic propositions.

Syntax of TCTL

- ▶ state formulae: $\psi ::= \operatorname{tt} |a|g|\psi_1 \land \psi_2 |\neg \psi| \exists \varphi | \forall \varphi$
- path formulae: $\varphi ::= \psi_1 U^J \psi_2$

 $g \in \mathcal{G}$ is a guard and $J \subseteq \mathbb{R}_+$ is an interval with integer bounds.

 $\text{Shorthands: } \Diamond^J \varphi \equiv \texttt{tt} \mathsf{U}^J \varphi, \ \exists \Box^J \varphi \equiv \neg \forall \Diamond^J \neg \varphi, \ \forall \Box^J \varphi \equiv \neg \exists \Diamond^J \neg \varphi.$

Examples:

- ▶ no_error $U^{[0,30]}$ deadlock
- $\blacktriangleright \ \forall \Box (\texttt{on} \implies \forall \Diamond^{\leq 2} \neg \texttt{on})$

$$\blacktriangleright \ \forall \Box \Big(\big(\texttt{near} \land (y = 0) \big) \implies \forall \Box^{\leq 2} (\neg \texttt{in}) \Big)$$

ro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
			00000		

Satisfaction of TCTL formulas

TCTL formulae are interpreted over time-divergent runs only! Time-divergence

The infinite run $(\ell_0, v_0) \xrightarrow{\tau_1, a_1} (\ell_1, v_1) \xrightarrow{\tau_2, a_2} \cdots$ is time-divergent if $\sum_k \tau_k = \infty$.

Semantics of state formulae

- $(\ell, v) \models g$ if and only if $v \models g$
- ▶ $(\ell, \mathbf{v}) \models \exists \varphi$ if and only if there exists a time-divergent run ρ with $\rho \models \varphi$

Semantics of path formulae (Until modality) for time-divergent run $\rho = (\ell_0, v_0) \xrightarrow{\tau_1, a_1} (\ell_1, v_1) \xrightarrow{\tau_2, a_2} \cdots$ $\rho \models \psi_1 U^J \psi_2$ if and only if there exists $i \ge 0$, there exists $\tau \in [0, \tau_i]$ such that

•
$$(\ell_i, \mathbf{v}_i + \tau) \models \psi_2$$
 with $\sum_{k=1}^i \tau_k + \tau \in J$,

$$\forall j \leq i, \forall \tau' \in [0, \tau_j], \\ \sum_{k=1}^{j} \tau_k + \tau' \leq \sum_{k=1}^{i} \tau_k + \tau \implies (\ell_j, \mathsf{v}_j + \tau') \models \psi_1 \lor \psi_2$$

Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
			00000		
тсті	CALL AND A REAL PROPERTY.	1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A			

TCTL model checking: overview

From a timed automaton ${\cal A}$ and a TCTL formula ψ build:

- $\alpha(\mathcal{A},\psi)$ a region automaton taking ψ into account
- $\blacktriangleright \ \hat{\psi}$ a CTL formula

such that $\mathcal{A} \models_{\mathit{TCTL}} \psi \Longleftrightarrow \alpha(\mathcal{A}, \psi) \models_{\mathit{CTL}} \hat{\psi}$

ro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
			00000		

TCTL: elimination of timing parameters

For valuation
$$v \in \mathbb{R}^{\mathcal{X}}_+$$
, and additional clock $z \notin \mathcal{X}$
 $v\{z := t\} \in \mathbb{R}^{\mathcal{X} \cup \{z\}}_+$ such that
$$\begin{cases} v\{z := t\}(z) = t \\ v\{z := t\}(x) = v(x) & \text{for } x \in \mathcal{X} \end{cases}$$

 ${\mathcal A}$ timed automaton over clocks ${\mathcal X}$, z additional clock.

Elimination of timings in $\psi_1 U^J \psi_2$

- $\blacktriangleright \ s \models \exists (\psi_1 \mathsf{U}^J \psi_2) \Longleftrightarrow s \{ z := 0 \} \models \exists ((\psi_1 \lor \psi_2) \mathsf{U} ((z \in J) \land \psi_2))$
- $\blacktriangleright \ s \models \forall (\psi_1 \mathsf{U}^J \psi_2) \Longleftrightarrow s \{ z := 0 \} \models \forall ((\psi_1 \lor \psi_2) \mathsf{U}((z \in J) \land \psi_2))$

Examples:

$$\blacktriangleright \exists \Diamond^{\geq 3} \psi \equiv \exists \Diamond \big((z \geq 3) \land \psi \big)$$

$$\blacktriangleright \exists \Box^{\leq 2} \psi \equiv \exists \big((z \leq 2) \implies \psi \big)$$

• $Sat(\psi) = \{s \mid s \models \psi\}$ computed recursively by structural induction.

Complexity Model checking of TCTL for timed automata is PSPACE-complete.

ntro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
Outline					

1 Introduction to timed automata

- Model
- Timed language
- Examples

2 Region abstraction

- Regions
- Region automaton
- Reachability problem
- **3** Limits of the finite abstraction
- 4 TCTL model checking

5 Algorithmics and implementation

ntro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
Symbolic m	odel checking				

Forward analysis

ntro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
				Implementation	
Symbolic m	nodel checking				

Forward analysis

ntro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
				Implementation •••••	
Symbolic m	nodel checking				

Forward analysis

Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
				00000	
Symbolic m	nodel checking				

Forward analysis

iterative computation of successors of Init

iterative computation of predecessors of Target

ntro to timed automata	Region abstraction	Limits	TCTL	Implementation	References	
				00000		
Zones						

Zones are symbolic representations of sets of valuations. A clock constraint g defines a zone $[\![g]\!] = \{v \in \mathbb{R}^{\mathcal{X}}_+ | v \models g\}.$

For verification purposes, the following operations on zones Z, Z' are needed.

