On Decision Problems for Probabilistic Büchi Automata

Christel Baier ${ }^{1}$, Nathalie Bertrand ${ }^{2}$, Marcus Größer ${ }^{1}$

${ }^{1}$ TU Dresden, Germany
${ }^{2}$ IRISA, INRIA Rennes, France

Cachan - 05 février 2008

Probabilistic Büchi Automata [Baier, Größer 05]

PBA $=$ NBA with probabilities instead of non-determinism

Probabilistic Büchi Automata [Baier, Größer 05]

PBA $=$ NBA with probabilities instead of non-determinism

$$
\mathcal{L}(\mathcal{A})=\left\{w \in \Sigma^{\omega} \mid \exists \rho \in \operatorname{Runs}(w) \text { with } \rho \models \square \diamond F\right\}
$$

Probabilistic Büchi Automata [Baier, Größer 05]

PBA $=$ NBA with probabilities instead of non-determinism

$$
\begin{gathered}
\mathcal{L}(\mathcal{A})=\left\{w \in \Sigma^{\omega} \mid \mathbb{P}_{\mathcal{A}}(\{\rho \in \operatorname{Runs}(w) \mid \rho \models \square \diamond F\})>0\right\} \\
\mathcal{L}_{\mathrm{NBA}}(\mathcal{A})=(a+b)^{*} a^{\omega}=\mathcal{L}_{\mathrm{PBA}}(\mathcal{A})
\end{gathered}
$$

Probabilistic Büchi Automata [Baier, Größer 05]

PBA $=$ NBA with probabilities instead of non-determinism

Probabilistic Büchi Automata [Baier, Größer 05]

PBA $=$ NBA with probabilities instead of non-determinism

$$
\mathcal{L}_{\mathrm{NBA}}(\mathcal{A})=(a b+a c)^{\omega} \text { and } \mathcal{L}_{\mathrm{PBA}}(\mathcal{A})=\emptyset
$$

Expressiveness: PBA vs DBA

PBA are strictly more expressive than DBA

- any DBA \mathcal{A} can be turned into a PBA \mathcal{P}

Expressiveness: PBA vs DBA

PBA are strictly more expressive than DBA

- any DBA \mathcal{A} can be turned into a PBA \mathcal{P}
- there is a PBA whose language can't be recognized by a DBA

Expressiveness: PBA vs NBA

PBA are strictly more expressive than NBA

- any NBA \mathcal{A} can be turned into a PBA \mathcal{P}

Trick: replace \mathcal{A} by an equivalent NBA deterministic in the limit

Expressiveness: PBA vs NBA

PBA are strictly more expressive than NBA

- any NBA \mathcal{A} can be turned into a PBA \mathcal{P}

Trick: replace \mathcal{A} by an equivalent NBA deterministic in the limit

- there is a PBA whose language can't be recognized by an NBA

Outline

(1) Introduction

(2) Complementation
(3) Emptiness problem

- Langage dependency on probabilities
- Undecidability of emptiness
(4) Alternative semantics
- Expressivity
- Emptiness problem
(5) Conclusion

Complementation

Theorem

For each PBA \mathcal{P} there exists a PBA \mathcal{P}^{\prime} with $\left|\mathcal{P}^{\prime}\right|=\mathcal{O}(\exp (|\mathcal{P}|)$ such that $\mathcal{L}\left(\mathcal{P}^{\prime}\right)=\Sigma^{\omega} \backslash \mathcal{L}(\mathcal{P})$.
Moreover, \mathcal{P}^{\prime} can be effectively constructed from \mathcal{P}.

Complementation

Theorem

For each PBA \mathcal{P} there exists a PBA \mathcal{P}^{\prime} with $\left|\mathcal{P}^{\prime}\right|=\mathcal{O}(\exp (|\mathcal{P}|)$ such that $\mathcal{L}\left(\mathcal{P}^{\prime}\right)=\Sigma^{\omega} \backslash \mathcal{L}(\mathcal{P})$.
Moreover, \mathcal{P}^{\prime} can be effectively constructed from \mathcal{P}.

