About Timed Modal Specifications

N. Bertrand ${ }^{1}$, S. Pinchinat ${ }^{1}$, J.-B. Raclet ${ }^{2}$
${ }^{1}$ INRIA Rennes Bretagne Atlantique - France
${ }^{2}$ INRIA Grenoble Rhône-Alpes - France

COMBEST Meeting - March 3rd 2009

Outline

(1) Introduction

- Modal specifications
- Motivations for timed modal specifications
(2) Preliminaries on Timed modal specifications
- Definition
- Semantics
(3) Operators on Timed modal specifications
- Refinement
- Consistency
- Product and quotient

4 Conclusion

Outline

(1) Introduction

- Modal specifications
- Motivations for timed modal specifications
(2) Preliminaries on Timed modal specifications
- Definition
- Semantics
(3) Operators on Timed modal specifications
- Refinement
- Consistency
- Product and quotient
(4) Conclusion

Modal specifications: Definition

Modal specification (MS)

A MS is a structure $\mathcal{R}=\left(P, p^{0}, A c t, \Delta^{m}, \Delta^{M}\right)$ where:

- P set of states, and p^{0} initial state;
- Act set of actions;
- $\Delta^{m}, \Delta^{M} \subseteq Q \times \Sigma \times Q$ sets of transitions s.t. $\Delta^{M} \subseteq \Delta^{m}$, and Δ^{m}, Δ^{M} deterministic.
- Δ^{m} : may-transitions representing the allowed transitions.
- Δ^{M} : must-transitions representing the required transitions.

Notations:

- $\operatorname{may}(p)=\left\{a \in \operatorname{Act} \mid\left(p, a, p^{\prime}\right) \in \Delta^{m}\right\} ;$
- $\operatorname{must}(p)=\left\{a \in \operatorname{Act} \mid\left(p, a, p^{\prime}\right) \in \Delta^{M}\right\}$.

Example

Models of MS

Models of MS

$\mathcal{M}=\left(M, m^{0}, A c t, \Delta\right)$ is a model of a MS $\mathcal{R}=\left(P, p^{0}, A c t, \Delta^{m}, \Delta^{M}\right)$,
noted $\mathcal{M} \models \mathcal{R}$, if $\exists \rho \subseteq(M \times P)$ s.t. $\left(m^{0}, p^{0}\right) \in \rho$, and $\forall(m, p) \in \rho$:

- $p \xrightarrow{a} p^{\prime} \in \Delta^{M} \Rightarrow m \xrightarrow{a} m^{\prime} \in \Delta$ and $\left(m^{\prime}, p^{\prime}\right) \in \rho ;$
- $m \xrightarrow{a} m^{\prime} \in \Delta \Rightarrow p \xrightarrow{a} p^{\prime} \in \Delta^{m}$ and $\left(m^{\prime}, p^{\prime}\right) \in \rho$.

Let out $(m)=\left\{a \in \operatorname{Act} \mid\left(m, a, m^{\prime}\right) \in \Delta\right\}$:

$$
(m, p) \in \rho \Rightarrow \operatorname{must}(p) \subseteq \operatorname{out}(m) \subseteq \operatorname{may}(p)
$$

Example

Example

Pseudo-modal specifications pMS

- To represent inconsistencies between spec., we let $\Delta^{M} \nsubseteq \Delta^{m}$ be possible. \Rightarrow pseudo-modal specifications pMS.

Inconsistent state

A state p s.t. $a \in \operatorname{must}(p)$ but $a \notin \operatorname{may}(p)$ is said inconsistent: $\& q$.

