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An introductive example

Holiday planning
1. Choose and airline type lowcost or highcost ;
2. Book an accommodation on the internet or by phone;

3. Choose a tour seeall or missnothing.

Each action
> must be planned before holidays;

> may fail with some probability.

A possible plan: lowcost - internet - seeall
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Example formalisation

—>{ start

%1owcost+1highcost

%1owcost
% internet+ %phone
% internet+ %phone
fail

1 {hotel

1. = .
;seeall+:missnothing

3 7 .
;seeall+gmissnothing

success —
The success probability of lowcost - internet - seeall is equal to g
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Probabilistic automata

1

1a+3b( (%) (0] )3a+1b

APA A=(Q,A {Ps}ica, mo, F) is defined by:
> @, a finite set of states; Q={q0,q1}
> A, a finite alphabet of actions; A ={a, b}

> for every a € A, a stochastic matrix P, indexed by Q
i.e. for every q,q' € Q, P3[q,q'] >0and 3°_,,P.[q,q'] = 1;

1 0 RE JE>
Po=5 5 Po=g

> 7, the initial distribution over states; mo[qo] =
» F C Q, a subset of final states. F={q}

Label 1a+ }b on the loop at go means P.[qo, qo] = 1 and Py[qo, qo] = 3.

MOVEP 2016 — Genova — 28th june 2016, 7/50



Probabilistic automata
O000e0

Control in PA

Strategies are words
what is the probability to reach a final state after word w?

The acceptance probability of w = a1 ...a, by A is:

PI’A(W) = Zm[q] Z (H Pa;) [q7 q/]

qeQ q’eF \i=1
For short

Pra(w) = moPw1f

where P, = [[7_, P.; and 1f is the indicating vector of subset F.

MOVEP 2016 — Genova — 28th june 2016, 8/50



Probabilistic automata
O0000e

Illustration

1

1
la+ 3b @ @ sa+1b

Inductive computation of Pr4(abba) from Pr4(e) = 0.

» Pra(a) = 1Pra(e) =0

» Pra(ab) = Pra(a) + 1(1 — Pra(a)) =%

» Pra(abb) = Pra(ab) + (1 — Pra(ab)) = 32
> Pry(abba) = 1Pra(abb) = 3
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Illustration

1
5a+1b

Inductive computation of Pr4(abba) from Pr4(e) = 0.
> Pra(a) = 1Pra(e) =0

Pra(ab) = Pra(a) + (1 — Pra(a)) = 3
» Pra(abb) = Pra(ab) + (1 — Pra(ab)) = 32
> Pry(abba) = 1Pra(abb) = 3

In general:

v

Pr.a(wa) — %PrA(W) and  Pra(wb) = %(1 + Pra(w))

Thus giving an explicit acceptance probability:

Pra(ai...an) = 22"_"_1 R S
i—1
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Illustration

1

1
la+ 3b @ @ sa+1b

Inductive computation of Pr4(abba) from Pr4(e) = 0.
» Pra(a) = 1Pra(e) =0

Pra(ab) = Pra(a) + (1 — Pru(a)) = 1
» Pra(abb) = Pra(ab) + (1 — Pra(ab)) = 32
> Pry(abba) = 1Pra(abb) = 3

In general:

v

1 1
Pra(wa) = EPI‘A(W) and  Pry(wb) = 5(1 + Pra(w))
Thus giving an explicit acceptance probability:

Pra(ai...an) = Z2i_"_1 R S
i—1

Which word maximizes the acceptance probability?
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Languages defined by PA

Selection of good strategies

For A a PA, 6 € [0,1] a threshold and x1 € {<, <, >, >, =, #} an operator, the
stochastic language Lyo(.A) is defined by

Liwo(A) = {w € A" | Pra(w) =6}
We further define subclasses of stochastic languages.

> A PA is rational if its probabilities are in Q.

> A stochastic language is rational if it is specified by a rational PA and a
rational threshold.
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Removing syntactic sugar

Getting rid of useless thresholds and operators
Unique threshold
For every PA A, threshold § and comparison operator i<, there exists A’ s.t.

L1 (A') = Lo (A)

1
2

Proof
» Case 6 > %

amo[qc
o[qo] 1-a set gp ¢ F and o = 55;
@ @ >Case9<%
A setq()eFanda:ﬁ.
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Removing syntactic sugar

Getting rid of useless thresholds and operators

Unique threshold

For every PA A, threshold § and comparison operator i<, there exists A’ s.t.