Proof Scheme

$$
\mathcal{P} \text { PBA } \longrightarrow \quad \mathcal{P}_{R} 0 / 1-\text { PRA with } \mathcal{L}\left(\mathcal{P}_{R}\right)=\mathcal{L}(\mathcal{P})
$$

0/1-PRA: Probabilistic Rabin Automaton s.t. all words have acceptance probability in $\{0,1\}$

Complementation

Theorem

For each PBA \mathcal{P} there exists a PBA \mathcal{P}^{\prime} with $\left|\mathcal{P}^{\prime}\right|=\mathcal{O}(\exp (|\mathcal{P}|)$ such that $\mathcal{L}\left(\mathcal{P}^{\prime}\right)=\Sigma^{\omega} \backslash \mathcal{L}(\mathcal{P})$.
Moreover, \mathcal{P}^{\prime} can be effectively constructed from \mathcal{P}.

Proof Scheme

$$
\begin{aligned}
\mathcal{P} \text { PBA } & \longrightarrow \mathcal{P}_{R} 0 / 1-\mathrm{PRA} \text { with } \mathcal{L}\left(\mathcal{P}_{R}\right)=\mathcal{L}(\mathcal{P}) \\
& \longrightarrow \mathcal{P}_{S} 0 / 1-\mathrm{PSA} \text { with } \mathcal{L}\left(\mathcal{P}_{S}\right)=\Sigma^{\omega} \backslash \mathcal{L}\left(\mathcal{P}_{R}\right)
\end{aligned}
$$

0/1-PSA: Probabilistic Strett Automaton s.t. all words have acceptance probability in $\{0,1\}$

Complementation

Theorem

For each PBA \mathcal{P} there exists a PBA \mathcal{P}^{\prime} with $\left|\mathcal{P}^{\prime}\right|=\mathcal{O}(\exp (|\mathcal{P}|)$ such that $\mathcal{L}\left(\mathcal{P}^{\prime}\right)=\Sigma^{\omega} \backslash \mathcal{L}(\mathcal{P})$.
Moreover, \mathcal{P}^{\prime} can be effectively constructed from \mathcal{P}.
Proof Scheme
\mathcal{P} PBA $\longrightarrow \mathcal{P}_{R} 0 / 1-$ PRA with $\mathcal{L}\left(\mathcal{P}_{R}\right)=\mathcal{L}(\mathcal{P})$
$\longrightarrow \quad \mathcal{P}_{S} 0 / 1-$ PSA with $\mathcal{L}\left(\mathcal{P}_{S}\right)=\Sigma^{\omega} \backslash \mathcal{L}\left(\mathcal{P}_{R}\right)$
$\longrightarrow \quad \overline{\mathcal{P}}$ PBA with $\mathcal{L}(\overline{\mathcal{P}})=\mathcal{L}\left(\mathcal{P}_{S}\right)$

Complementation

Theorem

For each PBA \mathcal{P} there exists a PBA \mathcal{P}^{\prime} with $\left|\mathcal{P}^{\prime}\right|=\mathcal{O}(\exp (|\mathcal{P}|)$ such that $\mathcal{L}\left(\mathcal{P}^{\prime}\right)=\Sigma^{\omega} \backslash \mathcal{L}(\mathcal{P})$.
Moreover, \mathcal{P}^{\prime} can be effectively constructed from \mathcal{P}.

Proof Scheme

$$
\begin{aligned}
\mathcal{P} \text { PBA } & \longrightarrow \mathcal{P}_{R} 0 / 1 \text {-PRA with } \mathcal{L}\left(\mathcal{P}_{R}\right)=\mathcal{L}(\mathcal{P}) \\
& \longrightarrow \mathcal{P}_{S} 0 / 1-\mathrm{PSA} \text { with } \mathcal{L}\left(\mathcal{P}_{S}\right)=\Sigma^{\omega} \backslash \mathcal{L}\left(\mathcal{P}_{R}\right) \\
& \overline{\mathcal{P}} \text { PBA with } \mathcal{L}(\overline{\mathcal{P}})=\mathcal{L}\left(\mathcal{P}_{S}\right)
\end{aligned}
$$

Difficult step: PBA \longrightarrow equivalent 0/1-PRA

Complementation: First step in details

- From \mathcal{P} build an equivalent 0/1-PRA.

