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Motivation
Control of gene expression for a population of cells

credits: G. Batt

I cell population
I gene expression monitored

through fluorescence level
I drug injections affect all cells
I response varies from cell to cell
I obtain a large proportion of cells

with desired gene expression level

I arbitrary nb of components
I full observation

I uniform control
I MDP model for single cell
I global quantitative

reachability objective
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Markov decision processes

F

a,1/
2

a,1/2

b

a
b

b
a,b I non-deterministic actions: {a, b}

I prob. distribution over successors

Scheduler σ : S+ → Σ resolves non-determinism
induces Markov chain with probability measure Pσ

Theorem: reachability checking for MDP
The following problems are in PTIME
∃σ, Pσ(3F ) = 1? ∃σ, Pσ(3F ) > .7? compute maxσ Pσ(3F ).
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Back to our motivating application

Control of gene expression for a population of cells

credits: G. Batt

I arbitrary nb of components
I full observation
I uniform control
I MDP model for single cell
I global quantitative

reachability objective
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Modelling

I population of N identical MDP M
I uniform control policy under full observation

F

a,1/
2

a,1/2

b

a

b
a
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a,b

a,1/4

a,1/
2

a,1/2

b

a

b
a

b

a,b

Verification question does the maximum probability that a given
proportion of MDPs reach a target set of states meet a threshold?

Fixed N: build the product MDP MN , identify global target states,
compute optimal scheduler
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Parameterized verification

Verification question does the maximum probability that a given
proportion of MDPs reach a target set of states meet a threshold?

Parameter N: check the global objective for all population sizes N

∀N max
σ

Pσ(MN |= 3 at least 80% of MDPs in F )≥ .7?

Restricted cases
I qualitative: almost-sure convergence

∀N max
σ

Pσ(MN |= 3F N)= 1?

I Boolean: sure convergence

∀N ∃σ, MN |= ∀σ3F N?
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This talk

Problem setting
I Boolean parameterized verification questions
I uniform control for population of NFA ≡ 2-player turn-based game

I controller chooses the action (e.g. a)
I opponent chooses how to move each individual copy (a-transition)

I convergence objective: all copies in a target set F ⊆ Q

∀N ∃σ, MN |= ∀σ3F N?

∀N ∃σ, ∀τ, (MN , σ, τ) |= 3F N?

Questions addressed
I decidability
I memory requirements for controller σ
I admissible values for N
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Monotonicity property

a

a

b

a

b
a

b

a,b

∀N ∃σ, MN |= ∀σ3F N?

Monotonicity: harder when N grows

∃σ, MN |= ∀σ3F N =⇒ ∀M ≤ N, ∃σ, MM |= ∀σ3F M

Cutoff: smallest N for which there is no admissible controller σ
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A first example and a first question

F

a

a

b

a

b
a

b

a,b

∀N, ∃σ, MN |= ∀σ3F N

σ(k, 0, 0, ?) = a σ(0, ku, kd , ?) = a σ(0, 0, kd , ?) = b
memoryless support-based controllers suffice on this example

Question 1 Are memoryless support-based controllers enough in general?
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A second example and a second question

A = {a1, · · · , aM} unspecified edges lead to a sink state

q1

...

qM

F

b

b

b
A\a1

A\aM

b

A∪{b}

∀N < M, ∃σ, MN |= ∀σ3F N

Cutoff min{N | ∀σ, MN 6|= ∀σ3F N} here O(|M|)

Question 2 Are cutoffs always polynomial in |M|?
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A first answer

a

a

a

a

b

b

b

b

b

Assumption: if at least one state is empty, the controller ensures convergence
gadget similar to previous example with actions {a1, · · · , a4}

Possible controllers
I always a: deterministic behaviour, full support is maintained
I always b: splitting the copies in third state allows opponent to win
I a and b in alternation: leak from first/second states to third

Memoryless support-based controllers are not enough!
Exponential memory on top of support may even be needed.
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A second answer

F

··· 2M bottom states
(here 6)

a

a

b

u

d

d

u

c

b

c

a,b,c

u,d u,d u,d

a,b,c

I ∀N ≤ 2M , ∃σ, MN |= ∀σ3F N

accumulate copies in bottom states, then u/d to converge
I for N > 2M controller cannot avoid reaching the sink state

Cutoff O(2|M|)

Cutoff can even be doubly exponential!
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Lessons learnt so far

Boolean problem is harder than expected

I supports are not enough
I doubly exponential lower bound on cutoffs

somehow prevents from building the product MDP

I the more copies the harder, the larger support the harder
I looking at whether supports can be maintained seems promising
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Support game

1 2 3 4
a

a

a

a

b

b

b

b

b

2-player game on possible supports
I 2 Eve chooses action
I 3 Adam chooses transfer relation

1,2,3,4

1,3,4

1,2,3

a b

simple winning condition for Eve: reach {F}
→ sufficient condition, not sound in general
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Refined winning condition

Intuition: allow Eve to monitor some copies and pinpoint leaks
→ along a play only finitely many leaks are possible

Play ρ = S0
a1−→ R1−→ S1 · · · winning for Eve if there exists (Ti )i∈N s.t.

(1) ∀i , ∅ 6= Ti ⊆ Si

(2) ∀i , Pre[Ri+1](Ti+1) ⊆ Ti

(3) ∃∞j , Tj+1 ( Post[Rj+1](Tj)

1,2,3,4
a b

Si

Si+1

Si+2

b

a

w

w

w

Eve wins support game with refined winning condition iff
∀N controller has a strategy to reach winning supports
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Solving support game w. refined winning condition

Transformation into 2-player partial observation game
with Büchi winning condition

I exponential blowup of game arena
states (S,T ) for all possible T ⊆ S

I Adam shall not observe the subsets monitored by Eve
he only observes S-component of state (S,T )

Theorem: Decidability and complexity (still to be checked)
Boolean parameterized convergence is decidable in 3EXPTIME.
Cutoff is at most triply exponential in |M|.

Theorem: (far from matching) Lower-bounds
PSPACE-hardness for Boolean parameterized convergence.
Doubly exponential lower-bound on the cutoff.
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Contributions

Uniform control of a population of identical MDP
I parameterized verification problem
I Boolean convergence: bring all MDP at the same time in F

I surprisingly quite involved!
I beyond support-based optimal controllers
I 3EXPTIME-decision procedure
I cutoff between doubly exponential and triply exponential
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Back to motivations
Motivation 1: practical motivation

Control of gene expression for a population of cells

credits: G. Batt

I need for truely probabilistic model
→ MDP instead of NFA

I need for truely quantitative questions
→ proportions and probabilities instead of convergence and
(almost)-sure

∀N max
σ

Pσ(MN |= 3 at least 80% of MDPs in F )≥ .7?
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Back to motivations
Motivation 2: theoretical motivation

Discrete approximation of probabilistic automata

a,1/2

b

a,1/2 a

a,1/2

b

a,1/2 a

Arguable: optimal reachability probability not continuous when N →∞

F
a,1/

2

a,1/2

b u

d

d

u
b

a,b

I ∀N,∃σ, Pσ(3F N) = 1.
I In the PA, the maximum

probability to reach F is .5.

Good news? hope for alternative more decidable semantics for PA
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Thanks for your attention!
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