Control, probabilities and partial observation

Nathalie Bertrand
Inria Rennes Bretagne Atlantique

MOVEP 2016, Genova
(1) Probabilistic automata

- Presentation
- Stochastic languages
- Decision problems
(2) Partially observable MDP
- Presentation
- POMDP analysis
- Application to control for fault diagnosis
(3) Conclusion
(1) Probabilistic automata
- Presentation
- Stochastic languages
- Decision problems
(2) Partially observable MDP
- Presentation
- POMDP analysis
- Application to control for fault diagnosis

(3) Conclusion

(1) Probabilistic automata

- Presentation
- Stochastic languages
- Decision problems
(2) Partially observable MDP
- Presentation
- POMDP analysis
- Application to control for fault diagnosis
(3) Conclusion

An introductive example

Holiday planning

1. Choose and airline type lowcost or highcost ;
2. Book an accommodation on the internet or by phone;
3. Choose a tour seeall or missnothing.

Each action

- must be planned before holidays;
- may fail with some probability.

A possible plan: lowcost \cdot internet \cdot seeall

Example formalisation

The success probability of lowcost • internet • seeall is equal to $\frac{27}{64}$.

Probabilistic automata

Probabilistic automata

A PA $\mathcal{A}=\left(Q, A,\left\{\mathbf{P}_{a}\right\}_{a \in A}, \pi_{0}, F\right)$ is defined by:

- Q, a finite set of states;

$$
\begin{array}{r}
Q=\left\{q_{0}, q_{1}\right\} \\
A=\{a, b\}
\end{array}
$$

- A, a finite alphabet of actions;
- for every $a \in A$, a stochastic matrix \mathbf{P}_{a} indexed by Q
i.e. for every $q, q^{\prime} \in Q, \mathbf{P}_{\mathrm{a}}\left[q, q^{\prime}\right] \geq 0$ and $\sum_{q^{\prime} \in Q} \mathbf{P}_{\mathrm{a}}\left[q, q^{\prime}\right]=1$;

$$
\mathbf{P}_{a}=\begin{array}{llll}
1 & 0 & \mathbf{P}_{b}=.5 & .5 \\
.5 & .5 & 1
\end{array}
$$

- π_{0}, the initial distribution over states;

$$
\pi_{0}\left[q_{0}\right]=1
$$

- $F \subseteq Q$, a subset of final states.

Label $1 a+\frac{1}{2} b$ on the loop at q_{0} means $\mathbf{P}_{a}\left[q_{0}, q_{0}\right]=1$ and $\mathbf{P}_{b}\left[q_{0}, q_{0}\right]=\frac{1}{2}$.

Control in PA

Strategies are words

what is the probability to reach a final state after word w ?

Acceptance probability

The acceptance probability of $w=a_{1} \ldots a_{n}$ by \mathcal{A} is:

$$
\operatorname{Pr}_{\mathcal{A}}(w)=\sum_{q \in Q} \pi_{0}[q] \sum_{q^{\prime} \in F}\left(\prod_{i=1}^{n} \mathbf{P}_{\mathrm{a}_{i}}\right)\left[q, q^{\prime}\right]
$$

For short

$$
\operatorname{Pr}_{\mathcal{A}}(w)=\pi_{0} \mathbf{P}_{w} \mathbf{1}_{F}^{T}
$$

where $\mathbf{P}_{w}=\prod_{i=1}^{n} \mathbf{P}_{\mathrm{a}_{i}}$ and $\mathbf{1}_{F}$ is the indicating vector of subset F.

Illustration

Inductive computation of $\operatorname{Pr}_{\mathcal{A}}(a b b a)$ from $\operatorname{Pr}_{\mathcal{A}}(\varepsilon)=0$.

- $\operatorname{Pr}_{\mathcal{A}}(a)=\frac{1}{2} \operatorname{Pr}_{\mathcal{A}}(\varepsilon)=0$
- $\operatorname{Pr}_{\mathcal{A}}(a b)=\operatorname{Pr}_{\mathcal{A}}(a)+\frac{1}{2}\left(1-\operatorname{Pr}_{\mathcal{A}}(a)\right)=\frac{1}{2}$
- $\operatorname{Pr}_{\mathcal{A}}(a b b)=\operatorname{Pr}_{\mathcal{A}}(a b)+\frac{1}{2}\left(1-\operatorname{Pr}_{\mathcal{A}}(a b)\right)=\frac{3}{4}$
- $\operatorname{Pr}_{\mathcal{A}}(a b b a)=\frac{1}{2} \operatorname{Pr}_{\mathcal{A}}(a b b)=\frac{3}{8}$

Illustration

Inductive computation of $\operatorname{Pr}_{\mathcal{A}}(a b b a)$ from $\operatorname{Pr}_{\mathcal{A}}(\varepsilon)=0$.

- $\operatorname{Pr}_{\mathcal{A}}(a)=\frac{1}{2} \operatorname{Pr}_{\mathcal{A}}(\varepsilon)=0$
- $\operatorname{Pr}_{\mathcal{A}}(a b)=\operatorname{Pr}_{\mathcal{A}}(a)+\frac{1}{2}\left(1-\operatorname{Pr}_{\mathcal{A}}(a)\right)=\frac{1}{2}$
- $\operatorname{Pr}_{\mathcal{A}}(a b b)=\operatorname{Pr}_{\mathcal{A}}(a b)+\frac{1}{2}\left(1-\operatorname{Pr}_{\mathcal{A}}(a b)\right)=\frac{3}{4}$
- $\operatorname{Pr}_{\mathcal{A}}(a b b a)=\frac{1}{2} \operatorname{Pr}_{\mathcal{A}}(a b b)=\frac{3}{8}$

In general:

$$
\operatorname{Pr}_{\mathcal{A}}(w a)=\frac{1}{2} \operatorname{Pr}_{\mathcal{A}}(w) \quad \text { and } \quad \operatorname{Pr}_{\mathcal{A}}(w b)=\frac{1}{2}\left(1+\mathbf{P r}_{\mathcal{A}}(w)\right)
$$

Thus giving an explicit acceptance probability:

$$
\operatorname{Pr}_{\mathcal{A}}\left(a_{1} \ldots a_{n}\right)=\sum_{i=1}^{n} 2^{i-n-1} \cdot \mathbf{1}_{a_{i}=b}
$$

Illustration

Inductive computation of $\operatorname{Pr}_{\mathcal{A}}(a b b a)$ from $\operatorname{Pr}_{\mathcal{A}}(\varepsilon)=0$.

