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Blaise Genest & Hugo Gimbert

Probabilities and partial observation OUCL Verification seminar 1



Introduction Probabilistic ω-automata Stochastic games of imperfect information Conclusion

Motivation

Adversarial situations with
I probabilities: random choices, uncertainties, losses
I partial observation: distributed

Monty Hall problem

Ethernet protocol: random choice slot, collisions, maximum nb of trials
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Partially observable MDP

Partially Observable MDP
A POMDP (M,∼) consists of an MDP M equipped with an equiva-
lence relation ∼ over states ofM.

Problems for POMDPs
Given a POMDP (M,∼), an LTL formula ϕ and p ∈ [0,1]

Question is there a ∼ based schedulerU with PU(ϕ) ./ p?

State of the art (back in 2008)
I ∃U ∼ based, PU(�F) > 0 is EXPTIME-Comp. [de Alfaro 99]
I ∃U ∼ based, PU(^F) ./ p is undecidable [Giro D’Argenio 07]

(p ∈ (0,1) and ./∈ {≤,≥,=})
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Examples and expressiveness
Emptiness problem
Positive semantics (PBA>0)
Almost-sure semantics (PBA=1)
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Probabilistic Büchi-automata [Baier Größer 05]

Probabilistic Büchi Automata
NBA where nondeterminism is resolved by probabilities

L>0(A) = {w ∈ Σω | P({ρ ∈ Runs(w) | ρ |= �^F}) > 0}
L=1(A) = {w ∈ Σω | P({ρ ∈ Runs(w) | ρ |= �^F}) = 1}
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Probabilistic Büchi Automata
NBA where nondeterminism is resolved by probabilities

L>0(A) = {w ∈ Σω | P({ρ ∈ Runs(w) | ρ |= �^F}) > 0}
L=1(A) = {w ∈ Σω | P({ρ ∈ Runs(w) | ρ |= �^F}) = 1}

PBA are POMDP with trivial equivalence relation: ∀p,q p ∼ q.

word for PBA ≡ deterministic blind scheduler for MDP
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Probabilistic Büchi-automata [Baier Größer 05]

Probabilistic Büchi Automata
NBA where nondeterminism is resolved by probabilities

L>0(A) = {w ∈ Σω | P({ρ ∈ Runs(w) | ρ |= �^F}) > 0}
L=1(A) = {w ∈ Σω | P({ρ ∈ Runs(w) | ρ |= �^F}) = 1}

Example 1

L>0 = (a + b)∗aω = LNBA
L=1 = b∗aω
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Probabilistic Büchi-automata [Baier Größer 05]

Probabilistic Büchi Automata
NBA where nondeterminism is resolved by probabilities

L>0(A) = {w ∈ Σω | P({ρ ∈ Runs(w) | ρ |= �^F}) > 0}
L=1(A) = {w ∈ Σω | P({ρ ∈ Runs(w) | ρ |= �^F}) = 1}

Example 2

LNBA = ((ac)∗(ab))ω

L>0 = (ab + ac)∗(ab)ω

L=1 = (ab)ω
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Probabilistic Büchi-automata [Baier Größer 05]

Probabilistic Büchi Automata
NBA where nondeterminism is resolved by probabilities

L>0(A) = {w ∈ Σω | P({ρ ∈ Runs(w) | ρ |= �^F}) > 0}
L=1(A) = {w ∈ Σω | P({ρ ∈ Runs(w) | ρ |= �^F}) = 1}

Example 3

LNBA = (ab + ac)ω

L>0 = L=1 = ∅
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Expressiveness: PBA vs NBA

Expressiveness
PBA>0 are more expressive than NBA.
PBA=1 and NBA are incomparable.
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Expressiveness: PBA vs NBA

Expressiveness
PBA>0 are more expressive than NBA.
PBA=1 and NBA are incomparable.

I any NBA can be turned into an equivalent PBA
→ first turn NBA into an equivalent one deterministic in the limit

I example of a PBA>0 whose language is not ω-regular
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Probabilities matter

L(Pλ) = {ak1bak2b · · · |
∏

i

(1 − λki ) > 0)}

Lemma
For 0 < λ < µ < 1, L(Pλ) ) L(Pµ).
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Emptiness for PBA>0 [Baier B. Größer 08]

Theorem
The emptiness problem is undecidable for PBA.

