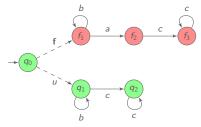
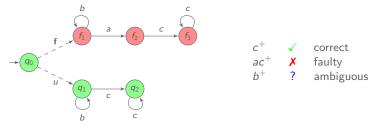

Foundation of Diagnosis and Predictability in Probabilistic Systems

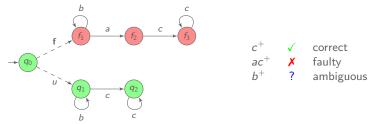

Nathalie Bertrand¹, Serge Haddad², Engel Lefaucheux^{1,2}

1 Inria Rennes, France 2 LSV, ENS Cachan & CNRS & Inria Saclay, France

Objective: tell whether a fault f occurred, based on observations.



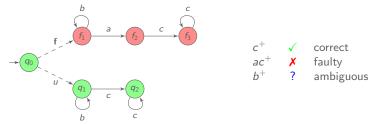
Objective: tell whether a fault f occurred, based on observations.



Objective: tell whether a fault f occurred, based on observations.

Diagnosability: all observed sequences are unambiguous.

Objective: tell whether a fault f occurred, based on observations.

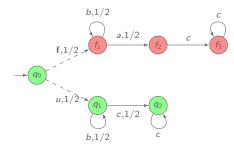


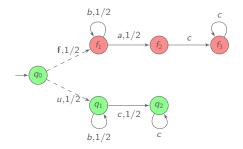
Diagnosability: all observed sequences are unambiguous.

Diagnoser: assigns verdicts to observed sequences $D: \Sigma_o^* \to \{\checkmark, \checkmark, ?\}$

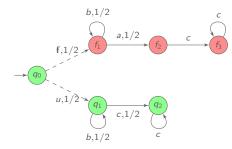
- **Soundness**: if a fault is claimed, a fault occurred.
- Reactivity: every fault will be detected.

Objective: tell whether a fault **f** occurred, based on observations.

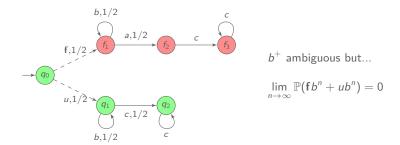



Diagnosability: all observed sequences are unambiguous.

Diagnoser: assigns verdicts to observed sequences $D: \Sigma_o^* \to {\checkmark, \checkmark, ?}$


- **Soundness**: if a fault is claimed, a fault occurred.
- **Reactivity**: every fault will be detected.

Diagnosability and diagnoser synthesis in PTIME [Jiang et al. TAC 2001]



b⁺ ambiguous but...

 b^+ ambiguous but...

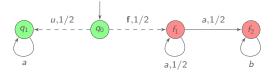
 $\lim_{n\to\infty}\mathbb{P}(\mathbf{f}b^n+ub^n)=0$

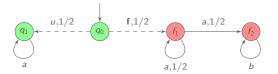
Our contribution

- Relevant soundness and reactivity criteria in probabilistic setting
- Decidability and complexity of diagnosability
- Optimal diagnoser construction
- Beyond diagnosis: predictability and prediagnosis

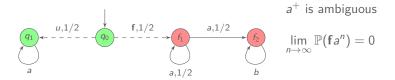
Foundation of Diagnosis and Predictability in Probabilistic Systems

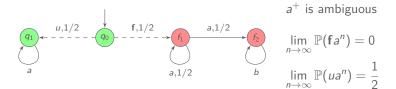
Outline

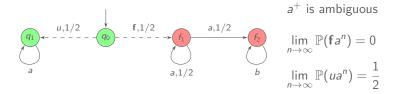

Diagnosability Specifying diagnosability Characterisation Complexity


Predictability and prediagnosability

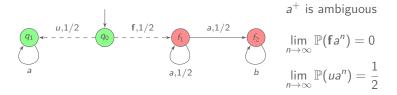
Outline

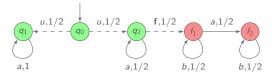

Diagnosability Specifying diagnosability Characterisation Complexity

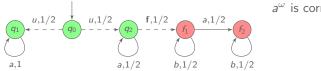

Predictability and prediagnosability

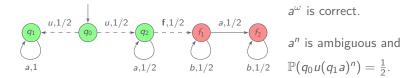


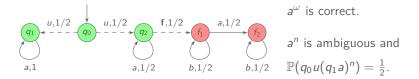
a⁺ is ambiguous

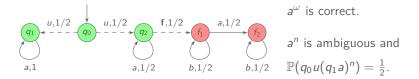



Reactivity specifications:


Detect a fault, almost surely.


