Preliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000

About Timed Modal Specifications

N. Bertrand¹, S. Pinchinat¹, J.-B. Raclet²

¹INRIA Rennes Bretagne Atlantique – France

²INRIA Grenoble Rhône-Alpes – France

COMBEST Meeting – March 3rd 2009

Preliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000 Conclusion

Outline

Introduction

- Modal specifications
- Motivations for timed modal specifications

Preliminaries on Timed modal specifications

- Definition
- Semantics

Operators on Timed modal specifications

- Refinement
- Consistency
- Product and quotient

reliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000 Conclusion

Outline

Introduction

- Modal specifications
- Motivations for timed modal specifications

Preliminaries on Timed modal specifications

- Definition
- Semantics

Operators on Timed modal specifications

- Refinement
- Consistency
- Product and quotient

Preliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000 Conclusion

Modal specifications: Definition

Modal specification (MS)

A MS is a structure $\mathcal{R} = (P, p^0, Act, \Delta^m, \Delta^M)$ where:

- *P* set of states, and p^0 initial state;
- Act set of actions;
- $\Delta^m, \Delta^M \subseteq Q \times \Sigma \times Q$ sets of transitions
 - s.t. $\Delta^M \subseteq \Delta^m$, and Δ^m, Δ^M deterministic.
 - Δ^m : may-transitions representing the allowed transitions.
 - Δ^M : *must*-transitions representing the required transitions.

Notations:

•
$$may(p) = \{a \in Act \mid (p, a, p') \in \Delta^m\};$$

•
$$must(p) = \{a \in Act \mid (p, a, p') \in \Delta^M\}.$$

reliminaries on Timed modal specifications

Operators on Timed modal specification: 0000000 Conclusion

Example

Preliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000 Conclusion

Models of MS

Models of MS $\mathcal{M} = (M, m^0, Act, \Delta)$ is a model of a MS $\mathcal{R} = (P, p^0, Act, \Delta^m, \Delta^M)$, noted $\mathcal{M} \models \mathcal{R}$, if $\exists \rho \subseteq (M \times P)$ s.t. $(m^0, p^0) \in \rho$, and $\forall (m, p) \in \rho$: $p \xrightarrow{a} p' \in \Delta^M \Rightarrow m \xrightarrow{a} m' \in \Delta$ and $(m', p') \in \rho$; $m \xrightarrow{a} m' \in \Delta \Rightarrow p \xrightarrow{a} p' \in \Delta^m$ and $(m', p') \in \rho$.

Let $out(m) = \{a \in Act \mid (m, a, m') \in \Delta\}$:

 $(m,p) \in \rho \Rightarrow must(p) \subseteq out(m) \subseteq may(p)$

reliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000 Conclusion

Example

COMBEST Meeting - Rennes - March 3rd 2009, 7/30

reliminaries on Timed modal specifications

Operators on Timed modal specification: 0000000

Example

Preliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000

Pseudo-modal specifications pMS

► To represent inconsistencies between spec., we let Δ^M ⊈ Δ^m be possible. ⇒ pseudo-modal specifications pMS.

Inconsistent state

A state p s.t. $a \in must(p)$ but $a \notin may(p)$ is said inconsistent: $\oint q$.

An inconsistent state p can't belong to a p stating ⊨ (ie. be a state s.t. must(p) ⊆ out(m) ⊆ may(p)).

• Reduction:
$$\theta : pMS \rightarrow MS$$

Reduction preserves Mod

Preliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000

Pseudo-modal specifications pMS

► To represent inconsistencies between spec., we let Δ^M ⊈ Δ^m be possible. ⇒ pseudo-modal specifications pMS.

Inconsistent state

A state p s.t. $a \in must(p)$ but $a \notin may(p)$ is said inconsistent: $\oint q$.

An inconsistent state p can't belong to a p stating ⊨ (ie. be a state s.t. must(p) ⊆ out(m) ⊆ may(p)).

• Reduction:
$$\theta : pMS \rightarrow MS$$

Reduction preserves Mod

Preliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000

Pseudo-modal specifications pMS

► To represent inconsistencies between spec., we let Δ^M ⊈ Δ^m be possible. ⇒ pseudo-modal specifications pMS.

Inconsistent state

A state p s.t. $a \in must(p)$ but $a \notin may(p)$ is said inconsistent: $\oint q$.

An inconsistent state p can't belong to a p stating ⊨ (ie. be a state s.t. must(p) ⊆ out(m) ⊆ may(p)).

