Fault diagnosis for Probabilistic Systems a semantical and algorithmic journey

Nathalie Bertrand

Inria Rennes, France

based on joint work with Éric Fabre, Stefan Haar, Serge Haddad, Loïc Hélouët and Engel Lefaucheux

Two tales of smoke and observation

Original idea by Stefan Schwoon

Two tales of smoke and observation

Original idea by Stefan Schwoon

Assuming the behaviour of a system is known, an observer may deduce the occurrence of internal events from the outputs.

Two tales of smoke and observation

Original idea by Stefan Schwoon

Assuming the behaviour of a system is known, an observer may deduce the occurrence of internal events from the outputs.

Diagnosis, non-interference, information flow, opacity, etc.

Outline

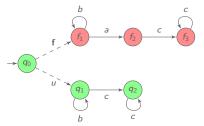
Introduction to fault diagnosis

Diagnosability in probabilistic systems Exact Diagnosis Approximate diagnosis

Control for probabilistic diagnosability

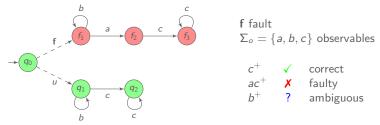
Conclusion

Objective: tell whether a fault occurred, based on observations.

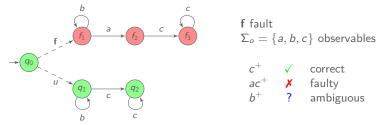


f fault $\Sigma_o = \{a, b, c\}$ observables

Objective: tell whether a fault occurred, based on observations.

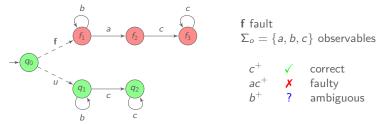


Objective: tell whether a fault occurred, based on observations.



convergence assumption: no infinite sequence of unobservable events

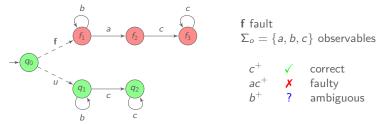
Objective: tell whether a fault occurred, based on observations.



convergence assumption: no infinite sequence of unobservable events

Diagnosability: all observed sequences are unambiguous.

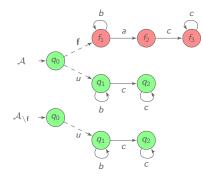
Objective: tell whether a fault occurred, based on observations.

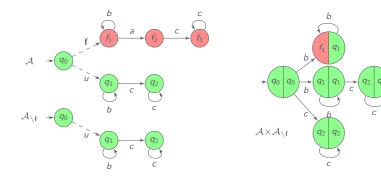


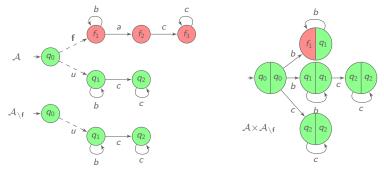
convergence assumption: no infinite sequence of unobservable events

Diagnosability: all observed sequences are unambiguous.

Remark: w.l.o.g. state space partitionned into correct and faulty states

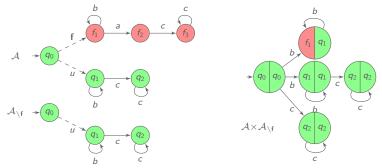






indeterminate cycle: $(f_0, q_0) \cdots \rightarrow (f_n, q_n) \rightarrow (f_0, q_0)$ s.t. f_i faulty and q_i correct

$\mathcal{A} \text{ is not diagnosable iff} \\ \text{there exists a reachable indeterminate cycle in } \mathcal{A} \times \mathcal{A}_{\backslash \mathbf{f}}.$



indeterminate cycle: $(f_0, q_0) \cdots \rightarrow (f_n, q_n) \rightarrow (f_0, q_0)$ s.t. f_i faulty and q_i correct

$\mathcal{A} \text{ is not diagnosable iff} \\ \text{there exists a reachable indeterminate cycle in } \mathcal{A} \times \mathcal{A}_{\backslash f}.$

Decidability and complexity of diagnosability [JHCK01] Diagnosability is decidable in PTIME.