Reactivity specifications:


- Detect a fault, almost surely.
- Detect if a run is faulty or correct, almost surely.

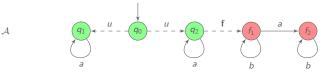


Infinite sequences are almost surely non ambiguous.

- Infinite sequences are almost surely non ambiguous.
- ▶ The probability of ambiguous prefixes tends to 0.

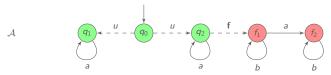
Four diagnosability notions

Diagnosability	All runs		Faulty runs
Finite prefixes	FA	$\Rightarrow \not \in$	FF
	₩1¥	/	↓↑
Infinite sequences	IA	$\Rightarrow \not =$	IF

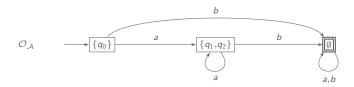

Four diagnosability notions

Diagnosability	All runs		Faulty runs
Finite prefixes	FA	$\Rightarrow \not \in$	FF
	₩1⁄ŕ	7	$\downarrow \uparrow \uparrow$
Infinite sequences	IA	$\Rightarrow \not \models$	IF

Focus on IF in this talk.

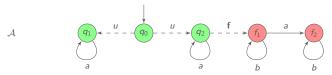

Characterisation of diagnosability

Specification of IF-diagnosability: Infinite sequences, Fault diagnosis

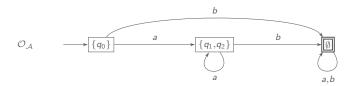


Characterisation of diagnosability

Specification of IF-diagnosability: Infinite sequences, Fault diagnosis



Observer: tracks possible correct states after given observed sequence.



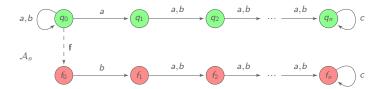
Characterisation of diagnosability

Specification of IF-diagnosability: Infinite sequences, Fault diagnosis

Observer: tracks possible correct states after given observed sequence.

Diagnoser synthesis

For every IF-diagnosable system with n correct states one can build an IF-diagnoser with at most 2^n states.


Diagnoser derived from observer $\mathcal{O}_{\mathcal{A}}$: emits \checkmark in state \emptyset .

Diagnoser synthesis

For every IF-diagnosable system with n correct states one can build an IF-diagnoser with at most 2^n states.

Diagnoser derived from observer $\mathcal{O}_{\mathcal{A}}$: emits \checkmark in state \emptyset .

There is a family (A_n) of IF-diagnosable systems such that A_n has n + 1 correct states and any IF-diagnoser needs 2^n states.

Diagnosability is in PSPACE

Diagnosability is decidable in PSPACE for probabilistic systems.

Diagnosability is in PSPACE

Diagnosability is decidable in PSPACE for probabilistic systems.

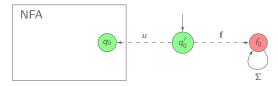
Sketch of proof

- \blacktriangleright relies on the characterisation on $\mathcal{A}\times\mathcal{O}_{\mathcal{A}}$
- avoids building the product
- uses Savitch's theorem for appropriate guesses

Diagnosability is PSPACE-hard

 $\mathcal{L} \subseteq \Sigma^*$ is eventually universal if $\exists v \in \Sigma^*, v^{-1}\mathcal{L} = \Sigma^*$.

The eventual universality problem for NFA is PSPACE-hard.


Diagnosability is PSPACE-hard

 $\mathcal{L} \subseteq \Sigma^* \text{ is eventually universal if } \exists v \in \Sigma^*, v^{-1}\mathcal{L} = \Sigma^*.$

The eventual universality problem for NFA is PSPACE-hard.

Diagnosability is PSPACE-hard.

Reduction from eventual universality to diagnosability.

 \mathcal{A} not diagnosable iff $\mathcal{A} \times \mathcal{O}_{\mathcal{A}}$ contains a BSCC where each state has the form (f_0, U) with $U \neq \emptyset$

Foundation of Diagnosis and Predictability in Probabilistic Systems

Dec. 16th - FSTTCS'14 - 12/ 18

Comparison with non-probabilistic discrete event systems

Diagnosability is PSPACE-complete for probabilistic systems.

