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The model, informally

Timed automaton: Finite automaton enriched with clocks.

`0 `1 `2

tt,

a

,{x} x=1,

b

,∅

y=1,

a

,∅

x>0,

b

,{y}

X={x,y}

Transitions are equipped with guards and sets of reset clocks.
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Syntax

`0 `1 `2

tt,a,{x} x=1,b,∅

y=1,a,∅

x>0,b,{y}

Timed automata

A timed automaton is a tuple A = (L, L0, Lacc ,Σ,X ,E) with

I L finite set of locations L = {`0, `1, `2}
I L0 ⊆ L initial locations L0 = {`0}
I Lacc ⊆ L set of accepting locations Lacc = {`2}
I Σ finite alphabet Σ = {a, b}
I X finite set of clocks X = {x , y}

I E ⊆ L× G × Σ× 2X × L set of edges `0
x>0,a,{y}−−−−−−→ `0

where G = {
∧

x ./ c | x ∈ X , c ∈ N} is the set of guards.
(with ./ ∈ {<,≤,=,≥, >})
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Semantics

Valuation: v ∈ RX+ assigns to each clock a clock-value

State: (`, v) ∈ L× RX+ composed of a location and a valuation.

Transitions between states of A:

I Delay transitions: (`, v)
τ−→ (`, v + τ)

I Discrete transitions: (`, v)
a−→ (`′, v ′)

if ∃(`, g , a,Y , `′) ∈ E with v |= g and

{
v ′(x) = 0 if x ∈ Y ,

v ′(x) = v(x) otherwise.

Run of A:
(`0, v0)

τ1−→ (`0, v0 + τ1)
a1−→ (`1, v1)

τ2−→ (`1, v1 + τ2)
a2−→ · · · ak−→ (`k , vk)

or simply: (`0, v0)
τ1,a1−−−→ (`1, v1)

τ2,a2−−−→ · · · τk ,ak−−−→ (`k , vk)
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Semantics (cont.)

Time sequence: t = (ti )1≤i≤k finite non-decreasing sequence over R+.

Timed word: w = (σ, t) = (ai , ti )1≤i≤k where ai ∈ Σ and t time sequence.

Accepted timed word

A timed word w = (a0, t0)(a1, t1) . . . (ak , tk) is accepted in A,

if there is a run ρ = (`0, v0)
τ0,a0−−−→ (`1, v1)

τ1,a1−−−→ . . . (`k+1, vk+1)
with `0 ∈ L0, `k+1 ∈ Lacc , and ti =

∑
j<i τj .

Accepted timed language: L(A) = {w | w accepted by A}.

Nathalie Bertrand Techniques de Vérification Avancées M2RI – 2013 8



Intro to timed automata Region abstraction Limits TCTL Implementation References

Outline

1 Introduction to timed automata
Model
Timed language
Examples

2 Region abstraction
Regions
Region automaton
Reachability problem

3 Limits of the finite abstraction

4 TCTL model checking

5 Algorithmics and implementation

Nathalie Bertrand Techniques de Vérification Avancées M2RI – 2013 9



Intro to timed automata Region abstraction Limits TCTL Implementation References

Back to the example

NB: In the examples, we omit

I the guard when it is equivalent to tt, and

I the reset set when it is empty.

`0 `1 `2

a,{x} x=1,b

y=1,a

x>0,b,{y}

w = (b, 0.1)(b, 0.3)(a, 1.3)(b, 1.5)(a, 1.5)(b, 2.5) is an accepted timed word

An accepting run for w is

(`0, 0, 0)
0.1,b−−−→ (`0, 0.1, 0)

0.2,b−−−→ (`0, 0.3, 0)
1,a−−→ (`0, 1.3, 1)

0.2,b−−−→ (`0, 1.5, 0)
0,a−−→ (`1, 0, 0)

1,b−−→ (`2, 1, 1)
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More examples

`0 `1 `2

a,{x} x=1,a

aa a

L(A) = {(a, t1) · · · (a, tk)|∃i < j , tj − ti = 1}

`0 `1

`2

`3

0<x<1,a,{y}

x<1,c

y<1,a,{y}

y=1,b x<1,c

x=1,d

Does there exist an accepted timed word containing action b?
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Region partitioning

Let A be a timed automaton with set of clocks X and set of constraints C.
Let R be a finite partition of RX+ , the set of valuations.

Set of regions

R is a set of regions (for C) if

1. for every g ∈ C and for every R ∈ R, R ⊆ JgK or JgK ∩ R = ∅,
2. for all R,R ′ ∈ R, if there exists v ∈ R and t ∈ R with v + t ∈ R ′ then for

every v ′ ∈ R there exists t′ ∈ R with v ′ + t′ ∈ R ′, and

3. for all R,R ′ ∈ R, for every Y ⊆ X if R[Y←0] ∩ R ′ 6= ∅, then R[Y←0] ⊆ R ′.