[JHCK01] Jiang, Huang, Chandra and Kumar, A polynomial algorithm for testing diagnosability of discrete-event systems, TAC, 2001.

Fault Diagnosis for Probabilistic Systems – Nathalie Bertrand May 25th 2016 – MFPS XXXII – CMU Pittsburgh – 5/ 26

Diagnoser: assigns verdicts to observed sequences $D: \Sigma_o^* \to {\checkmark, \bigstar, ?}$

Diagnoser requirements

- **Soundness**: if a fault is claimed **X**, a fault occurred.
- **Reactivity**: every fault is eventually claimed.

Diagnoser: assigns verdicts to observed sequences $D: \Sigma_o^* \to \{\checkmark, \checkmark, ?\}$

Diagnoser requirements

- **Soundness**: if a fault is claimed **X**, a fault occurred.
- **Reactivity**: every fault is eventually claimed.

Diagnosability and diagnosers

 $\ensuremath{\mathcal{A}}$ is diagnosable iff there exists a sound and reactive diagnoser.

Diagnoser: assigns verdicts to observed sequences $D: \Sigma_o^* \to \{\checkmark, \varkappa, ?\}$

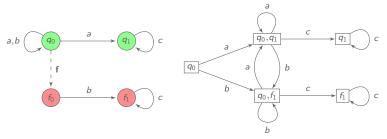
Diagnoser requirements

- ► Soundness: if a fault is claimed X, a fault occurred.
- **Reactivity**: every fault is eventually claimed.

Diagnosability and diagnosers

 ${\mathcal A}$ is diagnosable iff there exists a sound and reactive diagnoser.

Diagnosers can be represented by deterministic finite state automata.



Diagnoser: assigns verdicts to observed sequences $D: \Sigma_o^* \to {\checkmark, \bigstar, ?}$

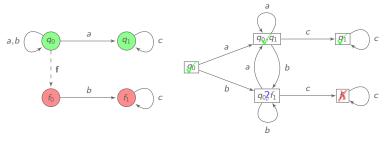
Diagnoser requirements

- **Soundness**: if a fault is claimed **X**, a fault occurred.
- **Reactivity**: every fault is eventually claimed.

Diagnosability and diagnosers

 ${\mathcal A}$ is diagnosable iff there exists a sound and reactive diagnoser.

Diagnosers can be represented by deterministic finite state automata.



Diagnoser synthesis

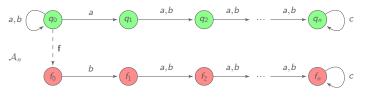
Complexity of diagnoser synthesis Diagnoser synthesis is in EXPTIME.

intuition: subset construction to track possible correct and faulty states

[JHCK01] Jiang, Huang, Chandra and Kumar, A polynomial algorithm for testing diagnosability of discrete-event systems, TAC, 2001. [HHMS13] Haar, Haddad, Melliti and Schwoon, Optimal constructions for active diagnosis, FSTTCS'13. **Complexity of diagnoser synthesis** Diagnoser synthesis is in EXPTIME.

intuition: subset construction to track possible correct and faulty states

There is a family (A_n) of diagnosable systems such that A_n has 2n + 2 states and any diagnoser needs 2^n states.



diagnoser must remember the last n events: 2^n possibilities

[JHCK01] Jiang, Huang, Chandra and Kumar, A polynomial algorithm for testing diagnosability of discrete-event systems, TAC, 2001. [HHMS13] Haar, Haddad, Melliti and Schwoon, Optimal constructions for active diagnosis, FSTTCS'13.