Proof sketch
Reduction of the modified emptiness problem for PFA

R PFA with

∀w PR(w) ≤ ε or
∃w PR(w) > 1 − ε

↓
P1 and P2 PBA s.t.

L
>ε(R) = ∅ ⇔ L(P1) ∩ L(P2) = ∅

Probabilities and partial observation OUCL Verification seminar 8



Introduction Probabilistic ω-automata Stochastic games of imperfect information Conclusion

Emptiness for PBA>0 [Baier B. Größer 08]
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Consequences for POMDP

Undecidability results for POMDP
The following problems are undecidable
I Given (M,∼) and F set of states ofM, is there a deterministic
∼ basedU such that PU(�^F) > 0.

I Given (M,∼) and F set of states ofM, is there a deterministic
∼ basedU such that PU(^�F) = 1.

First undecidability results in qualitative verification of POMDP.

Probabilities and partial observation OUCL Verification seminar 9
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Emptiness for PBA=1

Theorem
The emptiness problem is decidable for almost-sure PBA.

Proof sketch
1. emptiness problem and almost-sure reachability are

interreducible for PBA

∃w, Pw
P
(�^F) = 1 ≡ ∃w, Pw

P
(^M) = 1

2. almost-sure reachability for POMDP is decidable

∃U ∼ based, PU
M

(^M) = 1

Skip proof
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Proof in more details: step 1

I ∃w, Pw
P
(^M) = 1 � ∃w, Pw

P
(�^F) = 1

Hint: F = M and add self loops on F with probability one

I ∃w, Pw
P
(�^F) = 1 � ∃w, Pw

P
(^M) = 1

∀w, Pw
P
(�^F) = 1⇐⇒ Pw

P′
(^M) = 1
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Proof in more details: step 2

Theorem
Given (M,∼) and F set of states of M, it is decidable whether there
exists an observation-basedU with PU(^M) = 1.

Idea: reduction to almost-sure reachability for MDP
From POMDP (M,∼) build MDPM′ by powerset construction with
additional final state F ′.

I if δ(r ,a) ∩ F = ∅: traditional powerset construction
I if δ(r ,a) ∩ F , ∅: go to F ′ with probability 1/2, rest of probability

mass uniformely distributed over non final successors

Probabilities and partial observation OUCL Verification seminar 12
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Framework [B. Genest Gimbert 09]

I two-player game
I partial observation on both sides

→ signals received by the players
I probability on next state given current one and players’ decisions
I qualitative objectives

Strategy for Player i
Based on initial distribution and sequence of signals received so far,
Player i chooses a distribution over actions.

Probabilities and partial observation OUCL Verification seminar 14
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Winning almost-surely and positively

Initial distribution δ, and strategy profile (σ, τ) induce a probability
measure Pδσ,τ(·) on maximal plays.

ϕ: objective of the game for Player 1 (e.g. reachability, Büchi).

I From δ, Player 1 wins almost-surely if ∃σ∀τ Pδσ,τ(ϕ) = 1.
I From δ, Player 1 wins positively if ∃σ∀τ Pδσ,τ(ϕ) > 0.
I From δ, Player 2 wins almost-surely if ∃τ∀σ Pδσ,τ(ϕ) = 0.
I From δ, Player 2 wins positively if ∃τ∀σ Pδσ,τ(ϕ) < 1.

Player i a.-s. or pos. winning from δ only depends on support:

Pδσ,τ(ϕ) =
∑
s∈S

δ(s) · P1s
σ,τ(ϕ)

Probabilities and partial observation OUCL Verification seminar 15
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Examples

Initial support: {1,2}.
Objective: reach t
Player 1 wins almost-surely.

Initial support: {1,2}.
Objective: reach t
Player 2 wins positively.
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Consequence of undecidability of PBA>0

Undecidability
Büchi games with positive probability (and co-Büchi games with prob-
ability one) are undecidable.

I 2-player Büchi games with positive probability generalize PBA>0
I randomness for free in POMDP [Chatterjee Doyen Gimbert Henzinger 10]
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Determinacy

Qualitative determinacy
In Büchi games, every initial distribution is
I almost-surely winning for Player 1, or
I positively winning for Player 2.

