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Two tales of smoke and observation

Original idea by Stefan Schwoon

Assuming the behaviour of a system is known, an observer may deduce
the occurrence of internal events from the outputs.

Diagnosis, non-interference, information flow, opacity, etc.
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Fault diagnosis in discrete event systems [SSLST95]

Objective: tell whether a fault occurred, based on observations.

q0

f1 f2 f3

q1 q2

f

u

a

c

c

cb

b c

f fault
Σo = {a, b, c} observables

c+ X correct
ac+ 7 faulty
b+ ? ambiguous

convergence assumption: no infinite sequence of unobservable events

Diagnosability: all observed sequences are unambiguous.

Remark: w.l.o.g. state space partitionned into correct and faulty states

[SSLST95] Sampath, Sengupta, Lafortune, Sinnamohideen and Teneketzis. Diagnosability of discrete-event systems. TAC, 1995.
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Deciding diagnosability in discrete event systems

A q0

f1 f2 f3

q1 q2

f

u

a

c

c

cb

b c
A\f q0

q1 q2
u

c

b c

A×A\f

q0 q0

f1 q1

q1 q1 q2 q2

q2 q2

b

b c

c

c

b

b c

indeterminate cycle: (f0, q0) · · · → (fn, qn)→ (f0, q0) s.t. fi faulty and qi correct

A is not diagnosable iff
there exists a reachable indeterminate cycle in A×A\f .

Decidability and complexity of diagnosability [JHCK01]
Diagnosability is decidable in PTIME.

[JHCK01] Jiang, Huang, Chandra and Kumar, A polynomial algorithm for testing diagnosability of discrete-event systems, TAC, 2001.
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Diagnosers

Diagnoser: assigns verdicts to observed sequences D : Σ∗o → {X,7, ?}
Diagnoser requirements

I Soundness: if a fault is claimed 7, a fault occurred.
I Reactivity: every fault is eventually claimed.

Diagnosability and diagnosers
A is diagnosable iff there exists a sound and reactive diagnoser.

Diagnosers can be represented by deterministic finite state automata.
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Diagnoser synthesis

Complexity of diagnoser synthesis
Diagnoser synthesis is in EXPTIME.

intuition: subset construction to track possible correct and faulty states

There is a family (An) of diagnosable systems such that
An has 2n + 2 states and any diagnoser needs 2n states.

An

q0

f0

q1 q2 ... qn

f1 f2 ... fn

a a,b a,b a,b

f

b a,b a,b a,b

a,b c

c

diagnoser must remember the last n events: 2n possibilities

[JHCK01] Jiang, Huang, Chandra and Kumar, A polynomial algorithm for testing diagnosability of discrete-event systems, TAC, 2001.
[HHMS13] Haar, Haddad, Melliti and Schwoon, Optimal constructions for active diagnosis, FSTTCS’13.

Fault Diagnosis for Probabilistic Systems – Nathalie Bertrand May 25th 2016 – MFPS XXXII – CMU Pittsburgh – 7/ 26



Diagnoser synthesis

Complexity of diagnoser synthesis
Diagnoser synthesis is in EXPTIME.

intuition: subset construction to track possible correct and faulty states

There is a family (An) of diagnosable systems such that
An has 2n + 2 states and any diagnoser needs 2n states.

An

q0

f0

q1 q2 ... qn

f1 f2 ... fn

a a,b a,b a,b

f

b a,b a,b a,b

a,b c

c

diagnoser must remember the last n events: 2n possibilities
[JHCK01] Jiang, Huang, Chandra and Kumar, A polynomial algorithm for testing diagnosability of discrete-event systems, TAC, 2001.
[HHMS13] Haar, Haddad, Melliti and Schwoon, Optimal constructions for active diagnosis, FSTTCS’13.

