Probabilities and partial observation

From probabilistic omega-automata to stochastic games of imperfect information

Nathalie Bertrand
Inria Rennes + Liverpool visitor
based on joint work with
Christel Baier \& Marcus Größer
Blaise Genest \& Hugo Gimbert

Motivation

Adversarial situations with

- probabilities: random choices, uncertainties, losses
- partial observation: distributed

Motivation

Adversarial situations with

- probabilities: random choices, uncertainties, losses
- partial observation: distributed

Monty Hall problem

Motivation

Adversarial situations with

- probabilities: random choices, uncertainties, losses
- partial observation: distributed

Monty Hall problem

Ethernet protocol: random choice slot, collisions, maximum nb of trials

Partially observable MDP

Partially Observable MDP

A POMDP (\mathcal{M}, \sim) consists of an MDP \mathcal{M} equipped with an equivalence relation \sim over states of \mathcal{M}.

Partially observable MDP

Partially Observable MDP

A POMDP (\mathcal{M}, \sim) consists of an MDP \mathcal{M} equipped with an equivalence relation \sim over states of \mathcal{M}.

Problems for POMDPs
Given a POMDP (\mathcal{M}, \sim), an LTL formula φ and $p \in[0,1]$
Question is there a \sim based scheduler \mathcal{U} with $\mathbb{P}_{\mathcal{U}}(\varphi) \bowtie p$?

Partially observable MDP

Partially Observable MDP

A POMDP (\mathcal{M}, \sim) consists of an MDP \mathcal{M} equipped with an equivalence relation \sim over states of \mathcal{M}.

Problems for POMDPs
Given a POMDP (\mathcal{M}, \sim), an LTL formula φ and $p \in[0,1]$
Question is there a \sim based scheduler \mathcal{U} with $\mathbb{P}_{\mathcal{U}}(\varphi) \bowtie p$?
State of the art (back in 2008)

- $\exists \mathcal{U} \sim$ based, $\mathbb{P}_{\mathcal{U}}(\square F)>0$ is EXPTIME-Comp. [de Alfaro 99]
- $\exists \mathcal{U} \sim$ based, $\mathbb{P}_{\mathcal{U}}(\diamond F) \bowtie p$ is undecidable [Giro D'Argenio 07]

$$
(p \in(0,1) \text { and } \bowtie \in\{\leq, \geq,=\})
$$

Outline

1. Introduction

(2) Probabilistic ω-automata

■ Examples and expressiveness

- Emptiness problem

Positive semantics (PBA>0)
Almost-sure semantics $\left(\mathrm{PBA}_{=1}\right)$
(3) Stochastic games of imperfect information

- Framework
- Qualitative determinacy
- Memory requirements
- Decidability
- Conclusion

Probabilistic Büchi-automata

Probabilistic Büchi Automata

NBA where nondeterminism is resolved by probabilities

$$
\begin{aligned}
& \mathcal{L}_{>0}(\mathcal{A})=\left\{w \in \Sigma^{\omega} \mid \mathbb{P}(\{\rho \in \operatorname{Runs}(w) \mid \rho \models \square \diamond F\})>0\right\} \\
& \mathcal{L}_{11}(\mathcal{A})=\left\{w \in \Sigma^{\omega} \mid \mathbb{P}(\{\rho \in \operatorname{Runs}(w) \mid \rho \models \square \diamond F\})=1\right\}
\end{aligned}
$$

Probabilistic Büchi Automata

NBA where nondeterminism is resolved by probabilities

$$
\begin{aligned}
& \mathcal{L}_{>0}(\mathcal{A})=\left\{w \in \Sigma^{\omega} \mid \mathbb{P}(\{\rho \in \operatorname{Runs}(w) \mid \rho \models \square \diamond F\})>0\right\} \\
& \mathcal{L}_{11}(\mathcal{A})=\left\{w \in \Sigma^{\omega} \mid \mathbb{P}(\{\rho \in \operatorname{Runs}(w) \mid \rho \models \square \diamond F\})=1\right\}
\end{aligned}
$$

PBA are POMDP with trivial equivalence relation: $\forall p, q p \sim q$.
word for PBA \equiv deterministic blind scheduler for MDP