- $\operatorname{Pr}_{\mathcal{A}}(a)=\frac{1}{2} \operatorname{Pr}_{\mathcal{A}}(\varepsilon)=0$
- $\operatorname{Pr}_{\mathcal{A}}(a b)=\operatorname{Pr}_{\mathcal{A}}(a)+\frac{1}{2}\left(1-\operatorname{Pr}_{\mathcal{A}}(a)\right)=\frac{1}{2}$
- $\operatorname{Pr}_{\mathcal{A}}(a b b)=\operatorname{Pr}_{\mathcal{A}}(a b)+\frac{1}{2}\left(1-\operatorname{Pr}_{\mathcal{A}}(a b)\right)=\frac{3}{4}$
- $\operatorname{Pr}_{\mathcal{A}}(a b b a)=\frac{1}{2} \operatorname{Pr}_{\mathcal{A}}(a b b)=\frac{3}{8}$

In general:

$$
\operatorname{Pr}_{\mathcal{A}}(w a)=\frac{1}{2} \operatorname{Pr}_{\mathcal{A}}(w) \quad \text { and } \quad \operatorname{Pr}_{\mathcal{A}}(w b)=\frac{1}{2}\left(1+\mathbf{P r}_{\mathcal{A}}(w)\right)
$$

Thus giving an explicit acceptance probability:

$$
\operatorname{Pr}_{\mathcal{A}}\left(a_{1} \ldots a_{n}\right)=\sum_{i=1}^{n} 2^{i-n-1} \cdot \mathbf{1}_{a_{i}=b}
$$

Which word maximizes the acceptance probability?
(1) Probabilistic automata

- Presentation
- Stochastic languages
- Decision problems
(2) Partially observable MDP
- Presentation
- POMDP analysis
- Application to control for fault diagnosis
(3) Conclusion

Stochastic languages

For \mathcal{A} a PA, $\theta \in[0,1]$ a threshold and $\bowtie \in\{<, \leq\rangle,, \geq,=, \neq\}$ an operator, the stochastic language $L_{\bowtie \theta}(\mathcal{A})$ is defined by

$$
L_{\bowtie \theta}(\mathcal{A})=\left\{w \in A^{*} \mid \operatorname{Pr}_{\mathcal{A}}(w) \bowtie \theta\right\}
$$

We further define subclasses of stochastic languages.

Rational languages

- A PA is rational if its probabilities are in \mathbb{Q}.
- A stochastic language is rational if it is specified by a rational PA and a rational threshold.

Removing syntactic sugar

Getting rid of useless thresholds and operators

Unique threshold

For every PA \mathcal{A}, threshold θ and comparison operator \bowtie, there exists \mathcal{A}^{\prime} s.t.

$$
L_{\bowtie \frac{1}{2}}\left(\mathcal{A}^{\prime}\right)=L_{\bowtie \theta}(\mathcal{A})
$$

Proof

- Case $\theta>\frac{1}{2}$ set $q_{0}^{\prime} \notin F$ and $\alpha=\frac{1}{2 \theta}$;
- Case $\theta<\frac{1}{2}$ set $q_{0}^{\prime} \in F$ and $\alpha=\frac{1}{2(1-\theta)}$.

Unique threshold

For every PA \mathcal{A}, threshold θ and comparison operator \bowtie, there exists \mathcal{A}^{\prime} s.t.

$$
L_{\bowtie \frac{1}{2}}\left(\mathcal{A}^{\prime}\right)=L_{\bowtie \theta}(\mathcal{A})
$$

Proof

- Case $\theta>\frac{1}{2}$ set $q_{0}^{\prime} \notin F$ and $\alpha=\frac{1}{2 \theta}$;
- Case $\theta<\frac{1}{2}$ set $q_{0}^{\prime} \in F$ and $\alpha=\frac{1}{2(1-\theta)}$.

Restricting operators

Comparison operators \geq and $>$ suffice.

Proof idea

- \leq and $<$ removed by complementation of final states;
- \mathcal{A}^{\prime} runs two copies of \mathcal{A} in parallel, and $F^{\prime}=F \times(Q \backslash F)$ then:
- $\operatorname{Pr}_{\mathcal{A}^{\prime}}(w)=\operatorname{Pr}_{\mathcal{A}}(w)\left(1-\operatorname{Pr}_{\mathcal{A}}(w)\right)$
- $L_{\geq \frac{1}{4}}\left(\mathcal{A}^{\prime}\right)=L_{=\frac{1}{2}}(\mathcal{A})$

Regular vs stochastic languages

Regular vs stochastic

Regular languages are rational stochastic.

Proof
A DFA is a PA with transition probabilities in $\{0,1\}$.

A counting PA

absorbing sink state is omitted
Accepted words are of the form $w=a^{m} b^{n}$ with $m>0, n>0$.
Accepting runs on w are:

- the run $q_{0} q_{1}^{m} q_{2}^{n}$, with probability $\frac{1}{2^{n}}$;
- the family of runs $q_{0} q_{3}^{r} q_{4}^{s} q_{5}^{n}$ with $r, s>0$ and $r+s=m$, with total probability $\frac{1}{2}-\frac{1}{2^{m}}$.
Altogether $\operatorname{Pr}_{\mathcal{A}}(w)=\frac{1}{2}+\frac{1}{2^{n}}-\frac{1}{2^{m}}$.

$$
\mathcal{L}_{=\frac{1}{2}}(\mathcal{A})=\left\{a^{n} b^{n} \mid n>0\right\}
$$

Stochastic vs context-free languages

Stochastic vs context-free languages

Context-free languages and stochastic languages are incomparable.

