Diagnosis in Infinite-State Probabilistic Systems

Nathalie Bertrand¹, Serge Haddad², Engel Lefaucheux^{1,2}

1 Inria Rennes, France 2 LSV, ENS Cachan & CNRS & Inria, France

Infinity 2016, Singapore

Two tales of smoke and observation

Original idea by Stefan Schwoon

Two tales of smoke and observation

Original idea by Stefan Schwoon

Assuming the behaviour of a system is known, an observer may deduce the occurrence of internal events from the outputs.

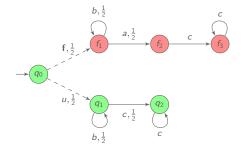
Two tales of smoke and observation

Original idea by Stefan Schwoon

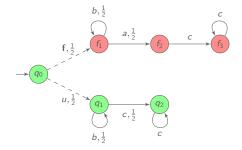
Assuming the behaviour of a system is known, an observer may deduce the occurrence of internal events from the outputs.

Diagnosis, non-interference, information flow, opacity, etc.

Diagnoser: must tell whether a fault **f** occurred, based on observations.

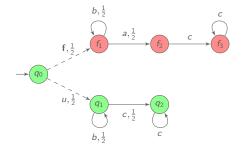


Diagnoser: must tell whether a fault **f** occurred, based on observations.



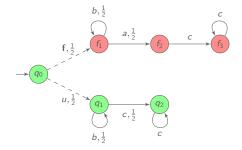
 \checkmark c is surely correct since $\mathcal{P}^{-1}(c) = \{q_0 u q_1 c q_2\}.$

Diagnoser: must tell whether a fault **f** occurred, based on observations.



 \checkmark c is surely correct since $\mathcal{P}^{-1}(c) = \{q_0 u q_1 c q_2\}.$ \checkmark ac is surely faulty since $\mathcal{P}^{-1}(ac) = \{q_0 f_1 a f_2 c f_3\}.$

Diagnoser: must tell whether a fault \mathbf{f} occurred, based on observations.



 $\begin{array}{ll} \checkmark & c & \text{is surely correct since } \mathcal{P}^{-1}(c) = \{q_0 uq_1 cq_2\}. \\ \end{matrix} \\ \begin{array}{ll} \bigstar & ac & \text{is surely faulty since } \mathcal{P}^{-1}(ac) = \{q_0 \mathbf{f}_1 af_2 cf_3\}. \\ \end{array} \\ \begin{array}{ll} ? & b & \text{is ambiguous since } \mathcal{P}^{-1}(b) = \{q_0 \mathbf{f}_1 bf_1, q_0 uq_1 bq_1\}. \end{array}$

Diagnosis of Probabilistic Systems

Diagnoser requirements:

- ► Soundness: if a fault is claimed, a fault occurred
- ▶ Reactivity: every fault is eventually almost surely detected

Diagnosis of Probabilistic Systems

Diagnoser requirements:

- Soundness: if a fault is claimed, a fault occurred
- ▶ Reactivity: every fault is eventually almost surely detected

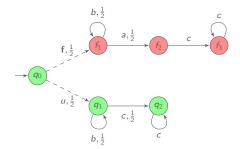
A decision problem (*diagnosability*): does there exist a diagnoser? A synthesis problem: how to build a diagnoser?

Diagnosis of Probabilistic Systems

Diagnoser requirements:

- Soundness: if a fault is claimed, a fault occurred
- ▶ Reactivity: every fault is eventually almost surely detected

A decision problem (*diagnosability*): does there exist a diagnoser? A synthesis problem: how to build a diagnoser?



sound and reactive diagnoser: claim a fault when a occurs.

Fault Diagnosis in Infinite-State Probabilistic Systems

Outline

Diagnosability specifications

Characterising diagnosability for infinite-state systems

Deciding diagnosability of visibly pushdown models

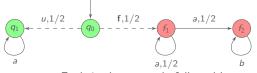
Specifying diagnosability for probabilistic systems

Two discriminating criteria:

Specifying diagnosability for probabilistic systems

Two discriminating criteria:

1. Detect faults, or tell whether a run is faulty or correct?

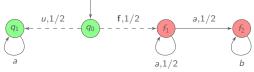


- Fault is almost surely followed by occurrence of b.
 - Ambiguous sequences have probability $\frac{1}{2}$.

