
Probabilistic automata Partially observable MDP Conclusion

Control, probabilities and partial observation

Nathalie Bertrand
Inria Rennes Bretagne Atlantique

MOVEP 2016, Genova

MOVEP 2016 – Genova – 28th june 2016, 1/50



Probabilistic automata Partially observable MDP Conclusion

1 Probabilistic automata
Presentation
Stochastic languages
Decision problems

2 Partially observable MDP
Presentation
POMDP analysis
Application to control for fault diagnosis

3 Conclusion

MOVEP 2016 – Genova – 28th june 2016, 2/50



Probabilistic automata Partially observable MDP Conclusion

1 Probabilistic automata
Presentation
Stochastic languages
Decision problems

2 Partially observable MDP
Presentation
POMDP analysis
Application to control for fault diagnosis

3 Conclusion

MOVEP 2016 – Genova – 28th june 2016, 3/50



Probabilistic automata Partially observable MDP Conclusion

1 Probabilistic automata
Presentation
Stochastic languages
Decision problems

2 Partially observable MDP
Presentation
POMDP analysis
Application to control for fault diagnosis

3 Conclusion

MOVEP 2016 – Genova – 28th june 2016, 4/50



Probabilistic automata Partially observable MDP Conclusion

An introductive example

Holiday planning

1. Choose and airline type lowcost or highcost ;

2. Book an accommodation on the internet or by phone;

3. Choose a tour seeall or missnothing.

Each action

I must be planned before holidays;

I may fail with some probability.

A possible plan: lowcost · internet · seeall
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Example formalisation

start

airport

hotel

success

fail

3
4
lowcost+1highcost

1
4
lowcost

3
4
internet+ 1

2
phone

1
4
internet+ 1

2
phone

3
4
seeall+ 7

8
missnothing

1
4
seeall+ 1

8
missnothing

The success probability of lowcost · internet · seeall is equal to 27
64

.
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Probabilistic automata

q0 q1

1 1
2
b

1
2
a

1a + 1
2
b 1

2
a + 1b

Probabilistic automata

A PA A = (Q,A, {Pa}a∈A, π0,F ) is defined by:

I Q, a finite set of states; Q = {q0, q1}
I A, a finite alphabet of actions; A = {a, b}
I for every a ∈ A, a stochastic matrix Pa indexed by Q

i.e. for every q, q′ ∈ Q, Pa[q, q′] ≥ 0 and
∑

q′∈Q Pa[q, q′] = 1;

Pa =
1 0
.5 .5

Pb =
.5 .5
0 1

I π0, the initial distribution over states; π0[q0] = 1

I F ⊆ Q, a subset of final states. F = {q1}

Label 1a + 1
2
b on the loop at q0 means Pa[q0, q0] = 1 and Pb[q0, q0] = 1

2
.
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Control in PA

Strategies are words
what is the probability to reach a final state after word w?

Acceptance probability

The acceptance probability of w = a1 . . . an by A is:

PrA(w) =
∑
q∈Q

π0[q]
∑
q′∈F

(
n∏

i=1

Pai

)
[q, q′]

For short
PrA(w) = π0Pw1

T
F

where Pw =
∏n

i=1 Pai and 1F is the indicating vector of subset F .

MOVEP 2016 – Genova – 28th june 2016, 8/50



Probabilistic automata Partially observable MDP Conclusion

Illustration

q0 q1

1 1
2
b

1
2
a

1a + 1
2
b 1

2
a + 1b

Inductive computation of PrA(abba) from PrA(ε) = 0.
I PrA(a) = 1

2
PrA(ε) = 0

I PrA(ab) = PrA(a) + 1
2
(1− PrA(a)) = 1

2

I PrA(abb) = PrA(ab) + 1
2
(1− PrA(ab)) = 3

4

I PrA(abba) = 1
2
PrA(abb) = 3

8

In general:

PrA(wa) =
1

2
PrA(w) and PrA(wb) =

1

2
(1 + PrA(w))

Thus giving an explicit acceptance probability:

PrA(a1 . . . an) =
n∑

i=1

2i−n−1 · 1ai=b

Which word maximizes the acceptance probability?
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Languages defined by PA
Selection of good strategies

Stochastic languages

For A a PA, θ ∈ [0, 1] a threshold and ./ ∈ {<,≤, >,≥,=, 6=} an operator, the
stochastic language L./θ(A) is defined by

L./θ(A) = {w ∈ A∗ | PrA(w) ./ θ}

We further define subclasses of stochastic languages.