- $L=\left\{a^{n_{1}} b a^{n_{2}} b \ldots a^{n_{k}} b a^{*} \mid \exists i>1 n_{i}=n_{1}\right\}$ is a context-free language that is not stochastic.
- $L=\left\{a^{n} b^{n} c^{n} \mid n>0\right\}$.
is a rational stochastic language that is not contex-free.
- $\left\{a^{n} b^{n} \mid n>0\right\}=\left\{a^{n} b^{n} c^{+} \mid n>0\right\} \cap\left\{a^{+} b^{n} c^{n} \mid n>0\right\}$
- family $\left\{\mathcal{L}_{=\theta}(\mathcal{A}) \mid \mathcal{A}\right.$ PA $\}$ is closed under intersection

Stochastic vs contextual languages

For $w=w_{1} \ldots w_{n}, \operatorname{Pr}_{\mathcal{A}}(w)=0 . \varphi\left(w_{1}\right) \ldots \varphi\left(w_{n}\right)$ with $\varphi(a)=0$ and $\varphi(b)=1$.

$$
\mathcal{L}_{>\theta}(\mathcal{A})=\{r \in[0,1] \mid \operatorname{bin}(r)>\theta\}
$$

Stochastic vs contextual languages

For $w=w_{1} \ldots w_{n}, \operatorname{Pr}_{\mathcal{A}}(w)=0 . \varphi\left(w_{1}\right) \ldots \varphi\left(w_{n}\right)$ with $\varphi(a)=0$ and $\varphi(b)=1$.

$$
\begin{gathered}
\mathcal{L}_{>\theta}(\mathcal{A})=\{r \in[0,1] \mid \operatorname{bin}(r)>\theta\} \\
\theta<\theta^{\prime} \Rightarrow \mathcal{L}_{>\theta^{\prime}}(\mathcal{A}) \subsetneq \mathcal{L}_{>\theta}(\mathcal{A})
\end{gathered}
$$

Cardinality of stochastic languages

There are uncountably many stochastic languages.
Consequence: "Most" stochastic languages are not recursively enumerable. Not valid for rational stochastic languages!

Comparison with Chomsky's hierarchy

(1) Probabilistic automata

- Presentation
- Stochastic languages
- Decision problems
(2) Partially observable MDP
- Presentation
- POMDP analysis
- Application to control for fault diagnosis
(3) Conclusion

Two decision problems

Quantitative language equivalence
Input: \mathcal{A} and $\mathcal{A}^{\prime} \mathrm{PA}$
Output: yes iff $\forall w \in A^{*} \operatorname{Pr}_{\mathcal{A}}(w)=\operatorname{Pr}_{\mathcal{A}^{\prime}}(w)$
Boolean language equivalence
Input: \mathcal{A} and $\mathcal{A}^{\prime} \mathrm{PA}, \theta, \theta^{\prime}$ thresholds, $\bowtie, \bowtie^{\prime}$ comparison operators Output: yes iff $L_{\bowtie \theta}(\mathcal{A})=L_{\bowtie^{\prime} \theta^{\prime}}\left(\mathcal{A}^{\prime}\right)$

Two decision problems

Quantitative language equivalence
Input: \mathcal{A} and $\mathcal{A}^{\prime} \mathrm{PA}$
Output: yes iff $\forall w \in A^{*} \operatorname{Pr}_{\mathcal{A}}(w)=\operatorname{Pr}_{\mathcal{A}^{\prime}}(w)$
Boolean language equivalence
Input: \mathcal{A} and $\mathcal{A}^{\prime} \mathrm{PA}, \theta, \theta^{\prime}$ thresholds, $\bowtie, \bowtie^{\prime}$ comparison operators Output: yes iff $L_{\bowtie \theta}(\mathcal{A})=L_{\bowtie^{\prime} \theta^{\prime}}\left(\mathcal{A}^{\prime}\right)$

Note: for deterministic automata

- the two problems coincide
- decidable in PTIME by a product construction
- a witness of non-equivalence has size at most $|Q|\left|Q^{\prime}\right|$.

Quantitative language equivalence

Quantitative language equivalence
Quantitative language equivalence is decidable in PTIME.

Quantitative language equivalence

Quantitative language equivalence

Quantitative language equivalence is decidable in PTIME.

Algorithm idea
Principle enumerate words of increasing length to find a counterexample Data structures

- a stack to store words w such that all aw need be checked
- a set Gen of independent vectors of $\mathbb{R}^{Q \cup Q^{\prime}}$

Quantitative language equivalence

Quantitative language equivalence

Quantitative language equivalence is decidable in PTIME.

Algorithm idea
Principle enumerate words of increasing length to find a counterexample

Data structures

- a stack to store words w such that all aw need be checked
- a set $G e n$ of independent vectors of $\mathbb{R}^{Q \cup Q^{\prime}}$

Iteration if w is not a counterexample and if $v=\mathbf{P}_{w} \mathbf{1}_{F}-\mathbf{P}_{w}^{\prime} \mathbf{1}_{F^{\prime}}$ is not generated by Gen then add w to the stack and add $v-\operatorname{Proj}_{G e n}(v)$ to $G e n$

Quantitative language equivalence

Quantitative language equivalence

Quantitative language equivalence is decidable in PTIME.

Algorithm idea
Principle enumerate words of increasing length to find a counterexample

Data structures

- a stack to store words w such that all aw need be checked
- a set $G e n$ of independent vectors of $\mathbb{R}^{Q \cup Q^{\prime}}$

Iteration if w is not a counterexample
and if $v=\mathbf{P}_{w} \mathbf{1}_{F}-\mathbf{P}_{w}^{\prime} \mathbf{1}_{F^{\prime}}$ is not generated by Gen then add w to the stack and add $v-\operatorname{Proj}_{G e n}(v)$ to $G e n$

Correctness is non trivial $|Q|+\left|Q^{\prime}\right|$ bounds the number of iterations and the size of a witness.