Probabilistic Büchi-automata

Probabilistic Büchi Automata

NBA where nondeterminism is resolved by probabilities

$$
\begin{aligned}
& \mathcal{L}_{>0}(\mathcal{A})=\left\{w \in \Sigma^{\omega} \mid \mathbb{P}(\{\rho \in \operatorname{Runs}(w) \mid \rho \models \square \diamond F\})>0\right\} \\
& \mathcal{L}_{11}(\mathcal{A})=\left\{w \in \Sigma^{\omega} \mid \mathbb{P}(\{\rho \in \operatorname{Runs}(w) \mid \rho \models \square \diamond F\})=1\right\}
\end{aligned}
$$

Example 1

$$
\begin{aligned}
& \mathcal{L}_{>0}=(a+b)^{*} a^{\omega}=\mathcal{L}_{\text {NBA }} \\
& \mathcal{L}_{=1}=b^{*} a^{\omega}
\end{aligned}
$$

Probabilistic Büchi Automata

NBA where nondeterminism is resolved by probabilities

$$
\begin{aligned}
\mathcal{L}_{>0}(\mathcal{A}) & =\left\{w \in \Sigma^{\omega} \mid \mathbb{P}(\{\rho \in \operatorname{Runs}(w) \mid \rho \models \square \diamond F\})>0\right\} \\
\mathcal{L}_{1}(\mathcal{A}) & =\left\{w \in \Sigma^{\omega} \mid \mathbb{P}(\{\rho \in \operatorname{Runs}(w) \mid \rho \models \square \diamond F\})=1\right\}
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& \mathcal{L}_{\text {NBA }}=\left((a c)^{*}(a b)\right)^{\omega} \\
& \mathcal{L}_{>0}=(a b+a c)^{*}(a b)^{\omega} \\
& \mathcal{L}_{=1}=(a b)^{\omega}
\end{aligned}
$$

Probabilistic Büchi-automata

Probabilistic Büchi Automata

NBA where nondeterminism is resolved by probabilities

$$
\begin{aligned}
& \mathcal{L}_{>0}(\mathcal{A})=\left\{w \in \Sigma^{\omega} \mid \mathbb{P}(\{\rho \in \operatorname{Runs}(w) \mid \rho \models \square \diamond F\})>0\right\} \\
& \mathcal{L}_{1}(\mathcal{A})=\left\{w \in \Sigma^{\omega} \mid \mathbb{P}(\{\rho \in \operatorname{Runs}(w) \mid \rho \models \square \diamond F\})=1\right\}
\end{aligned}
$$

Example 3

$$
\begin{aligned}
& \mathcal{L}_{\text {NBA }}=(a b+a c)^{\omega} \\
& \mathcal{L}_{>0}=\mathcal{L}_{=1}=\emptyset
\end{aligned}
$$

Expressiveness: PBA vs NBA

Expressiveness

$\mathrm{PBA}_{>0}$ are more expressive than NBA. $P B A=1$ and NBA are incomparable.

Expressiveness: PBA vs NBA

Expressiveness

$P B A_{>0}$ are more expressive than NBA.
$P B A=1$ and NBA are incomparable.

- any NBA can be turned into an equivalent PBA
\rightarrow first turn NBA into an equivalent one deterministic in the limit
- example of a $\mathrm{PBA}_{>0}$ whose language is not ω-regular

$$
\left.\mathcal{L}=\left\{a^{k_{1}} b a^{k_{2}} b \cdots \left\lvert\, \prod_{i}\left(1-\frac{1}{2}^{k_{i}}\right)>0\right.\right)\right\}
$$

Expressiveness: PBA vs NBA

Expressiveness

$\mathrm{PBA}_{>0}$ are more expressive than NBA.
$P B A=1$ and NBA are incomparable.

