Controlling a population of identical NFA

Nathalie Bertrand

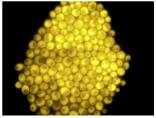
Inria Rennes

joint work with Miheer Dewaskar (ex CMI student), Blaise Genest (IRISA) and Hugo Gimbert (LaBRI)

SynCoP & PV workshops @ ETAPS 2018

Motivation

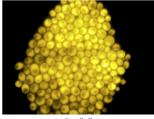
Control of gene expression for a population of cells



credits: G. Batt

Motivation

Control of gene expression for a population of cells

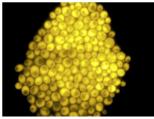


credits: G. Batt

- cell population
- gene expression monitored through fluorescence level
- drug injections affect all cells
- response varies from cell to cell
- obtain a large proportion of cells with desired gene expression level

Motivation

Control of gene expression for a population of cells



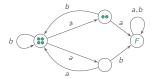
credits: G. Batt

- ► cell population
- gene expression monitored through fluorescence level
- drug injections affect all cells
- response varies from cell to cell
- obtain a large proportion of cells with desired gene expression level

- arbitrary nb of components
- ▶ full observation
- uniform control
- non-det. model for single cell
- ► global reachability objective

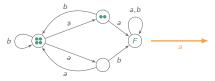
- population of N identical NFA
- uniform control policy under full observation
- ▶ resolution of non-determinism by an adversary

- population of N identical NFA
- uniform control policy under full observation
- resolution of non-determinism by an adversary



config: # copies in each state

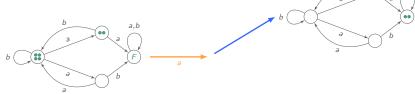
- ▶ population of *N* identical NFA
- uniform control policy under full observation
- resolution of non-determinism by an adversary



config: # copies in each state

► controller chooses the action (e.g. a)

- population of N identical NFA
- uniform control policy under full observation
- resolution of non-determinism by an adversary

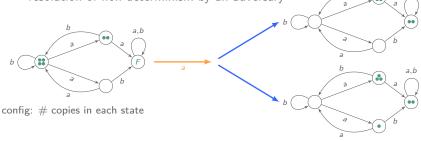


config: # copies in each state

- ▶ controller chooses the action (e.g. a)
- adversary chooses how to move each individual copy (a-transition)

a,b

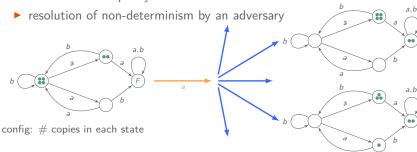
- population of N identical NFA
- uniform control policy under full observation
- resolution of non-determinism by an adversary



- ▶ controller chooses the action (e.g. a)
- adversary chooses how to move each individual copy (a-transition)

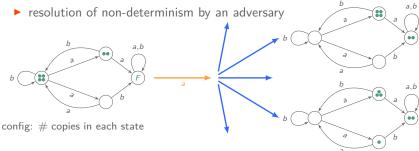
a,b

- population of N identical NFA
- uniform control policy under full observation



- ▶ controller chooses the action (e.g. a)
- adversary chooses how to move each individual copy (a-transition)

- population of N identical NFA
- uniform control policy under full observation



- ▶ controller chooses the action (e.g. a)
- ▶ adversary chooses how to move each individual copy (a-transition)

Question can one control the population to ensure that for all non-deterministic choices all NFAs simultaneously reach a target set?

Population control

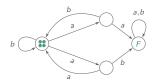
Fixed *N*: build finite 2-player game, identify global target states, decide if controller has a winning strategy for a reachability objective

Population control

Fixed *N*: build finite 2-player game, identify global target states, decide if controller has a winning strategy for a reachability objective

Challenge: Parameterized control

$$\forall N \exists \sigma \ \forall \tau \ (\mathcal{A}^N, \sigma, \tau) \models \Diamond F^N$$
?

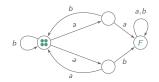


Population control

Fixed *N*: build finite 2-player game, identify global target states, decide if controller has a winning strategy for a reachability objective

Challenge: Parameterized control

$$\forall N \exists \sigma \ \forall \tau \ (A^N, \sigma, \tau) \models \Diamond F^N$$
?