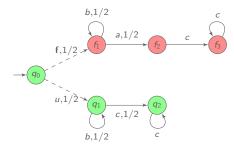
Outline

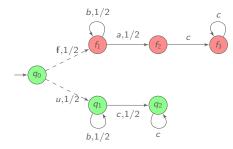
Introduction to fault diagnosis

Diagnosability in probabilistic systems Exact Diagnosis Approximate diagnosis

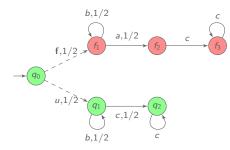
Control for probabilistic diagnosability

Conclusion



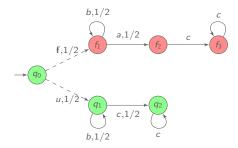


 b^N is ambiguous . . .



 b^N is ambiguous . . .

yet
$$\lim_{N \to \infty} \mathbb{P}(\mathbf{f}b^N + ub^N) = 0$$



 b^N is ambiguous . . .

yet
$$\lim_{N \to \infty} \mathbb{P}(\mathbf{f} b^N + u b^N) = 0$$

How to adapt the framework to probabilistic systems?

- diagnosability notion(s)
- soundness and correctness for diagnosers
- algorithms for diagnosability checking and diagnoser synthesis

[TT05] Thorsley and Teneketzis, Diagnosability of stochastic discrete-event systems, TAC, 2005.
[CK13] Chen and Kumar, Polynomial test for stochastic diagnosability of dicrete-event systems, TASE, 2013.
[BHL14] B., Hadada and Lefaucheux, Foundation of diagnosis and predictability in probabilistic systems, FSTTCS'14.

Outline

Introduction to fault diagnosis

Diagnosability in probabilistic systems Exact Diagnosis Approximate diagnosis

Control for probabilistic diagnosability

Conclusion

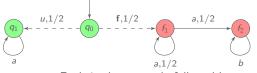
Specifying diagnosability for probabilistic systems

Two discriminating criteria:

Specifying diagnosability for probabilistic systems

Two discriminating criteria:

1. Detect faults, or tell whether a run is faulty or correct?



- Fault is almost surely followed by occurrence of b.
 - Ambiguous sequences have probability $\frac{1}{2}$.

Specifying diagnosability for probabilistic systems

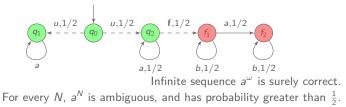
Two discriminating criteria:

1. Detect faults, or tell whether a run is faulty or correct?



Fault is almost surely followed by occurrence of b.

- Ambiguous sequences have probability $\frac{1}{2}$.
- 2. Consider infinite observed sequences or their finite prefixes?

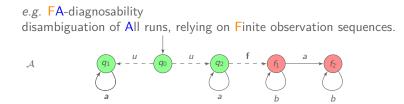


Four diagnosability specifications

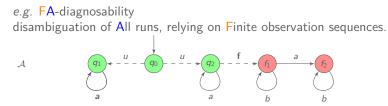
Diagnosability	All runs		Faulty runs
Finite prefixes	FA	$\Rightarrow \not=$	FF
	↓ ¥	/	$\Downarrow \Uparrow^*$
Infinite sequences	IA	⇒ ∉	IF

* assuming finitely-branching models

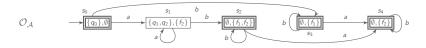
Characterizing diagnosability



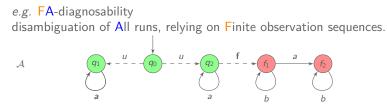
Characterizing diagnosability



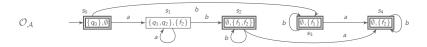
Observer $\mathcal{O}_\mathcal{A} \colon$ tracks possible correct and faulty states in two subsets



Characterizing diagnosability



Observer $\mathcal{O}_\mathcal{A}$: tracks possible correct and faulty states in two subsets



 $\begin{array}{l} \mathcal{A} \text{ is not FA-diagnosable iff} \\ \text{there exists a BSCC of } \mathcal{A} \times \mathcal{O}_{\mathcal{A}} \text{ where every state } (q, C, F) \text{ satisfies} \\ q \text{ faulty and } C \neq \emptyset \quad \text{ or } \quad q \text{ correct and } F \neq \emptyset. \end{array}$

[BHL14] B., Haddad and Lefaucheux, Foundation of diagnosis and predictability in probabilistic systems, FSTTCS'14.