- An inconsistent state p can't belong to a ρ stating \models (ie. be a state s.t. $\operatorname{must}(p) \subseteq \operatorname{out}(m) \subseteq \operatorname{may}(p)$).
- Reduction: $\quad \theta: \mathrm{pmS} \rightarrow \mathrm{MS}$

$$
(0)-\rightarrow(1) \longrightarrow \stackrel{\&}{\longrightarrow}(2)
$$

Reduction preserves Mod
$\operatorname{Mod}(p \mathcal{R})=\operatorname{Mod}(\theta(p \mathcal{R}))$

Pseudo-modal specifications pMS

- To represent inconsistencies between spec., we let $\Delta^{M} \nsubseteq \Delta^{m}$ be possible. \Rightarrow pseudo-modal specifications pMS.

Inconsistent state

A state p s.t. $a \in \operatorname{must}(p)$ but $a \notin \operatorname{may}(p)$ is said inconsistent: $\& q$.

- An inconsistent state p can't belong to a ρ stating \models (ie. be a state s.t. $\operatorname{must}(p) \subseteq \operatorname{out}(m) \subseteq \operatorname{may}(p)$).
- Reduction: $\quad \theta: \mathrm{pmS} \rightarrow \mathrm{MS}$

$$
(0)-\rightarrow(1) \longrightarrow(2)
$$

Reduction preserves Mod

$\operatorname{Mod}(p \mathcal{R})=\operatorname{Mod}(\theta(p \mathcal{R}))$

Pseudo-modal specifications pMS

- To represent inconsistencies between spec., we let $\Delta^{M} \nsubseteq \Delta^{m}$ be possible. \Rightarrow pseudo-modal specifications pMS.

Inconsistent state

A state p s.t. $a \in \operatorname{must}(p)$ but $a \notin \operatorname{may}(p)$ is said inconsistent: $\& q$.

- An inconsistent state p can't belong to a ρ stating \models (ie. be a state s.t. $\operatorname{must}(p) \subseteq \operatorname{out}(m) \subseteq \operatorname{may}(p)$).
- Reduction: $\quad \theta: \mathrm{pmS} \rightarrow \mathrm{MS}$

$$
(0)-\stackrel{y}{\rightarrow}(1) \longrightarrow(2)
$$

Reduction preserves Mod

$\operatorname{Mod}(p \mathcal{R})=\operatorname{Mod}(\theta(p \mathcal{R}))$

Pseudo-modal specifications pMS

- To represent inconsistencies between spec., we let $\Delta^{M} \nsubseteq \Delta^{m}$ be possible. \Rightarrow pseudo-modal specifications pMS.

Inconsistent state

A state p s.t. $a \in \operatorname{must}(p)$ but $a \notin \operatorname{may}(p)$ is said inconsistent: $\& q$.

- An inconsistent state p can't belong to a ρ stating \models (ie. be a state s.t. $\operatorname{must}(p) \subseteq \operatorname{out}(m) \subseteq \operatorname{may}(p)$).
- Reduction: $\quad \theta: \mathrm{pmS} \rightarrow \mathrm{MS}$

$$
(0)-\stackrel{y}{\rightarrow}(1) \longrightarrow(2)
$$

Reduction preserves Mod

$\operatorname{Mod}(p \mathcal{R})=\operatorname{Mod}(\theta(p \mathcal{R}))$

Pseudo-modal specifications pMS

- To represent inconsistencies between spec., we let $\Delta^{M} \nsubseteq \Delta^{m}$ be possible. \Rightarrow pseudo-modal specifications pMS.

Inconsistent state

A state p s.t. $a \in \operatorname{must}(p)$ but $a \notin \operatorname{may}(p)$ is said inconsistent: $\& q$.

