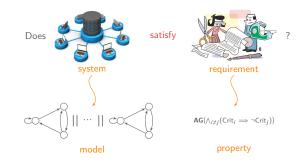
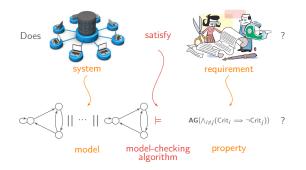
Parameterized verification of round-based distributed algorithms

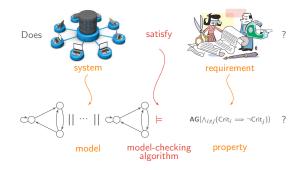
Nathalie Bertrand Incia-Inria Rennes & IRISA

ETAPS 2022 - Munich

based on joint work with Bastien Thomas, Josef Widder Nicolas Markey, Ocan Sankur, Nicolas Waldburger

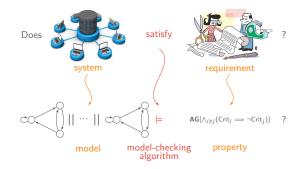






 generic, successfully applied to hardware/software verification embedded softwares, real-time systems, controllers in avionics, telecommunications, planning, etc.

⊖ undecidable in general, scalability issues



 generic, successfully applied to hardware/software verification embedded softwares, real-time systems, controllers in avionics, telecommunications, planning, etc.

- ⊖ undecidable in general, scalability issues
- 2 Turing awards
 - Pnueli, 1996: temporal logic; program and systems verification
 - Clarke, Emerson and Sifakis, 2007: model checking as highly effective verification technology Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS'22 invited talk – 2 / 26

Standard model checking for distributed algorithms

Peterson's algorithm

[Peterson IPL 1981]

- mutual exclusion
- processes P_0 and P_1
- ▶ shared variables x, b_0 and b_1 (b_i read-only to P_{i-1})

```
loop forever;
```

```
: /* non-critical actions */

b_i := T; x := 1-i; /* request */

wait until (x=i) \lor (b_{1-i} = \bot);

do critical section od;

b_i = \bot; /* release */

.
```

end loop

Standard model checking for distributed algorithms

Peterson's algorithm

[Peterson IPL 1981]

- mutual exclusion
- processes P_0 and P_1
- ▶ shared variables x, b_0 and b_1 (b_i read-only to P_{i-1})

```
loop forever;
```

```
: /* non-critical actions */

b_i:=\top; x:=1-i; /* request */

wait until (x=i) \lor (b_{1-i}=\bot);

do critical section od;

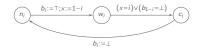
b_i=\bot; /* release */
```

end loop

Correctness: processes are not in their critical section simultaneously

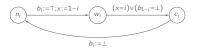
Modelling and verifying Peterson's algorithm

[Baier Katoen MIT Press 2008]

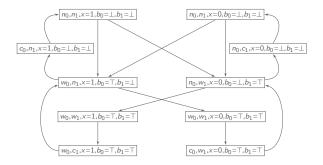


Modelling and verifying Peterson's algorithm

[Baier Katoen MIT Press 2008]

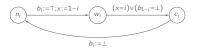


Product transition system representing all interleavings

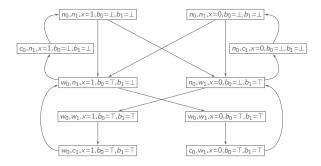


Modelling and verifying Peterson's algorithm

[Baier Katoen MIT Press 2008]



Product transition system representing all interleavings



correctness reduces to: no state $(c_0, c_1, _, _, _)$ is reachable

Parameterized verification for distributed algorithms - N. Bertrand

Limitations of standard model checking techniques for the verification of distributed algorithms

state-space explosion: product transition system is exponential in number of processes, and of variables

 \rightarrow tools hardly scale to large number of processes or real-life examples

Limitations of standard model checking techniques for the verification of distributed algorithms

▲ state-space explosion: product transition system is exponential in number of processes, and of variables
 → tools hardly scale to large number of processes or real-life examples
 partial solutions to improve scalability: BDD encodings, POR techniques, bounded model-checking, CEGAR approaches

Limitations of standard model checking techniques for the verification of distributed algorithms

state-space explosion: product transition system is exponential in number of processes, and of variables

→ tools hardly scale to large number of processes or real-life examples partial solutions to improve scalability: BDD encodings, POR techniques, bounded model-checking, CEGAR approaches

models with fixed number of processes

 \rightarrow correctness should be proven for arbitrary number of processes

Parameterized verification: to infinity and beyond!