This talk

- decidability and complexity
- memory requirements for controller σ
- ▶ admissible values for *N*

Monotonicity property and cutoff

Monotonicity property: the larger N, the harder for controller

$$\exists \sigma \ \forall \tau(\mathcal{A}^N, \sigma, \tau) \models \Diamond F^N \implies \forall M \leq N \ \exists \sigma \ \forall \tau(\mathcal{A}^M, \sigma, \tau) \models \Diamond F^M$$

Monotonicity property and cutoff

Monotonicity property: the larger N, the harder for controller

$$\exists \sigma \ \forall \tau(\mathcal{A}^N, \sigma, \tau) \models \Diamond F^N \implies \forall M \leq N \ \exists \sigma \ \forall \tau(\mathcal{A}^M, \sigma, \tau) \models \Diamond F^M$$

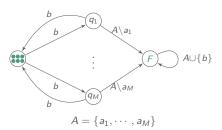
Cutoff: smallest N for which controller has no winning strategy

Monotonicity property and cutoff

Monotonicity property: the larger N, the harder for controller

$$\exists \sigma \ \forall \tau (\mathcal{A}^{N}, \sigma, \tau) \models \Diamond F^{N} \quad \Longrightarrow \quad \forall M \leq N \ \exists \sigma \ \forall \tau (\mathcal{A}^{M}, \sigma, \tau) \models \Diamond F^{M}$$

Cutoff: smallest N for which controller has no winning strategy

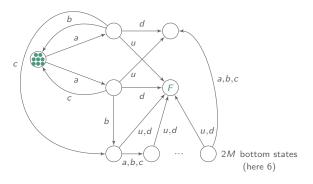


unspecified edges lead to a sink state

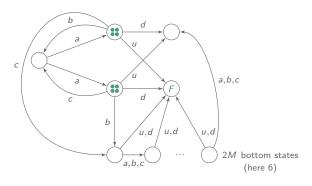
winning σ if N < M play b then a_i s.t. q_i is empty

winning τ for N = M always fill all q_i 's

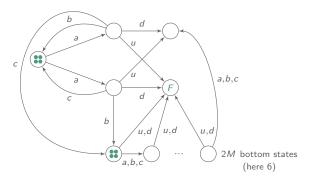
cutoff is M



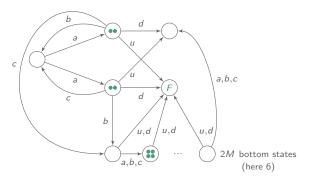
- ▶ $\forall N \leq 2^M, \ \exists \sigma, \ \mathcal{A}^N \models \forall_{\sigma} \diamondsuit F^N$ accumulate copies in bottom states, then u/d to converge
- ▶ for $N > 2^M$ controller cannot avoid reaching the sink state



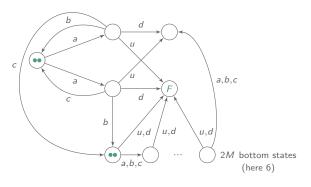
- ▶ $\forall N \leq 2^M, \ \exists \sigma, \ \mathcal{A}^N \models \forall_{\sigma} \diamondsuit F^N$ accumulate copies in bottom states, then u/d to converge
- ▶ for $N > 2^M$ controller cannot avoid reaching the sink state



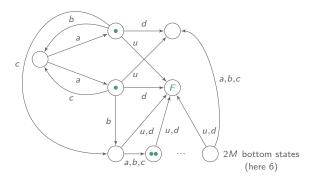
- ▶ $\forall N \leq 2^M, \ \exists \sigma, \ \mathcal{A}^N \models \forall_{\sigma} \diamondsuit F^N$ accumulate copies in bottom states, then u/d to converge
- ▶ for $N > 2^M$ controller cannot avoid reaching the sink state



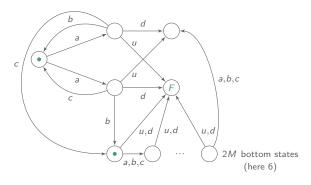
- ▶ $\forall N \leq 2^M, \ \exists \sigma, \ \mathcal{A}^N \models \forall_{\sigma} \diamondsuit F^N$ accumulate copies in bottom states, then u/d to converge
- ▶ for $N > 2^M$ controller cannot avoid reaching the sink state