Construction idea: Organize the infinite computation tree into a finite-state automaton by merging runs meeting at some point.

Complementation: First step in details

- From \mathcal{P} build an equivalent 0/1-PRA.

Construction idea: Organize the infinite computation tree into a finite-state automaton by merging runs meeting at some point.

States: tuples $\left\langle p_{1}, \xi_{1}, \cdots, p_{k}, \xi_{k}, R\right\rangle$
$p_{i} \in Q$ pairwise distinct, $\xi_{i} \in\{0,1\}$ and $R \subseteq Q$.

- R-component: usual powerset construction
- p_{i} state witnessing sample runs
- ξ_{i} bit indicating whether the last step is a proper \mathcal{P}-transition

Complementation: First step in details

- From \mathcal{P} build an equivalent 0/1-PRA.

Construction idea: Organize the infinite computation tree into a finite-state automaton by merging runs meeting at some point.

States: tuples $\left\langle p_{1}, \xi_{1}, \cdots, p_{k}, \xi_{k}, R\right\rangle$
$p_{i} \in Q$ pairwise distinct, $\xi_{i} \in\{0,1\}$ and $R \subseteq Q$.

- R-component: usual powerset construction
- p_{i} state witnessing sample runs
- ξ_{i} bit indicating whether the last step is a proper \mathcal{P}-transition

Rabin condition: for some index j, the j-th run visits F infinitely often and from some point on the attached bit is 0 .

Complementation: First step in details (2)

Possible a-successors of $\bar{p}=\left\langle p_{1}, \xi_{1}, \cdots, p_{k}, \xi_{k}, R\right\rangle$:

$$
\bar{q}=\left\langle q_{1}, \zeta_{1}, \cdots, q_{k}, \zeta_{k}, q_{k+1}, \zeta_{k+1} \cdots q_{m}, \zeta_{m}, S\right\rangle
$$

1. $q_{i} \in \delta\left(p_{i}, a\right)$ for $1 \leq i \leq k$
2. $\left\{q_{k+1}, \cdots, q_{m}\right\}=(\delta(R, a) \cap F) \backslash\left\{q_{1}, \cdots, q_{k}\right\}$
3. $\zeta_{1}=\cdots=\zeta_{k}=0$ and $\zeta_{k+1}=\cdots=\zeta_{m}=1$
4. $S=\delta(R, a)$

Complementation: First step in details (2)

Possible a-successors of $\bar{p}=\left\langle p_{1}, \xi_{1}, \cdots, p_{k}, \xi_{k}, R\right\rangle$:

$$
\bar{q}=\left\langle q_{1}, \zeta_{1}, \cdots, q_{k}, \zeta_{k}, q_{k+1}, \zeta_{k+1} \cdots q_{m}, \zeta_{m}, S\right\rangle
$$

1. $q_{i} \in \delta\left(p_{i}, a\right)$ for $1 \leq i \leq k$
2. $\left\{q_{k+1}, \cdots, q_{m}\right\}=(\delta(R, a) \cap F) \backslash\left\{q_{1}, \cdots, q_{k}\right\}$
3. $\zeta_{1}=\cdots=\zeta_{k}=0$ and $\zeta_{k+1}=\cdots=\zeta_{m}=1$
4. $S=\delta(R, a)$
$\mathbb{P}_{\mathrm{PRA}}(\rho)>0 \quad \Leftrightarrow \quad \mathbb{P}_{\mathrm{PBA}}(\rho)>0 \quad \Leftrightarrow \quad \mathbb{P}_{\mathrm{PRA}}(\rho)=1$

Complementation: First step in details (2)

Possible a-successors of $\bar{p}=\left\langle p_{1}, \xi_{1}, \cdots, p_{k}, \xi_{k}, R\right\rangle$:

$$
\bar{q}=\left\langle q_{1}, \zeta_{1}, \cdots, q_{k}, \zeta_{k}, q_{k+1}, \zeta_{k+1} \cdots q_{m}, \zeta_{m}, S\right\rangle
$$

