Minimal Disclosure in Partially Observable Markov Decision Processes

Nathalie Bertrand¹ and Blaise Genest²

¹INRIA Rennes, France

²CNRS UMI IPAL, Singapore

FSTTCS December 14th 2011

Outline

2 Worst-case cost

Conclusion

Markov Decision Processes (MDP)

States: Q; Actions: Act; Probabilistic transition function: Δ

Conclusion

Markov Decision Processes (MDP)

States: Q; Actions: Act; Probabilistic transition function: Δ

Strategy for the controller: based on actions and states

 $\sigma: Q \cdot (Act \cdot Q)^* \to Dist(Act)$

Conclusion

Markov Decision Processes (MDP)

States: Q; Actions: Act; Probabilistic transition function: Δ

Strategy for the controller: based on actions and states

 $\sigma: Q \cdot (Act \cdot Q)^* \to Dist(Act)$

Memoryless pure strategy to reach Goal almost-surely: $\sigma(1) = a, \ \sigma(2) = b, \ \sigma(3) = c$

Conclusion

Partially Observable MDP (POMDP)

Partial observation: induced by partition O

Conclusion

Partially Observable MDP (POMDP)

Partial observation: induced by partition O

Strategy for the controller: based on actions and observations

 $\sigma: O \cdot (\mathsf{Act} \cdot O)^* \to \mathsf{Dist}(\mathsf{Act})$

Conclusion

Partially Observable MDP (POMDP)

Partial observation: induced by partition O

Strategy for the controller: based on actions and observations

 $\sigma: O \cdot (\mathsf{Act} \cdot O)^* \to \mathsf{Dist}(\mathsf{Act})$

No strategy to reach Goal almost-surely.

Conclusion

POMDP with disclosure

Additional request action to reveal the precise state of system. Observations: partition + individual states

Conclusion

POMDP with disclosure

Additional request action to reveal the precise state of system. Observations: partition + individual states

Strat. for the controller: based on extended actions and observations

 $\sigma: O' \cdot (\mathsf{Act}' \cdot O')^* \to \mathsf{Dist}(\mathsf{Act}')$

Conclusion

POMDP with disclosure

Additional request action to reveal the precise state of system. Observations: partition + individual states

Strat. for the controller: based on extended actions and observations

 $\sigma: O' \cdot (\mathsf{Act}' \cdot O')^* \to \mathsf{Dist}(\mathsf{Act}')$

Cheap strategy to reach Goal almost-surely?

Problem statement

cost of a path = number of requests for disclosure cost of a strategy σ =

- worst-case cost along σ -paths (max number of requests)
- average cost along σ-paths (expected number of requests)

Problem statement

cost of a path = number of requests for disclosure cost of a strategy σ =

- worst-case cost along σ -paths (max number of requests)
- average cost along *σ*-paths (expected number of requests)

Problem statement

Finding almost-surely winning strategies that minimize:

- the worst-case cost, or
- the average cost

Outline

Introduction

2 Worst-case cost

3 Average cost

4 Conclusion

Belief

Conclusion

Belief

Belief

Conclusion

Belief

Belief

Belief: (distribution over) states the system can be in

 $\{1\} (a, \bullet) \{1, 2\} (a, \bullet)$

Belief

Belief: (distribution over) states the system can be in

 $\{1\} (a, \bullet) \{1, 2\} (a, \bullet) \{3, 4\}$

Conclusion

Belief

Belief: (distribution over) states the system can be in

 $\{1\} (a, \bullet) \{1, 2\} (a, \bullet) \{3, 4\} (b, \bullet)$

Conclusion

Belief

Belief: (distribution over) states the system can be in

 $\{1\} (a, \bullet) \{1, 2\} (a, \bullet) \{3, 4\} (b, \bullet) \{5\}$

Belief

Belief: (distribution over) states the system can be in

 $\{1\} (a, \bullet) \{1, 2\} (a, \bullet) \{3, 4\} (b, \bullet) \{5\}$ $\{1\} (a, \bullet) \{3, 4\} (req, \{4\}) \{4\} (b, \bullet) \{1\}$

Minimal Disclosure in Partially Observable Markov Decision Processes FSTTCS 2011 – Mumbai

Conclusion

Belief

Conclusion

Belief

Belief: (distribution over) states the system can be in

up(S, a, O): belief update from S, after action a and observation O

Lose: beliefs that contain a state losing in the (fully-observable) MDP

Lose: beliefs that contain a state losing in the (fully-observable) MDP $Win = \mathcal{B} \setminus Lose = W_{ok} \sqcup W_{reg} \sqcup W_{safe}$

Lose: beliefs that contain a state losing in the (fully-observable) MDP

- $Win = \mathcal{B} \setminus Lose = W_{ok} \sqcup W_{req} \sqcup W_{safe}$
 - ► $W_{ok} = \{S \mid S \subseteq \text{Goal}\}$