• Reduction:
$$\theta : pMS \rightarrow MS$$

Reduction preserves Mod

Preliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000

Pseudo-modal specifications pMS

► To represent inconsistencies between spec., we let Δ^M ⊈ Δ^m be possible. ⇒ pseudo-modal specifications pMS.

Inconsistent state

A state p s.t. $a \in must(p)$ but $a \notin may(p)$ is said inconsistent: $\oint q$.

An inconsistent state p can't belong to a p stating ⊨ (ie. be a state s.t. must(p) ⊆ out(m) ⊆ may(p)).

• Reduction:
$$\theta : pMS \rightarrow MS$$

Reduction preserves Mod

Preliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000

Pseudo-modal specifications pMS

► To represent inconsistencies between spec., we let Δ^M ⊈ Δ^m be possible. ⇒ pseudo-modal specifications pMS.

Inconsistent state

A state p s.t. $a \in must(p)$ but $a \notin may(p)$ is said inconsistent: $\oint q$.

An inconsistent state p can't belong to a p stating ⊨ (ie. be a state s.t. must(p) ⊆ out(m) ⊆ may(p)).

• Reduction:
$$\theta : pMS \rightarrow MS$$

0

Reduction preserves Mod

Preliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000 Conclusion

Refinement of MS

Refinement of MS

A MS $\mathcal{R}_1 = (P_1, p_1^0, Act, \Delta_1^m, \Delta_1^M)$ is a refinement of a MS $\mathcal{R}_2 = (P_2, p_2^0, Act, \Delta_2^m, \Delta_2^M)$, noted $\mathcal{R}_1 \preceq \mathcal{R}_2$, if $\exists \rho \subseteq (P_1 \times P_2)$ s.t. $(p_1^0, p_2^0) \in \rho$, and $\forall (p_1, p_2) \in \rho$:

 $\blacktriangleright \ p_2 \xrightarrow{a} p_2' \in \Delta_2^M \Rightarrow p_1 \xrightarrow{a} p_1' \in \Delta_1^M \text{ and } (p_1', p_2') \in \rho;$

•
$$p_1 \xrightarrow{a} p_1' \in \Delta_1^m \Rightarrow p_2 \xrightarrow{a} p_2' \in \Delta_2^m$$
 and $(p_1', p_2') \in \rho$.

$$(p_1, p_2) \in \rho \Rightarrow must(p_1) \supseteq must(p_2) \text{ and } may(p_1) \subseteq may(p_2).$$

Refinement is sound and complete

• Given two pMS $p\mathcal{R}_1$ and $p\mathcal{R}_2$:

 $\mathsf{Mod}(p\mathcal{R}_1) \subseteq \mathsf{Mod}(p\mathcal{R}_2) \Leftrightarrow \theta(p\mathcal{R}_1) \preceq \theta(p\mathcal{R}_2)$

• Given two MS \mathcal{R}_1 and \mathcal{R}_2 :

 $\mathsf{Mod}(\mathcal{R}_1)\subseteq\mathsf{Mod}(\mathcal{R}_2)\Leftrightarrow\mathcal{R}_1\preceq\mathcal{R}_2$

Preliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000 Conclusion

Consistency of MS

Conjunction of MS

 \mathcal{R}_1 & \mathcal{R}_2 is the pMS $(P_1 \times P_2, (p_1^0, p_2^0), Act, \Delta^m, \Delta^M)$ with:

$\leadsto_1 \& \leadsto_2$	>	\rightarrow	\rightarrow
>	>	\rightarrow	\rightarrow
\rightarrow	\rightarrow	\rightarrow	4
\rightarrow	\rightarrow	4	\rightarrow

Let
$$\mathcal{R}_1 \wedge \mathcal{R}_2 = \theta(\mathcal{R}_1 \& \mathcal{R}_2).$$

 $\begin{array}{lll} may(\mathcal{R}_1\&\mathcal{R}_2)(p_1,p_2) &=& may(\mathcal{R}_1)(p_1) &\cap & may(\mathcal{R}_2)(p_2) \\ must(\mathcal{R}_1\&\mathcal{R}_2)(p_1,p_2) &=& must(\mathcal{R}_1)(p_1) &\cup & must(\mathcal{R}_2)(p_2) \end{array}$

Properties of \land

- $\mathcal{R}_1 \wedge \mathcal{R}_2$ is the glb of \mathcal{R}_1 and \mathcal{R}_2 for \preceq .
- $Mod(\mathcal{R}_1 \wedge \mathcal{R}_2) = Mod(\mathcal{R}_1) \cap Mod(\mathcal{R}_2).$

 \longrightarrow Application in an interface theory: consistency of viewpoints.