Let M be the maximal constant in A.
The following equivalence relation yields the set of standard regions:

v ≡M v ′ if for every x , y ∈ X
I v(x) > M ⇔ v ′(x) > M

I v(x) ≤ M ⇒
((
bv(x)c = bv ′(x)c

)
and

(
{v(x)} = 0⇔ {v ′(x)} = 0

))
I
(
v(x) ≤ M and v(y) ≤ M

)
⇒
(
{v(x)} ≤ {v(y)} ⇔ {v ′(x)} ≤ {v ′(y)}

)
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Regions with 2 clocks

Standard regions for 2 clocks can be represented in 2 dimensions.

`0 `1 `2

a,{x} x=1,b

y=2,a

x>0,b,{y}

x

y

2

2

1

1

v ≡M v ′ if for every x , y ∈ X
I v(x) > M ⇔ v ′(x) > M

I v(x) ≤ M ⇒
((
bv(x)c = bv ′(x)c

)
and

(
{v(x)} = 0⇔ {v ′(x)} = 0

))
I
(
v(x) ≤ M and v(y) ≤ M

)
⇒
(
{v(x)} ≤ {v(y)} ⇔ {v ′(x)} ≤ {v ′(y)}

)

The partition is compatible with constraints, time elapsing and resets.
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Operations on region

For two clocks, the (bounded) regions have the following shapes:

•

R[Y←0] denotes the region obtained from R by resetting clocks in Y ⊆ X .
R ′ is a time-successor of R if there exists v ′ ∈ R ′, v ∈ R, t ∈ R+ with
v ′ = v + t.

x

y

2

2

1

1

(x=0,y=0)

delay−−−→ (0<x=y<1)
y :=0−−→ (0<x<1,y=0)

delay−−−→ (0<y<x<1)
delay−−−→ (0<y<1=x)

delay−−−→ (1<x<

2,0<y<1,{x}<{y})
delay−−−→ (y=1<x<2)

x :=0−−→ (x=0,y=1)
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Region automaton: construction

From a timed automaton A we build a finite automaton α(A) as follows:
I States: L×R Initial: L0 ×R Final: Lacc ×R
I Transitions:

I (`,R)
a−→ (`′,R′) if there exists `

g,a,Y−−−−→ `′ in A, there exists R′′

time-successor of R with R′′ ⊆ JgK and R′ = R′′
[Y←0]

.

Example Region automaton for the second timed automaton of Slide 17.

`1,x=1,y=0 `1,x>1,y=0 `3,x=1,0<y<1

`2,x>1,y=1 `3,0<x<1,y=0 `3,0<y<x<1

`0,x=y=0 `1,0<x<1,y=0
a

cc

a a

b

d

a

a

b

a

a
aa d

d

b
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Region automaton: properties

The number of states in α(A) is bounded by

|L| · 2|X| · |X |! · (2M + 2)|X|

Untime(L(A)) = {σ|(σ, t) ∈ L(A)} ⊆ Σ∗ is the untimed language of A.

Property

Untime(L(A)) = L(α(A))

Consequence: the untimed language of A is regular.

Nathalie Bertrand Techniques de Vérification Avancées M2RI – 2013 18
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Justification of the region automaton

Time-abstract bisimulation

Let A1 and A2 be timed automata.
≡⊆(L1×RX1

+ )×(L2×RX2
+ ) is a time-abstract bisimulation between A1 and A2 if

I if (`1, v1) ≡ (`2, v2) and (`1, v1)
τ1−→ (`1, v1 + τ1) for some τ1 ∈ R+, then

there exists τ2 ∈ R+ with (`2, v2)
τ2−→ (`2, v2 + τ2) and

(`1, v1 + τ1) ≡ (`2, v2 + τ2)

I if (`1, v1) ≡ (`2, v2) and (`1, v1)
a−→ (`′1, v

′
1) for some a ∈ Σ, then there

exists (`′2, v
′
2) with (`2, v2)

a−→ (`′2, v
′
2) and (`′1, v

′
1) ≡ (`′2, v

′
2)

I and vice versa.

Let A be a timed automaton with maximal constant M.

Regions and time-abstract bisimulation

The relation ≡M is a time-abstract bisimulation with finite index.
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Reachability problem

Input: A timed automaton, ` location of A
Question: is location ` reachable in A?

Reachability problem

Reachability is decidable for timed automata. It is a PSPACE-complete problem.

Proof
I PSPACE-membership:

I ` is reachable in A if and only if (`,R) is reachable in α(A) for some R.
I reachability is in NLOGSPACE for finite automata
I α(A) has exponentially more states than A

I PSPACE-hardness: reduction of the termination problem for a Turing
machine with linearly bounded work space.

Nathalie Bertrand Techniques de Vérification Avancées M2RI – 2013 21
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Universality and language inclusion

Universality
Input: A timed automaton
Question: does A accept all timed words?

Undecidability result

Universality is undecidable for timed automata.

Language inclusion
Input: A1, A2 timed automata
Question: L(A1) ⊆ L(A2)?

Corollary: Language inclusion in undecidable for timed automata.
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Complementation

Non-closure

Timed automata are not closed under complement.

Proof hint The automaton below accepts a timed language whose complement
cannot be recognized by a timed automaton.