Fault Diagnosis for Probabilistic Systems – Nathalie Bertrand May 25th 2016 – MFPS XXXII – CMU Pittsburgh – 13/ 26

Solving diagnosability

Methodology to decide all diagnosability notions for probabilistic systems:

- \blacktriangleright build a deterministic observer $\mathcal{O}_{\mathcal{A}}$ by an ad hoc subset construction
- \blacktriangleright form the product $\mathcal{A}\times\mathcal{O}_{\mathcal{A}}$ to recover probabilistic behaviour
- ▶ check graph-based characterization on $\mathcal{A} \times \mathcal{O}_{\mathcal{A}}$

Solving diagnosability

Methodology to decide all diagnosability notions for probabilistic systems:

- \blacktriangleright build a deterministic observer $\mathcal{O}_{\mathcal{A}}$ by an ad hoc subset construction
- \blacktriangleright form the product $\mathcal{A}\times\mathcal{O}_{\mathcal{A}}$ to recover probabilistic behaviour
- ▶ check graph-based characterization on $\mathcal{A} \times \mathcal{O}_{\mathcal{A}}$

Diagnosability is PSPACE-complete for probabilistic systems. [BHL14]

[BHL14] B., Haddad and Lefaucheux, Foundation of diagnosis and predictability in probabilistic systems, FSTTCS'14.

Diagnoser: assigns verdicts to observed sequences $D: \Sigma_o^* \to \{\checkmark, \varkappa, ?\}$

Diagnoser requirements

- Soundness: 1) Upon verdict X, the observation sequence is surely faulty,
 2) Upon verdict √, the observation sequence is surely correct.
- ▶ Reactivity: almost surely, the sequence of verdicts stabilizes to X or \checkmark

Diagnosers

Diagnoser: assigns verdicts to observed sequences $D: \Sigma_o^* \to \{\checkmark, \checkmark, ?\}$

Diagnoser requirements

- Soundness: 1) Upon verdict X, the observation sequence is surely faulty,
 2) Upon verdict √, the observation sequence is surely correct.
- **Reactivity**: almost surely, the sequence of verdicts stabilizes to \pmb{X} or \checkmark

For every diagnosable system with n states one can build a diagnoser with at most 3^n states.

Diagnosers

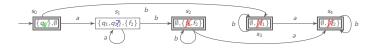
Diagnoser: assigns verdicts to observed sequences $D: \Sigma_o^* \to \{\checkmark, \checkmark, ?\}$

Diagnoser requirements

- Soundness: 1) Upon verdict X, the observation sequence is surely faulty,
 2) Upon verdict √, the observation sequence is surely correct.
- ▶ Reactivity: almost surely, the sequence of verdicts stabilizes to X or \checkmark

For every diagnosable system with n states one can build a diagnoser with at most 3^n states.

Diagnoser derived from observer $\mathcal{O}_{\mathcal{A}}$:



[BHL14] B., Haddad and Lefaucheux, Foundation of diagnosis and predictability in probabilistic systems, FSTTCS'14. Fault Diagnosis for Probabilistic Systems – Nathalie Bertrand May 25th 2016 – MFPS XXXII – CMU Pittsburgh – 15/26

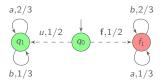
Outline

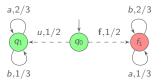
Introduction to fault diagnosis

Diagnosability in probabilistic systems Exact Diagnosis Approximate diagnosis

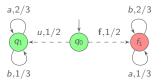
Control for probabilistic diagnosability

Conclusion



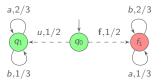


Not diagnosable: All observed sequences are ambiguous!



Not diagnosable: All observed sequences are ambiguous!

Yet a high proportion of b's indicates a faulty run with high confidence.



Not diagnosable: All observed sequences are ambiguous! Yet a high proportion of *b*'s indicates a faulty run with high confidence.

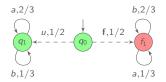
Relaxed soundness: if a fault is claimed, the probability of error is small.