- forward analysis:
 - Future of Z: $\overrightarrow{Z} = \{v + t | v \in Z, t \in \mathbb{R}_+\}$
 - ► Reset in Z of clocks in $Y \subseteq \mathcal{X}$: $Z_{[Y \leftarrow 0]} = \{v_{[Y \leftarrow 0]} | v \in Z\}$
 - Intersection of Z and Z': $Z \cap Z' = \{v | v \in Z \text{ and } v \in Z'\}$
 - Emptiness test: decide if Z is empty.
- backward analysis:
 - ▶ Past of Z: $\overleftarrow{Z} = \{v t | v \in Z, t \in \mathbb{R}_+\}$
 - ▶ Inverse reset: $Z_{[Y \leftarrow 0]^{-1}}$ the largest Z' with $Z'_{[Y \leftarrow 0]} = Z$
 - Intersection
 - Emptiness test

Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
				00000	
Data struct	ture				

Zones are represented by Difference Bounded Matrices (DBM).

Difference Bounded Matrix A DBM over the set of *n* clocks \mathcal{X} is an (n+1)-square matrix of pairs (m, \prec) with $\prec \in \{<, <\}$ and $m \in \mathbb{Z} \cup \{\infty\}$ $(m_{i,j}, \prec_{i,j})$ encodes the constraint $x_i - x_j \prec_{i,j} m_{i,j}$ (with convention $x_0 = 0$)

Example A DBM and the zone it represents.

$$\begin{array}{cccc} 0 & x & y \\ 0 & (\infty, <) & (-3, \le) & (\infty, <) \\ (\infty, <) & (\infty, <) & (4, <) \\ y & (\mathbf{5}, \le) & (\infty, <) & (\infty, <) \end{array}$$

Normal form (via Floyd algorithm)

$$x \ge 3 \land y \le 5 \land x - y < 4$$

$$0 \qquad x \qquad y$$

$$0 \qquad (0, \le) \quad (-3, \le) \quad (0, \le) \land$$

$$x \qquad (0, <) \quad (0, \le) \quad (4, <) \qquad y$$

$$(5, \le) \quad (2, \le) \quad (0, \le) \land$$

Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
				00000	
Compariso	n				

Backward analysis

The backward analysis terminates and is correct.

Proof Termination is based on the fact that finite union of regions are stable under the following operations: past \overleftarrow{Z} , inverse reset $Z_{[Y \leftarrow 0]^{-1}}$, and intersection $g \cap Z$.

Forward analysis

The forward analysis is correct when it terminates.

Note that it may not terminate.

Example

 $x \ge 1 \land y = 1, a, \{y\}$

Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
				00000	
Uppaal in a	a nutshell				

Uppaal

- developed at Uppsala and Aalborg universities
- ▶ performs forward analysis (with extrapolation) for timed automata

http://www.uppaal.com/

Intro to timed automata	Region abstraction	Limits	TCTL	Implementation	References
					•
References					

Seminal Paper

 R. Alur and D. Dill. <u>A Theory of Timed Automata</u>. Theoretical Computer Science 126(2): 183-235. 1994.

► To go further...

- O. Finkel. <u>Undecidable Problems about Timed Automata</u>. Proceedings of FORMATS⁷⁰⁶, pages 187-199. 2006.
- L. Aceto and F. Laroussinie. Is your model-checker on time? On the complexity of model checking for timed modal logics. Journal Logic Algebraic Programming 52-53: 7-51. 2002.
- R. Alur and P. Madhusudan. <u>Decision Problems for Timed Automata: A</u> Survey. Proceedings of SFM-04, pages 1-24. 2004.
- R. Alur, C. Courcoubetis, D. Dill. Model checking in dense real-time. Information and Computation 104(2): 2-34. 1993.

MDP 000000000000 PTA 00000 CTMC 000000000 References O

Part II

Probabilistic model checking

Nathalie Bertrand

DTMC	MDP	PTA	CTMC	References

Probabilistic model checking

Models

- Discrete-time Markov chains (DTMC)
- Markov decision processes (MDP)
- Probabilistic timed automata (PTA)
- Continuous-time Markov chains (CTMC)

Logics

- Probabilistic Linear Temporal Logic (PLTL)
- Probabilistic Computation Tree Logic (PCTL)
- Probabilistic Timed Computation Tree Logic (PTCTL)
- Continuous Stochastic Logic (CSL)

Questions

- Qualitative: how does the probability compare to 0 and 1?
- Quantitative: compute/approximate the probability

DTMC	

PTA 00000 CTMC 00000000 References

Outline

6 Discrete-time Markov chains

- Reachability properties
- Branching-time model checking
- Linear-time model checking

Ø Markov decision processes

- Reachability properties
- Branching-time model checking
- Linear-time model checking
- 8 Probabilistic timed automata

9 Continuous-time Markov chains

DTMC	

MDP 000000000000 PTA 00000 CTMC 000000000 References

6 Discrete-time Markov chains

- Reachability properties
- Branching-time model checking
- Linear-time model checking

Markov decision processes

- Reachability properties
- Branching-time model checking
- Linear-time model checking
- 8 Probabilistic timed automata

Ontinuous-time Markov chains

 MDP 00000000000 PTA 00000 CTMC 00000000 References

Motivation example

Tennis: Statistics give probability that Nadal wins a point when serving against Djokovic on clay.