Boolean language equivalence

Boolean language equivalence
The problem, given a PA \mathcal{A} of telling whether $L_{=\frac{1}{2}}(\mathcal{A})=\{\varepsilon\}$ is undecidable.

Boolean language equivalence

Boolean language equivalence

The problem, given a PA \mathcal{A} of telling whether $L_{=\frac{1}{2}}(\mathcal{A})=\{\varepsilon\}$ is undecidable.

Proof sketch: reduction from PCP

- PCP instance: morphisms $\varphi_{1}: A \rightarrow\{0,1\}^{+}$and $\varphi_{2}: A \rightarrow\{0,1\}^{+}$
- $v \in\{0,1\}^{+}$defines a value $\operatorname{val}(v)=\sum_{i=1}^{n} \frac{v_{i}}{2^{n-i}}$

Boolean language equivalence

Boolean language equivalence

The problem, given a PA \mathcal{A} of telling whether $L_{=\frac{1}{2}}(\mathcal{A})=\{\varepsilon\}$ is undecidable.

Proof sketch: reduction from PCP

- PCP instance: morphisms $\varphi_{1}: A \rightarrow\{0,1\}^{+}$and $\varphi_{2}: A \rightarrow\{0,1\}^{+}$
- $v \in\{0,1\}^{+}$defines a value $\operatorname{val}(v)=\sum_{i=1}^{n} \frac{v_{i}}{2^{n-i}}$
- Define \mathcal{A}_{1} such that $\operatorname{Pr}_{\mathcal{A}_{1}}(w)=\operatorname{val}\left(\varphi_{1}(w)\right)$ and \mathcal{A}_{2} such that $\operatorname{Pr}_{\mathcal{A}_{2}}(w)=1-\operatorname{val}\left(\varphi_{2}(w)\right)$
- PA \mathcal{A} starts in \mathcal{A}_{1} or \mathcal{A}_{2} with equal probability, thus

$$
\operatorname{Pr}_{\mathcal{A}}(w)=\frac{1}{2}\left(\operatorname{val}\left(\varphi_{1}(w)\right)+\left(1-\operatorname{val}\left(\varphi_{2}(w)\right)\right)\right)
$$

Boolean language equivalence

Boolean language equivalence

The problem, given a PA \mathcal{A} of telling whether $L_{=\frac{1}{2}}(\mathcal{A})=\{\varepsilon\}$ is undecidable.

Proof sketch: reduction from PCP

- PCP instance: morphisms $\varphi_{1}: A \rightarrow\{0,1\}^{+}$and $\varphi_{2}: A \rightarrow\{0,1\}^{+}$
- $v \in\{0,1\}^{+}$defines a value $\operatorname{val}(v)=\sum_{i=1}^{n} \frac{v_{i}}{2^{n-i}}$
- Define \mathcal{A}_{1} such that $\operatorname{Pr}_{\mathcal{A}_{1}}(w)=\operatorname{val}\left(\varphi_{1}(w)\right)$ and \mathcal{A}_{2} such that $\operatorname{Pr}_{\mathcal{A}_{2}}(w)=1-\operatorname{val}\left(\varphi_{2}(w)\right)$
- PA \mathcal{A} starts in \mathcal{A}_{1} or \mathcal{A}_{2} with equal probability, thus

$$
\operatorname{Pr}_{\mathcal{A}}(w)=\frac{1}{2}\left(\operatorname{val}\left(\varphi_{1}(w)\right)+\left(1-\operatorname{val}\left(\varphi_{2}(w)\right)\right)\right)
$$

$$
\operatorname{Pr}_{\mathcal{A}}(w)=\frac{1}{2} \quad \Longleftrightarrow \quad \varphi_{1}(w)=\varphi_{2}(w)
$$

Qualitative problems for PA
Non-emptiness of (almost-)sure language
Input: \mathcal{A} PA
Output: yes iff $\exists w, \operatorname{Pr}_{\mathcal{A}}(w)=1$

Qualitative problems for PA

Non-emptiness of (almost-)sure language
Input: \mathcal{A} PA
Output: yes iff $\exists w, \operatorname{Pr}_{\mathcal{A}}(w)=1$

- almost-sure reachability for PA

Non-emptiness of almost-sure language is PSPACE-complete.

- decidable in PSPACE
- complement final states $F^{\prime}=Q \backslash F$
- consider \mathcal{A}^{\prime} as an NFA
- $L\left(\mathcal{A}^{\prime}\right) \neq \mathcal{A}^{*}$ iff $L_{=1}(\mathcal{A}) \neq \emptyset$

Qualitative problems for PA

Non-emptiness of (almost-)sure language
Input: \mathcal{A} PA
Output: yes iff $\exists w, \operatorname{Pr}_{\mathcal{A}}(w)=1$

- almost-sure reachability for PA

Non-emptiness of almost-sure language is PSPACE-complete.

- decidable in PSPACE
- complement final states $F^{\prime}=Q \backslash F$
- consider \mathcal{A}^{\prime} as an NFA
- $L\left(\mathcal{A}^{\prime}\right) \neq \mathcal{A}^{*}$ iff $L_{=1}(\mathcal{A}) \neq \emptyset$

Non-emptiness of limit-sure language
Input: \mathcal{A} PA
Output: yes iff $\exists\left(w_{n}\right)_{n \in \mathbb{N}}, \lim _{n \rightarrow \infty} \operatorname{Pr}_{\mathcal{A}}\left(w_{n}\right)=1$

Qualitative problems for PA

Non-emptiness of (almost-)sure language
Input: \mathcal{A} PA
Output: yes iff $\exists w, \operatorname{Pr}_{\mathcal{A}}(w)=1$

- almost-sure reachability for PA

Non-emptiness of almost-sure language is PSPACE-complete.