1. $q_{i} \in \delta\left(p_{i}, a\right)$ for $1 \leq i \leq k$
2. $\left\{q_{k+1}, \cdots, q_{m}\right\}=(\delta(R, a) \cap F) \backslash\left\{q_{1}, \cdots, q_{k}\right\}$
3. $\zeta_{1}=\cdots=\zeta_{k}=0$ and $\zeta_{k+1}=\cdots=\zeta_{m}=1$
4. $S=\delta(R, a)$
$\mathbb{P}_{\mathrm{PRA}}(\rho)>0 \quad \Leftrightarrow \quad \mathbb{P}_{\mathrm{PBA}}(\rho)>0 \quad \Leftrightarrow \quad \mathbb{P}_{\mathrm{PRA}}(\rho)=1$
Example

$$
\mathcal{L}(\mathcal{P})=(a+b)^{*} a^{\omega}
$$

Complementation: First step in details (3)

$\longrightarrow q, 0,\{q\}$

Complementation: First step in details (3)

Complementation: First step in details (3)

Complementation: First step in details (3)

Complementation: First step in details (3)

Complementation: First step in details (3)

Outline

(1) Introduction

(2) Complementation

(3) Emptiness problem

- Langage dependency on probabilities
- Undecidability of emptiness

4 Alternative semantics

- Expressivity
- Emptiness problem
(5) Conclusion

A weird example

$$
\left.\mathcal{L}\left(\mathcal{P}_{\lambda}\right)=\left\{a^{k_{1}} b a^{k_{2}} b \cdots \mid \prod_{i}\left(1-\lambda^{k_{i}}\right)>0\right)\right\}
$$

A weird example

Lemma

For $0<\lambda<\frac{1}{2}<\mu<1, \quad \mathcal{L}\left(\mathcal{P}_{\lambda}\right) \neq \mathcal{L}\left(\mathcal{P}_{\mu}\right)$.
Hint $w=a^{k_{1}} b a^{k_{2}} b \cdots$ with for all $m, 2^{m}$ elements of $\left(k_{i}\right)$ set to m.

$$
\longrightarrow w \in \mathcal{L}\left(\mathcal{P}_{\lambda}\right) \backslash \mathcal{L}\left(\mathcal{P}_{\mu}\right)
$$

An undecidable problem for PFA

The emptiness problem is undecidable for Probabilistic Finite Automata (as well as some variants).

An undecidable problem for PFA

The emptiness problem is undecidable for Probabilistic Finite Automata (as well as some variants).

Undecidability result for PFA [MHC03]

The following problem is undecidable:
Given $0<\varepsilon<1$ and \mathcal{P} a PFA such that

- either $\exists w \mathbb{P}_{\mathcal{P}}(w)>1-\varepsilon$
- or $\forall w \mathbb{P}_{\mathcal{P}}(w) \leq \varepsilon$
tell which is the case.

Emptiness problem for PBA

Theorem

The emptiness problem is undecidable for PBA.

Emptiness problem for PBA

Theorem
The emptiness problem is undecidable for PBA.

Proof Sketch
Reduction of the modified emptiness problem for PFA

Emptiness problem for PBA

Theorem

The emptiness problem is undecidable for PBA.

Proof Sketch

Reduction of the modified emptiness problem for PFA

$$
\begin{aligned}
& \mathcal{R} \text { PFA with }\left\{\begin{array}{l}
\forall w \mathbb{P}_{\mathcal{R}}(w) \leq \varepsilon \\
\exists w \mathbb{P}_{\mathcal{R}}(w)>1-\varepsilon
\end{array} \quad\right. \text { or } \\
& \quad \downarrow \\
& \mathcal{P}_{1} \text { and } \mathcal{P}_{2} \text { PBA s.t. } \\
& \mathcal{L}^{>\varepsilon}(\mathcal{R})=\emptyset \quad \Leftrightarrow \quad \mathcal{L}\left(\mathcal{P}_{1}\right) \cap \mathcal{L}\left(\mathcal{P}_{2}\right)=\emptyset
\end{aligned}
$$