- What is the probability that Nadal wins 4 points in a raw?
- What is the probability that Djokovic wins in 3 sets?

DTMC	MDP	PTA	СТМС	References
000000000000000000000000000000000000000				
Discrete-time M	larkov chains			

Discrete time Markov chain (DTMC)

 $\mathcal{M} = (S, \mathbf{P}, p_{\text{init}}, \text{lab}, AP)$ with

• S finite set of states, **P** probability matrix, p_{init} initial distribution, lab: $S \rightarrow 2^{AP}$ labels states with atomic propositions.

DTMC	MDP	PTA	СТМС	References
000000000000000000000000000000000000000				

Example: Zeroconf protocol

IP address automatic allocation

- with high probability (q), a free IP address is randomly chosen;
- otherwise, the host with the same address sends an alert, which can be lost (with probability p);
- the host sends *n* probes (here n = 2) to increase the reliability.

DTMC	
000000000000000000000000000000000000000	

MDP 00000000000 PTA 00000 CTMC 00000000 References O

Measure on DTMC paths

Probability of a finite path $\pi = s_0 s_1 \cdots s_n$:

$$Pr(\pi) = p_{init}(s_0) \prod_{i=0..n-1} \mathsf{P}_{i,i+1}.$$

Cylinder Cyl(π) = { π_{max} | π prefix of π_{max} }.

Probability measure

Pr is the unique probability measure on the σ -algebra generated by all Cyl(π), such that $Pr(Cyl(\pi)) = Pr(\pi)$.

DTMC	
000000000000000000000000000000000000000	

PTA 00000 CTMC 00000000 References

Outline

6 Discrete-time Markov chains

- Reachability properties
- Branching-time model checking
- Linear-time model checking

Markov decision processes

- Reachability properties
- Branching-time model checking
- Linear-time model checking
- 8 Probabilistic timed automata

Ontinuous-time Markov chains

DTMC	MDP	PTA	СТМС	References
000000000000000000000000000000000000000				
Reachability proper				

Goal: Compute $Pr(s_0 \models \Diamond T)$, for T set of target states.

For state $s \in S$, let $x_s = Pr(s \models \Diamond T)$.

- $x_s = 1$ if $s \in T$
- $x_s = 0$ if $s \not\models E \Diamond T$

►
$$x_s = \sum_{t \in S} \mathbf{P}(s, t) x_t$$

 \longrightarrow resolution of a system of linear equations

Constrained reachability $Pr(s_0 \models T_1 \cup T_2)$

- $x'_s = 1$ if $s \in T_2$
- $x'_s = 0$ if $s \notin T_1$ or $s \not\models E \Diamond T_2$
- $x'_s = \sum_{t \in S} \mathbf{P}(s, t) x'_t$

DTMC
000000000000000000000000000000000000000

PTA 00000 CTMC 0000000 References

Example of probability computation

Computation of $Pr(0 \models \Diamond 6)$

$$\begin{cases} x_6 = 1 \\ x_1 = x_2 = x_4 = 0 \\ x_0 = 0.6 x_3 \\ x_3 = 0.3 x_3 + 0.4 x_5 \\ x_5 = 0.8 x_5 + 0.2 \\ x_7 = 0.5 x_5 + 0.5 \end{cases}$$
$$x_0 = \frac{12}{35}$$

DTMC	
000000000000000000000000000000000000000	

PTA 00000 CTMC 00000000

References

Outline

6 Discrete-time Markov chains

- Reachability properties
- Branching-time model checking
- Linear-time model checking

Markov decision processes

- Reachability properties
- Branching-time model checking
- Linear-time model checking
- 8 Probabilistic timed automata

Ontinuous-time Markov chains
TMC	MDP	PTA	СТМС	References	
000000000000000000000000000000000000000					
	.				

Probabilistic Computation Tree Logic

Syntax of PCTL

- state formulae: $\psi ::= \operatorname{tt} |a| \psi_1 \wedge \psi_2 |\neg \psi | \mathbb{P}_J(\varphi)$
- path formulae: $\varphi ::= \bigcirc \psi | \psi_1 \mathsf{U} \psi_2 | \psi_1 \mathsf{U}_{\leq n} \psi_2$

 $s \models \mathbb{P}_J(\varphi)$ iff $Pr(s \models \varphi) \in J$

Shorthands: $\mathbb{P}_{[r,r]}(\varphi) \equiv \mathbb{P}_{=r}(\varphi)$, $\mathbb{P}_{(r,1]}(\varphi) \equiv \mathbb{P}_{>r}(\varphi)$, $\mathbb{P}_{[0,r]}(\varphi) \equiv \mathbb{P}_{\leq r}(\varphi)$, etc.

Measurability of PCTL events

For φ PCTL path formula and \mathcal{M} a Markov chain, $\{\pi \mid \pi \models \varphi\}$ is measurable (so $Pr(s \models \varphi)$ is well-defined).

For ψ a PCTL state formula: $Sat(\psi) = \{s \mid s \models \psi\}.$

PTA 00000 CTMC 00000000 References

Comparison of PCTL and CTL

Qualitative PCTL

Fragment of PCTL where $J \in \{(0, 1], [0, 0], [1, 1], [0, 1)\}$. In words, probabilities are only compared to 0 and 1.