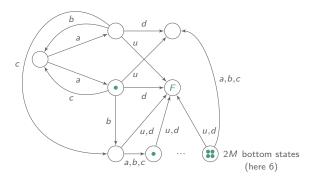
- ▶ $\forall N \leq 2^M, \ \exists \sigma, \ \mathcal{A}^N \models \forall_{\sigma} \diamondsuit F^N$ accumulate copies in bottom states, then u/d to converge
- ▶ for $N > 2^M$ controller cannot avoid reaching the sink state



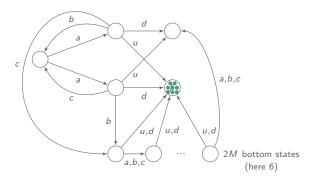
- ▶ $\forall N \leq 2^M, \ \exists \sigma, \ \mathcal{A}^N \models \forall_{\sigma} \diamondsuit F^N$ accumulate copies in bottom states, then u/d to converge
- ▶ for $N > 2^M$ controller cannot avoid reaching the sink state



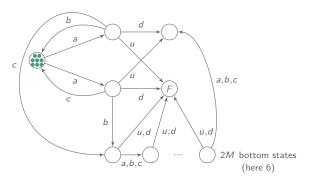
- ▶ $\forall N \leq 2^M, \ \exists \sigma, \ \mathcal{A}^N \models \forall_{\sigma} \diamondsuit F^N$ accumulate copies in bottom states, then u/d to converge
- ▶ for $N > 2^M$ controller cannot avoid reaching the sink state



- ▶ $\forall N \leq 2^M, \ \exists \sigma, \ \mathcal{A}^N \models \forall_{\sigma} \diamondsuit F^N$ accumulate copies in bottom states, then u/d to converge
- ▶ for $N > 2^M$ controller cannot avoid reaching the sink state



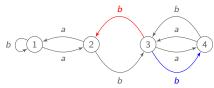
- ▶ $\forall N \leq 2^M, \ \exists \sigma, \ \mathcal{A}^N \models \forall_{\sigma} \diamondsuit F^N$ accumulate copies in bottom states, then u/d to converge
- ▶ for $N > 2^M$ controller cannot avoid reaching the sink state



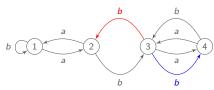
- ▶ $\forall N \leq 2^M, \ \exists \sigma, \ \mathcal{A}^N \models \forall_{\sigma} \diamondsuit F^N$ accumulate copies in bottom states, then u/d to converge
- ▶ for $N > 2^M$ controller cannot avoid reaching the sink state

Cutoff $\mathcal{O}(2^{|\mathcal{A}|})$

Combined with a counter, cutoff is even doubly exponential!



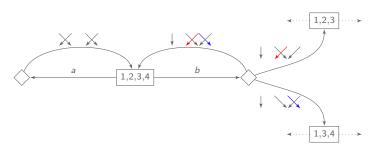
Assumption: if state 2 or 4 is empty, controller wins

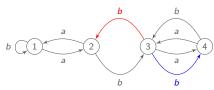


Assumption: if state 2 or 4 is empty, controller wins

Support game: □ Eve chooses action

♦ Adam chooses transfer graph (footprint of copies' moves)

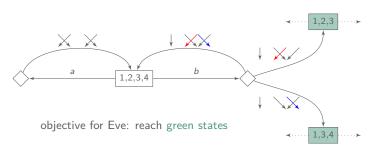


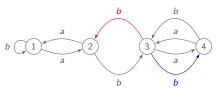


Assumption: if state 2 or 4 is empty, controller wins

Support game: □ Eve chooses action

♦ Adam chooses transfer graph (footprint of copies' moves)

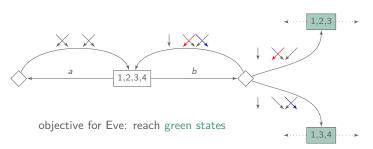




Assumption: if state 2 or 4 is empty, controller wins

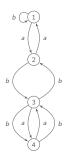
Support game: □ Eve chooses action

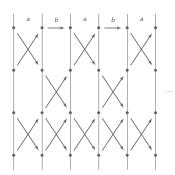
♦ Adam chooses transfer graph (footprint of copies' moves)



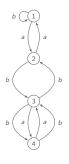
If Eve wins support game then controller has a winning strategy for all N