Implies qualitative determinacy for reachability objectives as well.

NB: co-Büchi games are not qualitatively determined. Details

Probabilities and partial observation OUCL Verification seminar 18
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Determinacy: Proof sketch

Belief: possible states of the game according to signals received

L ⊆ P(S): set of supports where Player 2 does not win positively

I for every L ∈ L, Player 1 has at least one safe action, i.e. can
stay in L

I σ strategy for Player 1 that, from L ∈ L selects (uniformly at
random) a safe set of actions for L and plays uniform distribution

I σ ensures to stay in L
I σ is almost-surely winning

I M = {s ∈ S | ∃τ P1s
σ,τ(�¬F) = 1}

I L ⊆ P(S \M)
I ∃N ∈N ∀s ∈ S \M ∀τ P1s

σ,τ(^F) > 1/N

Player 1 wins almost-surely from L ⊆ L, with belief-based strategy.

Probabilities and partial observation OUCL Verification seminar 19



Introduction Probabilistic ω-automata Stochastic games of imperfect information Conclusion

Determinacy: Proof sketch

Belief: possible states of the game according to signals received

L ⊆ P(S): set of supports where Player 2 does not win positively

I for every L ∈ L, Player 1 has at least one safe action, i.e. can
stay in L

I σ strategy for Player 1 that, from L ∈ L selects (uniformly at
random) a safe set of actions for L and plays uniform distribution

I σ ensures to stay in L
I σ is almost-surely winning

I M = {s ∈ S | ∃τ P1s
σ,τ(�¬F) = 1}

I L ⊆ P(S \M)
I ∃N ∈N ∀s ∈ S \M ∀τ P1s

σ,τ(^F) > 1/N

Player 1 wins almost-surely from L ⊆ L, with belief-based strategy.

Probabilities and partial observation OUCL Verification seminar 19



Introduction Probabilistic ω-automata Stochastic games of imperfect information Conclusion

Determinacy: Proof sketch

Belief: possible states of the game according to signals received

L ⊆ P(S): set of supports where Player 2 does not win positively

I for every L ∈ L, Player 1 has at least one safe action, i.e. can
stay in L

I σ strategy for Player 1 that, from L ∈ L selects (uniformly at
random) a safe set of actions for L and plays uniform distribution

I σ ensures to stay in L
I σ is almost-surely winning

I M = {s ∈ S | ∃τ P1s
σ,τ(�¬F) = 1}

I L ⊆ P(S \M)
I ∃N ∈N ∀s ∈ S \M ∀τ P1s

σ,τ(^F) > 1/N

Player 1 wins almost-surely from L ⊆ L, with belief-based strategy.

Probabilities and partial observation OUCL Verification seminar 19



Introduction Probabilistic ω-automata Stochastic games of imperfect information Conclusion

Determinacy: Proof sketch

Belief: possible states of the game according to signals received

L ⊆ P(S): set of supports where Player 2 does not win positively

I for every L ∈ L, Player 1 has at least one safe action, i.e. can
stay in L

I σ strategy for Player 1 that, from L ∈ L selects (uniformly at
random) a safe set of actions for L and plays uniform distribution

I σ ensures to stay in L
I σ is almost-surely winning

I M = {s ∈ S | ∃τ P1s
σ,τ(�¬F) = 1}

I L ⊆ P(S \M)
I ∃N ∈N ∀s ∈ S \M ∀τ P1s

σ,τ(^F) > 1/N

Player 1 wins almost-surely from L ⊆ L, with belief-based strategy.

Probabilities and partial observation OUCL Verification seminar 19



Introduction Probabilistic ω-automata Stochastic games of imperfect information Conclusion

Determinacy: Proof sketch

Belief: possible states of the game according to signals received

L ⊆ P(S): set of supports where Player 2 does not win positively

I for every L ∈ L, Player 1 has at least one safe action, i.e. can
stay in L

I σ strategy for Player 1 that, from L ∈ L selects (uniformly at
random) a safe set of actions for L and plays uniform distribution

I σ ensures to stay in L
I σ is almost-surely winning

I M = {s ∈ S | ∃τ P1s
σ,τ(�¬F) = 1}

I L ⊆ P(S \M)
I ∃N ∈N ∀s ∈ S \M ∀τ P1s

σ,τ(^F) > 1/N

Player 1 wins almost-surely from L ⊆ L, with belief-based strategy.