Parameterized verification: to infinity and beyond!

correctness should hold for every number of clients

$$\forall n \quad \underbrace{C \mid \mid \cdots \mid \mid C}_{n \text{ times}} \mid \mid S \models \varphi$$

more generally: for every number of participants, for every network topologies, for every potential failures, for every parameter valuations

Parameterized verification: to infinity and beyond!

correctness should hold for every number of clients

$$\forall n \quad \underbrace{C \mid \mid \cdots \mid \mid C}_{n \text{ times}} \mid \mid S \models \varphi$$

more generally: for every number of participants, for every network topologies, for every potential failures, for every parameter valuations

model checking infinitely many instances at once

Parameterized verification for distributed algorithms

```
From... algorithm pseudo-code and requirements

bool v := input_value({0, 1});

int r:=1;

a_0 := [1, 0, 0...]; a_1 := [1, 0, 0, ...];

while (true) do

read a_0[r] and a_1[r];

if \exists b, a_b[r] = 1 and a_{1-b}[r] = 0

then v:= b; fi

write 1 in a_v[r]

read a_{1-v}[r-1];

if a_{1-v}[r-1] = 0

then return v;

else r:=r+1; fi od
```

```
• correctness for all n
```

Parameterized verification for distributed algorithms

From... algorithm pseudo-code and requirements

```
bool v := input_value({0, 1});

int r:= 1;

a_0 := [1, 0, 0...]; a_1 := [1, 0, 0, ...];

while (true) do

read a_0[r] and a_1[r];

if \exists b, a_b[r] = 1 and a_{1-b}[r] = 0

then v:= b; fi

write 1 in a_v[r]

read a_{1-v}[r-1];

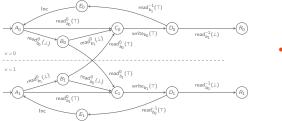
if a_{1-v}[r-1] = 0

then return v;

else r := r+1; fi od
```

correctness for all n

... derive model, formulas

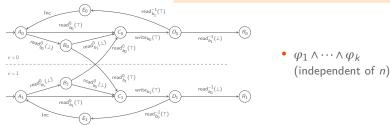


• $\varphi_1 \wedge \cdots \wedge \varphi_k$ (independent of *n*)

Parameterized verification for distributed algorithms

From... algorithm pseudo-code and requirements bool v := input_value({0, 1}); int r:=1; $a_0 := [1, 0, 0...]; a_1 := [1, 0, 0, ...];$ while (true) do read $a_0[r]$ and $a_1[r];$ if $\exists b, a_b[r] = 1$ and $a_{1-b}[r] = 0$ then v:= b; fi read $a_{1-v}[r-1];$ if $a_{1-v}[r-1] = 0$ then return v; else r:=r+1; fi od

... derive model, formulas, model checking algorithms and tools



A variety of settings to explore

- **addressed problem**: consensus, leader election, DB consistency, etc.
- **timing model**: asynchronous, synchronous, etc.
- **communication paradigm**: shared variable, broadcast, etc.
- **failure model**: no failures, crash, Byzantine processes

A variety of settings to explore

- **addressed problem**: consensus, leader election, DB consistency, etc.
- **timing model**: asynchronous, synchronous, etc.
- **communication paradigm**: shared variable, broadcast, etc.
- **failure model**: no failures, crash, Byzantine processes

Parameterized verification for distributed algorithms - N. Bertrand

A variety of settings to explore

- **addressed problem**: consensus, leader election, DB consistency, etc.
- **timing model**: asynchronous, synchronous, etc.
- **communication paradigm**: shared variable, broadcast, etc.
- **failure model**: no failures, crash, Byzantine processes

Parameterized verification for distributed algorithms - N. Bertrand

A variety of settings to explore

- **addressed problem**: consensus, leader election, DB consistency, etc.
- **timing model**: asynchronous, synchronous, etc.
- **communication paradigm**: shared variable, broadcast, etc.
- **failure model**: no failures, crash, Byzantine processes

A fun playground for model checking raising theoretical and practical issues This talk: round-based consensus algorithms 1. asynchronous, broadcast, Byzantine processes 2. asynchronous, shared-memory, no failures

Round-based algorithms for consensus

Consensus

- fundamental problem in distributed computing
- ▶ processes each with an initial value must agree on a common value
- difficult problem under asynchrony and/or failures

[Fischer Lynch Paterson JACM 1985]

Round-based algorithms for consensus

Consensus

- fundamental problem in distributed computing
- processes each with an initial value must agree on a common value
- difficult problem under asynchrony and/or failures

[Fischer Lynch Paterson JACM 1985]

Requirements for consensus algorithms agreement all correct processes decide the same value validity values decided by correct processes must be initial ones termination eventually all correct processes decide

Round-based algorithms for consensus

Consensus

- fundamental problem in distributed computing
- processes each with an initial value must agree on a common value
- difficult problem under asynchrony and/or failures