Fault Diagnosis for Probabilistic Systems – Nathalie Bertrand May 25th 2016 – MFPS XXXII – CMU Pittsburgh – 7/ 26



Outline

Introduction to fault diagnosis

Diagnosability in probabilistic systems
Exact Diagnosis
Approximate diagnosis

Control for probabilistic diagnosability

Conclusion

Fault Diagnosis for Probabilistic Systems – Nathalie Bertrand May 25th 2016 – MFPS XXXII – CMU Pittsburgh – 8/ 26



Diagnosis of probabilistic systems

q0

f1 f2 f3

q1 q2

f,1/2

u,1/2

a,1/2

c,1/2

c

cb,1/2

b,1/2 c

bN is ambiguous . . .

yet lim
N→∞

P(fbN + ubN) = 0

How to adapt the framework to probabilistic systems?
I diagnosability notion(s)
I soundness and correctness for diagnosers
I algorithms for diagnosability checking and diagnoser synthesis

[TT05] Thorsley and Teneketzis, Diagnosability of stochastic discrete-event systems, TAC, 2005.
[CK13] Chen and Kumar, Polynomial test for stochastic diagnosability of dicrete-event systems, TASE, 2013.
[BHL14] B., Haddad and Lefaucheux, Foundation of diagnosis and predictability in probabilistic systems, FSTTCS’14.
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Specifying diagnosability for probabilistic systems

Two discriminating criteria:

1. Detect faults, or tell whether a run is faulty or correct?

q0 f1 f2q1
f,1/2 a,1/2u,1/2

a,1/2 ba

Fault is almost surely followed by occurrence of b.
Ambiguous sequences have probability 1

2 .
2. Consider infinite observed sequences or their finite prefixes?

q0 q2 f1 f2q1
u,1/2 f,1/2 a,1/2u,1/2

a b,1/2b,1/2a,1/2
Infinite sequence aω is surely correct.

For every N, aN is ambiguous, and has probability greater than 1
2 .
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Four diagnosability specifications

Diagnosability All runs Faulty runs

Finite prefixes FA ⇒
6⇐ FF

⇓ 6⇑ ⇓⇑∗

Infinite sequences IA ⇒⇒⇒
6⇐ IF

∗ assuming finitely-branching models
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Characterizing diagnosability

e.g. FA-diagnosability
disambiguation of All runs, relying on Finite observation sequences.

A q0 q2 f1 f2q1
u f au

a bba a

Observer OA: tracks possible correct and faulty states in two subsets

OA {q0},∅

s0

{q1,q2},{f2}

s1

∅,{f1,f2}

s2

∅,{f1}
s3

∅,{f2}

s4
a b a

b

ab

bb

a

A is not FA-diagnosable iff
there exists a BSCC of A×OA where every state (q,C ,F ) satisfies

q faulty and C 6= ∅ or q correct and F 6= ∅.

[BHL14] B., Haddad and Lefaucheux, Foundation of diagnosis and predictability in probabilistic systems, FSTTCS’14.
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Solving diagnosability

Methodology to decide all diagnosability notions for probabilistic systems:

I build a deterministic observer OA by an ad hoc subset construction
I form the product A×OA to recover probabilistic behaviour
I check graph-based characterization on A×OA

Diagnosability is PSPACE-complete for probabilistic systems. [BHL14]

[BHL14] B., Haddad and Lefaucheux, Foundation of diagnosis and predictability in probabilistic systems, FSTTCS’14.
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Diagnosers
Diagnoser: assigns verdicts to observed sequences D : Σ∗o → {X,7, ?}
Diagnoser requirements

I Soundness: 1) Upon verdict 7, the observation sequence is surely faulty,
2) Upon verdict X, the observation sequence is surely correct.

I Reactivity: almost surely, the sequence of verdicts stabilizes to 7 or X

Diagnosability and diagnosers [BHL14]
A is diagnosable iff there exists a sound and reactive diagnoser.

For every diagnosable system with n states
one can build a diagnoser with at most 3n states.