Probabilities matter

$$
\left.\mathcal{L}\left(\mathcal{P}_{\lambda}\right)=\left\{a^{k_{1}} b a^{k_{2}} b \cdots \mid \prod_{i}\left(1-\lambda^{k_{i}}\right)>0\right)\right\}
$$

Probabilities matter

$$
\left.\mathcal{L}\left(\mathcal{P}_{\lambda}\right)=\left\{a^{k_{1}} b a^{k_{2}} b \cdots \mid \prod_{i}\left(1-\lambda^{k_{i}}\right)>0\right)\right\}
$$

Lemma
For $0<\lambda<\mu<1, \mathcal{L}\left(\mathcal{P}_{\lambda}\right) \supsetneq \mathcal{L}\left(\mathcal{P}_{\mu}\right)$.

Emptiness for PBA>0

Theorem

The emptiness problem is undecidable for PBA.

Emptiness for $\mathrm{PBA}_{>0}$

Theorem

The emptiness problem is undecidable for PBA.

Proof sketch
Reduction of the modified emptiness problem for PFA

$$
\begin{aligned}
& \mathcal{R} \text { PFA with }\left\{\begin{array}{l}
\forall w \mathbb{P}_{\mathcal{R}}(w) \leq \varepsilon \\
\exists w \mathbb{P}_{\mathcal{R}}(w)>1-\varepsilon
\end{array} \quad\right. \text { or } \\
& \quad \downarrow \\
& \mathcal{P}_{1} \text { and } \mathcal{P}_{2} \text { PBA s.t. } \\
& \mathcal{L}^{>\varepsilon}(\mathcal{R})=\emptyset \quad \Leftrightarrow \quad \mathcal{L}\left(\mathcal{P}_{1}\right) \cap \mathcal{L}\left(\mathcal{P}_{2}\right)=\emptyset
\end{aligned}
$$

Consequences for POMDP

Undecidability results for POMDP

The following problems are undecidable

- Given (\mathcal{M}, \sim) and F set of states of \mathcal{M}, is there a deterministic \sim based \mathcal{U} such that $\mathbb{P}_{\mathcal{U}}(\square \diamond F)>0$.
- Given (\mathcal{M}, \sim) and F set of states of \mathcal{M}, is there a deterministic \sim based \mathcal{U} such that $\mathbb{P}_{\mathcal{U}}(\diamond \square F)=1$.

Consequences for POMDP

Undecidability results for POMDP

The following problems are undecidable

- Given (\mathcal{M}, \sim) and F set of states of \mathcal{M}, is there a deterministic \sim based \mathcal{U} such that $\mathbb{P}_{\mathcal{U}}(\square \diamond F)>0$.
- Given (\mathcal{M}, \sim) and F set of states of \mathcal{M}, is there a deterministic \sim based \mathcal{U} such that $\mathbb{P}_{\mathcal{U}}(\diamond \square F)=1$.

First undecidability results in qualitative verification of POMDP.

Emptiness for $\mathrm{PBA}_{=1}$

Theorem

The emptiness problem is decidable for almost-sure PBA.

Emptiness for $\mathrm{PBA}_{=1}$

Theorem

The emptiness problem is decidable for almost-sure PBA.

Proof sketch

1. emptiness problem and almost-sure reachability are interreducible for PBA

$$
\exists w, \mathbb{P}_{\mathcal{P}}^{w}(\square \diamond F)=1 \equiv \exists w, \mathbb{P}_{\mathcal{P}}^{w}(\diamond M)=1
$$

Emptiness for $\mathrm{PBA}_{=1}$

Theorem

The emptiness problem is decidable for almost-sure PBA.

Proof sketch

1. emptiness problem and almost-sure reachability are interreducible for PBA

$$
\exists w, \mathbb{P}_{\mathcal{P}}^{w}(\square \diamond F)=1 \equiv \exists w, \mathbb{P}_{\mathcal{P}}^{w}(\diamond M)=1
$$

2. almost-sure reachability for POMDP is decidable

$$
\exists \mathcal{U} \sim \text { based, } \mathbb{P}_{\mathcal{M}}^{\mathcal{U}}(\diamond M)=1
$$

Proof in more details: step 1

- $\exists w, \mathbb{P}_{\mathcal{P}}^{w}(\diamond M)=1 \ll \exists w, \mathbb{P}_{\mathcal{P}}^{w}(\square \diamond F)=1$ Hint: $F=M$ and add self loops on F with probability one