Introduction
00000000000000

Operators on Timed modal specifications 0000000

Product of MS

Product of MS

 $\mathcal{R}_1\otimes \mathcal{R}_2$ is the MS $(P_1 imes P_2, (p_1^0, p_2^0), Act, \Delta^m, \Delta^M)$ with:

$\leadsto_1 \otimes \leadsto_2$	$ \rightarrow \mid \rightarrow \mid$		\rightarrow	
>	>			
\rightarrow	>	\rightarrow	\rightarrow	
\rightarrow	\rightarrow	\rightarrow	\rightarrow	

 $\begin{cases} may(\mathcal{R}_1 \otimes \mathcal{R}_2)(p_1, p_2) &= may(\mathcal{R}_1)(p_1) & \cap may(\mathcal{R}_2)(p_2) \\ must(\mathcal{R}_1 \otimes \mathcal{R}_2)(p_1, p_2) &= must(\mathcal{R}_1)(p_1) & \cap must(\mathcal{R}_2)(p_2) \end{cases}$

Properties of the product

- $\blacktriangleright \mathcal{M}_i \models \mathcal{R}_i \Longrightarrow \mathcal{M}_1 \otimes \mathcal{M}_2 \models \mathcal{R}_1 \otimes \mathcal{R}_2;$
- $(\mathcal{R}_1 \preceq \mathcal{R}_2 \text{ and } \mathcal{R}'_1 \preceq \mathcal{R}'_2) \Longrightarrow \mathcal{R}_1 \otimes \mathcal{R}'_1 \preceq \mathcal{R}_2 \otimes \mathcal{R}'_2.$

Operators on Timed modal specifications 0000000 Conclusion

Quotient of MS

Quotient of ${\rm MS}$

 $\mathcal{R}_1/\!\!/\mathcal{R}_2$ is the pMS $((P_1 \times P_2) \cup \{\top\}, (p_1^0, p_2^0), Act, \Delta^m, \Delta^M)$ with:

$\leadsto_1 /\!\!/ \rightsquigarrow_2$	>	\rightarrow	\rightarrow
>	>	>	→⊤
\rightarrow	ź	\rightarrow	¥
\rightarrow	\rightarrow	\rightarrow	→⊤

and,
$$may(\top) = Act, must(\top) = \emptyset$$
.
Let $\mathcal{R}_1/\mathcal{R}_2 = \theta(\mathcal{R}_1/\!\!/\mathcal{R}_2)$.

Properties of the quotient

- $\blacktriangleright \ \mathcal{R}_1 \otimes \mathcal{R}_2 \preceq \mathcal{R} \Leftrightarrow \mathcal{R}_2 \preceq \mathcal{R}/\mathcal{R}_1$
- $\blacktriangleright \mathcal{M}_2 \models \mathcal{R}/\mathcal{R}_1 \Leftrightarrow \forall \mathcal{M}_1.\mathcal{M}_1 \models \mathcal{R}_1 \Rightarrow \mathcal{M}_1 \otimes \mathcal{M}_2 \models \mathcal{R}.$

 \longrightarrow Application in an interface theory: contract-based design

reliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000 Conclusion

Outline

Introduction

- Modal specifications
- Motivations for timed modal specifications

Preliminaries on Timed modal specifications

- Definition
- Semantics

Operators on Timed modal specifications

- Refinement
- Consistency
- Product and quotient

Preliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000

Towards a timed version of modal specifications

- Timing of the events cannot be constrained
- Goal: extend this algebraic framework to a timing setting
 Timed modal specifications
 - Generalize modal specifications
 - Generalize timed automata

Operators on Timed modal specifications 0000000

Related work

- Karlis Cerans, Jens Chr. Godskesen, Kim Guldstrand Larsen: Timed Modal Specification - Theory and Tools. (CAV 1993).
 - Timed CCS (durations) + modalities
 - Several types of refinement relations are studied
- Luca de Alfaro, Thomas A. Henzinger, Mariëlle Stoelinga: Timed Interfaces. (EMSOFT 2002).
 - Semantic in terms of timed games
 - Reactivity (deadlock-freeness) is studied

Preliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000 Conclusion

Outline

Introductio

- Modal specifications
- Motivations for timed modal specifications

Preliminaries on Timed modal specifications Definition

Semantics

Operators on Timed modal specifications

- Refinement
- Consistency
- Product and quotient

Preliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000

Definition of timed modal specifications

 \longrightarrow Timed automata equipped with may and must transitions.