Lo (A) = Lo (A)
Proof )
Case 0 > =
amo[qo] g 2
= J1-a set gp ¢ F and o = 55;
® O - Cased < 3
A set gy € F and a = 52—

2(1-0)"

Restricting operators
Comparison operators > and > suffice.

Proof idea

» < and < removed by complementation of final states;

> A’ runs two copies of A in parallel, and F' = F x (Q\ F) then:
> Pry(w) = Pra(w)(1—Pry(w))
> L () = L (A)
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Regular vs stochastic languages

Regular vs stochastic

Regular languages are rational stochastic.

Proof
A DFA is a PA with transition probabilities in {0,1}.
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A counting PA

Nl
o

—_

o

absorbing sink state is omitted

Accepted words are of the form w = a”b" with m >0, n > 0.
Accepting runs on w are:

> the run qog"q5, with probability 2;

> the family of runs qogigigs with r,s >0 and r + s = m, with total
probability % — 2%,,
Altogether Pra(w) = 5 + & — .

5:%(./4) ={a"b" | n> 0}
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Stochastic vs context-free languages

Stochastic vs context-free languages
Context-free languages and stochastic languages are incomparable.

> L={a"ba™b...a"%ba" | 3i>1n = n}
is a context-free language that is not stochastic.

» L={a"b"c" | n> 0}
is a rational stochastic language that is not contex-free.

> {a"b" | n >0} = {a"b"ct | n>0}N{ath"c" | n >0}
> family {£_g(A) | A PA } is closed under intersection
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Stochastic vs contextual languages

il

la+ 3b 3a+1b

For w=wa...wy Pra(w) =0.p(w1)...p(w,) with ¢(a) =0 and p(b) = 1.

Loo(A) = {r € [0,1] | bin(r) > 0}
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Stochastic vs contextual languages

il

la+ 3b 3a+1b

For w=wa...wy Pra(w) =0.p(w1)...p(w,) with ¢(a) =0 and p(b) = 1.

Loo(A) = {r € [0,1] | bin(r) > 0}

0 <0 = Lsg(A) S Lso(A)

Cardinality of stochastic languages
There are uncountably many stochastic languages.

Consequence: “Most” stochastic languages are not recursively enumerable.
Not valid for rational stochastic languages!
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Comparison with Chomsky's hierarchy

recursively
enumerable

rational

stochastic

regular
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Two decision problems

Quantitative language equivalence
Input: A and A’ PA
Output: yes iff Yw € A* Pra(w) = Pr 4/ (w)

Boolean language equivalence
Input: A and A’ PA, 0,0 thresholds, i<, < comparison operators
Output: yes iff Lygp(A) = Lpwor (A')
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Two decision problems

Quantitative language equivalence
Input: A and A’ PA
Output: yes iff Yw € A* Pra(w) = Pr 4/ (w)

Boolean language equivalence
Input: A and A’ PA, 0,0 thresholds, i<, < comparison operators
Output: yes iff Lygp(A) = Lpwor (A')

Note: for deterministic automata
> the two problems coincide
» decidable in PTIME by a product construction

> a witness of non-equivalence has size at most |Q||Q’|.
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Quantitative language equivalence

Quantitative language equivalence

Quantitative language equivalence is decidable in PTIME.
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Quantitative language equivalence

Quantitative language equivalence

Quantitative language equivalence is decidable in PTIME.

Algorithm idea
Principle enumerate words of increasing length to find a counterexample

Data structures
> a stack to store words w such that all aw need be checked

> a set Gen of independent vectors of ROVY
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Quantitative language equivalence

Quantitative language equivalence

Quantitative language equivalence is decidable in PTIME.

Algorithm idea
Principle enumerate words of increasing length to find a counterexample
Data structures

> a stack to store words w such that all aw need be checked

> a set Gen of independent vectors of ROVY

Iteration if w is not a counterexample
and if v=P,1F — P, 15 is not generated by Gen
then add w to the stack and add v — Proj¢,,(v) to Gen
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Quantitative language equivalence

Quantitative language equivalence

Quantitative language equivalence is decidable in PTIME.

Algorithm idea
Principle enumerate words of increasing length to find a counterexample

Data structures
> a stack to store words w such that all aw need be checked

> a set Gen of independent vectors of ROVY

Iteration if w is not a counterexample
and if v=P,1F — P, 15 is not generated by Gen
then add w to the stack and add v — Proj¢,,(v) to Gen

Correctness is non trivial
|Q| + |Q’| bounds the number of iterations and the size of a witness.
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Boolean language equivalence

Boolean language equivalence
The problem, given a PA A of telling whether L_1(.A) = {e} is undecidable.