- decidable in PSPACE
- complement final states $F^{\prime}=Q \backslash F$
- consider \mathcal{A}^{\prime} as an NFA
- $L\left(\mathcal{A}^{\prime}\right) \neq \mathcal{A}^{*}$ iff $L_{=1}(\mathcal{A}) \neq \emptyset$

Non-emptiness of limit-sure language
Input: \mathcal{A} PA
Output: yes iff $\exists\left(w_{n}\right)_{n \in \mathbb{N}}, \lim _{n \rightarrow \infty} \operatorname{Pr}_{\mathcal{A}}\left(w_{n}\right)=1$

- limit-sure reachability for PA
- value 1 problem

Non-emptiness of limit-sure language is undecidable.
(1) Probabilistic automata

- Presentation
- Stochastic languages
- Decision problems
(2) Partially observable MDP
- Presentation
- POMDP analysis
- Application to control for fault diagnosis

(3) Conclusion

(1) Probabilistic automata

- Presentation
- Stochastic languages
- Decision problems
(2) Partially observable MDP
- Presentation
- POMDP analysis
- Application to control for fault diagnosis
(3) Conclusion

A first POMDP example

A company sells a product, either luxury (L) or standard (S). Consumers may be sensitive to brands (B) or not ($\overline{\mathbf{B}}$) but the company does not know this information...
\ldots and only knows whether the product is purchased (P) or not (\bar{P}).

A first POMDP example

A company sells a product, either luxury (L) or standard (S). Consumers may be sensitive to brands (B) or not ($\overline{\mathbf{B}}$) but the company does not know this information...
\ldots and only knows whether the product is purchased (P) or not (\bar{P}).

States: B, $\overline{\mathbf{B}}$; Actions: L, S; Observations: P, \bar{P};

- probabilities: $p(\mathbf{B} \mid \mathbf{B}, L)=0.8$;
- rewards: $\operatorname{rew}(\mathbf{B}, L)=4$;
- observations:o $(P \mid L, \mathbf{B})=0.8$

A second POMDP example

States: $\left\{q_{0}, q_{1}, q_{2}\right\}$; Actions: $\{a, b\}$; Observations: $\{\otimes$,

- probabilities: $p\left(q_{1} \mid q_{0}, a\right)=\frac{1}{2}$
- rewards: 0 everywhere
- observations: $o\left(q_{0}\right)=o\left(q_{1}\right)=\ell$

Deterministic observation POMDP

A POMDP $\mathcal{M}=\left(S, \Omega, A, o, p\right.$, rew, rew $\left._{f}\right)$ is defined by:

- S a finite set of states;
- Ω a finite set of observations;
- A a finite set of actions;

POMDP

Deterministic observation POMDP

A POMDP $\mathcal{M}=\left(S, \Omega, A, o, p\right.$, rew $^{\prime}$ rew $\left._{f}\right)$ is defined by:

- S a finite set of states;
- Ω a finite set of observations;
- A a finite set of actions;
- $o: S \rightarrow \Omega$ the observation function; $o(s) \in \Omega$ is the observation associated with state s;
- $p: S \times A \rightarrow \operatorname{Dist}(S)$ the transition function; $p\left(s^{\prime} \mid s, a\right)$ is the probability that the next state be s^{\prime} when action a occurs from s;
- rew : $S \times A \rightarrow \mathbb{Q}$ the reward function; rew (s, a) is the reward associated with action a from state s.
- $\operatorname{rew}_{\mathrm{f}}: S \rightarrow \mathbb{Q}$ the final reward function; $\operatorname{rew}_{f}(s)$ is the reward associated when ending in state s.

Strategies

To obtain a stochastic process, a strategy rules out non-determinism.
Strategies
A strategy is a function $\nu:(A \Omega)^{*} \rightarrow \operatorname{Dist}(A)$ mapping each history $\rho \in(A \Omega)^{*}$ with a distribution over actions; $\nu(\rho, a)$ is the probability that a is chosen given history ρ.

Strategies

To obtain a stochastic process, a strategy rules out non-determinism.

Strategies

A strategy is a function $\nu:(A \Omega)^{*} \rightarrow \operatorname{Dist}(A)$ mapping each history $\rho \in(A \Omega)^{*}$ with a distribution over actions; $\nu(\rho, a)$ is the probability that a is chosen given history ρ.

Induced Markov chain

Let \mathcal{M} be a POMDP, ν a strategy and $\pi \in \operatorname{Dist}(S)$ an initial distribution. The Markov chain \mathcal{M}_{ν}^{π} induced by \mathcal{M}, ν et π is defined by:

- $(A \Omega)^{*} \times S$ its (infinite) state space;
- π_{0} the initial distribution such that $\pi_{0}(\varepsilon, s)=\pi(s)$ and π_{0} is null for other states;
- \mathbf{P} the transition matrix such that:
$\mathbf{P}\left[(\rho, s),\left(\rho a o\left(s^{\prime}\right), s^{\prime}\right)\right]=\nu(\rho, a) p\left(s^{\prime} \mid s, a\right)$, and \mathbf{P} is zero elsewhere.

POMDP subclasses

Two very particular cases:

- $\Omega=S$: the agent knows the state of the system; (full observation) Markov decision process.
- $|\Omega|=1$: observation is useless; blind POMDP.

POMDP subclasses

Two very particular cases:

- $\Omega=S$: the agent knows the state of the system; (full observation) Markov decision process.
- $|\Omega|=1$: observation is useless; blind POMDP.