Qualitative PCTL versus CTL

- $\blacktriangleright \forall \varphi \not\iff \mathbb{P}_{=1}(\varphi)$
- ▶ In infinite Markov chains, there is no CTL formula equivalent to $\mathbb{P}_{=1}(\Diamond a)$.
- There is no qualitative PCTL formula equivalent to $\forall \Diamond a$.

Qualitative PCTL and CTL are expressively incomparable.

For finite Markov chains, qualitative PCTL is similar to CTL with strong fairness.

• $Sat(\psi) = \{s \mid s \models \psi\}$ computed recursively by structural induction.

► $Sat(\mathbb{P}_J(S_1 \cup S_2)) = \{s | Pr(s \models S_1 \cup S_2) \in J\}$ constrained reachability.

Complexity

Model checking of PCTL for Markov chains is linear in the size of φ and polynomial in the size of \mathcal{M} .

DTMC	
000000000000000000000000000000000000000	

PTA 00000 CTMC 000000000 References O

Probabilistic bisimulation

Bisimulation for Markov chains

A probabilistic bisimulation for a Markov chain $\mathcal{M} = (S, \mathbf{P}, p_{\text{init}}, \text{lab}, AP)$ is an equivalence relation \mathcal{R} on S such that for all states $(s_1, s_2) \in \mathcal{R}$

- $lab(s_1) = lab(s_2)$, and
- ▶ for each equivalence class $T \in S/\mathcal{R}$, $\sum_{t \in T} \mathbf{P}(s_1, t) = \sum_{t \in T} \mathbf{P}(s_2, t)$.

Probabilistic bisimulation and PCTL equivalence Let \mathcal{M} be a Markov chain, s_1, s_2 states of \mathcal{M} . Then

 s_1 and s_2 are bisimilar $\iff s_1$ and s_2 satisfy the same PCTL properties

DTMC	
000000000000000000000000000000000000000	00

PTA 00000 CTMC 000000000 References

Outline

6 Discrete-time Markov chains

- Reachability properties
- Branching-time model checking
- Linear-time model checking

Markov decision processes

- Reachability properties
- Branching-time model checking
- Linear-time model checking
- 8 Probabilistic timed automata

Ontinuous-time Markov chains

DTMC	
000000000000000000000000000000000000000	

PTA 00000 CTMC 00000000

References

Linear temporal logic

Syntax of Linear Temporal Logic (LTL)

$$arphi ::= \mathtt{tt} \left| \left. a \right| arphi_1 \wedge arphi_2 \left| \left. \neg arphi \right| \, igcap arphi arphi \mathsf{U} arphi_2
ight.$$

where *a* is an atomic proposition.

 \bigcirc is the next step operator and U is the until operator.

Macros: eventually $\Diamond \varphi = ttU \varphi$, and always $\Box \varphi = \neg \Diamond \neg \varphi$ operators.

Intuitive semantics:

000000000000000000000000000000000000000				
OTMC	MDP	PTA	CTMC	References

Reminder: LTL model checking of transition systems

Given φ an LTL formula over AP, $\llbracket \varphi \rrbracket = \{ \sigma \in (2^{AP})^{\omega} \mid \sigma \models \varphi \}.$

From LTL to automata

For every LTL formula φ , there exists a nondeterministic Büchi automaton (NBA) \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = \llbracket \varphi \rrbracket$.

Online tool: LTL2BA

Automata-based LTL model checking

Input: transition system T and LTL formula φ over AP Question: $T \models \varphi$?

- Build an NBA $\mathcal{A}_{\neg\varphi}$ such that $\mathcal{L}(\mathcal{A}_{\neg\varphi}) = \llbracket \neg \varphi \rrbracket$.
- Build the product transition system $P = T \otimes \mathcal{A}_{\neg \varphi}$
 - ▶ if there is a path in *P* satisfying the acceptance condition of $A_{\neg \varphi}$, then return "no",
 - else return "yes".

TMC	MDP	PTA	CTMC	References
000000000000000000000000000000000000000				

Bottom Strongly Connected Components

Properties of BSCC

Let ${\mathcal C}$ be the set of basic strongly connected components in ${\mathcal M}.$

•
$$Pr(s_0 \models \Diamond \bigcup_{C \in C} C) = 1$$
,

► $\forall s \in C(\in C), \ Pr(s \models \bigwedge_{t \in C} \Box \Diamond t) = 1.$

DTMC	MDP	PTA	СТМС	References
000000000000000000000000000000000000000				
Prefix-independe	ent properties			

Prefix-independency

A property is said <u>prefix-independent</u> if its validity only depends on the set of states that are visited infinitely often along a path.

For φ prefix-independent, $Pr(s_0 \models \varphi) = Pr(s_0 \models \Diamond \{ C \in C | C \models \varphi \}).$

Computation of $Pr(0 \models \Box \Diamond \text{ odd})$

$$Pr(0 \models \Box \Diamond \text{ odd}) =$$

$$Pr(0 \models \Diamond C_{1,2}) + Pr(0 \models \Diamond C_{5,6,7})$$

$$Pr(0 \models \Box \Diamond \text{ odd}) = \frac{26}{35}$$

DTMC	MDP	PTA	CTMC	References
0000000000000000				
Omega-regular	properties			

- Omega-regular property represented by Deterministic Rabin Automaton (DRA).
- ► Given M Markov chain and A DRA, what is the probability in M to generate traces in L(A)?
- ▶ Rabin acceptance condition: $\bigvee_{1 \le i \le k} (\Diamond \Box \neg L_i \land \Box \Diamond K_i).$
- ▶ A BSCC *C* in $\mathcal{M} \otimes \mathcal{A}$ is accepting if for some index *i*, $T \cap (S \times L_i) = \emptyset$ and $T \cap (S \times K_i) \neq \emptyset$.