Proof in more details: step 1

- $\exists w, \mathbb{P}_{\mathcal{P}}^{w}(\diamond M)=1 \ll \exists w, \mathbb{P}_{\mathcal{P}}^{w}(\square \diamond F)=1$

Hint: $F=M$ and add self loops on F with probability one

- $\exists w, \mathbb{P}_{\mathcal{P}}^{w}(\square \diamond F)=1 \ll \exists w, \mathbb{P}_{\mathcal{P}}^{w}(\diamond M)=1$

Reduction:

$$
\forall w, \mathbb{P}_{\mathcal{P}}^{w}(\square \diamond F)=1 \Longleftrightarrow \mathbb{P}_{\mathcal{P}^{\prime}}^{w}(\diamond M)=1
$$

Proof in more details: step 2

Theorem

Given (\mathcal{M}, \sim) and F set of states of \mathcal{M}, it is decidable whether there exists an observation-based \mathcal{U} with $\mathbb{P}_{\mathcal{U}}(\diamond M)=1$.

Proof in more details: step 2

Theorem

Given (\mathcal{M}, \sim) and F set of states of \mathcal{M}, it is decidable whether there exists an observation-based \mathcal{U} with $\mathbb{P}_{\mathcal{U}}(\diamond M)=1$.

Idea: reduction to almost-sure reachability for MDP
From POMDP (\mathcal{M}, \sim) build MDP \mathcal{M}^{\prime} by powerset construction with additional final state F^{\prime}.

- if $\delta(r, a) \cap F=\emptyset$: traditional powerset construction
- if $\delta(r, a) \cap F \neq \emptyset$: go to F^{\prime} with probability $1 / 2$, rest of probability mass uniformely distributed over non final successors

Outline

1) Introduction

(2) Probabilistic ω-automata

- Examples and expressiveness
- Emptiness problem Positive semantics (PBA>o) Almost-sure semantics (PBA=1)
(3) Stochastic games of imperfect information

■ Framework

- Qualitative determinacy
- Memory requirements

■ Decidability
(4) Conclusion

Framework

- two-player game
- partial observation on both sides
\rightarrow signals received by the players
- probability on next state given current one and players' decisions
- qualitative objectives

Framework

- two-player game
- partial observation on both sides
\rightarrow signals received by the players
- probability on next state given current one and players' decisions
- qualitative objectives

Strategy for Player i

Based on initial distribution and sequence of signals received so far, Player i chooses a distribution over actions.

Winning almost-surely and positively

Initial distribution δ, and strategy profile (σ, τ) induce a probability measure $\mathbb{P}_{\sigma, \tau}^{\delta}(\cdot)$ on maximal plays.

Winning almost-surely and positively

Initial distribution δ, and strategy profile (σ, τ) induce a probability measure $\mathbb{P}_{\sigma, \tau}^{\delta}(\cdot)$ on maximal plays.
φ : objective of the game for Player 1 (e.g. reachability, Büchi).

- From δ, Player 1 wins almost-surely if $\exists \sigma \forall \tau \mathbb{P}_{\sigma, \tau}^{\delta}(\varphi)=1$.
- From δ, Player 1 wins positively if $\exists \sigma \forall \tau \mathbb{P}_{\sigma, \tau}^{\delta}(\varphi)>0$.
- From δ, Player 2 wins almost-surely if $\exists \tau \forall \sigma \mathbb{P}_{\sigma, \tau}^{\delta}(\varphi)=0$.
- From δ, Player 2 wins positively if $\exists \tau \forall \sigma \mathbb{P}_{\sigma, \tau}^{\delta}(\varphi)<1$.

Winning almost-surely and positively

Initial distribution δ, and strategy profile (σ, τ) induce a probability measure $\mathbb{P}_{\sigma, \tau}^{\delta}(\cdot)$ on maximal plays.
φ : objective of the game for Player 1 (e.g. reachability, Büchi).