Rational languages

I A PA is rational if its probabilities are in Q.

I A stochastic language is rational if it is specified by a rational PA and a
rational threshold.
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Removing syntactic sugar
Getting rid of useless thresholds and operators

Unique threshold

For every PA A, threshold θ and comparison operator ./, there exists A′ s.t.

L./ 1
2
(A′) = L./θ(A)

Proof

q0 q′0

A

απ0[q0]
1− α

I Case θ > 1
2

set q′0 /∈ F and α = 1
2θ

;

I Case θ < 1
2

set q′0 ∈ F and α = 1
2(1−θ)

.

Restricting operators

Comparison operators ≥ and > suffice.

Proof idea
I ≤ and < removed by complementation of final states;
I A′ runs two copies of A in parallel, and F ′ = F × (Q \ F ) then:

I PrA′ (w) = PrA(w)(1− PrA(w))
I L≥ 1

4
(A′) = L= 1

2
(A)

MOVEP 2016 – Genova – 28th june 2016, 12/50



Probabilistic automata Partially observable MDP Conclusion

Removing syntactic sugar
Getting rid of useless thresholds and operators

Unique threshold

For every PA A, threshold θ and comparison operator ./, there exists A′ s.t.

L./ 1
2
(A′) = L./θ(A)

Proof

q0 q′0

A

απ0[q0]
1− α

I Case θ > 1
2

set q′0 /∈ F and α = 1
2θ

;

I Case θ < 1
2

set q′0 ∈ F and α = 1
2(1−θ)

.

Restricting operators

Comparison operators ≥ and > suffice.

Proof idea
I ≤ and < removed by complementation of final states;
I A′ runs two copies of A in parallel, and F ′ = F × (Q \ F ) then:

I PrA′ (w) = PrA(w)(1− PrA(w))
I L≥ 1

4
(A′) = L= 1

2
(A)

MOVEP 2016 – Genova – 28th june 2016, 12/50



Probabilistic automata Partially observable MDP Conclusion

Regular vs stochastic languages

Regular vs stochastic

Regular languages are rational stochastic.

Proof
A DFA is a PA with transition probabilities in {0, 1}.
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A counting PA

q0

q1q2 q3 q4 q5

1

1
2
a

1b

1
2
a

1
2
a 1b

1a 1
2
a

1
2
b

1a

1b

absorbing sink state is omitted

Accepted words are of the form w = ambn with m > 0, n > 0.
Accepting runs on w are:

I the run q0q
m
1 qn

2 , with probability 1
2n

;

I the family of runs q0q
r
3q

s
4q

n
5 with r , s > 0 and r + s = m, with total

probability 1
2
− 1

2m
.

Altogether PrA(w) = 1
2

+ 1
2n
− 1

2m
.

L= 1
2
(A) = {anbn | n > 0}
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Stochastic vs context-free languages

Stochastic vs context-free languages

Context-free languages and stochastic languages are incomparable.

I L = {an1ban2b . . . ankba∗ | ∃i > 1 ni = n1}
is a context-free language that is not stochastic.

I L = {anbncn | n > 0}
is a rational stochastic language that is not contex-free.

I {anbn | n > 0} = {anbnc+ | n > 0} ∩ {a+bncn | n > 0}
I family {L=θ(A) | A PA } is closed under intersection
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Stochastic vs contextual languages

q0 q1

1 1
2
b

1
2
a

1a + 1
2
b 1

2
a + 1b

For w = w1 . . .wn, PrA(w) = 0.ϕ(w1) . . . ϕ(wn) with ϕ(a) = 0 and ϕ(b) = 1.