[Fischer Lynch Paterson JACM 1985]

Requirements for consensus algorithms agreement all correct processes decide the same value validity values decided by correct processes must be initial ones termination eventually all correct processes decide

Rounds are useful:

- ▶ for a correct process to be once the leader [Berman Garay MST 1993]
- to eventually sample a common value in randomized algorithms [BenOr PODC'85]
- ▶ for asynchrony to help a correct process to decide [Aspnes JA 1992]

Parameterized verification for distributed algorithms - N. Bertrand

Part 1: Broadcast fault-tolerant algorithms

Threshold-based round-based fault-tolerant algorithms

Phase King algorithm

[Berman Garay MST 1993]

- binary consensus
- n processes communicate by broadcasts in synchronous rounds
- t is a known upper bound on unknown number of faulty processes f

Threshold-based round-based fault-tolerant algorithms

Phase King algorithm

[Berman Garay MST 1993]

- binary consensus
- n processes communicate by broadcasts in synchronous rounds
- t is a known upper bound on unknown number of faulty processes f

```
int id := identifier({0 ... n-1});
bool v := input_value({0, 1});
for r=0 tot do
    broadcast (r,id,v);
    receive all (r,_,_);
    if # of (r,_,0) received > n/2 + t /* majority of 0 */
       v := 0; /* adopt value 0 */
       else if # of (r,_,1) received > n/2 + t /* majority of 1 */
       v := 1; /* adopt value 1 */
       else v := v' where (r,r,v') received; /* adopt king value */
```

- local variable v stores current value
- at round r, process with id r is the King
- if majority is unclear, processes adopt King's value for next round

Modelling Phase King algorithm

Layered threshold automata

variant of threshold automata [Konnov Veith Widder CAV'15]

capture asynchronous or synchronous communications

Modelling Phase King algorithm

Layered threshold automata

variant of threshold automata [Konnov Veith Widder CAV'15] capture asynchronous or synchronous communications

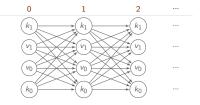
one model for all processes

identifiers abstracted away

automaton with states arranged in layers (finer than rounds in general)

 k_b : King and value b; v_b not King and value b

unbounded number of rounds (parameter t)



Modelling Phase King algorithm

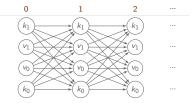
Layered threshold automata

variant of threshold automata [Konnov Veith Widder CAV'15] capture asynchronous or synchronous communications

one model for all processes

identifiers abstracted away

- automaton with states arranged in layers (finer than rounds in general)
 - k_b : King and value b; v_b not King and value b
- unbounded number of rounds (parameter t)

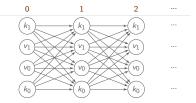


- processes broadcast their local state
- ► threshold guards on transitions $\bigwedge_{e.g.}$ constraining current layer only e.g. $g(v_0^r, v_1^{r+1}) = v_1^r + f > n/2 + t \lor (v_0^r \le n/2 + t \land k_1^r > 0)$

Parameterized verification for distributed algorithms – N. Bertrand

April 5th 2022 - FoSSaCS'22 invited talk - 12 / 26

Semantics of layered threshold automata



$$g(v_0, v_1) = v_1 + f > n/2 + t \lor$$

(k_1 > 0 \land v_0 \le n/2 + t)

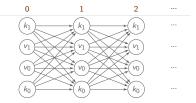
Full configuration stores for each process

history of local states, and received messages from every process

Example with n = 4, f = t = 1

state		v_1	VO			
	p_1	v ₁ v ₀	v_1	k_1	V_1	·
	<i>p</i> ₂	V ₀	k_1	v_1	•	·
received(p_0)	<i>p</i> 0	V_1	VO			
	<i>p</i> 1	v ₁ v ₁	v_1	k_1		·
	<i>p</i> ₂	V ₀	k_1	·	•	·
received (p_1)				•••		
received(p_2)				•••		

Semantics of layered threshold automata



$$g(v_0, v_1) = v_1 + f > n/2 + t \lor$$

(k_1 > 0 \land v_0 \le n/2 + t)

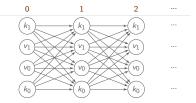
Full configuration stores for each process

history of local states, and received messages from every process

Example with n = 4, f = t = 1

state	<i>p</i> 0	V_1	V ₀			
	p_1	V_1	v_1	k_1	V_1	·
	<i>p</i> ₂	VO	k_1	v_1		·
received(p_0)	<i>p</i> 0	V_1	V ₀			
	<i>p</i> 1	v_1	v_1	k_1		
	<i>p</i> ₂	V ₀	k_1	•		
received (p_1)				• • •		
$received(p_2)$				•••		