- An inconsistent state p can't belong to a ρ stating \models (ie. be a state s.t. $\operatorname{must}(p) \subseteq \operatorname{out}(m) \subseteq \operatorname{may}(p)$).
- Reduction: $\quad \theta:$ pmS \rightarrow MS

Reduction preserves Mod
$\operatorname{Mod}(p \mathcal{R})=\operatorname{Mod}(\theta(p \mathcal{R}))$

Refinement of MS

Refinement of MS

A MS $\mathcal{R}_{1}=\left(P_{1}, p_{1}^{0}, A c t, \Delta_{1}^{m}, \Delta_{1}^{M}\right)$ is a refinement of a MS $\mathcal{R}_{2}=$ $\left(P_{2}, p_{2}^{0}\right.$, Act $\left., \Delta_{2}^{m}, \Delta_{2}^{M}\right)$, noted $\mathcal{R}_{1} \preceq \mathcal{R}_{2}$, if $\exists \rho \subseteq\left(P_{1} \times P_{2}\right)$ s.t. $\left(p_{1}^{0}, p_{2}^{0}\right) \in \rho$, and $\forall\left(p_{1}, p_{2}\right) \in \rho$:

- $p_{2} \xrightarrow{a} p_{2}^{\prime} \in \Delta_{2}^{M} \Rightarrow p_{1} \xrightarrow{a} p_{1}^{\prime} \in \Delta_{1}^{M}$ and $\left(p_{1}^{\prime}, p_{2}^{\prime}\right) \in \rho$;
- $p_{1} \xrightarrow{a} p_{1}^{\prime} \in \Delta_{1}^{m} \Rightarrow p_{2} \xrightarrow{a} p_{2}^{\prime} \in \Delta_{2}^{m}$ and $\left(p_{1}^{\prime}, p_{2}^{\prime}\right) \in \rho$.
$\left(p_{1}, p_{2}\right) \in \rho \Rightarrow \operatorname{must}\left(p_{1}\right) \supseteq \operatorname{must}\left(p_{2}\right)$ and $\operatorname{may}\left(p_{1}\right) \subseteq \operatorname{may}\left(p_{2}\right)$.

Refinement is sound and complete

- Given two pMS $p \mathcal{R}_{1}$ and $p \mathcal{R}_{2}$:

$$
\operatorname{Mod}\left(p \mathcal{R}_{1}\right) \subseteq \operatorname{Mod}\left(p \mathcal{R}_{2}\right) \Leftrightarrow \theta\left(p \mathcal{R}_{1}\right) \preceq \theta\left(p \mathcal{R}_{2}\right)
$$

- Given two ms \mathcal{R}_{1} and \mathcal{R}_{2} :

$$
\operatorname{Mod}\left(\mathcal{R}_{1}\right) \subseteq \operatorname{Mod}\left(\mathcal{R}_{2}\right) \Leftrightarrow \mathcal{R}_{1} \preceq \mathcal{R}_{2}
$$

Consistency of MS

Conjunction of MS

$\mathcal{R}_{1} \& \mathcal{R}_{2}$ is the pMS $\left(P_{1} \times P_{2},\left(p_{1}^{0}, p_{2}^{0}\right), A c t, \Delta^{m}, \Delta^{M}\right)$ with:

\rightsquigarrow_{1} \& \rightsquigarrow_{2}	$\xrightarrow{--}$	\rightarrow	\rightarrow
\rightarrow	$\xrightarrow{--}$	\rightarrow	\rightarrow
\rightarrow	\rightarrow	\rightarrow	々
\rightarrow	\rightarrow	々	\rightarrow

Let $\mathcal{R}_{1} \wedge \mathcal{R}_{2}=\theta\left(\mathcal{R}_{1} \& \mathcal{R}_{2}\right)$.

$$
\begin{cases}\operatorname{may}\left(\mathcal{R}_{1} \& \mathcal{R}_{2}\right)\left(p_{1}, p_{2}\right) & =\operatorname{may}\left(\mathcal{R}_{1}\right)\left(p_{1}\right) \quad \cap \operatorname{may}\left(\mathcal{R}_{2}\right)\left(p_{2}\right) \\ \operatorname{must}\left(\mathcal{R}_{1} \& \mathcal{R}_{2}\right)\left(p_{1}, p_{2}\right) & =\operatorname{must}\left(\mathcal{R}_{1}\right)\left(p_{1}\right) \quad \cup \operatorname{must}\left(\mathcal{R}_{2}\right)\left(p_{2}\right)\end{cases}
$$