Model checking omega-regular properties

Given \mathcal{M} a DTMC, \mathcal{A} a DRA.

Let U be the union of all accepting BSCCs in $\mathcal{M} \otimes \mathcal{A}$. Then:

$$Pr^{\mathcal{M}}(s_0 \models \mathcal{A}) = Pr^{\mathcal{M} \otimes \mathcal{A}}((s_0, q_0) \models \Diamond U).$$

DTMC	

PTA 00000 CTMC 00000000

References

Outline

6 Discrete-time Markov chains

- Reachability properties
- Branching-time model checking
- Linear-time model checking

⑦ Markov decision processes

- Reachability properties
- Branching-time model checking
- Linear-time model checking
- 8 Probabilistic timed automata

Ontinuous-time Markov chains

MDP •••••••

PTA 00000 CTMC 00000000

References

Motivation example

Soccer: US goalkeeper Solo watched the last 30 penalty kicks by Necib.

Should she move left or right to maximise the probability to stop the ball?

DTMC	MDP	PTA	CTMC	References
	000000000			
Markov decision	processes			

Markov decision process (MDP)

 $\mathcal{M} = (S, Act, \mathbf{P}, p_{init}, lab, AP)$ with

- ► S finite set of states, p_{init} initial distribution, Act set of actions,
- ▶ **P** : $S \times Act \times S \rightarrow [0, 1]$ transition probability function s.t.

$$\forall s \in S, \ \forall \alpha \in Act, \ \sum_{t \in S} \mathsf{P}(s, \alpha, t) \in \{0, 1\},$$

Iab labels states with atomic propositions.

DTMC	MDP PTA	PTA	CTMC	References
	0000000000			
- I . I	1 A A A A A A A A A A A A A A A A A A A	1 C C C C C C C C C C C C C C C C C C C		

Example: mutual exclusion protocol

two concurrent processes

access to the critical section delivered by randomized arbiter

DTMC	MDP PTA	PTA	CTMC	References
	0000000000			
E I I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Example: mutual exclusion protocol

- two concurrent processes
- access to the critical section delivered by randomized arbiter

What is the probability that process 2 enters its critical section within 3 steps, assuming it is waiting?

DTMC	MDP	PTA	CTMC	References
	000000000			
Strategies				

Strategy

Let $\mathcal{M} = (S, Act, \mathbf{P}, p_{\text{init}}, \text{lab}, AP)$ be an MDP. A strategy for \mathcal{M} is a function $\sigma : S^+ \to Act$ s.t. the action $\sigma(s_0s_1\cdots s_n)$ is enabled in s_n .

DTMC	

PTA 00000 CTMC 00000000

References

Outline

6 Discrete-time Markov chains

- Reachability properties
- Branching-time model checking
- Linear-time model checking

Markov decision processes

- Reachability properties
- Branching-time model checking
- Linear-time model checking
- 8 Probabilistic timed automata

Ontinuous-time Markov chains

TMC	MDP	PTA	СТМС	References
	000000000			

Reachability properties

Goal: Compute $Pr^{\max}(s \models \Diamond T) = \sup_{\sigma} Pr^{\sigma}(s \models \Diamond T)$. For state $s \in S$, let $x_s = Pr^{\max}(s \models \Diamond T)$. • $x_s = 1$ if $s \in T$ • $x_s = 0$ if $s \not\models E \Diamond T$ • $x_s = \max_{\alpha \in Act} \sum_{t \in S} \mathbf{P}(s, \alpha, t) \times_t$ \longrightarrow resolution of a linear program

Constrained reachability $Pr^{\max}(s \models T_1 \cup T_2)$

•
$$x'_s = 1$$
 if $s \in T_2$

•
$$x'_s = 0$$
 if $s \notin T_1$ or $s \not\models E \Diamond T_2$

• $x'_s = \max_{\alpha \in Act} \sum_{t \in S} \mathbf{P}(s, \alpha, t) x'_t$

Memoryless strategies

For reachability and constrained reachability properties, there exists a memoryless strategy $\sigma: S \to Act$ that maximizes the probability.

DTMC	

PTA 00000 CTMC 00000000 References

Outline

6 Discrete-time Markov chains

- Reachability properties
- Branching-time model checking
- Linear-time model checking

7 Markov decision processes

- Reachability properties
- Branching-time model checking
- Linear-time model checking
- 8 Probabilistic timed automata

Ontinuous-time Markov chains

TMC	MDP	PTA	CTMC	References
	00000000000			
Model checking	PCTL			

Probabilistic operator $\mathbb{P}_{J}(.)$ bounds the probability for all strategies.

$$s \models \mathbb{P}_{J}(\varphi) \Longleftrightarrow \forall \sigma, \ Pr^{\sigma}(s \models \varphi) \in J$$
$$\iff [Pr^{\min}(s \models \varphi), Pr^{\max}(s \models \varphi)] \subseteq J$$

Recursive computation of $Sat(\psi)$ by structural induction on ψ .