`0 `1

a,{x}

a x 6=1,a

b x 6=1,b
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Determinization

Deterministic TA

A is deterministic if |L0| = 1 and for each ` ∈ L, for every a ∈ Σ, `
g1,a,Y1−−−−→ `1

and `
g2,a,Y2−−−−→ `2 implies Jg1K ∩ Jg2K = ∅.

If A is deterministic, there is at most one run on each timed word.

Closure

Deterministic timed automata are closed under complementation.

Expressivity

Timed automata are strictly more expressive than deterministic ones.
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Determinizability

Example The automaton below accepts a timed language which cannot be
recognized by a deterministic timed automaton.

`0 `1 `2

a,{x} x=1,a

a a a

Determinizability

Telling whether a timed automaton can be determinized is undecidable.
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Timed Computation Tree Logic

Real-time variant of CTL to express properties on timed automata where
locations are labeled with sets of atomic propositions.

Syntax of TCTL

I state formulae: ψ ::= tt | a | g |ψ1 ∧ ψ2 | ¬ψ | ∃ϕ | ∀ϕ
I path formulae: ϕ ::= ψ1UJψ2

g ∈ G is a guard and J ⊆ R+ is an interval with integer bounds.

Shorthands: ♦Jϕ ≡ ttUJϕ, ∃�Jϕ ≡ ¬∀♦J¬ϕ, ∀�Jϕ ≡ ¬∃♦J¬ϕ.

Examples:

I no error U[0,30] deadlock

I ∀�
(
on =⇒ ∀♦≤2¬on

)
I ∀�

((
near ∧ (y = 0)

)
=⇒ ∀�≤2(¬in)

)
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Satisfaction of TCTL formulas

TCTL formulae are interpreted over time-divergent runs only!

Time-divergence

The infinite run (`0, v0)
τ1,a1−−−→ (`1, v1)

τ2,a2−−−→ · · · is time-divergent if
∑

k τk =∞.

Semantics of state formulae

I (`, v) |= g if and only if v |= g

I (`, v) |= ∃ϕ if and only if there exists a time-divergent run ρ with ρ |= ϕ

Semantics of path formulae (Until modality)

for time-divergent run ρ = (`0, v0)
τ1,a1−−−→ (`1, v1)

τ2,a2−−−→ · · ·
ρ |= ψ1UJψ2 if and only if there exists i ≥ 0, there exists τ ∈ [0, τi ] such that

I (`i , vi + τ) |= ψ2 with
∑i

k=1 τk + τ ∈ J,

I ∀j ≤ i , ∀τ ′ ∈ [0, τj ],∑j
k=1 τk + τ ′ ≤

∑i
k=1 τk + τ =⇒ (`j , vj + τ ′) |= ψ1 ∨ ψ2
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TCTL model checking: overview

From a timed automaton A and a TCTL formula ψ build:

I α(A, ψ) a region automaton taking ψ into account

I ψ̂ a CTL formula

such that A |=TCTL ψ ⇐⇒ α(A, ψ) |=CTL ψ̂
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TCTL: elimination of timing parameters

For valuation v ∈ RX+ , and additional clock z /∈ X

v{z := t} ∈ RX∪{z}+ such that

{
v{z := t}(z) = t

v{z := t}(x) = v(x) for x ∈ X

A timed automaton over clocks X , z additional clock.

Elimination of timings in ψ1UJψ2

I s |= ∃
(
ψ1UJψ2

)
⇐⇒ s{z := 0} |= ∃

((
ψ1 ∨ ψ2

)
U
(
(z ∈ J) ∧ ψ2

))
I s |= ∀

(
ψ1UJψ2

)
⇐⇒ s{z := 0} |= ∀

((
ψ1 ∨ ψ2

)
U
(
(z ∈ J) ∧ ψ2

))
Examples:

I ∃♦≥3ψ ≡ ∃♦
(
(z ≥ 3) ∧ ψ

)
I ∃�≤2ψ ≡ ∃

(
(z ≤ 2) =⇒ ψ

)
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Model checking TCTL

I Sat(ψ) = {s | s |= ψ} computed recursively by structural induction.

ψ = ∃�≤2a ∧ ∀
(
bU[2,3]∃(♦≥3c)

)

∧

∃�≤2( ) ∀( U[2,3] )

a b

c

∃(♦≥3 )

I Sat
(
∃(S1UJS2))

)
= {s | s{z := 0} |= ∃

((
S1 ∨ S2

)
U
(
(z ∈ J) ∧ S2

))
}

Complexity

Model checking of TCTL for timed automata is PSPACE-complete.
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Symbolic model checking

Two general methods to solve the reachability problem.

Forward analysis

Target

Init

iterative computation

of successors of Init

Backward analysis

Target

Init

iterative computation

of predecessors of Target

Issues: Representation of the sets of states + Termination of the computation.
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Zones

Zones are symbolic representations of sets of valuations.
A clock constraint g defines a zone JgK = {v ∈ RX+ |v |= g}.

For verification purposes, the following operations on zones Z ,Z ′ are needed.

I forward analysis:

I Future of Z :
−→
Z = {v + t|v ∈ Z , t ∈ R+}

I Reset in Z of clocks in Y ⊆ X : Z[Y←0] = {v[Y←0]|v ∈ Z}
I Intersection of Z and Z ′: Z ∩ Z ′ = {v |v ∈ Z and v ∈ Z ′}
I Emptiness test: decide if Z is empty.