Properties of \wedge

- $\mathcal{R}_{1} \wedge \mathcal{R}_{2}$ is the glb of \mathcal{R}_{1} and \mathcal{R}_{2} for \preceq.
- $\operatorname{Mod}\left(\mathcal{R}_{1} \wedge \mathcal{R}_{2}\right)=\operatorname{Mod}\left(\mathcal{R}_{1}\right) \cap \operatorname{Mod}\left(\mathcal{R}_{2}\right)$.
\longrightarrow Application in an interface theory: consistency of viewpoints.

Product of MS

Product of MS

$\mathcal{R}_{1} \otimes \mathcal{R}_{2}$ is the MS $\left(P_{1} \times P_{2},\left(p_{1}^{0}, p_{2}^{0}\right), A c t, \Delta^{m}, \Delta^{M}\right)$ with:

$\rightsquigarrow_{1} \otimes \rightsquigarrow_{2}$	$-\rightarrow$	\rightarrow	\rightarrow
$-\rightarrow$	$-\rightarrow$	$-\rightarrow$	\rightarrow
\rightarrow	$-\rightarrow$	\rightarrow	\rightarrow
\rightarrow	\rightarrow	\rightarrow	\rightarrow

$$
\left\{\begin{array}{llll}
\operatorname{may}\left(\mathcal{R}_{1} \otimes \mathcal{R}_{2}\right)\left(p_{1}, p_{2}\right) & =\operatorname{may}\left(\mathcal{R}_{1}\right)\left(p_{1}\right) & \cap \operatorname{may}\left(\mathcal{R}_{2}\right)\left(p_{2}\right) \\
\operatorname{must}\left(\mathcal{R}_{1} \otimes \mathcal{R}_{2}\right)\left(p_{1}, p_{2}\right) & =\operatorname{must}\left(\mathcal{R}_{1}\right)\left(p_{1}\right) & \cap \operatorname{must}\left(\mathcal{R}_{2}\right)\left(p_{2}\right)
\end{array}\right.
$$

Properties of the product

- $\mathcal{M}_{i} \models \mathcal{R}_{i} \Longrightarrow \mathcal{M}_{1} \otimes \mathcal{M}_{2} \models \mathcal{R}_{1} \otimes \mathcal{R}_{2} ;$
- $\left(\mathcal{R}_{1} \preceq \mathcal{R}_{2}\right.$ and $\left.\mathcal{R}_{1}^{\prime} \preceq \mathcal{R}_{2}^{\prime}\right) \Longrightarrow \mathcal{R}_{1} \otimes \mathcal{R}_{1}^{\prime} \preceq \mathcal{R}_{2} \otimes \mathcal{R}_{2}^{\prime}$.

Quotient of MS

Quotient of MS

$\mathcal{R}_{1} / / \mathcal{R}_{2}$ is the pms $\left(\left(P_{1} \times P_{2}\right) \cup\{T\},\left(p_{1}^{0}, p_{2}^{0}\right), A c t, \Delta^{m}, \Delta^{M}\right)$ with:

$\rightsquigarrow_{1} / / \rightsquigarrow_{2}$	$-\rightarrow$	\rightarrow	\rightarrow
$-\rightarrow$	$-\rightarrow$	$\rightarrow-\rightarrow$	$-\rightarrow T$
\rightarrow	\grave{y}	\rightarrow	\vdots
\rightarrow	\rightarrow	\rightarrow	$-\rightarrow T$

and, $\operatorname{may}(T)=\operatorname{Act}, \operatorname{must}(T)=\emptyset$.
Let $\mathcal{R}_{1} / \mathcal{R}_{2}=\theta\left(\mathcal{R}_{1} / / \mathcal{R}_{2}\right)$.