Proof in more details: \mathcal{P}_{1}

$$
\left.\mathcal{L}\left(\mathcal{P}_{\lambda}\right)=\left\{a^{k_{1}} b a^{k_{2}} b \cdots \mid \prod_{i}\left(1-\lambda^{k_{i}}\right)>0\right)\right\}
$$

Proof in more details: \mathcal{P}_{1}

$$
\left.\mathcal{L}\left(\mathcal{P}_{\lambda}\right)=\left\{a^{k_{1}} b a^{k_{2}} b \cdots \mid \prod_{i}\left(1-\lambda^{k_{i}}\right)>0\right)\right\}
$$

From s_{0} in \mathcal{R}_{q}, reading $w \#$ leads to \mathcal{R}_{r} with probability $\mathbb{P}_{\mathcal{R}}(w)$.

$$
a \longrightarrow w \quad \lambda \longrightarrow 1-\mathbb{P}_{\mathcal{R}}(w) \quad b \longrightarrow \$ \$
$$

Proof in more details: \mathcal{P}_{1}

$$
\left.\mathcal{L}\left(\mathcal{P}_{\lambda}\right)=\left\{a^{k_{1}} b a^{k_{2}} b \cdots \mid \prod_{i}\left(1-\lambda^{k_{i}}\right)>0\right)\right\}
$$

From s_{0} in \mathcal{R}_{q}, reading $w \#$ leads to \mathcal{R}_{r} with probability $\mathbb{P}_{\mathcal{R}}(w)$.

$$
\begin{gathered}
a \longrightarrow w \quad \lambda \longrightarrow 1-\mathbb{P}_{\mathcal{R}}(w) \quad b \longrightarrow \$ \$ \\
\mathcal{L}\left(\mathcal{P}_{1}\right)=\left\{w_{1}^{1} \# \cdots w_{k_{1}}^{1} \$ \$ w_{1}^{2} \# \cdots w_{k_{2}}^{2} \$ \$ \cdots \mid\right. \\
\left.\prod_{j}\left(1-\left(\prod_{i=1}^{k_{j}-1}\left(1-\mathbb{P}_{\mathcal{R}}\left(w_{i}^{j}\right)\right)\right)\right)>0\right\}
\end{gathered}
$$

Proof in more details: \mathcal{P}_{2}

From p_{0}, reading $v \in(\Sigma \cup\{\#\})^{*}$ leads to p_{1} with probability $1-(1-\varepsilon)^{\left|v_{i}\right| \#}$

Proof in more details: \mathcal{P}_{2}

From p_{0}, reading $v \in(\Sigma \cup\{\#\})^{*}$ leads to p_{1} with probability $1-(1-\varepsilon)^{\left|v_{i}\right| \#}$

$$
\begin{aligned}
& \mathcal{L}\left(\mathcal{P}_{2}\right)=\left\{v_{1} \$ \$ v_{2} \$ \$ \cdots \mid\right. \\
&\left.v_{i} \in(\Sigma \cup)^{*} \text { and } \prod_{i}\left(1-(1-\varepsilon)^{\left|v_{i}\right| \#}\right)=0\right\}
\end{aligned}
$$

Proof in more details: \mathcal{P}_{2}

From p_{0}, reading $v \in(\Sigma \cup\{\#\})^{*}$ leads to p_{1} with probability $1-(1-\varepsilon)^{\left|v_{i}\right| \#}$

$$
\begin{aligned}
\mathcal{L}\left(\mathcal{P}_{2}\right)= & \left\{w_{1}^{1} \# \cdots w_{k_{1}}^{1} \$ \$ w_{1}^{2} \# \cdots w_{k_{2}}^{2} \$ \$ \cdots \mid\right. \\
& \left.\prod_{i}\left(1-(1-\varepsilon)^{k_{i}-1}\right)=0\right\}
\end{aligned}
$$