1
2
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Boolean language equivalence

Boolean language equivalence
The problem, given a PA A of telling whether L_1(.A) = {e} is undecidable.

1
2

Proof sketch: reduction from PCP
» PCP instance: morphisms ¢ : A — {0,1}" and ¢, : A — {0,1}"

» v e {0,1}" defines a value val(v) = 37 | 575

MOVEP 2016 — Genova — 28th june 2016,

21/50



Probabilistic automata
[e]e]e] lo}

Boolean language equivalence

Boolean language equivalence
The problem, given a PA A of telling whether L:%(A) = {e} is undecidable.

Proof sketch: reduction from PCP
» PCP instance: morphisms ¢ : A — {0,1}" and ¢, : A — {0,1}"

v € {0,1}" defines a value val(v) = 37 | =75

v

v

Define A; such that Pry4, (w) = val(p1(w)) and Az such that
Pra,(w) =1 — val(p2(w))
» PA A starts in A; or Ay with equal probability, thus

Pra(w) = 2 (val(pr(w)) + (1~ val(2(w))))
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Boolean language equivalence

Boolean language equivalence
The problem, given a PA A of telling whether L:%(A) = {e} is undecidable.

Proof sketch: reduction from PCP
» PCP instance: morphisms ¢ : A — {0,1}" and ¢, : A — {0,1}"

v € {0,1}" defines a value val(v) = 37 | =75

v

v

Define A; such that Pry4, (w) = val(p1(w)) and Az such that
Pra,(w) =1 — val(p2(w))
» PA A starts in A; or Ay with equal probability, thus

Pra(w) = 2 (val(pr(w)) + (1~ val(2(w))))

Pra) =3 < ai(w) = pa(w)
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Qualitative problems for PA

Non-emptiness of (almost-)sure language
Input: A PA
Output: yes iff Jw, Pra(w) =1
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Qualitative problems for PA

Non-emptiness of (almost-)sure language
Input: A PA
Output: yes iff Iw, Pry(w) =1
> almost-sure reachability for PA
Non-emptiness of almost-sure language is PSPACE-complete.
» decidable in PSPACE
> complement final states F' = Q \ F

> consider A’ as an NFA

> L(A") #£ A*ff Ly (A) #£ 0
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Qualitative problems for PA

Non-emptiness of (almost-)sure language
Input: A PA
Output: yes iff Iw, Pry(w) =1

> almost-sure reachability for PA

Non-emptiness of almost-sure language is PSPACE-complete.

» decidable in PSPACE

> complement final states F' = Q \ F
> consider A’ as an NFA

> L(A") #£ A*ff Ly (A) #£ 0

Non-emptiness of limit-sure language
Input: A PA
Output: yes iff I(wn)nen, liMpsoo Pra(w,) =1
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Qualitative problems for PA

Non-emptiness of (almost-)sure language
Input: A PA
Output: yes iff Iw, Pry(w) =1

> almost-sure reachability for PA

Non-emptiness of almost-sure language is PSPACE-complete.

» decidable in PSPACE

> complement final states F' = Q \ F
> consider A’ as an NFA

> L(A") #£ A*ff Ly (A) #£ 0

Non-emptiness of limit-sure language
Input: A PA
Output: yes iff I(wn)nen, liMpsoo Pra(w,) =1

> limit-sure reachability for PA

> value 1 problem

Non-emptiness of limit-sure language is undecidable.
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A first POMDP example

A company sells a product, either luxury (L) or standard (S).
Consumers may be sensitive to brands (B) or not (B)
but the company does not know this information...

. and only knows whether the product is purchased (P) or not (P).
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A first POMDP example

A company sells a product, either luxury (L) or standard (S).
Consumers may be sensitive to brands (B) or not (B)
but the company does not know this information...

. and only knows whether the product is purchased (P) or not (P).
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1
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V\\/
IS,B 'S B
Mgl 0.4 0.5 [l

States: B, B; Actions: L, S; Observations: P, P;
> probabilities: p(B|B,L) = 0.8 ;
> rewards: rew(B,L) =4 ;
> observations:o(P|L,B) = 0.8
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A second POMDP example

States : {qo, g1, G2} ; Actions : {a, b} ; Observations : { 3
> probabilities: p(g1|qo,a) = 5
> rewards: O everywhere

> observations: o(qo) = o(q1) = )
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POMDP

A POMDP M = (5,9, A, o, p, rew, rews) is defined by:

» S a finite set of states;
» Q a finite set of observations;

» A a finite set of actions;
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POMDP

A POMDP M = (5,9, A, o, p, rew, rews) is defined by:
> S a finite set of states;
> Q a finite set of observations;
» A a finite set of actions;

> 0: 5 — Q the observation function; o(s) € Q is the observation
associated with state s;

» p:S x A— Dist(S) the transition function; p(s’|s, a) is the probability
that the next state be s’ when action a occurs from s;

> rew : S X A — Q the reward function; rew(s, a) is the reward associated
with action a from state s.