[TT05] Thorsley and Teneketzis, Diagnosability of stochastic discrete-event systems, TAC, 2005.

Formalisation of accurate approximate diagnosability

Correcness proportion of an observation sequence σ

$$\mathsf{CorP}(\sigma) = \frac{\mathbb{P}(\{\pi^{-1}(\sigma) \cap \mathsf{correct}\})}{\mathbb{P}(\{\pi^{-1}(\sigma)\})}$$

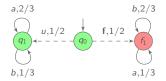


CorP(a) = 2/3,

Formalisation of accurate approximate diagnosability

Correcness proportion of an observation sequence σ

$$\mathsf{CorP}(\sigma) = \frac{\mathbb{P}(\{\pi^{-1}(\sigma) \cap \mathsf{correct}\})}{\mathbb{P}(\{\pi^{-1}(\sigma)\})}$$

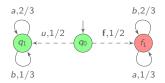


CorP(a) = 2/3, CorP(ab) = 1/2,

Formalisation of accurate approximate diagnosability

Correcness proportion of an observation sequence σ

$$\mathsf{CorP}(\sigma) = \frac{\mathbb{P}(\{\pi^{-1}(\sigma) \cap \mathsf{correct}\})}{\mathbb{P}(\{\pi^{-1}(\sigma)\})}$$



CorP(a) = 2/3, CorP(ab) = 1/2, CorP(abb) = 1/3, CorP(abbb) = 1/5, ...

Accurate approximate diagnosers

ε -Diagnoser requirements

- **Soundness**: if a fault is claimed after σ , then $CorP(\sigma) \leq \varepsilon$.
- ▶ **Reactivity**: almost surely verdict **X** is emitted after a fault.

Accurate approximate diagnosers

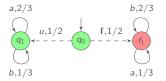
ε -Diagnoser requirements

- **Soundness**: if a fault is claimed after σ , then $CorP(\sigma) \leq \varepsilon$.
- ▶ **Reactivity**: almost surely verdict **X** is emitted after a fault.
- Uniformity (optional): the convergence rate for reactivity is independent of the sample faulty run.

Accurate approximate diagnosers

ε -Diagnoser requirements

- **Soundness**: if a fault is claimed after σ , then $CorP(\sigma) \leq \varepsilon$.
- ▶ **Reactivity**: almost surely verdict **X** is emitted after a fault.
- Uniformity (optional): the convergence rate for reactivity is independent of the sample faulty run.



admits ε -diagnoser, for every $\varepsilon > 0$ has no uniform ε -diagnoser, for any $\varepsilon > 0$

Accurate approximate diagnosability is decidable in PTIME. [BHL16]

Accurate approximate diagnosability is decidable in PTIME. [BHL16]

Simple case: initial-fault models

$$\mathcal{A}^{c}$$
 q_{c} q_{c} q_{f} \mathcal{A}^{f}

 \mathcal{A} is accurate approximate diagnosable iff dist $(\mathcal{A}^c, \mathcal{A}^f) = 1$ *i.e.* there exists an event $E \subseteq \Sigma_o^{\omega}$ s.t. $|\mathbb{P}_{\mathcal{A}^c}(E) - \mathbb{P}_{\mathcal{A}^c}(E)| = 1$

Accurate approximate diagnosability is decidable in PTIME. [BHL16]

Simple case: initial-fault models

$$\mathcal{A}^{c}$$
 q_{c} q_{t} \mathcal{A}^{f} \mathcal{A}^{f}

 \mathcal{A} is accurate approximate diagnosable iff dist $(\mathcal{A}^c, \mathcal{A}^f) = 1$ *i.e.* there exists an event $E \subseteq \Sigma_o^{\omega}$ s.t. $|\mathbb{P}_{\mathcal{A}^c}(E) - \mathbb{P}_{\mathcal{A}^c}(E)| = 1$

• General case: polynomially many distance 1 tests.