Specifying diagnosability for probabilistic systems

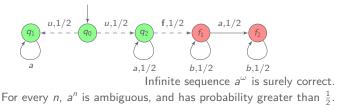
Two discriminating criteria:

1. Detect faults, or tell whether a run is faulty or correct?



Fault is almost surely followed by occurrence of b.

- Ambiguous sequences have probability $\frac{1}{2}$.
- 2. Consider infinite observed sequences or their finite prefixes?



Four diagnosability specifications

[BHL 14] Bertrand, Haddad and Lefaucheux, Foundation of Diagnosis and Predictability in Probabilistic Systems, FSTTCS'14

Diagnosability	All runs		Faulty runs
Finite prefixes	FA	$\Rightarrow \not \in$	FF
	↓ 1⁄	7	$\Downarrow \Uparrow^*$
Infinite sequences	IA	⇒ ∉	IF

* assuming finite-branching

Four diagnosability specifications

[BHL 14] Bertrand, Haddad and Lefaucheux, Foundation of Diagnosis and Predictability in Probabilistic Systems, FSTTCS'14

Diagnosability	All runs		Faulty runs
Finite prefixes	FA	$\Rightarrow $ \notin	FF
	↓ 1⁄	7	$\Downarrow \Uparrow^*$
Infinite sequences	IA	⇒ ∉	IF

* assuming finite-branching

Complexity for finite-state models All diagnosability problems are PSPACE-complete. Diagnoser synthesis is in EXPTIME.

Four diagnosability specifications

[BHL 14] Bertrand, Haddad and Lefaucheux, Foundation of Diagnosis and Predictability in Probabilistic Systems, FSTTCS'14

Diagnosability	All runs		Faulty runs
Finite prefixes	FA	$\Rightarrow $ \notin	FF
	↓ 1⁄r	7	₩↑*
Infinite sequences	IA	⇒ ∉	IF

* assuming finite-branching

Complexity for finite-state models All diagnosability problems are PSPACE-complete. Diagnoser synthesis is in EXPTIME.

What about infinite-state probabilistic systems?

Fault Diagnosis in Infinite-State Probabilistic Systems

August 26th 2016 - Infinity'16 - 7

Outline

Diagnosability specifications

Characterising diagnosability for infinite-state systems

Deciding diagnosability of visibly pushdown models

Quest for a characterisation

Objective: simple qualitative charac., independent of probability values \mathcal{N} is diagnosable iff $\mathbb{P}_{\mathcal{N}}(B) \bowtie p$, where:

▶
$$p \in \{0,1\}, \bowtie \in \{<,=,>\};$$

B (*) belongs to a low level of Borel hierarchy and
 (*) only depends on the underlying LTS.

Quest for a characterisation

Objective: simple qualitative charac., independent of probability values \mathcal{N} is diagnosable iff $\mathbb{P}_{\mathcal{N}}(B) \bowtie p$, where:

▶
$$p \in \{0,1\}$$
, $\bowtie \in \{<,=,>\}$;

 \triangleright B (*) belongs to a low level of Borel hierarchy and (\star) only depends on the underlying LTS.

Definitions are not directly applicable:

- $\begin{tabular}{ll} \label{eq:model} & IA & \mathbb{P}(Amb_\infty)=0 & Amb_\infty \mbox{ analytic set, a priori not Borel} \\ & IF & \mathbb{P}(FAmb_\infty)=0 & FAmb_\infty \mbox{ analytic set, a priori not Borel} \\ \end{tabular}$

Quest for a characterisation

Objective: simple qualitative charac., independent of probability values \mathcal{N} is diagnosable iff $\mathbb{P}_{\mathcal{N}}(B) \bowtie p$, where:

▶
$$p \in \{0,1\}$$
, $\bowtie \in \{<,=,>\}$;

B (*) belongs to a low level of Borel hierarchy and
 (*) only depends on the underlying LTS.