Semantics of layered threshold automata



$$g(v_0, v_1) = v_1 + f > n/2 + t \lor$$

(k_1 > 0 \land v_0 \le n/2 + t)

Full configuration stores for each process

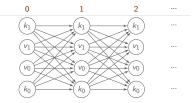
history of local states, and received messages from every process

Example with n = 4, f = t = 1

state	<i>p</i> 0	<i>v</i> ₁	VO				
	<i>p</i> 0 <i>p</i> 1 <i>p</i> 2	v ₁ v ₀	v_1 k_1	k_1 v_1	<i>v</i> 1		
received(p_0)	<i>p</i> 0	<i>v</i> ₁	VO	•		•	$k_1 > 0 \land v_0 \le n/2 +$
	<i>p</i> ₁	V1 V1 V0	V_1	<i>k</i> ₁	•	•	
received (p_1)		0	N1				
$received(p_2)$	•••			•••			

Parameterized verification for distributed algorithms - N. Bertrand

Semantics of layered threshold automata



$$g(v_0, v_1) = v_1 + f > n/2 + t \lor$$

(k_1 > 0 \land v_0 \le n/2 + t)

Full configuration stores for each process history of local states, and received messages from every process

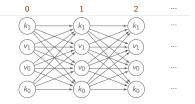
Example with n = 4, f = t = 1

state	<i>p</i> 0	<i>v</i> ₁	VO					V_1	VO	<i>v</i> ₁		
	<i>p</i> 1	<i>v</i> ₁	V_1	k_1	V_1			V_1	V_1	k_1	V_1	•
	<i>p</i> ₂	V ₀	k_1	V_1	•	•		VO	k_1	v_1	·	·
received(p_0)	p_0	<i>v</i> ₁	VO				$k_1 > 0 \land v_0 \le n/2 + t$	V_1	VO			
	p_1	V_1	v_1	k_1				V_1	V_1	k_1		
	<i>p</i> ₂	VO	k_1					VO	k_1			•
received (p_1)				• • •						•••		
received(p_2)	•••			•••						•••		

Parameterized verification for distributed algorithms - N. Bertrand

April 5th 2022 – FoSSaCS'22 invited talk – 13 / 26

Semantics of layered threshold automata



$$g(v_0, v_1) = v_1 + f > n/2 + t \lor$$

(k_1 > 0 \land v_0 \le n/2 + t)

Full configuration stores for each process history of local states, and received messages from every process

Example with n = 4, f = t = 1

state	<i>p</i> 0	v_1	V ₀					v_1	VO	V_1		
	p_1	V_1	V_1	k_1	V_1			V_1	V_1	k_1	V_1	•
	<i>p</i> ₂	V ₀	k_1	V_1	•	•		V ₀	k_1	v_1	·	·
received(p_0)	<i>p</i> 0	V_1	V ₀				$k_1 > 0 \land v_0 \le n/2 + t$	V_1	V ₀			
	<i>p</i> 1	V_1	V_1	k_1	•			V_1	V_1	k_1	V_1	•
	<i>p</i> ₂	V ₀	k_1		•			VO	k_1		·	
received (p_1)				•••						•••		
received(p_2)	•••			•••						•••		

Parameterized verification for distributed algorithms - N. Bertrand

April 5th 2022 – FoSSaCS'22 invited talk – 13 / 26

Model checking layered threshold automata

The parameterized model checking of layered threshold automata is **undecidable**, for **safety properties** already.

Model checking layered threshold automata

The parameterized model checking of layered threshold automata is **undecidable**, for **safety properties** already.

Our approach: incomplete yet refinable method

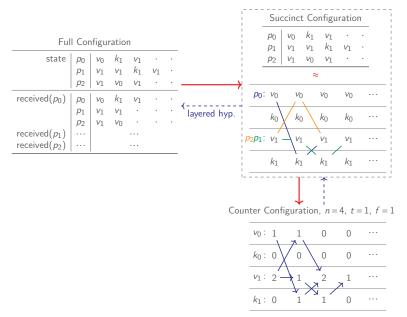
- successive abstractions of semantics: removal of received messages (thanks to layered assumption); counting abstraction
- overapproximation of sets of behaviours by a guard automaton using predicate abstraction; enabling refinement by adding more predicates

[B. Thomas Widder Concur'21]

state	<i>p</i> 0	V ₀	k_1	V_1							
	<i>p</i> 1	V_1	V_1	k_1	V_1	·					
	<i>p</i> 2	<i>V</i> 1	V0	V_1		·					
received (p_0)	<i>p</i> 0	V ₀	k_1	v_1							
	<i>p</i> 1	V_1	V_1	·	·	·					
	<i>p</i> ₂	V_1	VO	·	·	·					
$received(p_1)$				•••							
received (p_2)				•••							