Properties of the quotient

- $\mathcal{R}_{1} \otimes \mathcal{R}_{2} \preceq \mathcal{R} \Leftrightarrow \mathcal{R}_{2} \preceq \mathcal{R} / \mathcal{R}_{1}$
- $\mathcal{M}_{2} \models \mathcal{R} / \mathcal{R}_{1} \Leftrightarrow \forall \mathcal{M}_{1} \cdot \mathcal{M}_{1} \models \mathcal{R}_{1} \Rightarrow \mathcal{M}_{1} \otimes \mathcal{M}_{2} \models \mathcal{R}$.
\longrightarrow Application in an interface theory: contract-based design

Outline

(1) Introduction

- Modal specifications
- Motivations for timed modal specifications
(2) Preliminaries on Timed modal specifications
- Definition
- Semantics
(3) Operators on Timed modal specifications
- Refinement
- Consistency
- Product and quotient
(4) Conclusion

Towards a timed version of modal specifications

- Timing of the events cannot be constrained
- Goal: extend this algebraic framework to a timing setting \Rightarrow Timed modal specifications
- Generalize modal specifications
- Generalize timed automata

Related work

- Karlis Cerans, Jens Chr. Godskesen, Kim Guldstrand Larsen: Timed Modal Specification - Theory and Tools. (CAV 1993).
- Timed CCS (durations) + modalities
- Several types of refinement relations are studied
- Luca de Alfaro, Thomas A. Henzinger, Mariëlle Stoelinga: Timed Interfaces. (EMSOFT 2002).
- Semantic in terms of timed games
- Reactivity (deadlock-freeness) is studied

Outline

(1) Introduction

- Modal specifications
- Motivations for timed modal specifications
(2) Preliminaries on Timed modal specifications
- Definition
- Semantics
(3) Operators on Timed modal specifications
- Refinement
- Consistency
- Product and quotient
(4) Conclusion

Definition of timed modal specifications

\longrightarrow Timed automata equipped with may and must transitions.

Timed modal specification (TMS)

A TMS is a structure $\mathcal{S}=\left(Q, q^{0}, \mathcal{X}, \Sigma, \delta^{m}, \delta^{M}\right)$ where

- Q set of states, and $q^{0} \in Q$ initial state;
- \mathcal{X} set of clocks, Σ alphabet of actions;
- $\delta^{m}, \delta^{M} \subseteq Q \times \xi[\mathcal{X}] \times \sum \times 2^{\mathcal{X}} \times Q$ sets of transitions
s.t. $\delta^{M} \subseteq \delta^{m}$, and δ^{m}, δ^{M} deterministic.
- δ^{m} : may-transitions representing the allowed transitions.
- δ^{M} : must-transitions representing the required transitions.

A basic example

(1) Introduction

- Modal specifications
- Motivations for timed modal specifications
(2) Preliminaries on Timed modal specifications
- Definition
- Semantics
(3) Operators on Timed modal specifications
- Refinement
- Consistency
- Product and quotient
(4) Conclusion

Semantics of timed modal specifications

\longrightarrow Collection of (infinite state) timed automata.

Models of TMS

Let $\mathcal{C}=\left(C, c^{0}, \mathcal{X}, \Sigma, \delta\right)$ be a TA and $\mathcal{S}=\left(Q, q^{0}, \mathcal{X}, \Sigma, \delta^{m}, \delta^{M}\right)$ be a TMS. $\mathcal{C} \models \mathcal{S}$ if $\exists \rho \subseteq \mathcal{C} \times Q$ with $\left(c^{0}, q^{0}\right) \in \rho$, and for all $(c, q) \in \rho$:

- Any must-transition of \mathcal{S} appears in \mathcal{C}, potentially split
$\forall q \xrightarrow{g, a, r} q^{\prime} \in \delta^{M}, \exists c_{1} \cdots c_{n} \in C, \exists g_{1}, \cdots, g_{n} \in \xi[\mathcal{X}]$ with
- $g \subseteq \bigcup_{i=1}^{n} g_{i}$,
- c $\xrightarrow{g_{i}, a, r} c_{i} \in \delta, \forall 1 \leq i \leq n$, and
- $\left(c_{i}, q^{\prime}\right) \in \rho, \forall 1 \leq i \leq n$.
- Any transition in \mathcal{C}, is allowed in \mathcal{S}
$\forall c \xrightarrow{g, a, r} c^{\prime} \in \delta, \exists q^{\prime} \in Q, \exists g^{\prime} \in \xi[\mathcal{X}]$ with
- $g \subseteq g^{\prime}$,
- $q \xrightarrow{\underline{g}, a, r} q^{\prime} \in \delta^{m}$, and
- $\left(c^{\prime}, q^{\prime}\right) \in \rho$.

Back to the example

Outline

(1) Introduction

- Modal specifications
- Motivations for timed modal specifications

2) Preliminaries on Timed modal specifications

- Definition
- Semantics
(3) Operators on Timed modal specifications
- Refinement
- Consistency
- Product and quotient
(4) Conclusion

Refinement of TMS

\longrightarrow inherited from refinement of MS via region graph

Refinement preorder on TMS

$\mathcal{S}_{1} \preceq \mathcal{S}_{2}$ whenever $R\left(\mathcal{S}_{1}\right) \preceq R\left(\mathcal{S}_{2}\right)$.
For any \mathcal{C} ta and \mathcal{S} тмS, $\mathcal{C} \models \mathcal{S}$ if and only if $\mathcal{C} \preceq \mathcal{S}$.

Decidability and characterization

Given \mathcal{S}_{1} and \mathcal{S}_{2}, one can decide whether $\mathcal{S}_{1} \preceq \mathcal{S}_{2}$. Moreover $\mathcal{S}_{1} \preceq \mathcal{S}_{2}$ if and only if $\operatorname{Mod}\left(\mathcal{S}_{1}\right) \subseteq \operatorname{Mod}\left(\mathcal{S}_{2}\right)$.

Note that for any TMS $\mathcal{S}, \mathcal{S}_{\perp} \preceq \mathcal{S} \preceq \mathcal{S}_{\top}$.

Outline

(1) Introduction

- Modal specifications
- Motivations for timed modal specifications

2) Preliminaries on Timed modal specifications

- Definition
- Semantics
(3) Operators on Timed modal specifications
- Refinement
- Consistency
- Product and quotient
(4) Conclusion

Consistency of TMS

\mathcal{S}_{1} and \mathcal{S}_{2} consistent $=$ they share a common model
\longrightarrow inherited from consistency of MS via region graph

Conjunction on TMS
 $\mathcal{S}_{1} \wedge \mathcal{S}_{2}=T\left(R\left(\mathcal{S}_{1}\right) \wedge R\left(\mathcal{S}_{2}\right)\right)$

Properties of \wedge

$\mathcal{S}_{1} \wedge \mathcal{S}_{2}$ is the glb of \mathcal{S}_{1} and \mathcal{S}_{2} for \preceq.
$\operatorname{Mod}\left(\mathcal{S}_{1} \wedge \mathcal{S}_{2}\right)=\operatorname{Mod}\left(\mathcal{S}_{1}\right) \cap \operatorname{Mod}\left(\mathcal{S}_{2}\right)$.

Outline

(1) Introduction

- Modal specifications
- Motivations for timed modal specifications

2) Preliminaries on Timed modal specifications

- Definition
- Semantics
(3) Operators on Timed modal specifications
- Refinement
- Consistency
- Product and quotient

4 Conclusion

Product of TMS

Product

$\mathcal{S}_{1} \otimes \mathcal{S}_{2}$ is a TMS over $\mathcal{X}_{1} \uplus \mathcal{X}_{2}$ where:
$\left(q_{1} \xrightarrow{g_{1}, a, r_{1}} 1 q_{1}^{\prime}\right.$ and $\left.q_{2} \xrightarrow{g_{2}, a, r_{2}} 2 q_{2}^{\prime}\right) \Longrightarrow\left(q_{1}, q_{2}\right) \xrightarrow{g_{1} \wedge g_{2}, a, r_{1} \cup r_{2}}\left(q_{1}^{\prime}, q_{2}^{\prime}\right)$.