Lose: beliefs that contain a state losing in the (fully-observable) MDP

 $Win = \mathcal{B} \setminus Lose = W_{ok} \sqcup W_{req} \sqcup W_{safe}$

- $W_{ok} = \{S \mid S \subseteq \text{Goal}\}$
- ► $W_{req} = \{S \mid \forall a \in Act \exists O \in O, up(S, a, O) \in Lose\}$

Lose: beliefs that contain a state losing in the (fully-observable) MDP

 $Win = \mathcal{B} \setminus Lose = W_{ok} \sqcup W_{req} \sqcup W_{safe}$

- $W_{ok} = \{S \mid S \subseteq \text{Goal}\}$
- ► $W_{req} = \{S \mid \forall a \in Act \exists O \in O, up(S, a, O) \in Lose\}$

Canonical family of strategies $(\sigma_n)_{n \in \mathbb{N}}$:

- In W_{req}, play req, and
- in W_{safe} , play req with prob. 1/n and unif. prob. on safe actions.

a is safe from S if $\forall O, up(S, a, O) \notin Lose$

Lemma

 σ_n is almost-surely winning from *Win*.

Iterative computation of S_k : set of beliefs where k req are sufficient.

 $S_0 \subseteq S_1 \subseteq S_2 \cdots \subseteq \textit{Win}$

Iterative computation of S_k : set of beliefs where k req are sufficient.

 $S_0 \subseteq S_1 \subseteq S_2 \cdots \subseteq \textit{Win}$

Iterative computation of S_k : set of beliefs where k req are sufficient.

 $S_0 \subseteq S_1 \subseteq S_2 \cdots \subseteq \textit{Win}$

Computation of S_0 : $S_0 = \text{reach}_{=1}(W_{ok})$ almost-sure reachability question for the belief-MDP without requests

Optimized strategy: no request from $S \in S_0$

Iterative computation of S_k : set of beliefs where k req are sufficient.

 $S_0 \subseteq S_1 \subseteq S_2 \cdots \subseteq \textit{Win}$

Computation of S₁

- ► $L_1 = \{S \mid \forall s \in S, \{s\} \in S_0\}$
- $S_1 = \operatorname{reach}_{=1}(L_1 \cup S_0)$

Optimized Strategy:

request from $S \in L_1 \setminus S_0$

uniform distribution on actions ensuring to stay in S_1 , othw

Iterative computation of S_k : set of beliefs where k req are sufficient.

 $S_0 \subseteq S_1 \subseteq S_2 \cdots \subseteq \textit{Win}$

Stabilisation for $N \leq |\mathcal{B}|$

Iterative computation of S_k : set of beliefs where k req are sufficient.

 $S_0 \subseteq S_1 \subseteq S_2 \cdots \subseteq \textit{Win}$

Stabilisation for $N \leq |\mathcal{B}|$

 $S_{\infty} = Win \setminus S_N$

Iterative computation of S_k : set of beliefs where k req are sufficient.

 $S_0 \subseteq S_1 \subseteq S_2 \cdots \subseteq \textit{Win}$

Proposition

The minimum worst-case cost can be computed in EXPTIME, together with a finite-memory strategy.

Outline

1 Introduction

2 Worst-case cost

3 Average cost

4 Conclusion

Undecidability

Value: infimum of average cost over almost-surely winning strategies

 $val(G) = inf\{av_cost(\sigma) \mid \sigma \text{ almost-surely winning}\}$

Undecidability

Value: infimum of average cost over almost-surely winning strategies

 $val(G) = inf\{av_cost(\sigma) \mid \sigma \text{ almost-surely winning}\}$

The value cannot be computed

For all K > 0, one cannot decide whether $val(G) \le K$.

Undecidability

Value: infimum of average cost over almost-surely winning strategies

 $val(G) = inf\{av_cost(\sigma) \mid \sigma \text{ almost-surely winning}\}$

The value cannot be computed

For all K > 0, one cannot decide whether $val(G) \le K$.

Not too surprising: optimizing cost functions for POMDP is undecidable

Skip proof

Proof idea

 \mathcal{P} PFA s.t. either all words have probability $\leq \varepsilon$, or some word has probability $> 1 - \varepsilon$. Which holds is undecidable. [Madani Hanks Condon 03]

Minimal Disclosure in Partially Observable Markov Decision Processes FSTTCS 2011 – Mumbai

Conclusion

Proof idea

 \mathcal{P} PFA s.t. either all words have probability $\leq \varepsilon$, or some word has probability $> 1 - \varepsilon$. Which holds is undecidable. [Madani Hanks Condon 03]

 \mathcal{P} accepts a word with probability greater than $1 - \varepsilon$

iff $val(G) < \frac{\varepsilon}{1-\varepsilon}$

Conclusion

Proof idea

 \mathcal{P} PFA s.t. either all words have probability $\leq \varepsilon$, or some word has probability $> 1 - \varepsilon$. Which holds is undecidable. [Madani Hanks Condon 03]