L>θ(A) = {r ∈ [0, 1] | bin(r) > θ}

θ < θ′ ⇒ L>θ′(A) ( L>θ(A)

Cardinality of stochastic languages

There are uncountably many stochastic languages.

Consequence: “Most” stochastic languages are not recursively enumerable.
Not valid for rational stochastic languages!
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Comparison with Chomsky’s hierarchy

recursively

enumerable

contextual

contex-free

regular

rational

stochastic

stochastic
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Two decision problems

Quantitative language equivalence
Input: A and A′ PA
Output: yes iff ∀w ∈ A∗ PrA(w) = PrA′(w)

Boolean language equivalence
Input: A and A′ PA, θ, θ′ thresholds, ./, ./′ comparison operators
Output: yes iff L./θ(A) = L./′θ′(A′)

Note: for deterministic automata

I the two problems coincide

I decidable in PTIME by a product construction

I a witness of non-equivalence has size at most |Q||Q ′|.
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Quantitative language equivalence

Quantitative language equivalence

Quantitative language equivalence is decidable in PTIME.

Algorithm idea
Principle enumerate words of increasing length to find a counterexample

Data structures

I a stack to store words w such that all aw need be checked

I a set Gen of independent vectors of RQ∪Q′

Iteration if w is not a counterexample
and if v = Pw1F − P′w1F ′ is not generated by Gen
then add w to the stack and add v − ProjGen(v) to Gen

Correctness is non trivial
|Q|+ |Q ′| bounds the number of iterations and the size of a witness.

MOVEP 2016 – Genova – 28th june 2016, 20/50
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Boolean language equivalence

Boolean language equivalence

The problem, given a PA A of telling whether L= 1
2
(A) = {ε} is undecidable.

Proof sketch: reduction from PCP

I PCP instance: morphisms ϕ1 : A→ {0, 1}+ and ϕ2 : A→ {0, 1}+

I v ∈ {0, 1}+ defines a value val(v) =
∑n

i=1
vi

2n−i

I Define A1 such that PrA1 (w) = val(ϕ1(w)) and A2 such that
PrA2 (w) = 1− val(ϕ2(w))

I PA A starts in A1 or A2 with equal probability, thus

PrA(w) =
1

2

(
val(ϕ1(w)) + (1− val(ϕ2(w)))

)

PrA(w) =
1

2
⇐⇒ ϕ1(w) = ϕ2(w)
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Qualitative problems for PA

Non-emptiness of (almost-)sure language
Input: A PA
Output: yes iff ∃w , PrA(w) = 1

I almost-sure reachability for PA

Non-emptiness of almost-sure language is PSPACE-complete.

I decidable in PSPACE
I complement final states F ′ = Q \ F
I consider A′ as an NFA
I L(A′) 6= A∗ iff L=1(A) 6= ∅

Non-emptiness of limit-sure language
Input: A PA
Output: yes iff ∃(wn)n∈N, limn→∞ PrA(wn) = 1

I limit-sure reachability for PA

I value 1 problem

Non-emptiness of limit-sure language is undecidable.

MOVEP 2016 – Genova – 28th june 2016, 22/50
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A first POMDP example

A company sells a product, either luxury (L) or standard (S).
Consumers may be sensitive to brands (B) or not (B)
but the company does not know this information...
... and only knows whether the product is purchased (P) or not (P).

L,B

B

S,B

B,L

B,S

L,B

B

S,B

B,L

B,S

L,4

S,0

L,−4

S,−3

0.8P+0.2P

0.9P+0.1P

0.6P+0.4P

0.4P+0.6P

0.8

0.20.5

0.5

0.5

0.50.4

0.6

States: B, B; Actions: L, S; Observations: P, P;

I probabilities: p(B|B, L) = 0.8 ;
I rewards: rew(B, L) = 4 ;
I observations:o(P|L,B) = 0.8
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A second POMDP example

q0 q1

q2

1
2
a + 1

2
b

1
4
a + 1

2
b

1
4
a + 1

2
b

1
2
a + 1

2
b

1
2
a + 1

4
b

1
2
a + 1

2
b

1
4
a 1

4
a + 1

4
b

States : {q0, q1, q2} ; Actions : {a, b} ; Observations : { , }
I probabilities: p(q1|q0, a) = 1