Timed modal specification (TMS)

A TMS is a structure $\mathcal{S} = (Q, q^0, \mathcal{X}, \Sigma, \delta^m, \delta^M)$ where

- Q set of states, and $q^0 \in Q$ initial state;
- X set of clocks, Σ alphabet of actions;
- δ^m, δ^M ⊆ Q × ξ[X] × Σ × 2^X × Q sets of transitions s.t. δ^M ⊆ δ^m, and δ^m, δ^M deterministic.
 - δ^m : may-transitions representing the allowed transitions.
 - δ^M : must-transitions representing the required transitions.

Preliminaries on Timed modal specifications

Operators on Timed modal specification: 0000000 Conclusion

A basic example

Preliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000 Conclusion

Outline

Introductio

- Modal specifications
- Motivations for timed modal specifications

Preliminaries on Timed modal specifications

- Definition
- Semantics

Operators on Timed modal specifications

- Refinement
- Consistency
- Product and quotient

Preliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000

Semantics of timed modal specifications

 \longrightarrow Collection of (infinite state) timed automata.

Models of ${\rm TMS}$

Let $C = (C, c^0, \mathcal{X}, \Sigma, \delta)$ be a TA and $S = (Q, q^0, \mathcal{X}, \Sigma, \delta^m, \delta^M)$ be a TMS. $C \models S$ if $\exists \rho \subseteq C \times Q$ with $(c^0, q^0) \in \rho$, and for all $(c, q) \in \rho$:

- ► Any must-transition of S appears in C, potentially split $\forall q \xrightarrow{g,a,r} q' \in \delta^M$, $\exists c_1 \cdots c_n \in C$, $\exists g_1, \cdots, g_n \in \xi[\mathcal{X}]$ with
 - $g \subseteq \bigcup_{i=1}^n g_i$,
 - $c \xrightarrow{g_i,a,r} c_i \in \delta, \ \forall 1 \leq i \leq n$, and
 - $(c_i, q') \in \rho, \forall 1 \leq i \leq n.$

• Any transition in C, is allowed in S

 $\forall c \xrightarrow{g,a,r} c' \in \delta, \ \exists q' \in Q, \ \exists g' \in \xi[\mathcal{X}] \ \text{with}$

$$g \subseteq g'$$
,

•
$$q \xrightarrow{g,a,r} q' \in \delta^m$$
, and

•
$$(c',q') \in \rho$$
.

Preliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000 Conclusion

Back to the example

COMBEST Meeting - Rennes - March 3rd 2009, 21/30

Preliminaries on Timed modal specifications

Operators on Timed modal specifications
•••••••••

Conclusion

Outline

Introduction

- Modal specifications
- Motivations for timed modal specifications

Preliminaries on Timed modal specifications

- Definition
- Semantics

Operators on Timed modal specifications

- Refinement
- Consistency
- Product and quotient

Operators on Timed modal specifications

Refinement of TMS

\longrightarrow inherited from refinement of ${\rm MS}$ via region graph

Refinement preorder on TMS

 $S_1 \preceq S_2$ whenever $R(S_1) \preceq R(S_2)$.

For any C TA and S TMS, $C \models S$ if and only if $C \preceq S$.

Decidability and characterization

Given S_1 and S_2 , one can decide whether $S_1 \leq S_2$. Moreover $S_1 \leq S_2$ if and only if $Mod(S_1) \subseteq Mod(S_2)$.

Note that for any TMS S, $S_{\perp} \preceq S \preceq S_{\top}$.

Preliminaries on Timed modal specifications

Operators on Timed modal specifications

Conclusion

Outline

Introduction

- Modal specifications
- Motivations for timed modal specifications

Preliminaries on Timed modal specifications

- Definition
- Semantics

Operators on Timed modal specifications

Refinement

Consistency

Product and quotient

Preliminaries on Timed modal specifications

Operators on Timed modal specifications

Conclusion

Consistency of TMS

 \mathcal{S}_1 and \mathcal{S}_2 consistent = they share a common model \longrightarrow inherited from consistency of MS via region graph

Conjunction on TMS $S_1 \wedge S_2 = T(R(S_1) \wedge R(S_2))$

Properties of \wedge

 $S_1 \wedge S_2$ is the glb of S_1 and S_2 for \leq . Mod $(S_1 \wedge S_2) = Mod(S_1) \cap Mod(S_2)$.