 \mathcal{P} accepts a word with probability greater than $1 - \varepsilon$ iff

 $val(G) < \frac{\varepsilon}{1-\varepsilon}$

 $(\Rightarrow) \sigma \text{ plays } (w \ \sharp \ req \ a|b)^* \text{ for } w \text{ with } \mathbb{P}(w) > 1 - \varepsilon \\ val(\sigma) < 0 \times (1 - \varepsilon) + 1 \times \varepsilon (1 - \varepsilon) + 2 \times \varepsilon^2 (1 - \varepsilon) \dots = \varepsilon / (1 - \varepsilon)$

Conclusion

Proof idea

 \mathcal{P} PFA s.t. either all words have probability $\leq \varepsilon$, or some word has probability $> 1 - \varepsilon$. Which holds is undecidable. [Madani Hanks Condon 03]

 \mathcal{P} accepts a word with probability greater than $1 - \varepsilon$ iff

 $val(G) < \frac{\varepsilon}{1-\varepsilon}$

 $(\Rightarrow) \sigma \text{ plays } (w \ \sharp \ req \ a|b)^* \text{ for } w \text{ with } \mathbb{P}(w) > 1 - \varepsilon \\ val(\sigma) < 0 \times (1 - \varepsilon) + 1 \times \varepsilon(1 - \varepsilon) + 2 \times \varepsilon^2(1 - \varepsilon) \cdots = \varepsilon/(1 - \varepsilon) \\ (\Leftarrow) p \text{ probability in } \sigma \text{ to have } \sharp \text{ before } req \\ val(\sigma) > (1 - p) + p(1 - \varepsilon) \ge 1 - \varepsilon$

Conclusion

Proof idea

 \mathcal{P} PFA s.t. either all words have probability $\leq \varepsilon$, or some word has probability $> 1 - \varepsilon$. Which holds is undecidable. [Madani Hanks Condon 03]

 \mathcal{P} accepts a word with probability greater than $1 - \varepsilon$ iff

 $val(G) < \frac{\varepsilon}{1-\varepsilon}$

best approximation: $|v - val(G)| = (\varepsilon/(1 - \varepsilon) + (1 - \varepsilon))/2$

Conclusion

Proof idea

 \mathcal{P} PFA s.t. either all words have probability $\leq \varepsilon$, or some word has probability $> 1 - \varepsilon$. Which holds is undecidable. [Madani Hanks Condon 03]

 \mathcal{P} accepts a word with probability greater than $1 - \varepsilon$ iff

 $val(G) < \frac{\varepsilon}{1-\varepsilon}$

best approximation: $|v - val(G)| = (\varepsilon/(1 - \varepsilon) + (1 - \varepsilon))/2$ approximation factor: $\frac{|v - val(G)|}{val(G)} = \frac{(1 - \varepsilon)(1/(1 - \varepsilon) - \varepsilon)}{2\varepsilon} \xrightarrow{\varepsilon \to 0} \infty$

Non-approximability

Corollary: For every δ it is undecidable to approximate val(G) within δ . NB: bigger δ need bigger POMDP

Non-approximability

Corollary: For every δ it is undecidable to approximate val(G) within δ . NB: bigger δ need bigger POMDP

NP-hardness of good approximations

Assuming $P \neq NP$ there is a POMDP *G* with **few** reachable belief states (quadratic in *n*) s.t. any polynomial time algorithm \mathcal{A} returns for *G* a value *v* with approximation factor: $\frac{|v-val(G)|}{val(G)} \ge 2^{n-1}/n^2$, and absolute approximation error: $|v - val(G)| \ge 2^{n-1}/n$.

Proof idea

 φ 3-SAT instance with *m* clauses and *k* variables; *n* = *mk*

 φ is satisfiable if for each clause C_i , one can choose a literal I_i and the choices do not conflict

POMDP behaviour:

- random choice of variable to monitor
- conflicts force a request not to lose

Proof idea

 φ 3-SAT instance with *m* clauses and *k* variables; *n* = *mk*

 φ is satisfiable if for each clause C_i , one can choose a literal I_i and the choices do not conflict

POMDP behaviour:

- random choice of variable to monitor
- conflicts force a request not to lose

Properties of the reduction

- φ satisfiable \Rightarrow val(G) < n
- φ not satisfiable \Rightarrow $val(G) > 2^n/n 2$

Introduction

Worst-case cost

Average cost

Conclusion

Outline

1 Introduction

2 Worst-case cost

3 Average cost

Conclusion

Contribution

Minimize requests for full-information in POMDP under an almost-sure reachability objective.

- Worst-case cost
 - computation in EXPTIME, together with an optimal strategy

Average cost

- computation undecidable
- approximation unfeasible
- large least approximation factors for polytime algorithms

Conclusion

Contribution

Minimize requests for full-information in POMDP under an almost-sure reachability objective.

- Worst-case cost
 - computation in EXPTIME, together with an optimal strategy
- Average cost
 - computation undecidable
 - approximation unfeasible
 - large least approximation factors for polytime algorithms

Future work

- extend to several information levels
 - succesive partition refinement
- tradeoff between objective (reachability probability) and cost