Proof conclusion

- $\mathcal{L}\left(\mathcal{P}_{1}\right)=\left\{w_{1}^{1} \# \cdots w_{k_{1}}^{1} \$ \$ w_{1}^{2} \# \cdots w_{k_{2}}^{2} \$ \$ \cdots \mid \Pi_{j}\left(1-\left(\prod_{i=1}^{k_{j}-1}\left(1-\mathbb{P}_{\mathcal{R}}\left(w_{i}^{j}\right)\right)\right)\right)>0\right\}$
- $\mathcal{L}\left(\mathcal{P}_{2}\right)=\left\{w_{1}^{1} \# \cdots w_{k_{1}}^{1} \$ \$ w_{1}^{2} \# \cdots w_{k_{2}}^{2} \$ \$ \cdots \mid \prod_{i}\left(1-(1-\varepsilon)^{k_{i}-1}\right)=0\right\}$

Proof conclusion

- $\mathcal{L}\left(\mathcal{P}_{1}\right)=\left\{w_{1}^{1} \# \cdots w_{k_{1}}^{1} \$ \$ w_{1}^{2} \# \cdots w_{k_{2}}^{2} \$ \$ \cdots \mid \prod_{j}\left(1-\left(\prod_{i=1}^{k_{j}-1}\left(1-\mathbb{P}_{\mathcal{R}}\left(w_{i}^{j}\right)\right)\right)\right)>0\right\}$
- $\mathcal{L}\left(\mathcal{P}_{2}\right)=\left\{w_{1}^{1} \# \cdots w_{k_{1}}^{1} \$ \$ w_{1}^{2} \# \cdots w_{k_{2}}^{2} \$ \$ \cdots \mid \prod_{i}\left(1-(1-\varepsilon)^{k_{i}-1}\right)=0\right\}$

If $\forall w, \mathbb{P}_{\mathcal{R}}(w) \leq \varepsilon$
$\forall \tilde{w}, \tilde{w} \in \mathcal{L}\left(\mathcal{P}_{2}\right) \Rightarrow \tilde{w} \notin \mathcal{L}\left(\mathcal{P}_{1}\right)$

$$
\Longrightarrow \mathcal{L}\left(\mathcal{P}_{1}\right) \cap \mathcal{L}\left(\mathcal{P}_{2}\right)=\emptyset
$$

Proof conclusion

- $\mathcal{L}\left(\mathcal{P}_{1}\right)=\left\{w_{1}^{1} \# \cdots w_{k_{1}}^{1} \$ \$ w_{1}^{2} \# \cdots w_{k_{2}}^{2} \$ \$ \cdots \mid \prod_{j}\left(1-\left(\prod_{i=1}^{k_{j}-1}\left(1-\mathbb{P}_{\mathcal{R}}\left(w_{i}^{j}\right)\right)\right)\right)>0\right\}$
- $\mathcal{L}\left(\mathcal{P}_{2}\right)=\left\{w_{1}^{1} \# \cdots w_{k_{1}}^{1} \$ \$ w_{1}^{2} \# \cdots w_{k_{2}}^{2} \$ \$ \cdots \mid \prod_{i}\left(1-(1-\varepsilon)^{k_{i}-1}\right)=0\right\}$

If $\forall w, \mathbb{P}_{\mathcal{R}}(w) \leq \varepsilon$ $\forall \tilde{w}, \tilde{w} \in \mathcal{L}\left(\mathcal{P}_{2}\right) \Rightarrow \tilde{w} \notin \mathcal{L}\left(\mathcal{P}_{1}\right)$

$$
\Longrightarrow \mathcal{L}\left(\mathcal{P}_{1}\right) \cap \mathcal{L}\left(\mathcal{P}_{2}\right)=\emptyset
$$

If $\exists w, \mathbb{P}_{\mathcal{R}}(w)>1-\varepsilon$

$$
\text { Let } \tilde{w}=(w \#)^{k_{1}} w \$ \$(w \#)^{k_{2}} w \$ \$ \cdots
$$

$$
\mathbb{P}_{\mathcal{P}_{1}}(\tilde{w})>\prod_{j}\left(1-\varepsilon^{k_{j}-1}\right) \text { and } \mathbb{P}_{\mathcal{P}_{2}}(\tilde{w})=\prod_{i}\left(1-(1-\varepsilon)^{k_{i}-1}\right)
$$

$$
\Longrightarrow \mathcal{L}\left(\mathcal{P}_{1}\right) \cap \mathcal{L}\left(\mathcal{P}_{2}\right) \neq \emptyset
$$