I backward analysis:

I Past of Z :
←−
Z = {v − t|v ∈ Z , t ∈ R+}

I Inverse reset: Z[Y←0]−1 the largest Z ′ with Z ′
[Y←0]

= Z
I Intersection
I Emptiness test

Nathalie Bertrand Techniques de Vérification Avancées M2RI – 2013 35



Intro to timed automata Region abstraction Limits TCTL Implementation References

Data structure

Zones are represented by Difference Bounded Matrices (DBM).

Difference Bounded Matrix

A DBM over the set of n clocks X is an (n + 1)-square matrix of pairs

(m,≺) with ≺∈ {<,≤} and m ∈ Z ∪ {∞}

(mi,j ,≺i,j) encodes the constraint xi − xj ≺i,j mi,j (with convention x0 = 0)

Example A DBM and the zone it represents.


0 x y

0 (∞, <) (−3,≤) (∞, <)
x (∞, <) (∞, <) (4, <)
y (5,≤) (∞, <) (∞, <)

 x ≥ 3 ∧ y ≤ 5 ∧ x − y < 4

Normal form (via Floyd algorithm)


0 x y

0 (0,≤) (−3,≤) (0,≤)
x (9, <) (0,≤) (4, <)
y (5,≤) (2,≤) (0,≤)


Nathalie Bertrand Techniques de Vérification Avancées M2RI – 2013 36



Intro to timed automata Region abstraction Limits TCTL Implementation References

Comparison

Backward analysis

The backward analysis terminates and is correct.

Proof Termination is based on the fact that finite union of regions are stable

under the following operations: past
←−
Z , inverse reset Z[Y←0]−1 , and

intersection g ∩ Z .

Forward analysis

The forward analysis is correct when it terminates.

Note that it may not terminate.

Example

`0

x ≥ 1 ∧ y = 1, a, {y}

x54321

y

1

2
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Uppaal in a nutshell

Uppaal

I developed at Uppsala and Aalborg universities

I performs forward analysis (with extrapolation) for timed automata

http://www.uppaal.com/
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Part II

Probabilistic model checking
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Probabilistic model checking

Models

I Discrete-time Markov chains (DTMC)

I Markov decision processes (MDP)

I Probabilistic timed automata (PTA)

I Continuous-time Markov chains (CTMC)

Logics

I Probabilistic Linear Temporal Logic (PLTL)

I Probabilistic Computation Tree Logic (PCTL)

I Probabilistic Timed Computation Tree Logic (PTCTL)

I Continuous Stochastic Logic (CSL)

Questions

I Qualitative: how does the probability compare to 0 and 1?

I Quantitative: compute/approximate the probability
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Motivation example

Tennis: Statistics give probability that Nadal wins a point when serving against
Djokovic on clay.

I What is the probability that Nadal wins 4 points in a raw?
I What is the probability that Djokovic wins in 3 sets?
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Discrete-time Markov chains

Discrete time Markov chain (DTMC)

M = (S ,P, pinit, lab,AP) with

I S finite set of states, P probability matrix, pinit initial distribution,
lab : S → 2AP labels states with atomic propositions.

Example

S={0,1,··· ,7} pinit=(1,0,··· ,0)

P=



0 .4 0 .6 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 .3 .3 .4 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 .8 .2 0

0 0 0 0 0 0 0 1

0 0 0 0 0 .5 .5 0
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1
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Example: Zeroconf protocol

IP address automatic allocation

init

free ok

occ. ret. error

q

1

1−q

p p

1−p

1−p

I with high probability (q), a free IP address is randomly chosen;

I otherwise, the host with the same address sends an alert, which can be
lost (with probability p);

I the host sends n probes (here n = 2) to increase the reliability.
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Measure on DTMC paths

Probability of a finite path π = s0s1 · · · sn:

Pr(π) = pinit(s0)
∏

i=0..n−1

Pi,i+1.

Cylinder Cyl(π) = {πmax |π prefix of πmax}.

Probability measure

Pr is the unique probability measure on the σ-algebra generated by all Cyl(π),
such that Pr(Cyl(π)) = Pr(π).
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Reachability properties

Goal: Compute Pr(s0 |= ♦T ), for T set of target states.

For state s ∈ S , let xs = Pr(s |= ♦T ).