> rews : S — Q the final reward function; rews(s) is the reward associated
when ending in state s.
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Strategies

To obtain a stochastic process, a strategy rules out non-determinism.

A strategy is a function v : (AQ)* — Dist(A) mapping each history p € (AQ)*
with a distribution over actions; v(p, a) is the probability that a is chosen given
history p.
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Strategies
To obtain a stochastic process, a strategy rules out non-determinism.

A strategy is a function v : (AQ)* — Dist(A) mapping each history p € (AQ)*
with a distribution over actions; v(p, a) is the probability that a is chosen given
history p.

Let M be a POMDP, v a strategy and 7 € Dist(S) an initial distribution. The
Markov chain M7 induced by M, v et 7 is defined by:

> (AQ)" x S its (infinite) state space;

> 7o the initial distribution such that mo(e, s) = m(s) and o is null for other
states;

> P the transition matrix such that:
Pl(p,s), (pao(s'),s’)] = v(p,a)p(s’|s, a), and P is zero elsewhere.

MOVEP 2016 — Genova — 28th june 2016, 28/50



Partially observable MDP
[e]e]ele]e] ]

POMDP subclasses

Two very particular cases:

» Q = S: the agent knows the state of the system; (full observation)
Markov decision process.

> |Q] = 1: observation is useless; blind POMDP.
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POMDP subclasses

Two very particular cases:

» Q = S: the agent knows the state of the system; (full observation)
Markov decision process.

> |Q] = 1: observation is useless; blind POMDP.

PA vs POMDP
Probabilistic automata form a subclass of POMDP.
word in probabilistic automaton <= pure strategy in blind POMDP

Consequence: All hardness results lift from PA to POMDP.
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© Partially observable MDP

o POMDP analysis
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Finite-horizon analysis

The expected total payoff at time t, under strategy v is

t—1

ul = E:I[E”(rew(X;7 Yi)) + E” (rewe(X:))

i=0

where X; (resp. Y;) is the random variable of state (action) at step /.
The optimal expected total payoff at time t is

* v
u; = sup uy
v

Finite-horizon analysis

One can compute a set of indices Z;, a family of vectors {r.}.cz, a family of
polyedra {D.},cz such that

> UzeZ: D, is the set of distributions over states

> for every initial distribution w, 7 € D, = u;(7) = 7r;
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Finite-horizon analysis on an example

rews(g2) = 1 and all other rewards are 0

1
ia

Objective: for t = 1, determine Z, (D;).cz and (r;).cz such that

m €D, = u(r) = 7r,

Z ={a, b}
D, ={(x0,x1,%) | x0o+x1+xx=1Axo<xi} r,=(
Db:{(XOaXhXZ)|XO+X1+X2:1/\X02X1} I’b:(
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Infinite-horizon problems

Reachability F visited at least once:
OF ={qoq1q2--- € S | 3n, g € F}
Safety always stay in F:
OF = {qoqi1g2--- € S* | Vn, q, € F}
Biichi F visited an infinite number of times:

OCF ={qoqiqz--- € S* |Vm 3In>m, q, € F}
Goal: For ¢ an objective, evaluate sup, P¥(M [ ¢).
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Infinite-horizon problems

Reachability F visited at least once:
OF ={qoq1q2--- € S | 3n, g € F}
Safety always stay in F:
OF = {qoqi1g2--- € S* | Vn, q, € F}
Biichi F visited an infinite number of times:
OCF ={qoqiqz--- € S* |Vm 3In>m, q, € F}

Goal: For ¢ an objective, evaluate sup, P¥(M [ ¢).

Deterministic strategies are sufficient!

Let M be a POMDP, and ¢ C S“ a Borelian objective. For every strategy v,
there exists a deterministic strategy v’ such that

P/(M =) <PV (M = o).
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Undecidability of infinite-horizon quantitative analysis

Undecidability of quantitative reachability

The problem of the existence of a strategy ensuring the reachability objective
<OF with probability at least p is undecidable for POMDP.
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Undecidability of infinite-horizon quantitative analysis

Undecidability of quantitative reachability

The problem of the existence of a strategy ensuring the reachability objective
<OF with probability at least p is undecidable for POMDP.