- From δ, Player 1 wins almost-surely if $\exists \sigma \forall \tau \mathbb{P}_{\sigma, \tau}^{\delta}(\varphi)=1$.
- From δ, Player 1 wins positively if $\exists \sigma \forall \tau \mathbb{P}_{\sigma, \tau}^{\delta}(\varphi)>0$.
- From δ, Player 2 wins almost-surely if $\exists \tau \forall \sigma \mathbb{P}_{\sigma, \tau}^{\delta}(\varphi)=0$.
- From δ, Player 2 wins positively if $\exists \tau \forall \sigma \mathbb{P}_{\sigma, \tau}^{\delta}(\varphi)<1$.

Player i a.-s. or pos. winning from δ only depends on support:

$$
\mathbb{P}_{\sigma, \tau}^{\delta}(\varphi)=\sum_{s \in S} \delta(s) \cdot \mathbb{P}_{\sigma, \tau}^{1_{s}}(\varphi)
$$

Examples

Initial support: $\{1,2\}$. Objective: reach t Player 1 wins almost-surely.

Examples

Initial support: $\{1,2\}$. Objective: reach t Player 1 wins almost-surely.

Initial support: $\{1,2\}$. Objective: reach t Player 2 wins positively.

Consequence of undecidability of $\mathrm{PBA}_{>0}$

Undecidability

Büchi games with positive probability (and co-Büchi games with probability one) are undecidable.

- 2-player Büchi games with positive probability generalize PBA>0
- randomness for free in POMDP [Chatterjee Doyen Gimbert Henzinger 10]

Determinacy

Qualitative determinacy

In Büchi games, every initial distribution is

- almost-surely winning for Player 1, or
- positively winning for Player 2.

Determinacy

Qualitative determinacy

In Büchi games, every initial distribution is

- almost-surely winning for Player 1, or
- positively winning for Player 2.

Implies qualitative determinacy for reachability objectives as well.
NB: co-Büchi games are not qualitatively determined.

Determinacy: Proof sketch

Belief: possible states of the game according to signals received

Determinacy: Proof sketch

Belief: possible states of the game according to signals received
$\mathcal{L} \subseteq \mathcal{P}(S)$: set of supports where Player 2 does not win positively

Determinacy: Proof sketch

Belief: possible states of the game according to signals received
$\mathcal{L} \subseteq \mathcal{P}(S)$: set of supports where Player 2 does not win positively

- for every $L \in \mathcal{L}$, Player 1 has at least one safe action, i.e. can stay in \mathcal{L}
- σ strategy for Player 1 that, from $L \in \mathcal{L}$ selects (uniformly at random) a safe set of actions for L and plays uniform distribution

Determinacy: Proof sketch

Belief: possible states of the game according to signals received
$\mathcal{L} \subseteq \mathcal{P}(S)$: set of supports where Player 2 does not win positively

- for every $L \in \mathcal{L}$, Player 1 has at least one safe action, i.e. can stay in \mathcal{L}
- σ strategy for Player 1 that, from $L \in \mathcal{L}$ selects (uniformly at random) a safe set of actions for L and plays uniform distribution
- σ ensures to stay in \mathcal{L}
- σ is almost-surely winning

Determinacy: Proof sketch

Belief: possible states of the game according to signals received
$\mathcal{L} \subseteq \mathcal{P}(S)$: set of supports where Player 2 does not win positively

- for every $L \in \mathcal{L}$, Player 1 has at least one safe action, i.e. can stay in \mathcal{L}
- σ strategy for Player 1 that, from $L \in \mathcal{L}$ selects (uniformly at random) a safe set of actions for L and plays uniform distribution
- σ ensures to stay in \mathcal{L}
- σ is almost-surely winning

$$
\rightarrow M=\left\{s \in S \mid \exists \tau \mathbb{P}_{\sigma, \tau}^{1, s}(\square \neg F)=1\right\}
$$

Determinacy: Proof sketch

Belief: possible states of the game according to signals received
$\mathcal{L} \subseteq \mathcal{P}(S)$: set of supports where Player 2 does not win positively

- for every $L \in \mathcal{L}$, Player 1 has at least one safe action, i.e. can stay in \mathcal{L}
- σ strategy for Player 1 that, from $L \in \mathcal{L}$ selects (uniformly at random) a safe set of actions for L and plays uniform distribution
- σ ensures to stay in \mathcal{L}
- σ is almost-surely winning
- $M=\left\{s \in S \mid \exists \tau \mathbb{P}_{\sigma, \tau}^{1 s}(\square \neg F)=1\right\}$
- $\mathcal{L} \subseteq \mathcal{P}(S \backslash M)$