PA vs POMDP

Probabilistic automata form a subclass of POMDP. word in probabilistic automaton \Longleftrightarrow pure strategy in blind POMDP

Consequence: All hardness results lift from PA to POMDP.
(1) Probabilistic automata

- Presentation
- Stochastic languages
- Decision problems
(2) Partially observable MDP
- Presentation
- POMDP analysis
- Application to control for fault diagnosis
(3) Conclusion

Finite-horizon analysis

Expected total payoff

The expected total payoff at time t, under strategy ν is

$$
u_{t}^{\nu}=\sum_{i=0}^{t-1} \mathbb{E}^{\nu}\left(\operatorname{rew}\left(X_{i}, Y_{i}\right)\right)+\mathbb{E}^{\nu}\left(\operatorname{rew}_{\mathrm{f}}\left(X_{t}\right)\right)
$$

where X_{i} (resp. Y_{i}) is the random variable of state (action) at step i.
The optimal expected total payoff at time t is

$$
u_{t}^{\star}=\sup _{\nu} u_{t}^{\nu}
$$

Finite-horizon analysis

One can compute a set of indices Z_{t}, a family of vectors $\left\{\mathbf{r}_{z}\right\}_{z \in Z_{t}}$, a family of polyedra $\left\{\mathbf{D}_{z}\right\}_{z \in Z_{t}}$ such that

- $\bigcup_{z \in Z_{t}} \mathbf{D}_{z}$ is the set of distributions over states
- for every initial distribution $\pi, \pi \in \mathbf{D}_{z} \Rightarrow u_{t}^{\star}(\pi)=\pi \mathbf{r}_{z}$

Finite-horizon analysis on an example
$\operatorname{rew}_{\mathrm{f}}\left(q_{2}\right)=1$ and all other rewards are 0

Objective: for $t=1$, determine $Z,\left(\mathbf{D}_{z}\right)_{z \in Z}$ and $\left(\mathbf{r}_{z}\right)_{z \in Z}$ such that

$$
\pi \in \mathbf{D}_{z} \Rightarrow u_{t}^{\star}(\pi)=\pi \mathbf{r}_{z}
$$

$$
\begin{aligned}
& Z=\{a, b\} \\
& \mathbf{D}_{a}=\left\{\left(x_{0}, x_{1}, x_{2}\right) \mid x_{0}+x_{1}+x_{2}=1 \wedge x_{0} \leq x_{1}\right\} \quad \mathbf{r}_{a}=\left(\frac{1}{4}, \frac{1}{2}, 0\right) \\
& \mathbf{D}_{b}=\left\{\left(x_{0}, x_{1}, x_{2}\right) \mid x_{0}+x_{1}+x_{2}=1 \wedge x_{0} \geq x_{1}\right\} \quad \mathbf{r}_{b}=\left(\frac{1}{2}, \frac{1}{4}, 0\right)
\end{aligned}
$$

Infinite-horizon problems

Objectives

Reachability F visited at least once:

$$
\diamond F=\left\{q_{0} q_{1} q_{2} \cdots \in S^{\omega} \mid \exists n, q_{n} \in F\right\}
$$

Safety always stay in F:

$$
\square F=\left\{q_{0} q_{1} q_{2} \cdots \in S^{\omega} \mid \forall n, q_{n} \in F\right\}
$$

Büchi F visited an infinite number of times:

$$
\square \diamond F=\left\{q_{0} q_{1} q_{2} \cdots \in S^{\omega} \mid \forall m \exists n \geq m, q_{n} \in F\right\}
$$

Goal: For φ an objective, evaluate $\sup _{\nu} \mathbb{P}^{\nu}(\mathcal{M} \vDash \varphi)$.

Infinite-horizon problems

Objectives

Reachability F visited at least once:

$$
\diamond F=\left\{q_{0} q_{1} q_{2} \cdots \in S^{\omega} \mid \exists n, q_{n} \in F\right\}
$$

Safety always stay in F :

$$
\square F=\left\{q_{0} q_{1} q_{2} \cdots \in S^{\omega} \mid \forall n, q_{n} \in F\right\}
$$

Büchi F visited an infinite number of times:

$$
\square \diamond F=\left\{q_{0} q_{1} q_{2} \cdots \in S^{\omega} \mid \forall m \exists n \geq m, q_{n} \in F\right\}
$$

Goal: For φ an objective, evaluate $\sup _{\nu} \mathbb{P}^{\nu}(\mathcal{M} \vDash \varphi)$.

Deterministic strategies are sufficient!

Let \mathcal{M} be a POMDP, and $\varphi \subseteq S^{\omega}$ a Borelian objective. For every strategy ν, there exists a deterministic strategy ν^{\prime} such that

$$
\mathbb{P}^{\nu}(\mathcal{M} \models \varphi) \leq \mathbb{P}^{\nu^{\prime}}(\mathcal{M} \models \varphi)
$$

Undecidability of infinite-horizon quantitative analysis

Undecidability of quantitative reachability

The problem of the existence of a strategy ensuring the reachability objective $\diamond F$ with probability at least p is undecidable for POMDP.

Undecidability of infinite-horizon quantitative analysis

Undecidability of quantitative reachability

The problem of the existence of a strategy ensuring the reachability objective $\diamond F$ with probability at least p is undecidable for POMDP.

Reduction from the emptiness problem for PA.
Only subtlety: synchronize paths!

deterministic strategies in $\mathcal{M}: \nu_{w}=w \sharp$, where w word for the PA \mathcal{A}

$$
\mathbb{P}^{\nu_{w}}(\mathcal{M} \models \diamond F)=\mathbb{P}_{\mathcal{A}}(w)
$$

Undecidability of qualitative infinite-horizon analysis
Undecidability of positive repeated reachability
The problem of the existence of a strategy ensuring the repeated reachability objective $\square \diamond F$ with probability >0 is undecidable for POMDP.

Undecidability of qualitative infinite-horizon analysis

Undecidability of positive repeated reachability

The problem of the existence of a strategy ensuring the repeated reachability objective $\square \diamond F$ with probability >0 is undecidable for POMDP.