Diagnoser derived from observer OA:

{q0},∅

s0

{q1,q2},{f2}

s1

∅,{f1,f2}

s2

∅,{f1}
s3

∅,{f2}

s4
a b a

b

ab

bb

a

X ? 7 7 7

[BHL14] B., Haddad and Lefaucheux, Foundation of diagnosis and predictability in probabilistic systems, FSTTCS’14.
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Diagnosability and diagnosers [BHL14]
A is diagnosable iff there exists a sound and reactive diagnoser.

For every diagnosable system with n states
one can build a diagnoser with at most 3n states.

Diagnoser derived from observer OA:

{q0},∅

s0

{q1,q2},{f2}

s1

∅,{f1,f2}

s2

∅,{f1}
s3

∅,{f2}

s4
a b a

b

ab

bb

a

X ? 7 7 7

[BHL14] B., Haddad and Lefaucheux, Foundation of diagnosis and predictability in probabilistic systems, FSTTCS’14.
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Motivation for approximate diagnosis

q0 f1q1
f,1/2u,1/2

b,2/3

a,1/3b,1/3

a,2/3

Not diagnosable: All observed sequences are ambiguous!
Yet a high proportion of b’s indicates a faulty run with high confidence.

Relaxed soundness: if a fault is claimed, the probability of error is small.

[TT05] Thorsley and Teneketzis, Diagnosability of stochastic discrete-event systems, TAC, 2005.

[BHL16] B., Haddad and Lefaucheux, Accurate approximate diagnosability of stochastic systems, LATA’16.
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Formalisation of accurate approximate diagnosability

Correcness proportion of an observation sequence σ

CorP(σ) =
P({π−1(σ) ∩ correct})

P({π−1(σ)})

q0 f1q1
f,1/2u,1/2

b,2/3

a,1/3b,1/3

a,2/3

CorP(a) = 2/3,

CorP(ab) = 1/2, CorP(abb) = 1/3, CorP(abbb) = 1/5, . . .
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Accurate approximate diagnosers

ε-Diagnoser requirements
I Soundness: if a fault is claimed after σ, then CorP(σ) ≤ ε.
I Reactivity: almost surely verdict 7 is emitted after a fault.

I Uniformity (optional): the convergence rate for reactivity is independent
of the sample faulty run.

q0 f1q1
f,1/2u,1/2

b,2/3

a,1/3b,1/3

a,2/3

admits ε-diagnoser, for every ε > 0
has no uniform ε-diagnoser, for any ε > 0

Fault Diagnosis for Probabilistic Systems – Nathalie Bertrand May 25th 2016 – MFPS XXXII – CMU Pittsburgh – 19/ 26



Accurate approximate diagnosers

ε-Diagnoser requirements
I Soundness: if a fault is claimed after σ, then CorP(σ) ≤ ε.
I Reactivity: almost surely verdict 7 is emitted after a fault.

I Uniformity (optional): the convergence rate for reactivity is independent
of the sample faulty run.

q0 f1q1
f,1/2u,1/2

b,2/3

a,1/3b,1/3

a,2/3

admits ε-diagnoser, for every ε > 0
has no uniform ε-diagnoser, for any ε > 0

Fault Diagnosis for Probabilistic Systems – Nathalie Bertrand May 25th 2016 – MFPS XXXII – CMU Pittsburgh – 19/ 26



Accurate approximate diagnosers

ε-Diagnoser requirements
I Soundness: if a fault is claimed after σ, then CorP(σ) ≤ ε.
I Reactivity: almost surely verdict 7 is emitted after a fault.