Determinacy: Proof sketch

Belief: possible states of the game according to signals received
$\mathcal{L} \subseteq \mathcal{P}(S)$: set of supports where Player 2 does not win positively

- for every $L \in \mathcal{L}$, Player 1 has at least one safe action, i.e. can stay in \mathcal{L}
- σ strategy for Player 1 that, from $L \in \mathcal{L}$ selects (uniformly at random) a safe set of actions for L and plays uniform distribution
- σ ensures to stay in \mathcal{L}
- σ is almost-surely winning
- $M=\left\{s \in S \mid \exists \tau \mathbb{P}_{\sigma, \tau}^{1 s}(\square \neg F)=1\right\}$
- $\mathcal{L} \subseteq \mathcal{P}(S \backslash M)$
- $\exists N \in \mathbb{N} \forall s \in S \backslash M \forall \tau \mathbb{P}_{\sigma, \tau}^{1_{s}}(\diamond F)>1 / N$

Determinacy: Proof sketch

Belief: possible states of the game according to signals received
$\mathcal{L} \subseteq \mathcal{P}(S)$: set of supports where Player 2 does not win positively

- for every $L \in \mathcal{L}$, Player 1 has at least one safe action, i.e. can stay in \mathcal{L}
- σ strategy for Player 1 that, from $L \in \mathcal{L}$ selects (uniformly at random) a safe set of actions for L and plays uniform distribution
- σ ensures to stay in \mathcal{L}
- σ is almost-surely winning

$$
\begin{aligned}
- & M=\left\{s \in S \mid \exists \tau \mathbb{P}_{\sigma, \tau}^{1 s}(\square \neg F)=1\right\} \\
- & \mathcal{Z} \subseteq \mathcal{P}(S \backslash M) \\
\cdot & \exists N \in \mathbb{N} \forall s \in S \backslash M \forall \tau \mathbb{P}_{\sigma, \tau}^{1 s}(\diamond F)>1 / N
\end{aligned}
$$

Player 1 wins almost-surely from $L \subseteq \mathcal{L}$, with belief-based strategy.

Memory requirements

Player 1 needs exponential memory to win almost-surely.
\rightarrow has to remember belief states

Player 2 needs doubly exponential memory to win positively.
\rightarrow has to remember possible beliefs of Player 1 (beliefs of beliefs)

Deciding stochastic games with signals

Decidability and complexity

Deciding whether Player 1 almost-surely wins a reachability or Büchi game is 2EXPTIME-complete.

Deciding stochastic games with signals

Decidability and complexity

Deciding whether Player 1 almost-surely wins a reachability or Büchi game is 2EXPTIME-complete.

- Player 1 better informed than Player 2: 2EXPTIME-complete
- Player 2 better informed than Player 1: EXPTIME-complete
- Player 1 perfectly informed: EXPTIME-complete

Concluding remarks

More results on probabilistic ω-automata in [Baier B. Größer 12]
Results on stochastic games with signals very dependent on the precise framework. E.g. for deterministic strategies or deterministic memory updates, the memory size for Player 1 may be a tower of exponential [Chatterjee Doyen]

Concluding remarks

More results on probabilistic ω-automata in [Baier B. Größer 12]
Results on stochastic games with signals very dependent on the precise framework. E.g. for deterministic strategies or deterministic memory updates, the memory size for Player 1 may be a tower of exponential [Chatterjee Doyen]

Baier, B. and Größer. Probabilistic ω-automata. Journal of the ACM, 2012.
B., Genest and Gimbert. Qualitative determinacy and decidability of stochastic games with signals. Proceedings of LICS, 2009.

Detour: co-Büchi games

Co-Büchi games are not qualitatively determined.

Initial state: t
Player 1 perfectly informed
Player 2 blind

Objective: avoid t from some point on

- Player 1 has no almost-surely winning strategy
- Player 2 has no positively winning strategy