Reduction from the value 1 problem for PA.

deterministic strategies in $\mathcal{M}: \nu_{\mathrm{w}}=w_{1} \sharp \sharp w_{2} \sharp \sharp w_{3} \cdots$, where w_{i} words for PA \mathcal{A}

$$
\begin{gathered}
\mathbb{P}^{\nu_{\mathrm{w}}}\left(\mathcal{M} \models \square \diamond f_{\sharp}\right)>0 \Longleftrightarrow \prod_{i} \mathbb{P}_{\mathcal{A}}\left(w_{i}\right)>0 \\
\operatorname{val}(\mathcal{A})=1 \Longleftrightarrow \exists\left(w_{i}\right)_{i \in \mathbb{N}} \prod \mathbb{P}_{\mathcal{A}}\left(w_{i}\right)>0 \quad \Longleftrightarrow \quad \exists \nu_{\mathbf{w}} \mathbb{P}^{\nu_{\mathbf{w}}}\left(\mathcal{M} \models \square \diamond f_{\sharp}\right)>0
\end{gathered}
$$

Combination of infinite-horizon objectives

Infinite memory is needed for combined objectives!
Goal: $\square \diamond\left\{q_{2}, r_{2}\right\}$ almost surely and $\square\left\{q_{1}, q_{2}\right\}$ with positive probability.

Combination of infinite-horizon objectives

Infinite memory is needed for combined objectives! Goal: $\square \diamond\left\{q_{2}, r_{2}\right\}$ almost surely and $\square\left\{q_{1}, q_{2}\right\}$ with positive probability.

Undecidability of combined qualitative objectives

The problem of the existence of a strategy ensuring

- a safety objective $\square G$ with probability >0, and
- a Büchi objective $\square \diamond F$ with probability $=1$
is undecidable for POMDP.

Decidability of qualitative infinite-horizon analysis

Decidability of positive reachability

The problem of the existence of a strategy ensuring a reachability objective $\diamond F$ with probability >0 is NLOGSPACE-complete for POMDP.

Decidability of qualitative infinite-horizon analysis

Decidability of positive reachability

The problem of the existence of a strategy ensuring a reachability objective $\diamond F$ with probability >0 is NLOGSPACE-complete for POMDP.

- Equivalent to reachability in graphs.
- Purely random strategy works: uniform randomization on all actions at each step.

Decidability of qualitative infinite-horizon analysis (2)

Decidability of almost-sure safety
The problem of the existence of a strategy ensuring a safety objective $\square G$ with probability $=1$ is EXPTIME-complete for POMDP.

Decidability of qualitative infinite-horizon analysis (2)

Decidability of almost-sure safety

The problem of the existence of a strategy ensuring a safety objective $\square G$ with probability $=1$ is EXPTIME-complete for POMDP.

Beliefs

The belief of the agent is the set of possible states, given the sequence of observations so far.

Necessary and sufficient condition: agent maintains its belief included in G. One builds the belief game.

Belief game on an example

$\exists \nu \mathbb{P}^{\nu}\left(\mathcal{M} \models \square\left\{q_{0}, q_{1}, q_{2}, q_{4}\right\}\right)=1 ?$

Belief game on an example

$\exists \nu \mathbb{P}^{\nu}\left(\mathcal{M} \models \square\left\{q_{0}, q_{1}, q_{2}, q_{4}\right\}\right)=1 ?$

Decidability of qualitative infinite-horizon analysis (3)

Decidability positive safety

The problem of the existence of a strategy ensuring a safety objective $\square G$ with positive probability is EXPTIME-complete for POMDP.

Decidability of qualitative infinite-horizon analysis (3)

Decidability positive safety

The problem of the existence of a strategy ensuring a safety objective $\square G$ with positive probability is EXPTIME-complete for POMDP.

Positional strategies on belief game are not enough...

Yet, choosing a, then bet the system lies in q_{1}, and alternerate a and b for ever, guarantees a probability $\frac{1}{2}$ for $\square\left\{q_{0}, q_{1}, q_{2}\right\}$.

Decidability of qualitative infinite-horizon analysis (3)

Decidability positive safety

The problem of the existence of a strategy ensuring a safety objective $\square G$ with positive probability is EXPTIME-complete for POMDP.

Positional strategies on belief game are not enough...

... but almost! It is necessary and sufficient to reach a belief $C \subseteq S$ such that there exists a state $s \in C$ and a strategy ensuring to surely stay in G from s.

Decidability of infinite-horizon qualitative analysis

Decidability almost sure (repeated) reachability

The problem of the existence of a strategy ensuring a reachability objective $\diamond F$ almost surely is EXPTIME-complete for POMDP.

Idea: one needs to reach a belief included in F; every observation deviating from this path must still lead to a winning belief, to be able to try again to reach F.

Win is the biggest set of beliefs such that:

$$
\begin{aligned}
\text { Win }=\left\{C \mid \exists C \xrightarrow{a_{1}, o_{1}} C_{1} \cdots \xrightarrow{a_{n}, o_{n}}\right. & C_{n} \subseteq F \\
& \text { and } \left.\forall o_{k}^{\prime} C \xrightarrow{a_{1}, o_{1}} C_{1} \cdots \xrightarrow{a_{k}, o_{k}^{\prime}} C_{k}^{\prime} \in \text { Win }\right\}
\end{aligned}
$$

Decision algorithm on an example

Decision algorithm on an example

Decision algorithm on an example

Decision algorithm on an example

(1) Probabilistic automata

- Presentation
- Stochastic languages
- Decision problems
(2) Partially observable MDP
- Presentation
- POMDP analysis
- Application to control for fault diagnosis
(3) Conclusion

Fault diagnosis

Goal: determine whether a fault \mathbf{f} occurred, based on the observed events.

$$
\Sigma_{o}=\{a, b, c\} \text { observable } ; \Sigma_{u}=\{\mathbf{f}, u\} \text { non-observable }
$$

Fault diagnosis

Goal: determine whether a fault \mathbf{f} occurred, based on the observed events.

$$
\Sigma_{o}=\{a, b, c\} \text { observable } ; \Sigma_{u}=\{\mathbf{f}, u\} \text { non-observable }
$$

c^{+}	\checkmark	surely correct
$a c^{+}$	X	surely faulty
b^{+}	$?$	ambiguous

Fault diagnosis

Goal: determine whether a fault \mathbf{f} occurred, based on the observed events.

$$
\Sigma_{o}=\{a, b, c\} \text { observable } ; \Sigma_{u}=\{\mathbf{f}, u\} \text { non-observable }
$$

c^{+}	\checkmark	surely correct
$a c^{+}$	X	surely faulty
b^{+}	$?$	ambiguous

Diagnosability

A system is diagnosable if all its observed sequences are unambiguous.