2

I rewards: 0 everywhere

I observations: o(q0) = o(q1) =
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POMDP

Deterministic observation POMDP

A POMDP M = (S ,Ω,A, o, p, rew, rewf ) is defined by:

I S a finite set of states;

I Ω a finite set of observations;

I A a finite set of actions;

I o : S → Ω the observation function; o(s) ∈ Ω is the observation
associated with state s;

I p : S × A→ Dist(S) the transition function; p(s ′|s, a) is the probability
that the next state be s ′ when action a occurs from s;

I rew : S × A→ Q the reward function; rew(s, a) is the reward associated
with action a from state s.

I rewf : S → Q the final reward function; rewf (s) is the reward associated
when ending in state s.
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Strategies

To obtain a stochastic process, a strategy rules out non-determinism.

Strategies

A strategy is a function ν : (AΩ)∗ → Dist(A) mapping each history ρ ∈ (AΩ)∗

with a distribution over actions; ν(ρ, a) is the probability that a is chosen given
history ρ.

Induced Markov chain

Let M be a POMDP, ν a strategy and π ∈ Dist(S) an initial distribution. The
Markov chain Mπ

ν induced by M, ν et π is defined by:

I (AΩ)∗ × S its (infinite) state space;

I π0 the initial distribution such that π0(ε, s) = π(s) and π0 is null for other
states;

I P the transition matrix such that:
P[(ρ, s), (ρao(s ′), s ′)] = ν(ρ, a)p(s ′|s, a), and P is zero elsewhere.
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POMDP subclasses

Two very particular cases:

I Ω = S : the agent knows the state of the system; (full observation)
Markov decision process.

I |Ω| = 1: observation is useless; blind POMDP.

PA vs POMDP

Probabilistic automata form a subclass of POMDP.

word in probabilistic automaton ⇐⇒ pure strategy in blind POMDP

Consequence: All hardness results lift from PA to POMDP.
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1 Probabilistic automata
Presentation
Stochastic languages
Decision problems

2 Partially observable MDP
Presentation
POMDP analysis
Application to control for fault diagnosis

3 Conclusion
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Finite-horizon analysis

Expected total payoff

The expected total payoff at time t, under strategy ν is

uνt =
t−1∑
i=0

Eν(rew(Xi ,Yi )) + Eν(rewf (Xt))

where Xi (resp. Yi ) is the random variable of state (action) at step i .
The optimal expected total payoff at time t is

u?t = sup
ν

uνt

Finite-horizon analysis

One can compute a set of indices Zt , a family of vectors {rz}z∈Zt , a family of
polyedra {Dz}z∈Zt such that

I
⋃

z∈Zt
Dz is the set of distributions over states

I for every initial distribution π, π ∈ Dz ⇒ u?t (π) = πrz
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Finite-horizon analysis on an example

rewf (q2) = 1 and all other rewards are 0

q0 q1

q2

1
2
a + 1

2
b

1
4
a + 1

2
b

1
4
a + 1

2
b

1
2
a + 1

2
b

1
2
a + 1

4
b

1
2
a + 1

2
b

1
4
a 1

4
a + 1

4
b

Objective: for t = 1, determine Z , (Dz)z∈Z and (rz)z∈Z such that

π ∈ Dz ⇒ u?t (π) = πrz

Z = {a, b}
Da = {(x0, x1, x2) | x0 + x1 + x2 = 1 ∧ x0 ≤ x1} ra = ( 1

4
, 1

2
, 0)

Db = {(x0, x1, x2) | x0 + x1 + x2 = 1 ∧ x0 ≥ x1} rb = ( 1
2
, 1

4
, 0)
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Infinite-horizon problems

Objectives

Reachability F visited at least once:

3F = {q0q1q2 · · · ∈ Sω | ∃n, qn ∈ F}

Safety always stay in F :

2F = {q0q1q2 · · · ∈ Sω | ∀n, qn ∈ F}

Büchi F visited an infinite number of times:

23F = {q0q1q2 · · · ∈ Sω | ∀m ∃n ≥ m, qn ∈ F}

Goal: For ϕ an objective, evaluate supν P
ν(M |= ϕ).