Comparison with non-probabilistic discrete event systems

Diagnosability is PSPACE-complete for probabilistic systems.

Diagnosability is decidable in PTIME for non-probabilistic systems. [Jiang, Huang, Chandra, Kumar TAC 2001]

Sketch of proof

- build the twin-product with a copy restricted to correct states
- check for SCC with faulty states in the first component

Comparison with non-probabilistic discrete event systems

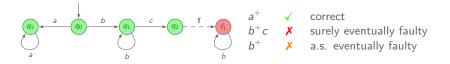
Diagnosability is PSPACE-complete for probabilistic systems.

Diagnosability is decidable in PTIME for non-probabilistic systems. [Jiang, Huang, Chandra, Kumar TAC 2001]

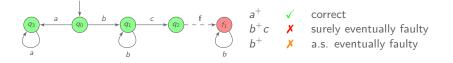
Sketch of proof

- build the twin-product with a copy restricted to correct states
- check for SCC with faulty states in the first component

Erroneous adaptation to probabilistic case in [Chen, Kumar TASE 2013].


Outline

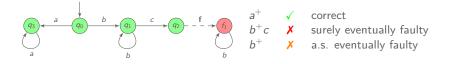
Diagnosability Specifying diagnosability Characterisation Complexity


Predictability and prediagnosability

Objective: tell whether a fault *will* occur, based on observations.

Objective: tell whether a fault *will* occur, based on observations.

Objective: tell whether a fault *will* occur, based on observations.



Two notions of soundness:

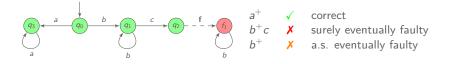
- sure: if a fault is claimed, a fault will occur
- ▶ almost-sure: if a fault is claimed, a fault will almost-surely occur

Reactivity: a fault is detected at least *k* steps before occurrence.

Objective: tell whether a fault *will* occur, based on observations.

surely 0-predictable

almost surely 1-predictable


not 2-predictable

Two notions of **soundness**:

- sure: if a fault is claimed, a fault will occur
- ▶ almost-sure: if a fault is claimed, a fault will almost-surely occur

Reactivity: a fault is detected at least *k* steps before occurrence.

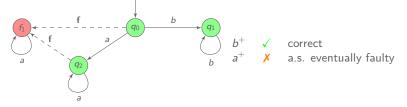
Objective: tell whether a fault *will* occur, based on observations.

surely 0-predictable

almost surely 1-predictable

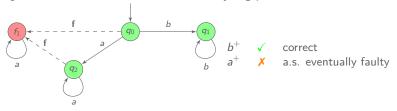
not 2-predictable

Two notions of **soundness**:


- sure: if a fault is claimed, a fault will occur
- ▶ almost-sure: if a fault is claimed, a fault will almost-surely occur

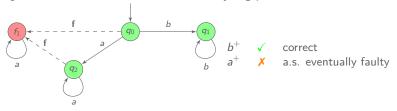
Reactivity: a fault is detected at least *k* steps before occurrence.

Predictability is NLOGSPACE-complete for probabilistic systems.


Prediagnosability

Objective: detect and foresee faults analysing past and future

Prediagnosability


Objective: detect and foresee faults analysing past and future

Soundness: If a fault is claimed, a fault happened or (almost) surely will. **Reactivity**: Faults are almost surely claimed.

Prediagnosability

Objective: detect and foresee faults analysing past and future

Soundness: If a fault is claimed, a fault happened or (almost) surely will. **Reactivity**: Faults are almost surely claimed.

Prediagnosability is PSPACE-complete.

Foundation of Diagnosis and Predictability in Probabilistic Systems

Dec. 16th - FSTTCS'14 - 16/ 18

Conclusion: Foundation of probabilistic diagnosis

Summary of contributions

- Investigation of semantical issues
- Tight complexity bounds for diagnosability and diagnoser synthesis problems
- Introduction of prediagnosability

Conclusion: Foundation of probabilistic diagnosis

Summary of contributions

- Investigation of semantical issues
- Tight complexity bounds for diagnosability and diagnoser synthesis problems
- Introduction of prediagnosability

Future work

- Approximate diagnosis (relaxing soundness)
- Other paradigms related to partial observation (detectability, opacity, etc.)
- Space and time optimisation of observations