Full Configuration

							Succinct Configuration
Ful	l Cor	nfigu	ratio	n			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
state	<i>p</i> 0	V ₀	k_1	V_1			p_2 v_1 v_0 v_1 · ·
	<i>p</i> ₁	V_1	v_1	k_1	v_1		*
	p2	<i>V</i> 1	V0	V_1		•	
received (p_0)	<i>p</i> 0	V ₀	k_1	v_1			$p_0: v_0 v_0 v_0 \cdots$
	<i>p</i> ₁	v_1	v_1	·	·		layered hyp. k_0 k_0 k_0 \dots
	<i>p</i> ₂	V_1	VO	·	·	·	$k_0 \bigvee k_0 \bigvee k_0 \bigvee k_0 \cdots$
received (p_1)				•••			$p_2p_1: v_1 \rightarrow v_1 v_1 \cdots$
$received(p_2)$				•••			
							k_1 k_1 k_1 k_1 \cdots



Parameterized verification for distributed algorithms - N. Bertrand

									Su	ccinc	t Co	nfigu	iratio	n
Ful	l Con	ıfiguı	ratior	ı					p_0 p_1	V0 V1	k_1 v_1	$\frac{v_1}{k_1}$	V1	
state	<i>p</i> ₀	v ₀	k_1	V_1				1	p ₂	v ₁	VO	V1		
	<i>p</i> ₁	v_1	v_1	k_1	v_1	·		i.			~	5		
	p ₂	V1	VO	V1	•	<u> </u>		→	: <i>v</i> 0	V(VO	VO	
received (p_0)	<i>p</i> 0	VO	k_1	v_1	·	•		; P0	. 10		, \	v0	v0	
	p_1 p_2	V1 V1	V1 V0			:	layered hyp.	i.	k_0	$\bigvee k_0$		k_0	k_0	
received (p_1)	P2 	•1	•0					$p_{2}p_{1}$	• 1/4			V1	<i>V</i> 1	
received (p_2)				•••				P2P1	. v ₁		\sim	V1	/ 1	
								i.	k_1	k	L	k_1	k_1	
												*		
Guard	Conf	igura	tion											
	$v_0 > 0$	0 7	гτ	F	F		 	unter	Con	↓ figura	atior	n = n	4 t	= 1, <i>f</i> =
	$k_0 > 0$					• •						.,	., .	±, ,
	$v_1 > 0$		ГТ = Т			••		VO	: 1	1		0	0	
$2(v_0 + k_0 + f) >$	$k_1 > 0$ n+2		- / - F				<u> </u>	ka	: 0	$_{0}$	\mathbf{i}	0	0	
$2(v_1 + k_1 + f) >$			- F					~0	. 0	Χ		V	0	
$2(v_0+k_0)>$	n+2	t	FF					V_1	: 2	$\rightarrow 1$		2	_ 1	
$2(v_1 + k_1) >$			F						. 0		\times	1	^	
$k_0 + k_0 + v_1 + k_1 - v_1 + k_1 - v_2 + v_2 + v_1 + v_1 + v_2 $	$+ T \ge 1$	n	ГТ	- T	F			К1	: 0	1		T	0	

Parameterized verification for distributed algorithms - N. Bertrand

- states = valuations of predicates
- ▶ transitions obtained via predicate abstraction; automated with SMT solver

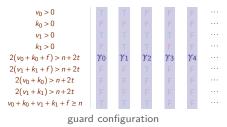
Finite set of predicates: taken from formula and transition guards

- states = valuations of predicates
- ▶ transitions obtained via predicate abstraction; automated with SMT solver

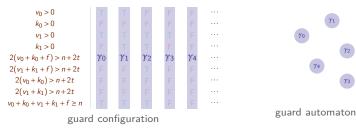
Т	Т	F	F	F	
F	F	F	F	F	
Т	Т	Т	Т	F	
F	Т	Т	F	F	
F	F	F	F	F	
F	F	Т	F	F	
F	F	F	F	F	
F	F	F	F	F	
Т	Т	Т	F	F	
	T F F F	T T F T F F F F F F	F F F T T T F T T F F F F F T F F F	F F F F F T T T T F T T F F F F F F F F F F	F F F F F F T T T T F F T T F F F F F F

guard configuration

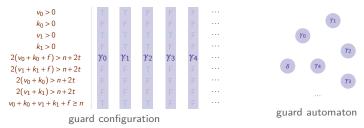
- states = valuations of predicates
- ▶ transitions obtained via predicate abstraction; automated with SMT solver



- states = valuations of predicates
- ▶ transitions obtained via predicate abstraction; automated with SMT solver