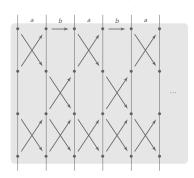
- controller alternates a and b;
- ▶ adversary must always fill 2 and 4 in the *b*-step



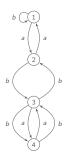


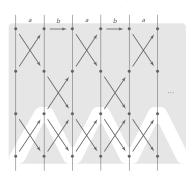
- controller alternates a and b;
- ▶ adversary must always fill 2 and 4 in the *b*-step



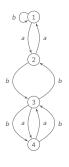


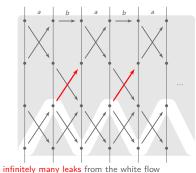
- controller alternates a and b;
- ▶ adversary must always fill 2 and 4 in the *b*-step



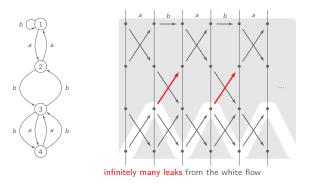


- controller alternates a and b ;
- ▶ adversary must always fill 2 and 4 in the *b*-step



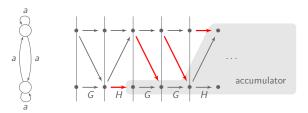


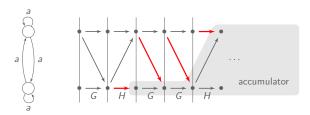
- controller alternates a and b;
- ▶ adversary must always fill 2 and 4 in the *b*-step



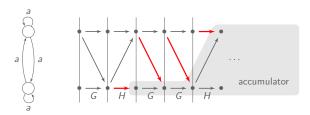
Above play from support game is not realisable in population control

- ▶ Controller wins with $(ab)^{\omega}$!
- ► Eve loses the support game





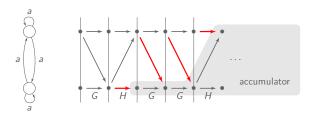
Finite capacity play: all accumulators have finitely many entries Bounded capacity play: finite bound on # entries for accumulators



Finite capacity play: all accumulators have finitely many entries Bounded capacity play: finite bound on # entries for accumulators

Bounded capacity

- corresponds to realizable plays
- does not seem to be regular

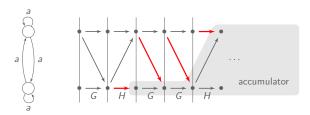


Finite capacity play: all accumulators have finitely many entries Bounded capacity play: finite bound on # entries for accumulators

Bounded capacity

- corresponds to realizable plays
- does not seem to be regular

Capacity game: Eve wins a play if either it reaches a subset of F, or it does not have finite capacity.



Finite capacity play: all accumulators have finitely many entries Bounded capacity play: finite bound on # entries for accumulators

Bounded capacity

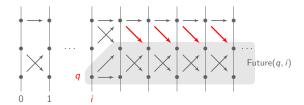
- corresponds to realizable plays
- does not seem to be regular

Capacity game: Eve wins a play if either it reaches a subset of F, or it does not have finite capacity.

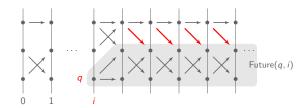
Eve wins capacity game iff Controller has a winning strategy for all N

The set of plays with infinite capacity is $\omega\text{-regular}$

The set of plays with infinite capacity is $\omega\text{-regular}$



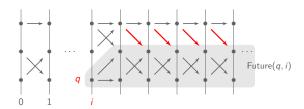
The set of plays with infinite capacity is ω -regular



Non-deterministic Büchi automaton

- 1. guesses a step i, and state q
- 2. checks that the accumulator Future(q, i) has infinitely many entries

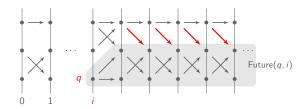
The set of plays with infinite capacity is ω -regular



Non-deterministic Büchi automaton

- 1. guesses a step i, and state q
- 2. checks that the accumulator Future(q, i) has infinitely many entries
- ▶ Non-det. Büchi determinized into det. parity automaton
- ▶ Resolution of doubly exp. parity game