Accurate approximate diagnosability is decidable in PTIME. [BHL16]

Simple case: initial-fault models

$$\mathcal{A}^{c} \qquad q_{c} \leftarrow - - - - - - q_{0} - f, \frac{1}{2} - - - - - q_{f} \qquad \mathcal{A}^{f}$$

 \mathcal{A} is accurate approximate diagnosable iff dist $(\mathcal{A}^c, \mathcal{A}^f) = 1$ *i.e.* there exists an event $E \subseteq \Sigma_o^{\omega}$ s.t. $|\mathbb{P}_{\mathcal{A}^c}(E) - \mathbb{P}_{\mathcal{A}^c}(E)| = 1$

• General case: polynomially many distance 1 tests.

► Distance 1 is decidable in PTIME.

[CK14]

Accurate approximate diagnosability is decidable in PTIME. [BHL16]

Simple case: initial-fault models

$$\mathcal{A}^{c} \qquad q_{c} \leftarrow - - - - - - q_{0} - f, \frac{1}{2} - - - - - q_{f} \qquad \mathcal{A}^{f}$$

 \mathcal{A} is accurate approximate diagnosable iff dist $(\mathcal{A}^c, \mathcal{A}^f) = 1$ *i.e.* there exists an event $E \subseteq \Sigma_o^{\omega}$ s.t. $|\mathbb{P}_{\mathcal{A}^c}(E) - \mathbb{P}_{\mathcal{A}^c}(E)| = 1$

- General case: polynomially many distance 1 tests.
- Distance 1 is decidable in PTIME.

[CK14]

Uniform accurate approximate diagnosability is undecidable. [BHL16]

[CK14] Chen and Kiefer, On the Total Variation Distance of Labelled Markov Chains, CSL-LICS'14.
[BHL16] B., Haddad and Lefaucheux, Accurate approximate diagnosability of stochastic systems, LATA'16.

Outline

Introduction to fault diagnosis

Diagnosability in probabilistic systems Exact Diagnosis Approximate diagnosis

Control for probabilistic diagnosability

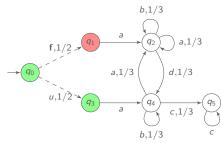
Conclusion

From passive to active diagnosis

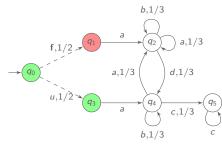
From passive to active diagnosis

Original idea by Stefan Schwoon

Objective: control the probabilistic system so that it is diagnosable

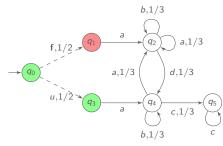


Objective: control the probabilistic system so that it is diagnosable



 $aadc^{\omega}$ ambiguous $\mathbb{P}(\mathbf{f}aadc^{\omega} + uaadc^{\omega}) > 0$

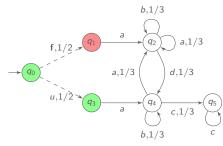
Objective: control the probabilistic system so that it is diagnosable



 $aadc^{\omega}$ ambiguous $\mathbb{P}(\mathbf{f}aadc^{\omega} + uaadc^{\omega}) > 0$

 $\{a, b, c, d\}$ controllable

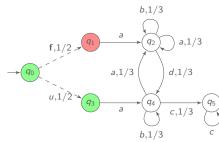
Objective: control the probabilistic system so that it is diagnosable



 $aadc^{\omega}$ ambiguous $\mathbb{P}(faadc^{\omega} + uaadc^{\omega}) > 0$

 $\{a, b, c, d\}$ controllable disable *a* after first *a*

Objective: control the probabilistic system so that it is diagnosable



 $aadc^{\omega}$ ambiguous $\mathbb{P}(\mathbf{f}aadc^{\omega} + uaadc^{\omega}) > 0$

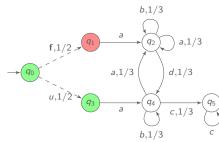
 $\{a, b, c, d\}$ controllable disable *a* after first *a*

 Controller: based on observation, decides which actions are allowed

 Active probabilistic diagnosis problem
 [BFHHH14]

 does there exist a controller such that the system is almost-surely
 diagnosable?