Reduction from the emptiness problem for PA.
Only subtlety: synchronize paths!

© O @
deterministic strategies in M: v, = wi, where w word for the PA A

PY(M = OF) = Pa(w)

MOVEP 2016 — Genova — 28th june 2016, 34/50



Partially observable MDP
0000080000000

Undecidability of qualitative infinite-horizon analysis
Undecidability of positive repeated reachability

The problem of the existence of a strategy ensuring the repeated reachability
objective OCF with probability > 0 is undecidable for POMDP.
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Undecidability of qualitative infinite-horizon analysis
Undecidability of positive repeated reachability
The problem of the existence of a strategy ensuring the repeated reachability

objective OCF with probability > 0 is undecidable for POMDP.

Reduction from the value 1 problem for PA.

deterministic strategies in M: vy = wififwafifws - - -, where w; words for PA A

PY(M |z 00f) > 0 <= [[Pa(w) >0

val(A) =1 <= F(w)ien [[Paw) >0 = I P™(ME00K)>0
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Combination of infinite-horizon objectives

Infinite memory is needed for combined objectives!
Goal: O0C{qz, r2} almost surely and 0O{q1, g2} with positive probability.
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Combination of infinite-horizon objectives

Infinite memory is needed for combined objectives!
Goal: O<C{q2, r2} almost surely and 0O{q1, g-} with positive probability.

Undecidability of combined qualitative objectives

The problem of the existence of a strategy ensuring
> a safety objective OG with probability > 0, and
> a Biichi objective OCF with probability = 1

is undecidable for POMDP.

MOVEP 2016 — Genova — 28th june 2016, 36/50



Partially observable MDP
O000000@00000

Decidability of qualitative infinite-horizon analysis

Decidability of positive reachability

The problem of the existence of a strategy ensuring a reachability objective OF
with probability > 0 is NLOGSPACE-complete for POMDP.
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Decidability of qualitative infinite-horizon analysis

Decidability of positive reachability
The problem of the existence of a strategy ensuring a reachability objective OF
with probability > 0 is NLOGSPACE-complete for POMDP.

» Equivalent to reachability in graphs.
> Purely random strategy works: uniform randomization on all actions at

each step.
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Decidability of qualitative infinite-horizon analysis (2)

Decidability of almost-sure safety

The problem of the existence of a strategy ensuring a safety objective OG with
probability = 1 is EXPTIME-complete for POMDP.
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Decidability of qualitative infinite-horizon analysis (2)

Decidability of almost-sure safety

The problem of the existence of a strategy ensuring a safety objective OG with
probability = 1 is EXPTIME-complete for POMDP.

The belief of the agent is the set of possible states, given the sequence of obser-
vations so far.

Necessary and sufficient condition: agent maintains its belief included in G.
One builds the belief game.
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Belief game on an example

v PY(M = O0{qo, 91, G2, qa}) = 17
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Belief game on an example

a+b

v PY(M = O0{qo, 91, G2, qa}) = 17

player 1 chooses a or b
player 2 chooses ' or
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Decidability of qualitative infinite-horizon analysis (3)

Decidability positive safety

The problem of the existence of a strategy ensuring a safety objective OG with
positive probability is EXPTIME-complete for POMDP.
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Decidability of qualitative infinite-horizon analysis (3)

Decidability positive safety

The problem of the existence of a strategy ensuring a safety objective OG with
positive probability is EXPTIME-complete for POMDP.

Positional strategies on belief game are not enough...

Yet, choosing a, then bet the system lies in g1, and alternerate a and b for
ever, guarantees a probability % for O{qo, g1, g2}
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Decidability of qualitative infinite-horizon analysis (3)

Decidability positive safety

The problem of the existence of a strategy ensuring a safety objective OG with
positive probability is EXPTIME-complete for POMDP.

Positional strategies on belief game are not enough...

... but almost! It is necessary and sufficient to reach a belief C C S such that
there exists a state s € C and a strategy ensuring to surely stay in G from s.
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Decidability of infinite-horizon qualitative analysis

Decidability almost sure (repeated) reachability

The problem of the existence of a strategy ensuring a reachability objective OF
almost surely is EXPTIME-complete for POMDP.