- $\blacktriangleright \ \psi = \mathbb{P}_J(\psi_1 \mathsf{U}\psi_2)$
 - $\blacktriangleright p_s^+ = Pr^{\max}(s \models \psi_1 \mathsf{U} \psi_2)$
 - $\blacktriangleright p_s^- = Pr^{\min}(s \models \psi_1 \mathsf{U} \psi_2)$
 - $Sat(\psi) = \{s \mid [p_s^-, p_s^+] \subseteq J\}$
- $\psi = \mathbb{P}_J(\bigcirc \psi')$
 - ► $p_s^+ = Pr^{\max}(s \models \bigcirc \psi') = \max_{\alpha \in Act} \sum_{t \in Sat(\psi')} P(s, \alpha, t);$
 - ► $p_s^- = Pr^{\min}(s \models \bigcirc \psi') = \min_{\alpha \in Act} \sum_{t \in Sat(\psi')} \mathbf{P}(s, \alpha, t);$
 - $Sat(\psi) = \{s \mid [p_s^-, p_s^+] \subseteq J\}.$

DTMC	

PTA 00000 CTMC 00000000 References

Outline

6 Discrete-time Markov chains

- Reachability properties
- Branching-time model checking
- Linear-time model checking

7 Markov decision processes

- Reachability properties
- Branching-time model checking
- Linear-time model checking

8 Probabilistic timed automata

Ontinuous-time Markov chains

OTMC	MDP	PTA	СТМС	References
	000000000000			
End components				

End component

A sub-MDP (T, A) of \mathcal{M} is an end component if it is strongly connected.

Recurrence property

For each end component (T, A) there exists a strategy σ that ensures for every $s \in T$, $Pr^{\sigma}(s \models \Box T \land \bigwedge_{t \in T} \Box \Diamond t) = 1$.

DTMC	MDP	PTA	СТМС	References
	0000000000			
Prefix-independ	ent properties			

Limit behaviors of MDP

Under each strategy, for almost every path, the states visited infinitely often and the actions taken infinitely often form an end component.

To a prefix-independent property φ we associate

- U_{φ} the union of the sets T such that (T, A) is an end component with $T \models \varphi$, and
- V_{φ} the union of the sets T such that (T, A) is an end component with $\neg(T \models \varphi)$.

Verifying prefix-independent properties

- $Pr^{\max}(s \models \varphi) = Pr^{\max}(s \models \Diamond U_{\varphi})$
- $Pr^{\min}(s \models \varphi) = 1 Pr^{\max}(s \models \Diamond V_{\varphi})$
- Finite-memory strategies are sufficient for extremal probabilities.

DTMC	

PTA

CTMC 000000000 References

Outline

6 Discrete-time Markov chains

- Reachability properties
- Branching-time model checking
- Linear-time model checking

Markov decision processes
 Reachability properties
 Branching-time model check

- Linear-time model checking
- 8 Probabilistic timed automata

Ontinuous-time Markov chains

DTMC	MDP	PTA	CTMC	References
		•0000		

Probabilistic timed automata

Probabilistic timed automata (PTA)

A probabilistic timed automaton is a tuple $\mathcal{P} = (L, \ell_0, Act, \mathcal{X}, E, lab, AP)$ with

- L finite set of locations and $\ell_0 \in L$ the initial locations
- Act finite set of actions
- \mathcal{X} finite set of clocks
- E ⊆ L × G × Act × Dist(2^X × L) set of probabilistic edges where G is the set of guards
- lab : $L \rightarrow 2^{AP}$ labels locations with atomic propositions.

DTMC	MDP	PTA	СТМС	References
		00000		
Semantics of PTA				

The semantics of a PTA is an infinite-state Markov decision process $\mathcal{M} = (L \times \mathbb{R}^{\mathcal{X}}_+, Act \cup \mathbb{R}_+, \mathbf{P}, (\ell_0, 0), lab, AP).$

- ▶ States: $L \times \mathbb{R}^{\mathcal{X}}_+$ composed of a location and a valuation
- \blacktriangleright Actions: $Act \cup \mathbb{R}_+$ partitionned into discrete actions and delays
- Probabilistic transition function: P such that time transition for any delay τ ∈ ℝ₊, there are deterministic transitions (ℓ, ν) → (ℓ, ν + τ): P((ℓ, ν), τ, (ℓ, ν + τ)) = 1. discrete transition for every edge (ℓ, g, α, δ), and any state (ℓ, ν) with ν ⊨ g, there are probabilistic transitions on α from (ℓ, ν):

$$\mathsf{P}((\ell, v), \alpha, (\ell', v')) = \sum_{Y \subseteq \mathcal{X} \mid v_{[Y \leftarrow 0]} = v'} \delta(Y, \ell')$$

• Labelling: $lab((\ell, v)) = lab(\ell)$.

		PIA	CIMC	
		00000		
Reachability and	alysis			
-	-			

Goal: Compute min/max probability of reaching a set of target locations.