I xs = 1 if s ∈ T

I xs = 0 if s 6|= E♦T

I xs =
∑

t∈S P(s, t) xt

−→ resolution of a system of linear equations

Constrained reachability Pr(s0 |= T1UT2)

I x ′s = 1 if s ∈ T2

I x ′s = 0 if s /∈ T1 or s 6|= E♦T2

I x ′s =
∑

t∈S P(s, t) x ′t
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Example of probability computation

0

1

3

2

4

5

6

7

0.4

0.6

1

1

0.3

0.4

1

0.3

0.2

0.8

0.5

0.5

1

Computation of Pr(0 |= ♦6)



x6 = 1
x1 = x2 = x4 = 0
x0 = 0.6 x3

x3 = 0.3 x3 + 0.4 x5

x5 = 0.8 x5 + 0.2
x7 = 0.5 x5 + 0.5

x0 = 12
35
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Probabilistic Computation Tree Logic

Syntax of PCTL

I state formulae: ψ ::= tt | a |ψ1 ∧ ψ2 | ¬ψ |PJ(ϕ)

I path formulae: ϕ ::= ©ψ |ψ1Uψ2 |ψ1U≤nψ2

s |= PJ(ϕ) iff Pr(s |= ϕ) ∈ J

Shorthands: P[r,r ](ϕ) ≡ P=r (ϕ), P(r,1](ϕ) ≡ P>r (ϕ), P[0,r ](ϕ) ≡ P≤r (ϕ), etc.

Measurability of PCTL events

For ϕ PCTL path formula and M a Markov chain, {π |π |= ϕ} is measurable
(so Pr(s |= ϕ) is well-defined).

For ψ a PCTL state formula: Sat(ψ) = {s | s |= ψ}.
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Comparison of PCTL and CTL

Qualitative PCTL

Fragment of PCTL where J ∈ {(0, 1], [0, 0], [1, 1], [0, 1)}.
In words, probabilities are only compared to 0 and 1.

Qualitative PCTL versus CTL

I ∀ϕ 6⇐⇒ P=1(ϕ)

I In infinite Markov chains, there is no CTL formula equivalent to P=1(♦a).

I There is no qualitative PCTL formula equivalent to ∀♦a.

Qualitative PCTL and CTL are expressively incomparable.

For finite Markov chains, qualitative PCTL is similar to CTL with strong
fairness.
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Model checking PCTL

I Sat(ψ) = {s | s |= ψ} computed recursively by structural induction.

ψ = P>1/2(©a) ∧ P=1/4(bUP=1(�c))

∧

P>1/2(© ) P=1/4( U )

a b

c

P=1(� )

I Sat
(
PJ(S1US2)

)
= {s|Pr(s |= S1US2) ∈ J} constrained reachability.

Complexity

Model checking of PCTL for Markov chains is linear in the size of ϕ and poly-
nomial in the size of M.
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Probabilistic bisimulation

Bisimulation for Markov chains

A probabilistic bisimulation for a Markov chain M = (S ,P, pinit, lab,AP) is an
equivalence relation R on S such that for all states (s1, s2) ∈ R
I lab(s1) = lab(s2), and

I for each equivalence class T ∈ S/R,
∑

t∈T P(s1, t) =
∑

t∈T P(s2, t).

Probabilistic bisimulation and PCTL equivalence

Let M be a Markov chain, s1, s2 states of M. Then

s1 and s2 are bisimilar ⇐⇒ s1 and s2 satisfy the same PCTL properties

Nathalie Bertrand Techniques de Vérification Avancées M2RI – 2013 55



DTMC MDP PTA CTMC References

Outline

6 Discrete-time Markov chains
Reachability properties
Branching-time model checking
Linear-time model checking

7 Markov decision processes
Reachability properties
Branching-time model checking
Linear-time model checking

8 Probabilistic timed automata

9 Continuous-time Markov chains

Nathalie Bertrand Techniques de Vérification Avancées M2RI – 2013 56



DTMC MDP PTA CTMC References

Linear temporal logic

Syntax of Linear Temporal Logic (LTL)

ϕ ::= tt | a |ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ |ϕ1Uϕ2

where a is an atomic proposition.

© is the next step operator and U is the until operator.

Macros: eventually ♦ϕ = ttUϕ, and always �ϕ = ¬♦¬ϕ operators.

Intuitive semantics:

I ©ϕ

I ϕUϕ′

I ♦ϕ

I �ϕ
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Reminder: LTL model checking of transition systems

Given ϕ an LTL formula over AP, JϕK = {σ ∈ (2AP)ω |σ |= ϕ}.

From LTL to automata

For every LTL formula ϕ, there exists a nondeterministic Büchi automaton (NBA)
A such that L(A) = JϕK.

Online tool: ltl2ba

Automata-based LTL model checking

Input: transition system T and LTL formula ϕ over AP
Question: T |= ϕ?

I Build an NBA A¬ϕ such that L(A¬ϕ) = J¬ϕK.
I Build the product transition system P = T ⊗A¬ϕ

I if there is a path in P satisfying the acceptance condition of A¬ϕ, then
return “no”,

I else return “yes”.
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Bottom Strongly Connected Components
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Properties of BSCC

Let C be the set of basic strongly connected components in M.

I Pr(s0 |= ♦
⋃

C∈C C) = 1,

I ∀s ∈ C(∈ C), Pr(s |=
∧

t∈C �♦t) = 1.
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Prefix-independent properties

Prefix-independency

A property is said prefix-independent if its validity only depends on the set of
states that are visited infinitely often along a path.

For ϕ prefix-independent, Pr(s0 |= ϕ) = Pr(s0 |= ♦{C ∈ C|C |= ϕ}).
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Computation of Pr(0 |= �♦ odd)

Pr(0 |= �♦ odd) =

Pr(0 |= ♦C1,2) + Pr(0 |= ♦C5,6,7)

Pr(0 |= �♦ odd) = 26
35
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Omega-regular properties

I Omega-regular property represented by Deterministic Rabin Automaton
(DRA).