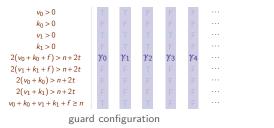


- states = valuations of predicates
- ▶ transitions obtained via predicate abstraction; automated with SMT solver



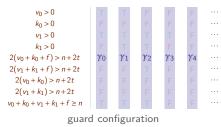
Finite set of predicates: taken from formula and transition guards

- states = valuations of predicates
- ▶ transitions obtained via predicate abstraction; automated with SMT solver



guard automaton

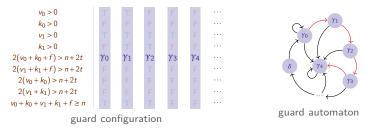
- states = valuations of predicates
- ▶ transitions obtained via predicate abstraction; automated with SMT solver



guard automaton

Finite set of predicates: taken from formula and transition guards

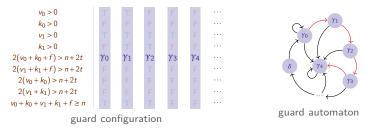
- states = valuations of predicates
- ▶ transitions obtained via predicate abstraction; automated with SMT solver



The language of the guard automaton **overapproximates** the set of executions of the layered threshold automaton.

Finite set of predicates: taken from formula and transition guards

- states = valuations of predicates
- ▶ transitions obtained via predicate abstraction; automated with SMT solver



The language of the guard automaton **overapproximates** the set of executions of the layered threshold automaton.

▲ Incomplete method yet

sufficient to **prove correctness** of Phase King (safety and liveness) possible **refinement** by adding predicates

Parameterized verification for distributed algorithms - N. Bertrand

Part 2: Shared-memory algorithms

Shared-memory round-based algorithms

Aspnes' algorithm

[Aspnes JA 1992]

- binary consensus in noisy environment
- n processes asynchronously write to and read from shared registers

Shared-memory round-based algorithms

Aspnes' algorithm

```
[Aspnes JA 1992]
```

- binary consensus in noisy environment
- n processes asynchronously write to and read from shared registers

- local variable v stores current value
- a process at round r can read from registers of rounds r-1 and r, and write to round r registers
- value v is returned if no process already proposed opposite value 1-v in last and current round Parameterized verification for distributed algorithms - N. Bertrand
 April 5th 2022 - FoSSaCS'22 invited talk - 18 / 26

Modelling Aspnes' algorithm

Shared-memory protocols with rounds

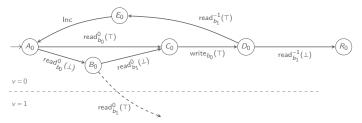
extend shared memory protocols [Esparza Ganty Majumdar JACM 2016]

Modelling Aspnes' algorithm

Shared-memory protocols with rounds

extend shared memory protocols [Esparza Ganty Majumdar JACM 2016]

- one model for all processes
- unbounded number of rounds
- d shared registers per round (unboundedly many in total)

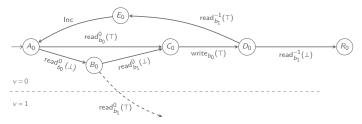


Modelling Aspnes' algorithm

Shared-memory protocols with rounds

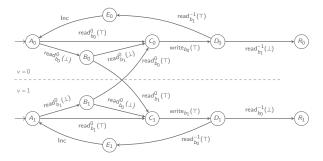
extend shared memory protocols [Esparza Ganty Majumdar JACM 2016]

- one model for all processes
- unbounded number of rounds
- d shared registers per round (unboundedly many in total)



actions: read from current and previous registers within window w, write to current registers, round increment

$$\mathbf{d} = 2$$
, $\mathbf{w} = 1$, read⁰_{b_0}(\perp), read⁻¹_{b_1}(\top), write_{b_0}(\top), Inc

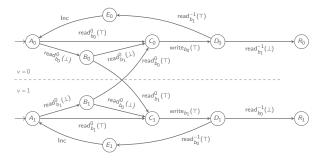


Concrete configuration stores

values of shared registers, and for each process its local state and round

Example with n = 3

 $\begin{array}{c|c} \operatorname{round} 0 & b_0: \mathsf{T} & c_0, 1 \\ \hline b_1: \bot & c_0, 0 \\ \hline \operatorname{round} 1 & b_0: \bot & c_1, 0 \\ \hline \vdots & \vdots \end{array}$

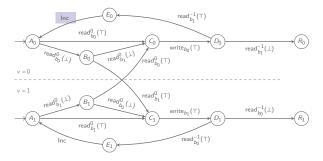


Concrete configuration stores

values of shared registers, and for each process its local state and round

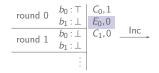
Example with n = 3

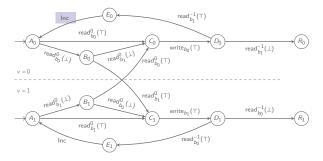
 $\begin{array}{c|c} \operatorname{round} 0 & b_0 \colon \top & C_0, 1 \\ \hline b_1 \colon \bot & \overline{b_0} \colon \bot \\ \hline \operatorname{round} 1 & b_0 \colon \bot \\ \hline \vdots & \vdots \end{array}$