The modalities are derived according to the untimed case.	$\rightsquigarrow_{1} \otimes m_{2}$	--	\rightarrow	\rightarrow
	$\xrightarrow{-\rightarrow}$		$\rightarrow-\rightarrow$	\rightarrow
	\rightarrow	$\xrightarrow{-\rightarrow}$	\rightarrow	\rightarrow
	\rightarrow	\rightarrow	\rightarrow	\rightarrow

Properties of the product

- $\mathcal{C}_{i} \models \mathcal{S}_{i} \Longrightarrow \mathcal{C}_{1} \otimes \mathcal{C}_{2} \models \mathcal{S}_{1} \otimes \mathcal{S}_{2} ;$
- $\left(\mathcal{S}_{1} \preceq \mathcal{S}_{2}\right.$ and $\left.\mathcal{S}_{1}^{\prime} \preceq \mathcal{S}_{2}^{\prime}\right) \Longrightarrow \mathcal{S}_{1} \otimes \mathcal{S}_{1}^{\prime} \preceq \mathcal{S}_{2} \otimes \mathcal{S}_{2}^{\prime}$.

Quotient of TMS

Quotient - naive definition

$\mathcal{S} / \mathcal{S}_{1}$ is a TMS over $\mathcal{X} \backslash \mathcal{X}_{1}$ where:
$\left(q \xrightarrow{g, a, r} q^{\prime}\right.$ and $\left.q_{1} \xrightarrow{g_{1}, a, r_{1}} q_{1}^{\prime}\right) \Longrightarrow\left(q, q_{1}\right) \xrightarrow{g_{1} \Rightarrow g, a, r \backslash r_{1}}\left(q^{\prime}, q_{1}^{\prime}\right)$.

Subtleties

- $g_{1} \Rightarrow g$ is not a guard over $\mathcal{X}_{2}=\mathcal{X} \backslash \mathcal{X}_{1}$. It is replaced by $g_{\mid \mathcal{X}_{2}}$.
- $r \backslash r_{1}$ is not necessarily included in \mathcal{X}_{2}. So we rather deal with $r_{\mid \mathcal{X}_{2}}$.

Quotient

$\mathcal{S} / \mathcal{S}_{1}$ is a TMS over $\mathcal{X}_{2}=\mathcal{X} \backslash \mathcal{X}_{1}$ where:
$\left(q \xrightarrow{g, a, r} q^{\prime}\right.$ and $\left.q_{1} \xrightarrow{g_{1}, a, r_{1}} q_{1}^{\prime}\right) \Longrightarrow\left(q, q_{1}\right) \xrightarrow{g_{\mid x_{2}}, a, r_{\mid x_{2}}}\left(q^{\prime}, q_{1}^{\prime}\right)$.

Properties of the quotient

$\left(\mathcal{S} / \mathcal{S}_{1}\right) \otimes \mathcal{S}_{1} \preceq \mathcal{S}$
Note: $\mathcal{S} / \mathcal{S}_{1}$ might be nondeterministic!

Outline

(1) Introduction

- Modal specifications
- Motivations for timed modal specifications

2) Preliminaries on Timed modal specifications

- Definition
- Semantics
(3) Operators on Timed modal specifications
- Refinement
- Consistency
- Product and quotient

4 Conclusion

Conclusion

- Recap:
- definition of timed modal specifications
- decidability of refinement and consistency
- notions of product and quotient
- Future works:
- Relation with timed interfaces
- Reactivity (deadlock-freeness) and refinement