I Uniformity (optional): the convergence rate for reactivity is independent
of the sample faulty run.

q0 f1q1
f,1/2u,1/2

b,2/3

a,1/3b,1/3

a,2/3

admits ε-diagnoser, for every ε > 0
has no uniform ε-diagnoser, for any ε > 0

Fault Diagnosis for Probabilistic Systems – Nathalie Bertrand May 25th 2016 – MFPS XXXII – CMU Pittsburgh – 19/ 26



Solving (uniform) accurate approximate diagnosability

Accurate approximate diagnosability is decidable in PTIME. [BHL16]

I Simple case: initial-fault models

q0qc qf
f, 1

2u, 1
2Ac Af

A is accurate approximate diagnosable iff dist(Ac ,Af ) = 1
i.e. there exists an event E ⊆ Σω

o s.t. |PAc (E )− PAc (E )| = 1
I General case: polynomially many distance 1 tests.
I Distance 1 is decidable in PTIME. [CK14]

Uniform accurate approximate diagnosability is undecidable. [BHL16]

[CK14] Chen and Kiefer, On the Total Variation Distance of Labelled Markov Chains, CSL-LICS’14.
[BHL16] B., Haddad and Lefaucheux, Accurate approximate diagnosability of stochastic systems, LATA’16.
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From passive to active diagnosis

Original idea by Stefan Schwoon
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Active probabilistic diagnosis

Objective: control the probabilistic system so that it is diagnosable

q0

q1 q2

q3 q4 q5

f,1/2

u,1/2
a

a

d,1/3a,1/3

c,1/3

b,1/3

a,1/3

b,1/3 c

aadcω ambiguous
P(faadcω + uaadcω) > 0

{a, b, c, d} controllable
disable a after first a

Controller: based on observation, decides which actions are allowed
Active probabilistic diagnosis problem [BFHHH14]
does there exist a controller such that the system is almost-surely
diagnosable?

The active probabilistic diagnosis problem is EXPTIME-complete.

[BFHHH14] B., Fabre, Haar, Haddad and Hélouët, Active diagnosis for probabilistic systems, FoSSaCS’14.
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[BFHHH14] B., Fabre, Haar, Haddad and Hélouët, Active diagnosis for probabilistic systems, FoSSaCS’14.

Fault Diagnosis for Probabilistic Systems – Nathalie Bertrand May 25th 2016 – MFPS XXXII – CMU Pittsburgh – 23/ 26



Active probabilistic diagnosis

Objective: control the probabilistic system so that it is diagnosable

q0

q1 q2

q3 q4 q5

f,1/2

u,1/2
a

a

d,1/3a,1/3

c,1/3

b,1/3

a,1/3

b,1/3 c

aadcω ambiguous
P(faadcω + uaadcω) > 0

{a, b, c, d} controllable

disable a after first a

Controller: based on observation, decides which actions are allowed
Active probabilistic diagnosis problem [BFHHH14]
does there exist a controller such that the system is almost-surely
diagnosable?

The active probabilistic diagnosis problem is EXPTIME-complete.
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Safe active probabilistic diagnosis
Objective: avoid fault-provocative controllers

q0

q1

q2

q3

f,1/2

a,1/2
a,1/3

f,1/3

a
b

a

b,1/3

all observed sequences ambiguous

forbid a after first a
=⇒ diagnosable...
but almost all sequences faulty!

Safe active probabilistic diagnosis [BFHHH14]
does there exist a controller such that the system is almost-surely
diagnosable and correct runs have positive probability?

The safe active probabilistic diagnosis problem is undecidable.

The safe active probabilistic diagnosis problem restricted to finite
memory controllers is EXPTIME-complete.

[BFHHH14] B., Fabre, Haar, Haddad and Hélouët, Active diagnosis for probabilistic systems, FoSSaCS’14.
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Concluding remarks

Contributions: Foundations of stochastic diagnosis

I Investigation of semantical issues
I Exact diagnosis: tight complexity bounds for diagnosability and

diagnoser synthesis problems
I Accurate approximate diagnosis: PTIME algorithm
I Active diagnosability

Perspectives: Towards more quantitative questions

I Bounded-delay diagnosis
tradeoff: delay vs diagnosability precision

I Space and time optimisation of observations
tradeoff: observation cost vs diagnosability probability

I Challenge: control, partial observation, quantitative properties
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