Concrete configuration stores

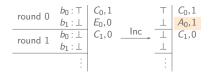
values of shared registers, and for each process its local state and round

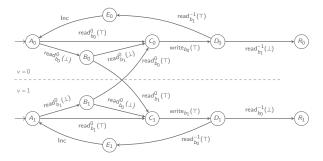




Concrete configuration stores

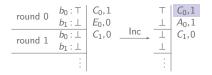
values of shared registers, and for each process its local state and round

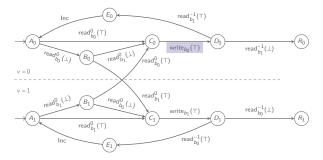




Concrete configuration stores

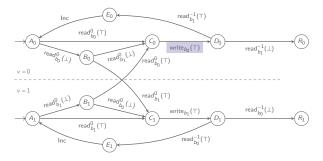
values of shared registers, and for each process its local state and round





Concrete configuration stores

values of shared registers, and for each process its local state and round

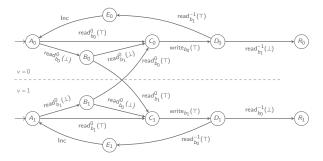


Concrete configuration stores

values of shared registers, and for each process its local state and round

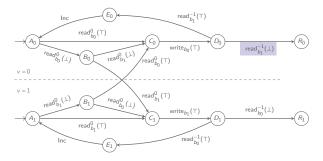
Example with n = 3

Parameterized verification for distributed algorithms - N. Bertrand



Concrete configuration stores

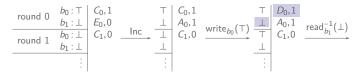
values of shared registers, and for each process its local state and round



Concrete configuration stores

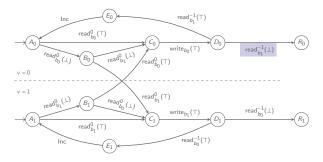
values of shared registers, and for each process its local state and round

Example with n = 3



Parameterized verification for distributed algorithms - N. Bertrand

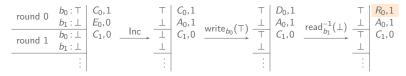
April 5th 2022 - FoSSaCS'22 invited talk - 20 / 26



Concrete configuration stores

values of shared registers, and for each process its local state and round

Example with n = 3



Parameterized verification for distributed algorithms - N. Bertrand

Model checking shared-memory protocols with rounds

[B. Markey Sankur Waldburger, submitted]

The parameterized model checking of **safety properties** for shared-memory protocols with rounds is **PSPACE-complete**.

Model checking shared-memory protocols with rounds

[B. Markey Sankur Waldburger, submitted]

The parameterized model checking of **safety properties** for shared-memory protocols with rounds is **PSPACE-complete**.

Objective: prove $\forall n, \forall \gamma_0 \in \Gamma_{\text{init}}(n), \forall \gamma_0 \xrightarrow{*} \gamma : q_{\text{err}} \notin \gamma$

Model checking shared-memory protocols with rounds

[B. Markey Sankur Waldburger, submitted]

The parameterized model checking of **safety properties** for shared-memory protocols with rounds is **PSPACE-complete**.

Objective: prove $\forall n, \forall \gamma_0 \in \Gamma_{init}(n), \forall \gamma_0 \xrightarrow{*} \gamma : q_{err} \notin \gamma$ dually, look for a counterexample: $\exists n, \exists \gamma_0 \in \Gamma_{init}(n), \exists \gamma_0 \xrightarrow{*} \gamma : q_{err} \in \gamma$

Model checking shared-memory protocols with rounds

[B. Markey Sankur Waldburger, submitted]

The parameterized model checking of **safety properties** for shared-memory protocols with rounds is **PSPACE-complete**.

Objective: prove $\forall n, \forall \gamma_0 \in \Gamma_{init}(n), \forall \gamma_0 \xrightarrow{*} \gamma : q_{err} \notin \gamma$ dually, look for a counterexample: $\exists n, \exists \gamma_0 \in \Gamma_{init}(n), \exists \gamma_0 \xrightarrow{*} \gamma : q_{err} \in \gamma$

Challenges: exponential lower bounds everywhere!