Probabilities and partial observation OUCL Verification seminar 19



Introduction Probabilistic ω-automata Stochastic games of imperfect information Conclusion

Determinacy: Proof sketch

Belief: possible states of the game according to signals received

L ⊆ P(S): set of supports where Player 2 does not win positively

I for every L ∈ L, Player 1 has at least one safe action, i.e. can
stay in L

I σ strategy for Player 1 that, from L ∈ L selects (uniformly at
random) a safe set of actions for L and plays uniform distribution

I σ ensures to stay in L
I σ is almost-surely winning

I M = {s ∈ S | ∃τ P1s
σ,τ(�¬F) = 1}

I L ⊆ P(S \M)

I ∃N ∈N ∀s ∈ S \M ∀τ P1s
σ,τ(^F) > 1/N

Player 1 wins almost-surely from L ⊆ L, with belief-based strategy.

Probabilities and partial observation OUCL Verification seminar 19



Introduction Probabilistic ω-automata Stochastic games of imperfect information Conclusion

Determinacy: Proof sketch

Belief: possible states of the game according to signals received

L ⊆ P(S): set of supports where Player 2 does not win positively

I for every L ∈ L, Player 1 has at least one safe action, i.e. can
stay in L

I σ strategy for Player 1 that, from L ∈ L selects (uniformly at
random) a safe set of actions for L and plays uniform distribution

I σ ensures to stay in L
I σ is almost-surely winning

I M = {s ∈ S | ∃τ P1s
σ,τ(�¬F) = 1}

I L ⊆ P(S \M)
I ∃N ∈N ∀s ∈ S \M ∀τ P1s

σ,τ(^F) > 1/N

Player 1 wins almost-surely from L ⊆ L, with belief-based strategy.

Probabilities and partial observation OUCL Verification seminar 19



Introduction Probabilistic ω-automata Stochastic games of imperfect information Conclusion

Determinacy: Proof sketch

Belief: possible states of the game according to signals received

L ⊆ P(S): set of supports where Player 2 does not win positively

I for every L ∈ L, Player 1 has at least one safe action, i.e. can
stay in L

I σ strategy for Player 1 that, from L ∈ L selects (uniformly at
random) a safe set of actions for L and plays uniform distribution

I σ ensures to stay in L
I σ is almost-surely winning

I M = {s ∈ S | ∃τ P1s
σ,τ(�¬F) = 1}

I L ⊆ P(S \M)
I ∃N ∈N ∀s ∈ S \M ∀τ P1s

σ,τ(^F) > 1/N

Player 1 wins almost-surely from L ⊆ L, with belief-based strategy.

Probabilities and partial observation OUCL Verification seminar 19



Introduction Probabilistic ω-automata Stochastic games of imperfect information Conclusion

Memory requirements

Player 1 needs exponential memory to win almost-surely.
→ has to remember belief states

Player 2 needs doubly exponential memory to win positively.
→ has to remember possible beliefs of Player 1

(beliefs of beliefs)

Probabilities and partial observation OUCL Verification seminar 20
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Deciding stochastic games with signals

Decidability and complexity
Deciding whether Player 1 almost-surely wins a reachability or Büchi
game is 2EXPTIME-complete.

I Player 1 better informed than Player 2: 2EXPTIME-complete
I Player 2 better informed than Player 1: EXPTIME-complete
I Player 1 perfectly informed: EXPTIME-complete
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Concluding remarks

More results on probabilistic ω-automata in [Baier B. Größer 12]

Results on stochastic games with signals very dependent on the
precise framework. E.g. for deterministic strategies or deterministic
memory updates, the memory size for Player 1 may be a tower of
exponential [Chatterjee Doyen]

Baier, B. and Größer. Probabilistic ω-automata. Journal of the ACM, 2012.
B., Genest and Gimbert. Qualitative determinacy and decidability of stochastic games
with signals. Proceedings of LICS, 2009.
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Detour: co-Büchi games

Co-Büchi games are not qualitatively determined.

Initial state: t
Player 1 perfectly informed
Player 2 blind

Objective: avoid t from some point on

I Player 1 has no almost-surely winning strategy
I Player 2 has no positively winning strategy

Back to main
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