Definitions are not directly applicable:

• IA $\mathbb{P}(Amb_{\infty}) = 0$

• IF
$$\mathbb{P}(\mathsf{FAmb}_{\infty}) = 0$$

• FA
$$\lim_{n\to\infty} \mathbb{P}(Amb_n) = 0$$

• FF
$$\lim_{n\to\infty} \mathbb{P}(\mathsf{FAmb}_n) = 0$$

 Amb_{∞} analytic set, a priori not Borel $FAmb_{\infty}$ analytic set, a priori not Borel (Amb_n) family of Borel sets $(FAmb_n)$ family of Borel sets

 $\phi ::= \alpha \mid \neg \phi \mid \phi \land \phi \mid \Diamond \phi$ where α is a path formula

 $\phi ::= \alpha \mid \neg \phi \mid \phi \land \phi \mid \diamondsuit \phi$ where α is a path formula

pathL subsumes all ω -regular linear specification languages

 $\phi::=\alpha\mid\neg\phi\mid\phi\wedge\phi\mid\diamond\phi \text{ where }\alpha\text{ is a path formula}$ pathL subsumes all $\omega\text{-regular linear specification languages}$

f(ρ) ≡ ρ faulty
𝔅(ρ) ≡ ∃ρ' correct s.t.
$$\mathcal{P}(ρ) = \mathcal{P}(ρ')$$

\mathcal{N} is FF-diagnosable iff $\mathcal{N} \models \mathbb{P}^{=0}(\Diamond \Box(\mathfrak{U} \land \mathfrak{f})).$

also valid for IF-diagnosability if ${\mathcal N}$ is finitely-branching

 $\phi::=\alpha\mid\neg\phi\mid\phi\wedge\phi\mid\diamond\phi \text{ where }\alpha\text{ is a path formula}$ pathL subsumes all $\omega\text{-regular linear specification languages}$

f(ρ) ≡ ρ faulty
𝔅(ρ) ≡ ∃ρ' correct s.t.
$$\mathcal{P}(ρ) = \mathcal{P}(ρ')$$

\mathcal{N} is FF-diagnosable iff $\mathcal{N} \models \mathbb{P}^{=0}(\Diamond \Box(\mathfrak{U} \land \mathfrak{f})).$

also valid for IF-diagnosability if ${\mathcal N}$ is finitely-branching

▶ $\mathfrak{W}(\rho) \equiv$ last obs. does not change time of earliest possible fault

 \mathcal{N} , finitely branching, is IA-diagnosable iff $\mathcal{N} \models \mathbb{P}^{=0}(\Diamond \square(\mathfrak{U} \land \mathfrak{W})).$

 $\phi::=\alpha\mid\neg\phi\mid\phi\wedge\phi\mid\diamond\phi \text{ where }\alpha\text{ is a path formula}$ pathL subsumes all $\omega\text{-regular linear specification languages}$

f(ρ) ≡ ρ faulty
𝔅(ρ) ≡ ∃ρ' correct s.t.
$$\mathcal{P}(ρ) = \mathcal{P}(ρ')$$

\mathcal{N} is FF-diagnosable iff $\mathcal{N} \models \mathbb{P}^{=0}(\Diamond \Box(\mathfrak{U} \land \mathfrak{f})).$

also valid for IF-diagnosability if ${\mathcal N}$ is finitely-branching

▶ $\mathfrak{W}(\rho) \equiv$ last obs. does not change time of earliest possible fault

\mathcal{N} , finitely branching, is IA-diagnosable iff $\mathcal{N} \models \mathbb{P}^{=0}(\Diamond \square(\mathfrak{U} \land \mathfrak{W})).$

There is no F_{σ} set B s.t. $\mathbb{P}(B) = 0$ characterises FA-diagnosability There is no Borel set B s.t. $\mathbb{P}(B) > 0$ characterises FA-diagnosability

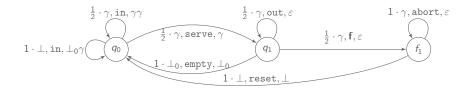
Outline

Diagnosability specifications

Characterising diagnosability for infinite-state systems

Deciding diagnosability of visibly pushdown models

Probabilistic Visibly Pushdown Automata (pVPA)

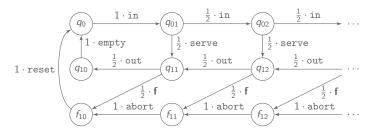


The action determines the operation on the stack. i.e. the size of the stack is always known.

Iterative behaviour of a server.

- 1. A server takes an arbitrary list of requests.
- 2. It starts serving them until
 - 2.1 all of them are satisfied.
 - 2.2 or an error occurred then it drops all the following requests.