Deterministic strategies are sufficient!

Let M be a POMDP, and ϕ ⊆ Sω a Borelian objective. For every strategy ν,
there exists a deterministic strategy ν′ such that

Pν(M |= ϕ) ≤ Pν
′
(M |= ϕ).
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Undecidability of infinite-horizon quantitative analysis

Undecidability of quantitative reachability

The problem of the existence of a strategy ensuring the reachability objective
3F with probability at least p is undecidable for POMDP.

Reduction from the emptiness problem for PA.
Only subtlety: synchronize paths!

fq F
]

deterministic strategies in M: νw = w], where w word for the PA A

Pνw (M |= 3F ) = PA(w)
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Undecidability of qualitative infinite-horizon analysis

Undecidability of positive repeated reachability

The problem of the existence of a strategy ensuring the repeated reachability
objective 23F with probability > 0 is undecidable for POMDP.

Reduction from the value 1 problem for PA.

fq

f]
]]

deterministic strategies in M: νw = w1]]w2]]w3 · · · , where wi words for PA A

Pνw(M |= 23f]) > 0⇐⇒
∏
i

PA(wi ) > 0

val(A) = 1 ⇐⇒ ∃(wi )i∈N
∏
i

PA(wi ) > 0 ⇐⇒ ∃νw Pνw(M |= 23f]) > 0
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Combination of infinite-horizon objectives

Infinite memory is needed for combined objectives!
Goal: 23{q2, r2} almost surely and 2{q1, q2} with positive probability.

q1q2

r2 r1

b

a

b a

1
2
a

b

1
2
a

b

a

Undecidability of combined qualitative objectives

The problem of the existence of a strategy ensuring

I a safety objective 2G with probability > 0, and

I a Büchi objective 23F with probability = 1

is undecidable for POMDP.
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Decidability of qualitative infinite-horizon analysis

Decidability of positive reachability

The problem of the existence of a strategy ensuring a reachability objective 3F
with probability > 0 is NLOGSPACE-complete for POMDP.

I Equivalent to reachability in graphs.

I Purely random strategy works: uniform randomization on all actions at
each step.
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Decidability of qualitative infinite-horizon analysis (2)

Decidability of almost-sure safety

The problem of the existence of a strategy ensuring a safety objective 2G with
probability = 1 is EXPTIME-complete for POMDP.

Beliefs

The belief of the agent is the set of possible states, given the sequence of obser-
vations so far.

Necessary and sufficient condition: agent maintains its belief included in G .
One builds the belief game.
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Belief game on an example

q0 q1

q2

q3

q4

1
2
a + 1

2
b1

2
b

1
4
b

a 1
3
b

1
2
a

a + 3
4
b

a + b

a + b

2
3
b

∃ν Pν(M |= 2{q0, q1, q2, q4}) = 1?

{q0} {q1}

{q1, q2}

{q3}

{q4}

b,b,

b,
a,

b,

a,

a, | b,

a, | b,

a, | b,

b,

player 1 chooses a or b

player 2 chooses or
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Decidability of qualitative infinite-horizon analysis (3)

Decidability positive safety

The problem of the existence of a strategy ensuring a safety objective 2G with
positive probability is EXPTIME-complete for POMDP.

