Controlling a population

Nathalie Bertrand

Inria Rennes

joint work with Miheer Dewaskar (ex CMI student), Blaise Genest (IRISA) and Hugo Gimbert (LaBRI)

Open Problems in Concurrency Theory, IST

Motivation

Control of gene expression for a population of cells

credits: G. Batt

Motivation

Control of gene expression for a population of cells

credits: G. Batt

- cell population
- gene expression monitored through fluorescence level
- drug injections affect all cells
- response varies from cell to cell
- obtain a large proportion of cells with desired gene expression level

Motivation

Control of gene expression for a population of cells

credits: G. Batt

- cell population
- gene expression monitored through fluorescence level
- drug injections affect all cells
- response varies from cell to cell
- obtain a large proportion of cells with desired gene expression level

- arbitrary nb of components
- full observation
- uniform control
- MDP model for single cell
- global quantitative reachability objective

IST, Klosterneuburg OPCT, June 2017- 2/ 15

- ▶ population of N identical MDP M
- uniform control policy under full observation

- ▶ population of N identical MDP M
- uniform control policy under full observation

config: # copies in each state

- ▶ population of N identical MDP M
- uniform control policy under full observation

config: # copies in each state

- ▶ population of N identical MDP \mathcal{M}
- uniform control policy under full observation

config: # copies in each state

Verification question does the maximum probability that a given proportion of MDPs reach a target set of states meet a threshold for all population sizes ?

- ▶ population of N identical MDP M
- uniform control policy under full observation

config: # copies in each state

Verification question does the maximum probability that a given proportion of MDPs reach a target set of states meet a threshold for all population sizes ?

$$\forall N \max_{\sigma} \mathbb{P}_{\sigma}(\mathcal{M}^{N} \models \diamond \text{ at least 80\% of MDPs in } \mathsf{F}) \geq .7?$$

Challenge

Objective: design experimental protocol to obtain a large proportion of cells with desired gene expression level

Challenge

Objective: design experimental protocol to obtain a large proportion of cells with desired gene expression level

Formalisation:

$$\forall N \max_{\sigma} \mathbb{P}_{\sigma}(\mathcal{M}^{N} \models \diamond \geq 80\% \text{ in } \mathsf{F}) \geq .7?$$

Challenge

Objective: design experimental protocol to obtain a large proportion of cells with desired gene expression level

Formalisation:

 $\forall N \max_{\sigma} \mathbb{P}_{\sigma}(\mathcal{M}^{N} \models \diamond \geq 80\% \text{ in } \mathsf{F}) \geq .7?$

- ▶ trivial proportion: 100%
- qualitative probabilities (almost-sure)...

- ▶ trivial proportion: 100%
- qualitative probabilities (almost-sure)... or even no probabilities!

- ▶ trivial proportion: 100%
- qualitative probabilities (almost-sure)... or even no probabilities!

controller chooses the action (e.g. a)

- ▶ trivial proportion: 100%
- qualitative probabilities (almost-sure)... or even no probabilities!

- controller chooses the action (e.g. a)
- adversary chooses how to move each individual copy (a-transition)

- ▶ trivial proportion: 100%
- qualitative probabilities (almost-sure)... or even no probabilities!

- controller chooses the action (e.g. a)
- adversary chooses how to move each individual copy (a-transition)

- ▶ trivial proportion: 100%
- qualitative probabilities (almost-sure)... or even no probabilities!

- controller chooses the action (e.g. a)
- adversary chooses how to move each individual copy (a-transition)

- ▶ trivial proportion: 100%
- qualitative probabilities (almost-sure)... or even no probabilities!

- controller chooses the action (e.g. a)
- adversary chooses how to move each individual copy (a-transition)

Question can one control the population to ensure that for all non-deterministic choices all NFAs simultaneously reach a target set? Controlling a population of NFA – Nathalie Bertrand IST, Klosterneuburg OPCT, June 2017–5/15

Parameterized control

Objective: design experimental protocol to obtain all cells with desired gene expression level in the worst-case

Parameterized control

Objective: design experimental protocol to obtain all cells with desired gene expression level in the worst-case

Formalisation:

 $\forall N \exists \sigma \forall \tau (\mathcal{A}^N, \sigma, \tau) \models \Diamond F^N?$

Parameterized control

Objective: design experimental protocol to obtain all cells with desired gene expression level in the worst-case

Formalisation:

 $\forall N \exists \sigma \forall \tau \ (\mathcal{A}^N, \sigma, \tau) \models \Diamond F^N?$

Monotonicity property and cutoff

Monotonicity property: the larger N, the harder for controller

 $\exists \sigma \ \forall \tau(\mathcal{A}^{N}, \sigma, \tau) \models \Diamond F^{N} \implies \forall M \leq N \ \exists \sigma \ \forall \tau(\mathcal{A}^{M}, \sigma, \tau) \models \Diamond F^{M}$

Monotonicity property and cutoff

Monotonicity property: the larger N, the harder for controller

$$\exists \sigma \ \forall \tau(\mathcal{A}^{N}, \sigma, \tau) \models \Diamond F^{N} \implies \forall M \leq N \ \exists \sigma \ \forall \tau(\mathcal{A}^{M}, \sigma, \tau) \models \Diamond F^{M}$$

Cutoff: smallest N for which controller has no winning strategy

Monotonicity property and cutoff

Monotonicity property: the larger N, the harder for controller

$$\exists \sigma \ \forall \tau(\mathcal{A}^{N}, \sigma, \tau) \models \Diamond F^{N} \implies \forall M \leq N \ \exists \sigma \ \forall \tau(\mathcal{A}^{M}, \sigma, \tau) \models \Diamond F^{M}$$

Cutoff: smallest N for which controller has no winning strategy

unspecified edges lead to a sink state

winning σ if N < Mplay *b* then a_i s.t. q_i is empty

winning τ for N = Malways fill all q_i 's

cutoff is M

∀N ≤ 2^M, ∃σ, A^N ⊨ ∀_σ ◊ F^N accumulate copies in bottom states, then u/d to converge
 for N > 2^M controller cannot avoid reaching the sink state
 Cutoff O(2^{|A|})

Combined with a counter, cutoff is even doubly exponential!