Semantics of pVPA



Observation of pop events: $\mathcal{P}(\texttt{out}) = \mathcal{P}(\texttt{f}) = \mathcal{P}(\texttt{abort}) = \texttt{pop}.$

Fault Diagnosis in Infinite-State Probabilistic Systems

Reduction in 4 steps:

diagnosis-oriented determinisation of the pVPA into VPA;

Reduction in 4 steps:

- diagnosis-oriented determinisation of the pVPA into VPA;
- construction of the enlarged pVPA, a synchronized product of:
 - \bullet the deterministic VPA, and
 - the original pVPA;

Reduction in 4 steps:

- diagnosis-oriented determinisation of the pVPA into VPA;
- construction of the enlarged pVPA, a synchronized product of:
 - \bullet the deterministic VPA, and
 - the original pVPA;
- translation of path formulae into atomic propositions;

Reduction in 4 steps:

- diagnosis-oriented determinisation of the pVPA into VPA;
- construction of the enlarged pVPA, a synchronized product of:
 - \bullet the deterministic VPA, and
 - the original pVPA;
- translation of path formulae into atomic propositions;
- model checking of qualitative pLTL formulae [EY 12]

[EY 12] Etessami and Yannakakis, Model checking recursive probabilistic systems, ACMToCL 2012

Reduction in 4 steps:

- diagnosis-oriented determinisation of the pVPA into VPA;
- construction of the enlarged pVPA, a synchronized product of:
 - the deterministic VPA, and
 - the original pVPA;
- translation of path formulae into atomic propositions;
- model checking of qualitative pLTL formulae [EY 12]
- [EY 12] Etessami and Yannakakis, Model checking recursive probabilistic systems, ACMToCL 2012

FF-diagnosability, IF-diagnosability and IA-diagnosability are decidable in EXPSPACE for pVPA.

Details on the determinisation

- Inspired by original determinisation of [AM 04]
- ▶ With tags customized for diagnosis borrowed from [HHMS 13]

[AM 04] Alur and Madhusudan. Visibly pushdown languages, STOC'04
 [HHMS 13] Haar, Haddad, Melliti and Schwoon. Optimal constructions for active diagnosis, FSTTCS'13.

Fault Diagnosis in Infinite-State Probabilistic Systems

Details on the determinisation

- Inspired by original determinisation of [AM 04]
- ▶ With tags customized for diagnosis borrowed from [HHMS 13]

 $\begin{array}{l} {\rm stack \ symbol} = {\rm set \ of \ tuples \ } \frac{\gamma, {\rm X}, q}{\gamma^-, {\rm X}^-, q^-} \ {\rm corresponding \ to \ possible \ runs:} \\ {\rm \bullet \ states \ } q, q^-: \ q \ {\rm reached \ after \ the \ last \ action;} \\ q^- \ {\rm reached \ after \ the \ last \ push;} \end{array}$

- \bullet tags X, X^-: X status after last action $U=\text{correct},\,V=\text{recent fault},\,W=\text{old fault};$ X⁻ status after the last push
- \bullet original stack symbols $\gamma,\gamma^-\colon \gamma$ the top stack symbol; γ^- last but top stack symbol

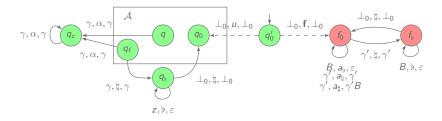
[AM 04] Alur and Madhusudan. Visibly pushdown languages, STOC'04
 [HHMS 13] Haar, Haddad, Melliti and Schwoon. Optimal constructions for active diagnosis, FSTTCS'13.

Fault Diagnosis in Infinite-State Probabilistic Systems

Hardness of diagnosis

Diagnosability is EXPTIME-hard for pVPA.

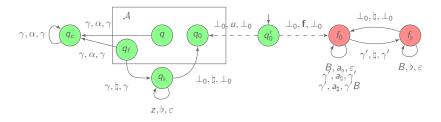
Reduction from the universality problem for VPA.



Hardness of diagnosis

Diagnosability is EXPTIME-hard for pVPA.

Reduction from the universality problem for VPA.



Diagnosability is undecidable for probabilistic pushdown automata.

Reduction from the Post Correspondence Problem.

Already holds for restricted classes of pPDA (constant nb of phases).

Conclusion

Summary of contributions

- Characterisation of diagnosability notions via qualitative probabilistic formulae;
- ► Lower and upper bounds for diagnosis of visibly pushdown systems.

Conclusion

Summary of contributions

- Characterisation of diagnosability notions via qualitative probabilistic formulae;
- ► Lower and upper bounds for diagnosis of visibly pushdown systems.

Future work

- Reduction of the complexity gap between lower and upper bounds;
- Diagnosis of other infinite state stochastic systems;
- Diagnosis for continuous-time stochastic systems.