Preliminaries on Timed modal specifications

Operators on Timed modal specifications

Conclusion

Outline

Introduction

- Modal specifications
- Motivations for timed modal specifications

Preliminaries on Timed modal specifications

- Definition
- Semantics

Operators on Timed modal specifications

- Refinement
- Consistency
- Product and quotient

Introduction
0000000000000000

Preliminaries on Timed modal specifications

Operators on Timed modal specifications

Conclusion

$Product \ of \ {\rm TMS}$

Product

 $\begin{array}{l} \mathcal{S}_1 \otimes \mathcal{S}_2 \text{ is a TMS over } \mathcal{X}_1 \uplus \mathcal{X}_2 \text{ where:} \\ (q_1 \xrightarrow{g_1, a, r_1} q_1' \text{ and } q_2 \xrightarrow{g_2, a, r_2} q_2') \Longrightarrow (q_1, q_2) \xrightarrow{g_1 \wedge g_2, a, r_1 \cup r_2} (q_1', q_2'). \end{array}$

	$\leadsto_1 \otimes \leadsto_2$	→	\rightarrow	\rightarrow
The modalities are derived according	>	>	>	\rightarrow
to the untimed case.	\rightarrow	>	\rightarrow	\rightarrow
	\rightarrow	\rightarrow	\rightarrow	\rightarrow

Properties of the product

$$\blacktriangleright \ \mathcal{C}_i \models \mathcal{S}_i \Longrightarrow \mathcal{C}_1 \otimes \mathcal{C}_2 \models \mathcal{S}_1 \otimes \mathcal{S}_2;$$

•
$$(\mathcal{S}_1 \preceq \mathcal{S}_2 \text{ and } \mathcal{S}'_1 \preceq \mathcal{S}'_2) \Longrightarrow \mathcal{S}_1 \otimes \mathcal{S}'_1 \preceq \mathcal{S}_2 \otimes \mathcal{S}'_2.$$

Preliminaries on Timed modal specifications

Operators on Timed modal specifications

Conclusion

Quotient of TMS

Quotient - naive definition

 $\mathcal{S}/\mathcal{S}_1$ is a TMS over $\mathcal{X} \setminus \mathcal{X}_1$ where: $(q \xrightarrow{g_1,a,r} q' \text{ and } q_1 \xrightarrow{g_1,a,r_1} q'_1) \Longrightarrow (q,q_1) \xrightarrow{g_1 \Rightarrow g,a,r \setminus r_1} (q',q'_1).$

Subtleties

- $g_1 \Rightarrow g$ is not a guard over $\mathcal{X}_2 = \mathcal{X} \setminus \mathcal{X}_1$. It is replaced by $g_{|\mathcal{X}_2}$.
- ▶ $r \setminus r_1$ is not necessarily included in \mathcal{X}_2 . So we rather deal with $r_{|\mathcal{X}_2}$.

Quotient

$$\mathcal{S}/\mathcal{S}_1$$
 is a TMS over $\mathcal{X}_2 = \mathcal{X} \setminus \mathcal{X}_1$ where:
 $(q \xrightarrow{g,a,r} q' \text{ and } q_1 \xrightarrow{g_1,a,r_1} q'_1) \Longrightarrow (q,q_1) \xrightarrow{g_{|\mathcal{X}_2},a,r_{|\mathcal{X}_2}} (q',q'_1)$

Properties of the quotient $(S/S_1) \otimes S_1 \preceq S$

Note: S/S_1 might be nondeterministic!

reliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000 Conclusion

Outline

Introduction

- Modal specifications
- Motivations for timed modal specifications

Preliminaries on Timed modal specifications

- Definition
- Semantics

Operators on Timed modal specifications

- Refinement
- Consistency
- Product and quotient

reliminaries on Timed modal specifications

Operators on Timed modal specifications 0000000 Conclusion

Conclusion

Recap:

- definition of timed modal specifications
- decidability of refinement and consistency
- notions of product and quotient

Future works:

- Relation with timed interfaces
- Reactivity (deadlock-freeness) and refinement