Proof conclusion

- $\mathcal{L}\left(\mathcal{P}_{1}\right)=\left\{w_{1}^{1} \# \cdots w_{k_{1}}^{1} \$ \$ w_{1}^{2} \# \cdots w_{k_{2}}^{2} \$ \$ \cdots \mid \prod_{j}\left(1-\left(\prod_{i=1}^{k_{j}-1}\left(1-\mathbb{P}_{\mathcal{R}}\left(w_{i}^{j}\right)\right)\right)\right)>0\right\}$
- $\mathcal{L}\left(\mathcal{P}_{2}\right)=\left\{w_{1}^{1} \# \cdots w_{k_{1}}^{1} \$ \$ w_{1}^{2} \# \cdots w_{k_{2}}^{2} \$ \$ \cdots \mid \prod_{i}\left(1-(1-\varepsilon)^{k_{i}-1}\right)=0\right\}$

If $\forall w, \mathbb{P}_{\mathcal{R}}(w) \leq \varepsilon$
$\forall \tilde{w}, \quad \tilde{w} \in \mathcal{L}\left(\mathcal{P}_{2}\right) \Rightarrow \tilde{w} \notin \mathcal{L}\left(\mathcal{P}_{1}\right)$

$$
\Longrightarrow \mathcal{L}\left(\mathcal{P}_{1}\right) \cap \mathcal{L}\left(\mathcal{P}_{2}\right)=\emptyset
$$

If $\exists w, \mathbb{P}_{\mathcal{R}}(w)>1-\varepsilon$

$$
\text { Let } \tilde{w}=(w \#)^{k_{1}} w \$ \$(w \#)^{k_{2}} w \$ \$ \ldots
$$

$$
\mathbb{P}_{\mathcal{P}_{1}}(\tilde{w})>\prod_{j}\left(1-\varepsilon^{k_{j}-1}\right) \text { and } \mathbb{P}_{\mathcal{P}_{2}}(\tilde{w})=\prod_{i}\left(1-(1-\varepsilon)^{k_{i}-1}\right)
$$

$$
\Longrightarrow \mathcal{L}\left(\mathcal{P}_{1}\right) \cap \mathcal{L}\left(\mathcal{P}_{2}\right) \neq \emptyset
$$

$$
\mathcal{L}^{>\varepsilon}(\mathcal{R})=\emptyset \quad \Leftrightarrow \quad \mathcal{L}\left(\mathcal{P}_{1}\right) \cap \mathcal{L}\left(\mathcal{P}_{2}\right)=\emptyset
$$

PBA-related Consequences

Immediate consequences of the undecidability result.

Corollary

The following problems are undecidable. Given \mathcal{P}_{1} and \mathcal{P}_{2} PBA
$-\mathcal{L}\left(\mathcal{P}_{1}\right)=\Sigma^{\omega}$? $\bullet \mathcal{L}\left(\mathcal{P}_{1}\right)=\mathcal{L}\left(\mathcal{P}_{2}\right)$? $\bullet \mathcal{L}\left(\mathcal{P}_{1}\right) \subseteq \mathcal{L}\left(\mathcal{P}_{2}\right)$?

PBA-related Consequences

Immediate consequences of the undecidability result.

Corollary

The following problems are undecidable. Given \mathcal{P}_{1} and \mathcal{P}_{2} PBA
$-\mathcal{L}\left(\mathcal{P}_{1}\right)=\Sigma^{\omega}$? $\bullet \mathcal{L}\left(\mathcal{P}_{1}\right)=\mathcal{L}\left(\mathcal{P}_{2}\right)$? $\bullet \mathcal{L}\left(\mathcal{P}_{1}\right) \subseteq \mathcal{L}\left(\mathcal{P}_{2}\right)$?

Verification against PBA specifications

The following problems are undecidable. Given a transition system T and a PBA \mathcal{P}

- is there a path in T whose trace is in $\mathcal{L}(\mathcal{P})$?
- do the traces of all paths in T belong to $\mathcal{L}(\mathcal{P})$?

Consequences for POMDP

Partially Observable MDP

A POMDP (\mathcal{M}, \sim) consists of an MDP \mathcal{M} equipped with an equivalence relation \sim over states of \mathcal{M}.