A natural attempt: the support game

Assumption: if state 2 or 4 is empty, controller wins

A natural attempt: the support game

Assumption: if state 2 or 4 is empty, controller wins

Support game:
□ Eve chooses action

♦ Adam chooses transfer graph (footprint of copies' moves)

A natural attempt: the support game

Assumption: if state 2 or 4 is empty, controller wins

Support game:
□ Eve chooses action

♦ Adam chooses transfer graph (footprint of copies' moves)

If Eve wins support game then controller has a winning strategy for all N

Controlling a population of NFA - Nathalie Bertrand

IST, Klosterneuburg OPCT, June 2017- 9/ 15

- controller alternates a and b;
- adversary always fills q_2 and q_4 in the *b*-step

- controller alternates a and b;
- adversary always fills q_2 and q_4 in the *b*-step

- controller alternates a and b;
- adversary always fills q_2 and q_4 in the *b*-step

- controller alternates a and b;
- adversary always fills q_2 and q_4 in the *b*-step

- controller alternates a and b;
- adversary always fills q_2 and q_4 in the *b*-step

Play in support game is not realisable: Controller wins with $(ab)^{\omega}$!

- controller alternates a and b ;
- adversary always fills q_2 and q_4 in the *b*-step

Play in support game is not realisable: Controller wins with $(ab)^{\omega}$! Memoryless support-based controllers are not enough! Exponential memory on top of support may even be needed.

Finite capacity play: all accumulators have finitely many entries Bounded capacity play: finite bound on *#* entries for accumulators

Finite capacity play: all accumulators have finitely many entries Bounded capacity play: finite bound on *#* entries for accumulators

Bounded capacity

- corresponds to realizable plays
- does not seem to be regular

Finite capacity play: all accumulators have finitely many entries Bounded capacity play: finite bound on *#* entries for accumulators

Bounded capacity

- corresponds to realizable plays
- does not seem to be regular

Capacity game: Eve wins a play if either it reaches a subset of F, or it does not have finite capacity.

Finite capacity play: all accumulators have finitely many entries Bounded capacity play: finite bound on *#* entries for accumulators

Bounded capacity

- corresponds to realizable plays
- does not seem to be regular

Capacity game: Eve wins a play if either it reaches a subset of F, or it does not have finite capacity.

Eve wins capacity game iff Controller has a winning strategy for all N

Naive solution

- set of plays with infinite capacity is ω-regular non-deterministic Büchi automaton guesses an accumulator, and checks it has infinitely many entries
- winning condition can be determinized into parity condition exponential blowup

Naive solution 2EXPTIME procedure in the size of NFA ${\cal A}$

Naive solution 2EXPTIME procedure in the size of NFA ${\cal A}$

Better solution EXPTIME procedure

G separates pair (t, x)

Naive solution 2EXPTIME procedure in the size of NFA ${\cal A}$

Better solution EXPTIME procedure

 $x \rightarrow y$ enters accumulator from q

G separates pair (t, x)

Parity game:

capacity game enriched with list of separation graphs priorities reflect how the list evolves

states = (simply!) exponential in $|\mathcal{A}| = \#$ priorities = polynomial in $|\mathcal{A}|$

Naive solution 2EXPTIME procedure in the size of NFA ${\cal A}$

 $x \rightarrow y$ enters accumulator from q

G separates pair (t, x)

Parity game:

capacity game enriched with list of separation graphs priorities reflect how the list evolves

Н

states = (simply!) exponential in $|\mathcal{A}| = \#$ priorities = polynomial in $|\mathcal{A}|$

Parity game is equivalent to capacity game.

Naive solution 2EXPTIME procedure in the size of NFA ${\cal A}$

 $x \rightarrow y$ enters accumulator from q

G separates pair (t, x)

Parity game:

capacity game enriched with list of separation graphs priorities reflect how the list evolves

states = (simply!) exponential in $|\mathcal{A}| = \#$ priorities = polynomial in $|\mathcal{A}|$

Parity game is equivalent to capacity game.

Theorem:

The population control problem is EXPTIME-complete.

Controlling a population of NFA - Nathalie Bertrand

IST, Klosterneuburg OPCT, June 2017-12/15

Summary of results

Uniform control of a population of identical NFA

- ▶ parameterized control problem: gather all copies in F
- (surprisingly) quite involved!
- tight results for complexity, cutoff, and memory
 - complexity: EXPTIME-complete decision problem
 - bound on cutoff: doubly exponential
 - memory requirement: exponential memory (orthogonal to supports) is needed and sufficient for controller

To appear at Concur'17

Back to motivations

Control of gene expression for a population of cells

credits: G. Batt

probabilities

proportions

parameter

control

Back to motivations

Control of gene expression for a population of cells

credits: G. Batt

probabilities

proportions

parameter

control

need for truely probabilistic model
 MDP instead of NFA

need for truely quantitative questions
 proportions and probabilities instead of sure convergence

$$\forall N \max_{\sigma} \mathbb{P}_{\sigma}(\mathcal{M}^{N} \models \diamond \text{ at least 80\% of MDPs in F }) \geq .7?$$

Thanks!