Idea: one needs to reach a belief included in F; every observation deviating
from this path must still lead to a winning belief, to be able to try again to
reach F.

Win is the biggest set of beliefs such that:

Win={C|3Cc 2% ¢ ... 2" C, CF

and Vo, C 2% ¢ - k’ok 25 Cr € Win}
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Decision algorithm on an example

I PY(M = OF) =17
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Decision algorithm on an example
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Decision algorithm on an example
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Decision algorithm on an example
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© Partially observable MDP

@ Application to control for fault diagnosis
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Fault diagnosis

Goal: determine whether a fault f occurred, based on the observed events.
Y, ={a, b,c} observable ; ¥, = {f, u} non-observable
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Fault diagnosis

Goal: determine whether a fault f occurred, based on the observed events.
Y, ={a, b,c} observable ; ¥, = {f, u} non-observable

ct v/ surely correct
act X surely faulty
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Partially observable MDP
[¢] lele]e}

Fault diagnosis

Goal: determine whether a fault f occurred, based on the observed events.
Y, ={a, b,c} observable ; ¥, = {f, u} non-observable

. ct surely correct

» act X surely faulty

bt ?  ambiguous

’

~

B8

c

A system is diagnosable if all its observed sequences are unambiguous.

Decidability of diagnosis
The diagnosability problem is NLOGSPACE-complete.
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Fault diagnosis for probabilistic systems
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Fault diagnosis for probabilistic systems
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b* ambiguous but...
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Fault diagnosis for probabilistic systems

b,1/2 c

[e]e] le]e}

b* ambiguous but...

lim P(Fb" + ub") =0
n— oo

MOVEP 2016 — Genova — 28th june 2016, 45/50



Partially observable MDP

[e]e] le]e}
Fault diagnosis for probabilistic systems
b,1/2 c
a,1/2 D c 8
e 8 ® z
Ps bT ambiguous but...

(@ lim B(FL" + ub) = 0

RV 8
u,1 A .Y

b,1/2 c

A probabilistic system is diagnosable if the probability of ambiguous observed
sequences is null.

Decidability of almost-sure diagnosis

The almost-sure diagnosis problem is PSPACE-complete.
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Active diagnosis

Goal: control the system so that its set of ambiguous sequences has null
measure.
Y, =X.=1{a,b,c,d} observable and controllable;
Y, = X = {f, u} unobservable and uncontrollable
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Active diagnosis

Goal: control the system so that its set of ambiguous sequences has null

measure.
Y, =X.=1{a,b,c,d} observable and controllable;
Y, = X = {f, u} unobservable and uncontrollable
3a+3b
2
1 ;(:) >
27 aadc® ambiguous
-7 1 1 P(faadc® + vaadc®) > 0
—»\ 79 3d
. L
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o
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[e]e]e] lo}

Active diagnosis

Goal: control the system so that its set of ambiguous sequences has null

measure.
Y, =X.=1{a,b,c,d} observable and controllable;
Y, = X = {f, u} unobservable and uncontrollable
3a+3b
2
1 ;(:) >
27 aadc® ambiguous
-7 1 1 P(faadc® + vaadc®) > 0
—»\ 79 3d
T le forbid a after the first a
I G

Controller: decides which actions are allowed, based on observations
0Tk — 2%
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Problem resolution

Decidability of active almost-sure diagnosis

The active diagnosis problem for probabilistic systems is EXPTIME-complete.
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Problem resolution

Decidability of active almost-sure diagnosis

The active diagnosis problem for probabilistic systems is EXPTIME-complete.

Idea of EXPTIME-algorithm
> characterize unambiguous sequences by a deterministic Biichi automaton B
> build the product of probabilistic LTS with B: new pLTS
> transform it into POMDP P

each action is a subset of controllable events
the observations are observable events

i
—{ 90 {0} \1221‘@

> decide whether there exists a strategy ensuring almost-surely the Biichi condition
inP.
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Conclusion

POMDP partially observable Markov decision processes
» finite-horizon optimization
> infinite-horizon optimization unfeasible
» qualitative infinite-horizon analysis mostly feasible
> application to active diagnosis of stochastic systems
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Conclusion

Conclusion

POMDP partially observable Markov decision processes
» finite-horizon optimization
> infinite-horizon optimization unfeasible
» qualitative infinite-horizon analysis mostly feasible
> application to active diagnosis of stochastic systems
PA probabilistic automata
» particular case of POMDP
> expressiveness
> langagues equivalence, equality, value 1

Partial observation + Probabilities + Control: a challenging combination
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