Region graph MDP $\mathcal{M}_{\mathcal{R}}$

- States: $L_{\mathcal{R}} = L \times \mathcal{R}$.
- Actions: $Act_{\mathcal{R}} = Act \cup Succ$: discrete action or time-successor.
- ► Transitions: **P**_{*R*}
 - ▶ $\mathbf{P}_{\mathcal{R}}((\ell, R), \text{Succ}, (\ell, R')) = 1$ for R' the direct time-successor of R
 - ► for every state (ℓ, R) and every edge $(\ell, g, \alpha, \delta)$ with $R \models g$, $\mathbf{P}_{\mathcal{R}}((\ell, R), \alpha, (\ell', R')) = \sum_{Y \subseteq \mathcal{X} \mid R' = R_{[Y \leftarrow 0]}} \delta(Y, \ell').$
- Labelling: $lab_{\mathcal{R}}(\ell, R) = lab(\ell)$

Correction of the region graph MDP $Pr_{\mathcal{P}}^{\max}((\ell_0, 0) \models \Diamond T) = Pr_{\mathcal{M}_{\mathcal{R}}}^{\max}((\ell_0, 0) \models \Diamond (T \times \mathcal{R}))$ $Pr_{\mathcal{P}}^{\min}((\ell_0, 0) \models \Diamond T) = Pr_{\mathcal{M}_{\mathcal{R}}}^{\min}((\ell_0, 0) \models \Diamond (T \times \mathcal{R}))$

Also works for invariants and time-bounded reachability properties.

DTMC	MDP	PTA	СТМС	Reference
		00000		
Beyond reachab	oility: PTCTL			

Syntax of PTCTL

 $\psi ::= \operatorname{tt} |\mathbf{a}| g |\psi_1 \wedge \psi_2 | \neg \psi | \mathbb{P}_J(\psi_1 \mathsf{U} \psi_2) | \mathbb{P}_J(\psi_1 \mathsf{U}' \psi_2)$

 \mathcal{Z} set of formula clocks, $g \in \mathcal{G}$ zone over $\mathcal{X} \cup \mathcal{Z}$, $J \subseteq [0, 1]$ interval, $I \subseteq \mathbb{R}_+$ interval with integer bounds

Examples

- $\mathbb{P}_{>0}(\Diamond^{[1,2]} \text{error})$
- $\mathbb{P}_{=1/2}($ on U $\mathbb{P}_{\geq 0.9}(\Diamond z \leq 2 \land \neg on))$

Semantics

- ► $s \models \mathbb{P}_J(\varphi)$ iff $\forall \sigma, \ Pr^{\sigma}(\{\rho = s \cdots \mid \rho \models \varphi\}) \in J$
- ▶ for time-divergent run $\rho = (\ell_0, v_0) \xrightarrow{\tau_1, a_1} (\ell_1, v_1) \xrightarrow{\tau_2, a_2} \cdots$ $\rho \models \psi_1 U' \psi_2$ if and only if there exists $i \ge 0$, there exists $\tau \in [0, \tau_i]$ such that

$$\begin{array}{l} \bullet \quad (\ell_i, v_i + \tau) \models \psi_2 \text{ with } \sum_{k=1}^i \tau_k + \tau \in I, \\ \bullet \quad \forall j \le i, \, \forall \tau' \in [0, \tau_j], \\ \sum_{k=1}^j \tau_k + \tau' \le \sum_{k=1}^i \tau_k + \tau \implies (\ell_j, v_j + \tau') \models \psi_1 \lor \psi_2 \end{array}$$

TMC	MDP	PTA	СТМС	References
		00000		

Model checking PTCTL on PTA

PTCTL model checking on PTA

Input: PTA \mathcal{P} with clocks \mathcal{X} , and PTCTL formula ψ with clocks \mathcal{Z} Question: $\mathcal{P} \models \psi$?

- ▶ build a region graph MDP $\mathcal{M}_{\mathcal{R}}(\psi)$ on $\mathcal{X} \cup \mathcal{Z}$
- ► translate ψ into a PCTL formula ψ' such that ψ holds in a state of 𝒫 iff ψ' holds in the corresponding state of _𝔅(ψ)
- decide whether $\mathcal{M}_{\mathcal{R}}(\psi) \models \psi'$ using PCTL model checking for MDP

In practice: more efficient techniques (digital clocks, zone graph MDP, abstract MDP refined on demand)

DTMC	

PTA 00000 CTMC

References

Outline

6 Discrete-time Markov chains

- Reachability properties
- Branching-time model checking
- Linear-time model checking

Markov decision processes
 Reachability properties

- Branching-time model checking
- Linear-time model checking

8 Probabilistic timed automata

9 Continuous-time Markov chains

ТМС	MDP	PTA	CTMC	References
			00000000	
C 1	N			

Continuous-time Markov chains

Continuous-time Markov chains (CTMC)

- $\mathcal{M} = (S, \mathbf{R}, p_{\text{init}}, \text{lab}, AP)$ with
 - ► S finite set of states, **R** rate matrix, p_{init} initial distribution.

 $\mathbf{R}(s,t) = \lambda$ means that the average time when going from s to t is $\frac{1}{\lambda}$ $E(s) = \sum_{t \in S} \mathbf{R}(s,t)$ is the exit rate of s.

Interpretation

- probability that $s \xrightarrow{\lambda} t$ is enabled in $[0, \tau]$: $1 e^{-\lambda \tau}$;
- ▶ probability that $s \xrightarrow{\lambda} t$ is taken in $[0, \tau]$: $\frac{R(s,t)}{E(s)}(1 e^{-E(s)\tau})$;
- probability to leave s in $[0, \tau]$: $(1 e^{-E(s)\tau})$.

	00000000	

Example: Iriple modular redundancy

Fault-tolerant majority voting system: 3 processors and a single voter.