Positional strategies on belief game are not enough...

q3q0

q1

q2

1
2
a

1
2
a

a + 1
2
b1

2
a + b

1
2
b

1
2
a

a

{q3}{q0} {q1, q2}
a,

a, | b,

a, | b,
a,
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q3q0

q1

q2

1
2
a

1
2
a

a + 1
2
b1

2
a + b

1
2
b

1
2
a

a

{q3}{q0} {q1, q2}
a,

a, | b,

a, | b,
a,

Yet, choosing a, then bet the system lies in q1, and alternerate a and b for
ever, guarantees a probability 1

2
for 2{q0, q1, q2}.
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q3q0

q1

q2

1
2
a

1
2
a

a + 1
2
b1

2
a + b

1
2
b

1
2
a

a

{q3}{q0} {q1, q2}
a,

a, | b,

a, | b,
a,

... but almost! It is necessary and sufficient to reach a belief C ⊆ S such that
there exists a state s ∈ C and a strategy ensuring to surely stay in G from s.
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Decidability of infinite-horizon qualitative analysis

Decidability almost sure (repeated) reachability

The problem of the existence of a strategy ensuring a reachability objective 3F
almost surely is EXPTIME-complete for POMDP.

Idea: one needs to reach a belief included in F ; every observation deviating
from this path must still lead to a winning belief, to be able to try again to
reach F .

Win is the biggest set of beliefs such that:

Win = {C | ∃C a1,o1−−−→ C1 · · ·
an,on−−−→ Cn ⊆ F

and ∀o′kC
a1,o1−−−→ C1 · · ·

ak ,o
′
k−−−→ C ′k ∈Win}
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Decision algorithm on an example

q0

q1

q2

q3 Fq4

q5

1
2
a + 1

2
b

1
3
a

b

1
2
b

1
6
a

b
a

b

b

1
2
a

1
2
a

1
2
a

1
2
a

a + b

a + b
∃ν Pν(M |= 3F ) = 1?
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a,b,
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b,

a,
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a, | b, a, | b,
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Fault diagnosis

Goal: determine whether a fault f occurred, based on the observed events.
Σo = {a, b, c} observable ; Σu = {f, u} non-observable

q0

f1 f2 f3

q1 q2

f

u

a

c

c

cb

b c

c+ X surely correct
ac+ 7 surely faulty
b+ ? ambiguous

Diagnosability

A system is diagnosable if all its observed sequences are unambiguous.

Decidability of diagnosis

The diagnosability problem is NLOGSPACE-complete.
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Fault diagnosis for probabilistic systems

q0

f1 f2 f3

q1 q2

f,1/2

u,1/2

a,1/2

c,1/2

c

cb,1/2

b,1/2 c

b+ ambiguous but...

lim
n→∞

P(fbn + ubn) = 0

Almost-sure diagnosability

A probabilistic system is diagnosable if the probability of ambiguous observed
sequences is null.

Decidability of almost-sure diagnosis

The almost-sure diagnosis problem is PSPACE-complete.
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Active diagnosis

Goal: control the system so that its set of ambiguous sequences has null
measure.

Σo = Σc = {a, b, c, d} observable and controllable;
Σu = Σe = {f, u} unobservable and uncontrollable

s0

s1 s2

s3 s4 s5

1
2
f

1
2
u

a

a

1
3
d1

4
a

1
4
c

1
3
a + 1

3
b

1
2
b c

aadcω ambiguous
P(faadcω + uaadcω) > 0

forbid a after the first a

Controller: decides which actions are allowed, based on observations
σ : Σ∗obs → 2Σc
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Problem resolution

Decidability of active almost-sure diagnosis

The active diagnosis problem for probabilistic systems is EXPTIME-complete.

Idea of EXPTIME-algorithm

I characterize unambiguous sequences by a deterministic Büchi automaton B
I build the product of probabilistic LTS with B: new pLTS

I transform it into POMDP P
each action is a subset of controllable events

the observations are observable events

q0 q1

q2

f

ba

a

q0

qa1

qa2

qb2

•

•

•

{a,b}

{a}

{b}

1/4

1/2

1/4

1

1/2

1/2

I decide whether there exists a strategy ensuring almost-surely the Büchi condition
in P.
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Conclusion

POMDP partially observable Markov decision processes

I finite-horizon optimization
I infinite-horizon optimization unfeasible
I qualitative infinite-horizon analysis mostly feasible
I application to active diagnosis of stochastic systems

PA probabilistic automata

I particular case of POMDP
I expressiveness
I langagues equivalence, equality, value 1

Partial observation + Probabilities + Control: a challenging combination
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