Objective: control the probabilistic system so that it is diagnosable



 $aadc^{\omega}$ ambiguous $\mathbb{P}(faadc^{\omega} + uaadc^{\omega}) > 0$

 $\{a, b, c, d\}$ controllable disable *a* after first *a*

 Controller: based on observation, decides which actions are allowed

 Active probabilistic diagnosis problem
 [BFHHH14]

 does there exist a controller such that the system is almost-surely
 diagnosable?

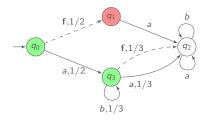
The active probabilistic diagnosis problem is **EXPTIME-complete**.

[BFHHH14] B., Fabre, Haar, Haddad and Hélouët, Active diagnosis for probabilistic systems, FoSSaCS'14.

Fault Diagnosis for Probabilistic Systems – Nathalie Bertrand May 25th 2016 – MFPS XXXII – CMU Pittsburgh – 23/ 26

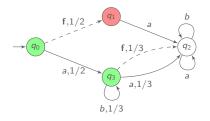
Objective: avoid fault-provocative controllers

Objective: avoid fault-provocative controllers



all observed sequences ambiguous

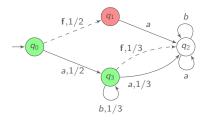
Objective: avoid fault-provocative controllers



all observed sequences ambiguous

forbid a after first a \implies diagnosable... but almost all sequences faulty!

Objective: avoid fault-provocative controllers



all observed sequences ambiguous

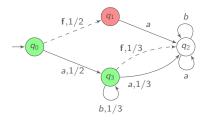
forbid a after first a \implies diagnosable... but almost all sequences faulty!

Safe active probabilistic diagnosis

[BFHHH14]

does there exist a controller such that the system is almost-surely diagnosable **and** correct runs have positive probability?

Objective: avoid fault-provocative controllers



all observed sequences ambiguous

forbid a after first a \implies diagnosable... but almost all sequences faulty!

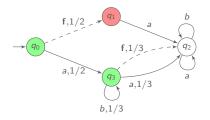
Safe active probabilistic diagnosis

[BFHHH14]

does there exist a controller such that the system is almost-surely diagnosable **and** correct runs have positive probability?

The safe active probabilistic diagnosis problem is undecidable.

Objective: avoid fault-provocative controllers



all observed sequences ambiguous

forbid a after first a \implies diagnosable... but almost all sequences faulty!

Safe active probabilistic diagnosis

[BFHHH14]

does there exist a controller such that the system is almost-surely diagnosable **and** correct runs have positive probability?

The safe active probabilistic diagnosis problem is undecidable.

The safe active probabilistic diagnosis problem restricted to **finite memory controllers** is **EXPTIME-complete**.

 [BFHHH14] B., Fabre, Haar, Haddad and Hélouët, Active diagnosis for probabilistic systems, FoSSaCS'14.

 Fault Diagnosis for Probabilistic Systems – Nathalie Bertrand
 May 25th 2016 – MFPS XXXII – CMU Pittsburgh – 24/ 26

Outline

Introduction to fault diagnosis

Diagnosability in probabilistic systems Exact Diagnosis Approximate diagnosis

Control for probabilistic diagnosability

Conclusion

Concluding remarks

Contributions: Foundations of stochastic diagnosis

- Investigation of semantical issues
- Exact diagnosis: tight complexity bounds for diagnosability and diagnoser synthesis problems
- Accurate approximate diagnosis: PTIME algorithm
- Active diagnosability

Concluding remarks

Contributions: Foundations of stochastic diagnosis

- Investigation of semantical issues
- Exact diagnosis: tight complexity bounds for diagnosability and diagnoser synthesis problems
- Accurate approximate diagnosis: PTIME algorithm
- Active diagnosability

Perspectives: Towards more quantitative questions

- Bounded-delay diagnosis tradeoff: delay vs diagnosability precision
- Space and time optimisation of observations tradeoff: observation cost vs diagnosability probability
- ► Challenge: control, partial observation, quantitative properties