I Given M Markov chain and A DRA, what is the probability in M to
generate traces in L(A)?

I Rabin acceptance condition:
∨

1≤i≤k(♦�¬Li ∧�♦Ki ).

I A BSCC C in M⊗A is accepting if for some index i , T ∩ (S × Li ) = ∅
and T ∩ (S × Ki ) 6= ∅.

Model checking omega-regular properties

Given M a DTMC, A a DRA.
Let U be the union of all accepting BSCCs in M⊗A. Then:

PrM(s0 |= A) = PrM⊗A((s0, q0) |= ♦U).
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Motivation example

Soccer: US goalkeeper Solo watched the last 30 penalty kicks by Necib.

I Should she move left or right to maximise the probability to stop the ball?
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Markov decision processes

Markov decision process (MDP)

M = (S ,Act,P, pinit, lab,AP) with

I S finite set of states, pinit initial distribution, Act set of actions,

I P : S × Act × S → [0, 1] transition probability function s.t.

∀s ∈ S , ∀α ∈ Act,
∑
t∈S

P(s, α, t) ∈ {0, 1},

I lab labels states with atomic propositions.

Example

t s u

α,1

β,0.5γ,1

γ,1

β,0.5

nondeterministic choice in s between α and β.
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Example: mutual exclusion protocol

I two concurrent processes

I access to the critical section delivered by randomized arbiter

c1,w2 w1,c2

w1,w2

c1,n2 n1,c2

w1,n2 n1,w2

n1,n2

req1 req2

enter enter

req2 req1

.5
enter

.5
enter

rel2rel1

req1req2

rel2 rel1

What is the probability that process 2 enters its critical section within 3 steps,
assuming it is waiting?
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Example: mutual exclusion protocol

I two concurrent processes

I access to the critical section delivered by randomized arbiter

c1,w2 w1,c2

w1,w2

c1,n2 n1,c2

w1,n2 n1,w2

n1,n2

req1 req2

enter enter

req2 req1

.5
enter

.5
enter

rel2rel1

req1req2

rel2 rel1

What is the probability that process 2 enters its critical section within 3 steps,
assuming it is waiting?
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Strategies

Strategy

Let M = (S ,Act,P, pinit, lab,AP) be an MDP. A strategy for M is a function
σ : S+ → Act s.t. the action σ(s0s1 · · · sn) is enabled in sn.

t s u

α,1

β,0.5γ,1

γ,1

β,0.5

Example of strategy σ:

I σ(s) = σ(∗ss) = β

I σ(∗ts) = β, σ(∗us) = α

I σ(∗t) = σ(∗u) = γ

s

su

ss

sus

ssu

sss

ssus

sssu

ssss

susu

suss
0.5

0.5
0.5

0.5

1
0.5

0.5

0.5

0.5

1

adapter

MDP M + strategy σ = Markov chain Mσ

Prσ probability measure in Mσ
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Reachability properties

Goal: Compute Prmax(s |= ♦T ) = supσ Pr
σ(s |= ♦T ).

For state s ∈ S , let xs = Prmax(s |= ♦T ).

I xs = 1 if s ∈ T

I xs = 0 if s 6|= E♦T

I xs = maxα∈Act
∑

t∈S P(s, α, t) xt

−→ resolution of a linear program

Constrained reachability Prmax(s |= T1UT2)

I x ′s = 1 if s ∈ T2

I x ′s = 0 if s /∈ T1 or s 6|= E♦T2

I x ′s = maxα∈Act
∑

t∈S P(s, α, t) x ′t

Memoryless strategies

For reachability and constrained reachability properties, there exists a memoryless
strategy σ : S → Act that maximizes the probability.
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Model checking PCTL

Probabilistic operator PJ(.) bounds the probability for all strategies.

s |= PJ(ϕ)⇐⇒ ∀σ, Prσ(s |= ϕ) ∈ J

⇐⇒ [Prmin(s |= ϕ),Prmax(s |= ϕ)] ⊆ J

Recursive computation of Sat(ψ) by structural induction on ψ.

I ψ = PJ(ψ1Uψ2)
I p+

s = Prmax(s |= ψ1Uψ2)
I p−s = Prmin(s |= ψ1Uψ2)
I Sat(ψ) = {s | [p−s , p

+
s ] ⊆ J}

I ψ = PJ(©ψ′)
I p+

s = Prmax(s |=©ψ′) = maxα∈Act
∑

t∈Sat(ψ′) P(s, α, t);

I p−s = Prmin(s |=©ψ′) = minα∈Act
∑

t∈Sat(ψ′) P(s, α, t);

I Sat(ψ) = {s | [p−s , p
+
s ] ⊆ J}.
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End components

End component

A sub-MDP (T ,A) of M is an end component if it is strongly connected.