Consequences for POMDP

Partially Observable MDP

A POMDP (\mathcal{M}, \sim) consists of an MDP \mathcal{M} equipped with an equivalence relation \sim over states of \mathcal{M}.

Undecidability results

The following problems are undecidable

- Given (\mathcal{M}, \sim) and F set of states of \mathcal{M}, is there an observation-based \mathcal{U} such that $\mathbb{P}_{\mathcal{U}}(\square \diamond F)>0$.
- Given (\mathcal{M}, \sim) and F set of states of \mathcal{M}, is there an observation-based \mathcal{U} such that $\mathbb{P}_{\mathcal{U}}(\diamond \square F)=1$.

Consequences for POMDP

Partially Observable MDP

A POMDP (\mathcal{M}, \sim) consists of an MDP \mathcal{M} equipped with an equivalence relation \sim over states of \mathcal{M}.

Undecidability results

The following problems are undecidable

- Given (\mathcal{M}, \sim) and F set of states of \mathcal{M}, is there an observation-based \mathcal{U} such that $\mathbb{P}_{\mathcal{U}}(\square \diamond F)>0$.
- Given (\mathcal{M}, \sim) and F set of states of \mathcal{M}, is there an observation-based \mathcal{U} such that $\mathbb{P}_{\mathcal{U}}(\diamond \square F)=1$.

First undecidability results in qualitative verification of POMDP.

Outline

(1) Introduction

(2) Complementation

(3) Emptiness problem

- Langage dependency on probabilities
- Undecidability of emptiness

4 Alternative semantics

- Expressivity
- Emptiness problem
(5) Conclusion

Almost-sure semantics for PBA

Alternative semantics

$$
L(\mathcal{A})=\left\{w \in \Sigma^{\omega} \mid \mathbb{P}_{\mathcal{A}}(\{\rho \in \operatorname{Runs}(w) \mid \rho \models \square \diamond F\})=1\right\}
$$

Almost-sure semantics for PBA

Alternative semantics

$$
L(\mathcal{A})=\left\{w \in \Sigma^{\omega} \mid \mathbb{P}_{\mathcal{A}}(\{\rho \in \operatorname{Runs}(w) \mid \rho \models \square \diamond F\})=1\right\}
$$

Expressivity

- almost-sure PBA are strictly less expressive than PBA
- almost-sure PBA and ω-regular languages are incomparable
- almost-sure PBA are not closed under complementation

Recap: expressivity

Emptiness problem and related results

Decidability result for POMDP

Almost-sure reachability in POMDP is decidable (EXPTIME).

Emptiness problem and related results

Decidability result for POMDP

Almost-sure reachability in POMDP is decidable (EXPTIME).

Corollary

The emptiness problem is decidable for almost-sure PBA.
Proof Sketch

- for PBA almost-sure reachability and almost-sure repeated reachability are interreducible
- PBA are a special instance of POMDP

Outline

(1) Introduction
(2) Complementation
(3) Emptiness problem

- Langage dependency on probabilities
- Undecidability of emptiness

4 Alternative semantics

- Expressivity
- Emptiness problem
(5) Conclusion

Conclusion

Results concerning PBA

- complementation operator
- emptiness (and related problems) undecidable for PBA
- expressivity of almost-sure PBA
- emptiness decidable for almost-sure PBA

Conclusion

Results concerning PBA

- complementation operator
- emptiness (and related problems) undecidable for PBA
- expressivity of almost-sure PBA
- emptiness decidable for almost-sure PBA

Results concerning POMDP

- positive repeated reachability undecidable for POMDP
- almost-sure reachability decidable for POMDP

Conclusion

Results concerning PBA

- complementation operator
- emptiness (and related problems) undecidable for PBA
- expressivity of almost-sure PBA
- emptiness decidable for almost-sure PBA

Results concerning POMDP

- positive repeated reachability undecidable for POMDP
- almost-sure reachability decidable for POMDP

Open questions

- emptiness problem for PBA with small alphabet
- efficient transformation from LTL to PBA

Thank you for your attention!

Questions?