The set of plays with infinite capacity is ω -regular



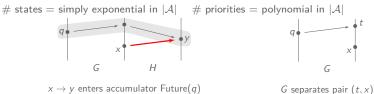
Non-deterministic Büchi automaton

- 1. guesses a step i, and state q
- 2. checks that the accumulator Future(q, i) has infinitely many entries
- ▶ Non-det. Büchi determinized into det. parity automaton
- ▶ Resolution of doubly exp. parity game

2EXPTIME decision procedure in the size of NFA ${\cal A}$

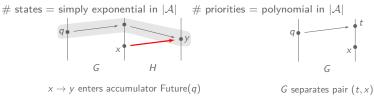
 $\begin{array}{ll} \mbox{Ad-hoc deterministic parity automaton with} \\ \# \mbox{ states} = \mbox{simply exponential in } |\mathcal{A}| & \# \mbox{ priorities} = \mbox{ polynomial in } |\mathcal{A}| \\ \end{array}$

Ad-hoc deterministic parity automaton with



- entries arise from separated pairs
- tracking transfer graphs separating new pairs is sufficient

Ad-hoc deterministic parity automaton with

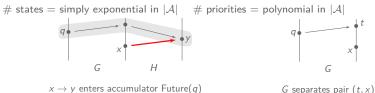


- entries arise from separated pairs
- tracking transfer graphs separating new pairs is sufficient

Parity game:

capacity game enriched with tracking lists in states priorities reflect how the tracking list evolves (removals, shifts, etc.)

Ad-hoc deterministic parity automaton with



- entries arise from separated pairs
- tracking transfer graphs separating new pairs is sufficient

Parity game:

capacity game enriched with tracking lists in states priorities reflect how the tracking list evolves (removals, shifts, etc.)

Parity game is equivalent to capacity game.

Complexity of the population control problem

Theorem:

The population control problem is EXPTIME-complete.

Upper bound:

- ▶ population control problem ≡ capacity game
- ► capacity game ≡ ad hoc parity game
- solving parity game of size exp. and poly. priorities

Lower bound : encoding of poly space alternating Turing machine

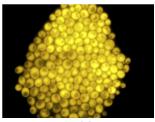
Summary of results

Uniform control of a population of identical NFA

- parameterized control problem: gather all copies in F
- ► (surprisingly) quite involved!
- ▶ tight results for complexity, cutoff, and memory
 - complexity: EXPTIME-complete decision problem
 - bound on cutoff: doubly exponential
 - memory requirement: exponential memory (orthogonal to supports) is needed and sufficient for controller

Back to motivations

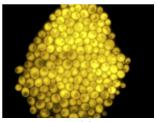
Control of gene expression for a population of cells



credits: G. Batt

Back to motivations

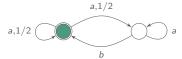
Control of gene expression for a population of cells

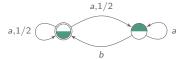


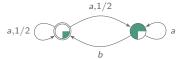
credits: G. Batt

- need for truely probabilistic model
 - → MDP instead of NFA
- need for truely quantitative questions
 - \rightarrow proportions and probabilities instead of convergence and (almost)-sure

 $\forall N \max_{\sigma} \mathbb{P}_{\sigma}(\mathcal{A}^{N} \models \Diamond \text{ at least } 80\% \text{ of MDPs in } F) \geq .7?$

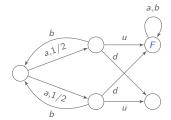






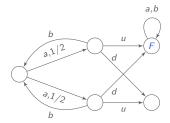
Discrete approximation of probabilistic automata

Gap: optimal reachability probability not continuous when $N \to \infty$



Discrete approximation of probabilistic automata

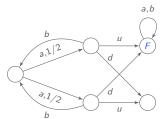
Gap: optimal reachability probability not continuous when $N \to \infty$



- \blacktriangleright $\forall N, \exists \sigma, \ \mathbb{P}_{\sigma}(\diamondsuit F^{N}) = 1.$
- ► In the PA, the maximum probability to reach *F* is .5.

Discrete approximation of probabilistic automata

Gap: optimal reachability probability not continuous when $N \to \infty$



- $\blacktriangleright \ \forall N, \exists \sigma, \ \mathbb{P}_{\sigma}(\diamondsuit F^{N}) = 1.$
- ▶ In the PA, the maximum probability to reach *F* is .5.

Good news? hope for alternative more tractable semantics for PA

 $\epsilon \nu \chi \alpha \rho \iota \sigma \tau \acute{\omega}!$