Example

s6 s7

s5 s2 s3

s1s0s4

α,1β,2/3

β,1/3α,1/4 α,1/9

α,1/2α,1/2β,2/3

β,1/3

α,7/18

α,1

β,3/5

γ,1 α,1

α,1/2

α,1β,2/5

α,3/4

T={s5,s6}

A(s5)={α,γ} A(s6)={β}

Recurrence property

For each end component (T ,A) there exists a strategy σ that ensures for every
s ∈ T , Prσ(s |= �T ∧

∧
t∈T �♦t) = 1.
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Prefix-independent properties

Limit behaviors of MDP

Under each strategy, for almost every path, the states visited infinitely often and
the actions taken infinitely often form an end component.

To a prefix-independent property ϕ we associate

Uϕ the union of the sets T such that (T ,A) is an end component
with T |= ϕ, and

Vϕ the union of the sets T such that (T ,A) is an end component
with ¬(T |= ϕ).

Verifying prefix-independent properties

I Prmax(s |= ϕ) = Prmax(s |= ♦Uϕ)

I Prmin(s |= ϕ) = 1− Prmax(s |= ♦Vϕ)

I Finite-memory strategies are sufficient for extremal probabilities.
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Probabilistic timed automata

init lost

donefail

•time out

y≥20

retry

x=8;{x}

x≤1;send

0.9

0.1

Probabilistic timed automata (PTA)

A probabilistic timed automaton is a tuple P = (L, `0,Act,X ,E , lab,AP) with

I L finite set of locations and `0 ∈ L the initial locations

I Act finite set of actions

I X finite set of clocks

I E ⊆ L× G × Act × Dist(2X × L) set of probabilistic edges
where G is the set of guards

I lab : L→ 2AP labels locations with atomic propositions.
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Semantics of PTA

The semantics of a PTA is an infinite-state Markov decision process
M = (L× RX+ ,Act ∪ R+,P, (`0, 0), lab,AP).

I States: L× RX+ composed of a location and a valuation

I Actions: Act ∪ R+ partitionned into discrete actions and delays

I Probabilistic transition function: P such that

time transition for any delay τ ∈ R+, there are deterministic transitions
(`, v)

τ−→ (`, v + τ): P((`, v), τ, (`, v + τ)) = 1.
discrete transition for every edge (`, g , α, δ), and any state (`, v) with

v |= g , there are probabilistic transitions on α from (`, v):

P((`, v), α, (`′, v ′)) =
∑

Y⊆X|v[Y←0]=v′

δ(Y , `′)

I Labelling: lab((`, v)) = lab(`).
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Reachability analysis

Goal: Compute min/max probability of reaching a set of target locations.

Region graph MDP MR
I States: LR = L×R.

I Actions: ActR = Act ∪ Succ: discrete action or time-successor.
I Transitions: PR

I PR((`,R), Succ, (`,R′)) = 1 for R′ the direct time-successor of R
I for every state (`,R) and every edge (`, g , α, δ) with R |= g ,

PR((`,R), α, (`′,R′)) =
∑

Y⊆X| R′=R[Y←0]
δ(Y , `′).

I Labelling: labR(`,R) = lab(`)

Correction of the region graph MDP

Prmax
P ((`0, 0) |= ♦T ) = Prmax

MR((`0, 0) |= ♦(T ×R))

Prmin
P ((`0, 0) |= ♦T ) = Prmin

MR((`0, 0) |= ♦(T ×R))

Also works for invariants and time-bounded reachability properties.
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Beyond reachability: PTCTL

Syntax of PTCTL

ψ ::= tt | a | g |ψ1 ∧ ψ2 | ¬ψ |PJ(ψ1Uψ2)|PJ(ψ1UIψ2)

Z set of formula clocks, g ∈ G zone over X ∪ Z, J ⊆ [0, 1] interval, I ⊆ R+

interval with integer bounds

Examples

I P>0(♦[1,2]error)

I P=1/2(on U P≥0.9(♦z ≤ 2 ∧ ¬on))

Semantics

I s |= PJ(ϕ) iff ∀σ, Prσ({ρ = s · · · | ρ |= ϕ}) ∈ J

I for time-divergent run ρ = (`0, v0)
τ1,a1−−−→ (`1, v1)

τ2,a2−−−→ · · ·
ρ |= ψ1UIψ2 if and only if there exists i ≥ 0, there exists τ ∈ [0, τi ] such
that

I (`i , vi + τ) |= ψ2 with
∑i

k=1 τk + τ ∈ I ,
I ∀j ≤ i , ∀τ ′ ∈ [0, τj ],∑j

k=1 τk + τ ′ ≤
∑i

k=1 τk + τ =⇒ (`j , vj + τ ′) |= ψ1 ∨ ψ2
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Model checking PTCTL on PTA

PTCTL model checking on PTA

Input: PTA P with clocks X , and PTCTL formula ψ with clocks Z
Question: P |= ψ?

I build a region graph MDP MR(ψ) on X ∪ Z
I translate ψ into a PCTL formula ψ′ such that
ψ holds in a state of P iff ψ′ holds in the corresponding state of MR(ψ)

I decide whether MR(ψ) |= ψ′ using PCTL model checking for MDP

In practice: more efficient techniques (digital clocks, zone graph MDP, abstract
MDP refined on demand)
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Continuous-time Markov chains

Continuous-time Markov chains (CTMC)

M = (S ,R, pinit, lab,AP) with

I S finite set of states, R rate matrix, pinit initial distribution.