Decidability of diagnosis

The diagnosability problem is NLOGSPACE-complete.

Fault diagnosis for probabilistic systems

Fault diagnosis for probabilistic systems

b^{+}ambiguous but...

Fault diagnosis for probabilistic systems

b^{+}ambiguous but...

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\mathbf{f} b^{n}+u b^{n}\right)=0
$$

Fault diagnosis for probabilistic systems

b^{+}ambiguous but...

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\mathbf{f} b^{n}+u b^{n}\right)=0
$$

Almost-sure diagnosability

A probabilistic system is diagnosable if the probability of ambiguous observed sequences is null.

Decidability of almost-sure diagnosis

The almost-sure diagnosis problem is PSPACE-complete.

Active diagnosis

Goal: control the system so that its set of ambiguous sequences has null measure.

$$
\begin{gathered}
\Sigma_{o}=\Sigma_{c}=\{a, b, c, d\} \text { observable and controllable; } \\
\Sigma_{u}=\Sigma_{e}=\{\mathbf{f}, u\} \text { unobservable and uncontrollable }
\end{gathered}
$$

Active diagnosis

Goal: control the system so that its set of ambiguous sequences has null measure.

$$
\begin{gathered}
\Sigma_{o}=\Sigma_{c}=\{a, b, c, d\} \text { observable and controllable; } \\
\Sigma_{u}=\Sigma_{e}=\{\mathbf{f}, u\} \text { unobservable and uncontrollable }
\end{gathered}
$$

$$
\begin{aligned}
& \text { aadc }^{\omega} \text { ambiguous } \\
& \mathbb{P}\left(f^{2 a d} c^{\omega}+\text { uaadc }^{\omega}\right)>0
\end{aligned}
$$

Active diagnosis

Goal: control the system so that its set of ambiguous sequences has null measure.

$$
\begin{gathered}
\Sigma_{o}=\Sigma_{c}=\{a, b, c, d\} \text { observable and controllable; } \\
\Sigma_{u}=\Sigma_{e}=\{\mathbf{f}, u\} \text { unobservable and uncontrollable }
\end{gathered}
$$

aadc ${ }^{\omega}$ ambiguous $\mathbb{P}\left(\right.$ faadc $^{\omega}+$ uaadc $\left.^{\omega}\right)>0$
forbid a after the first a

Controller: decides which actions are allowed, based on observations $\sigma: \Sigma_{\text {obs }}^{*} \rightarrow 2^{\Sigma_{c}}$

Problem resolution

Decidability of active almost-sure diagnosis
The active diagnosis problem for probabilistic systems is EXPTIME-complete.

Problem resolution

Decidability of active almost-sure diagnosis

The active diagnosis problem for probabilistic systems is EXPTIME-complete.

Idea of EXPTIME-algorithm

- characterize unambiguous sequences by a deterministic Büchi automaton \mathcal{B}
- build the product of probabilistic LTS with \mathcal{B} : new pLTS
- transform it into POMDP \mathcal{P} each action is a subset of controllable events the observations are observable events

- decide whether there exists a strategy ensuring almost-surely the Büchi condition in \mathcal{P}.
(1) Probabilistic automata
- Presentation
- Stochastic languages
- Decision problems
(2) Partially observable MDP
- Presentation
- POMDP analysis
- Application to control for fault diagnosis
(3) Conclusion

Conclusion

POMDP partially observable Markov decision processes

- finite-horizon optimization
- infinite-horizon optimization unfeasible
- qualitative infinite-horizon analysis mostly feasible
- application to active diagnosis of stochastic systems

Conclusion

POMDP partially observable Markov decision processes

- finite-horizon optimization
- infinite-horizon optimization unfeasible
- qualitative infinite-horizon analysis mostly feasible
- application to active diagnosis of stochastic systems

PA probabilistic automata

- particular case of POMDP
- expressiveness
- langagues equivalence, equality, value 1

Partial observation + Probabilities + Control: a challenging combination

References

1. M. O. Rabin. Probabilistic automata. Information and Control, 6(3):230-245, 1963.
2. A. Paz. Introduction to probabilistic automata. Academic Press Inc., 1971.
3. O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic planning and related stochastic optimization problems. Artificial Intelligence, 147(1-2) :5-34, 2003.
4. H. Gimbert and Y. Oualhadj. Probabilistic automata on finite words: Decidable and undecidable problems. In Proceedings of ICALP'10, volume 6199 of Lecture Notes in Computer Science, pages 527-538. Springer, 2010.
5. C. Baier, N. Bertrand, and M. Größer. Probabilistic ω-automata. J. ACM, 59(1), 2012.
6. K. J. Aström. Optimal control of Markov decision processes with incomplete state estimation. Journal of Mathematical Analysis and Applications, $10: 174-205,1965$.
7. A.R. Cassandra, M.L. Littman, and N.L. Zhang. Incremental pruning: A simple, fast, exact method for partially observable Markov decision processes. In Proceedings of UAI'87, pages 54-61. Morgan Kaufmann, 1997.
8. K. Chatterjee, L. Doyen, H. Gimbert, and T.A. Henzinger. Randomness for free. In Proceedings of MFCS'10, volume 6281 of Lecture Notes in Computer Science, pages 246-257. Springer, 2010.
9. K. Chatterjee, L. Doyen, and T. Henzinger. Qualitative analysis of partially-observable Markov decision processes. In Proceedings of MFCS'10, volume 6281 of Lecture Notes in Computer Science, pages 258-269. Springer, 2010.
10. N. Bertrand, E. Fabre, S. Haar, S. Haddad, and L. Helouet. Active diagnosis for probabilistic systems. In Proceedings of FoSSaCS'14, volume 8412 of Lecture Notes in Computer Science, pages 29-42. Springer, 2014.