- failure rate of processor (resp. voter): λ (resp. ν)
- repair rate of processor (resp. voter): μ (resp. δ)

Given $(S, \mathbf{R}, p_{init})$ a CTMC, its embedded DTMC is $(S, \mathbf{P}, p_{init})$ with

$$\mathbf{P}(s,t) = egin{cases} rac{\mathrm{R}(s,t)}{E(s)} & ext{if } E(s) > 0 \ 0 & ext{otherwise} \end{cases}$$

		00000000	
		00000000	

Elementary probabilities in CTMC

Transient probability vector

 $\pi(t) = (\pi_1(t), \cdots \pi_n(t))$ for $t \ge 0$, where $\pi(t)$ is the probability to be in state s_i at time t.

Computed by solving a system of linear differential equations:

 $\pi'(t) = \pi(t) \big(\mathbf{R} - \mathsf{diag}(\mathsf{E}) \big).$

Steady-state probability vector

$$\pi = (\pi_1, \cdots, \pi_n)$$
, with $\pi_i = \lim_{t \to \infty} \pi_i(t)$.

If $\mathcal M$ has a single BSCC, π is computed by solving a system of linear equations:

$$\piig(\mathsf{R}-\mathsf{diag}(\mathsf{E})ig) = 0 \,\, \mathsf{and} \,\, \sum_i \pi_i = 1.$$

Otherwise, see computation of $Sat(\mathbb{S}_J(\psi))$, Slide 91.

DTMC	MDP	PTA	СТМС	References
			00000000	

Continuous Stochastic Logic

Syntax of CSL

- ▶ state formulae: $\psi ::= \operatorname{tt} |a| \neg \psi |\psi_1 \land \psi_2 | \mathbb{S}_J(\psi) | \mathbb{P}_J(\varphi)$
- path formulae: $\varphi ::= \bigcirc_I \psi \,|\, \psi_1 \mathsf{U}_I \psi_2$

 $s \models \mathbb{S}_J(\psi)$ iff the probability that ψ holds in steady state lies in J.

Example

In at least 90% of the cases, a goal state is reached within 3 time units guaranteeing 0.99 long-run availability.

 $\mathbb{P}_{[0.9,1]}(\mathit{s}_0 \models \texttt{tt} \, \mathsf{U}_{[0,3]} \, \mathbb{S}_{[0.99,1]} \, \texttt{goal})$

PTA 00000 CTMC 0000000000 References O

Model checking CSL

Recursive computation of $Sat(\psi)$.

- Nonstochastic part: as for CTL
- Probabilistic formulae without time bounds: as for PCTL
 - on the embedded DTMC
- ► To do: stochastic timed operators.
| DTMC | MDP | PTA | CTMC | References |
|-----------------|--------------------------------|-----|-----------|------------|
| | | | 000000000 | |
| Steady-state op | erator: $\mathbb{S}_{l}(\psi)$ | | | |

► For a strongly connected CTMC

$$s \in Sat(\mathbb{S}_J(\psi))$$
 if and only if $\sum_{t \in Sat(\psi)} \pi_t \in J$.

- For an arbitrary CTMC
 - determine the set of BSCC C,
 - for $C \in C$ compute
 - the probability to reach C: $Pr(s_0 \models \Diamond C)$
 - the steady-state probability of ψ -states: π_t for $t \in C \cap Sat(\psi)$
 - ► $s \in Sat(\mathbb{S}_J(\psi))$ if and only if $\sum_C \left(Pr(s_0 \models \Diamond C) \cdot \sum_{t \in C \cap Sat(\psi)} \pi_t \right) \in J.$

Example

 $lab(s_1) = lab(s_2) = lab(s_5) = \{a\}$ $lab(s_0) = lab(s_3) = lab(s_4) = \emptyset$

Does $s_0 \models \mathbb{S}_{>0.8}a$?

DTMC	MDP	PTA	CTMC	References	
			000000000		
T 1 1 1 1					

Time-bounded reachability: $\psi_1 U_{\leq \tau} \psi_2$

$Pr(s \models \psi_1 U \psi_2)$ is the least fixpoint of the following system

• If $s \models \psi_1 \land \neg \psi_2$, then

$$Pr(s \models \psi_1 \cup_{\leq \tau} \psi_2) = \int_0^{\tau} \sum_{t \in S} \underbrace{\mathsf{P}(s, t) \mathsf{E}(s) e^{-\mathsf{E}(s)x}}_{\text{probability to move to}} \underbrace{\Pr(t \models \psi_1 \cup_{\leq \tau - x} \psi_2)}_{\text{probability to fulfill } \psi_1 \cup \psi_2} dx.$$

- If $s \models \psi_2$, then $Pr(s \models \psi_1 U_{\leq t} \psi_2) = 1$.
- Else, $Pr(s \models \psi_1 \cup \bigcup_{\leq t} \psi_2) = 0.$

OTMC	

PTA 00000 CTMC 00000000 References O

Tools in a nutshell

$\mathbf{P}\mathbf{RISM}$

- developed at Oxford University
- model checking of DTMC, MDP, PTA and CTMC

http://www.prismmodelchecker.org/

MRMC

- developed at RWTH Aachen University
- model checking of DTMC, CTMC

http://www.mrmc-tool.org/

DTMC	

PTA 00000 CTMC 000000000 References

Mathematical foundations

- Kemeny, Snell and Knapp. <u>Denumerable Markov chains</u>. D. Van Nostrand Co, 1966.
- Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 1994.

Probabilisic model checking

- ▶ Baier and Katoen. Principles of model checking. MIT Press, 2008.
- Baier, Haverkort, Hermanns and Katoen. Model checking algorithms for continuous-time Markov chains. IEEE Transactions on Software Engineering, 2003.