R(s, t) = λ means that the average time when going from s to t is 1
λ

E(s) =
∑

t∈S R(s, t) is the exit rate of s.

Interpretation

I probability that s
λ−→ t is enabled in [0, τ ]: 1− e−λτ ;

I probability that s
λ−→ t is taken in [0, τ ]: R(s,t)

E(s)
(1− e−E(s)τ );

I probability to leave s in [0, τ ]: (1− e−E(s)τ ).
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Example: Triple modular redundancy

Fault-tolerant majority voting system: 3 processors and a single voter.

I failure rate of processor (resp. voter): λ (resp. ν)

I repair rate of processor (resp. voter): µ (resp. δ)

S={(0,0),(0,1),(1,1),(2,1),(3,1)}

R=



0 0 0 0 δ

ν 0 µ 0 0

ν λ 0 µ 0

ν 0 2λ 0 µ

ν 0 0 3λ 0


E=(δ , ν+µ , ν+λ+µ , ν+2λ+µ , ν+3λ)

0,1 1,1

3,1 2,1

0,0

µ

3λ

µ

λ

µ 2λ

δ
ν

ν ν

ν
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Embedded DTMC

Given (S ,R, pinit) a CTMC, its embedded DTMC is (S ,P, pinit) with

P(s, t) =

{
R(s,t)
E(s)

if E(s) > 0

0 otherwise

Example

s0

s1

s2

s3

s4

s5

2 2

1
1

3

12

s0

s1

s2

s3

s4

s5

2/3 1/3

1/6
1/3

1/2

11

1 1
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Elementary probabilities in CTMC

Transient probability vector

π(t) = (π1(t), · · ·πn(t)) for t ≥ 0, where π(t) is the probability to be in state
si at time t.

Computed by solving a system of linear differential equations:

π′(t) = π(t)
(
R− diag(E)

)
.

Steady-state probability vector

π = (π1, · · · , πn), with πi = limt→∞ πi (t).

If M has a single BSCC, π is computed by solving a system of linear equations:

π
(
R− diag(E)

)
= 0 and

∑
i

πi = 1.

Otherwise, see computation of Sat(SJ(ψ)), Slide 91.
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Continuous Stochastic Logic

Syntax of CSL

I state formulae: ψ ::= tt | a | ¬ψ |ψ1 ∧ ψ2 | SJ(ψ) |PJ(ϕ)

I path formulae: ϕ ::= ©Iψ |ψ1UIψ2

s |= SJ(ψ) iff the probability that ψ holds in steady state lies in J.

Example

In at least 90% of the cases, a goal state is reached within 3 time units guaran-
teeing 0.99 long-run availability.

P[0.9,1](s0 |= ttU[0,3] S[0.99,1] goal)
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Model checking CSL

Recursive computation of Sat(ψ).

I Nonstochastic part: as for CTL
I Probabilistic formulae without time bounds: as for PCTL

I on the embedded DTMC

I To do: stochastic timed operators.
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Steady-state operator: SJ(ψ)

I For a strongly connected CTMC

s ∈ Sat(SJ(ψ)) if and only if
∑

t∈Sat(ψ)

πt ∈ J.

I For an arbitrary CTMC
I determine the set of BSCC C,
I for C ∈ C compute

I the probability to reach C : Pr(s0 |= ♦C)
I the steady-state probability of ψ-states: πt for t ∈ C ∩ Sat(ψ)

I s ∈ Sat(SJ(ψ)) if and only if
∑

C

(
Pr(s0 |= ♦C) ·

∑
t∈C∩Sat(ψ) πt

)
∈ J.

Example

s0

s1

s2

s3

s4

s5

2 2

1
1

3

12

lab(s1) = lab(s2) = lab(s5) = {a}
lab(s0) = lab(s3) = lab(s4) = ∅

Does s0 |= S>0.8a?
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Time-bounded reachability: ψ1U≤τψ2

Pr(s |= ψ1Uψ2) is the least fixpoint of the following system

I If s |= ψ1 ∧ ¬ψ2, then

Pr(s |= ψ1U≤τψ2) =

∫ τ

0

∑
t∈S

P(s, t)E(s)e−E(s)x︸ ︷︷ ︸
probability to move to

t at time x

Pr(t |= ψ1U≤τ−xψ2)︸ ︷︷ ︸
probability to fulfill ψ1Uψ2
before time τ − x from s′

dx .

I If s |= ψ2, then Pr(s |= ψ1U≤tψ2) = 1.

I Else, Pr(s |= ψ1U≤tψ2) = 0.

Nathalie Bertrand Techniques de Vérification Avancées M2RI – 2013 88



DTMC MDP PTA CTMC References

Tools in a nutshell

Prism

I developed at Oxford University

I model checking of DTMC, MDP, PTA and CTMC

http://www.prismmodelchecker.org/

MRMC

I developed at RWTH Aachen University

I model checking of DTMC, CTMC

http://www.mrmc-tool.org/
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