- minimum round at which q_{err} is reached;
- number of processes needed to reach q_{err};
- number of required active rounds on executions reaching qerr

all may be exponential in the protocol size

Exploiting monotonicity

Copycat property on states and written values

- if a state can be populated by a process, it can be populated by an arbitrary number of them;
- if a value can be written to a register once, it can be written arbitrarily many times

Exploiting monotonicity

Copycat property on states and written values

- if a state can be populated by a process, it can be populated by an arbitrary number of them;
- if a value can be written to a register once, it can be written arbitrarily many times

Abstract configuration stores

which states are populated, and which registers have been written to

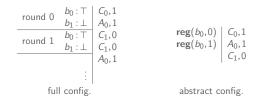
Exploiting monotonicity

Copycat property on states and written values

- if a state can be populated by a process, it can be populated by an arbitrary number of them;
- if a value can be written to a register once, it can be written arbitrarily many times

Abstract configuration stores

which states are populated, and which registers have been written to



Limited monotonicity: two reachable states may not be mutually reachable

Proof high-level idea:

- guess a feasible sequence of moves leading to an error state $\langle A_0 \xrightarrow{\operatorname{read}_{b_0}^0(\bot)} B_0, 0 \rangle \quad \langle E_0 \xrightarrow{\operatorname{Inc}} A_0, 0 \rangle \quad \langle B_0 \xrightarrow{\operatorname{read}_{b_1}^0(\bot)} C_0, 1 \rangle \quad \langle C_0 \xrightarrow{\operatorname{write}_{b_0}(\top)} D_0, 0 \rangle$ $\langle E_0 \xrightarrow{\operatorname{Inc}} A_0, 1 \rangle \quad \langle B_0 \xrightarrow{\operatorname{read}_{b_1}^{-1}(\bot)} C_0, 2 \rangle \quad \langle C_0 \xrightarrow{\operatorname{write}_{b_0}(\top)} D_0, 2 \rangle \quad \langle E_0 \xrightarrow{\operatorname{Inc}} A_0, 1 \rangle$ $\langle A_1 \xrightarrow{\operatorname{read}_{b_1}^0(\bot)} B_1, 0 \rangle \quad \langle C_1 \xrightarrow{\operatorname{write}_{b_1}(\top)} D_1, 0 \rangle \quad \langle D_0 \xrightarrow{\operatorname{read}_{b_1}^{-1}(\bot)} R_0, 2 \rangle$
- while maintaining abstract configuration

Proof high-level idea: iteratively on rounds

- guess a feasible sequence of moves leading to an error state $\langle A_0 \xrightarrow{\operatorname{read}_{b_0}^0(\bot)} B_0, 0 \rangle \quad \langle E_0 \xrightarrow{\operatorname{Inc}} A_0, 0 \rangle \quad \langle B_0 \xrightarrow{\operatorname{read}_{b_1}^0(\bot)} C_0, 1 \rangle \quad \langle C_0 \xrightarrow{\operatorname{write}_{b_0}(\top)} D_0, 0 \rangle$ $\langle E_0 \xrightarrow{\operatorname{Inc}} A_0, 1 \rangle \quad \langle B_0 \xrightarrow{\operatorname{read}_{b_1}^{-1}(\bot)} C_0, 2 \rangle \quad \langle C_0 \xrightarrow{\operatorname{write}_{b_0}(\top)} D_0, 2 \rangle \quad \langle E_0 \xrightarrow{\operatorname{Inc}} A_0, 1 \rangle$ $\langle A_1 \xrightarrow{\operatorname{read}_{b_1}^0(\bot)} B_1, 0 \rangle \quad \langle C_1 \xrightarrow{\operatorname{write}_{b_1}(\top)} D_1, 0 \rangle \quad \langle D_0 \xrightarrow{\operatorname{read}_{b_1}^{-1}(\bot)} R_0, 2 \rangle$
- while maintaining abstract configuration

Proof high-level idea: iteratively on rounds

• guess a feasible sequence of moves leading to an error state $\langle A_0 \xrightarrow{\text{read}_{b_0}^0(\bot)} B_0, \mathbf{0} \rangle \quad \langle E_0 \xrightarrow{\text{Inc}} A_0, \mathbf{0} \rangle \quad \langle C_0 \xrightarrow{\text{write}_{b_0}(\top)} D_0, \mathbf{0} \rangle$

$$\langle A_1 \xrightarrow{\mathsf{read}_{b_1}^0(\bot)} B_1, \mathbf{0} \rangle \quad \langle C_1 \xrightarrow{\mathsf{write}_{b_1}(\top)} D_1, \mathbf{0} \rangle$$

• while maintaining abstract configuration

Proof high-level idea: iteratively on rounds

- guess a feasible sequence of moves leading to an error state $\langle A_0 \xrightarrow{\operatorname{read}_{b_0}^0(\bot)} B_0, 0 \rangle \quad \langle E_0 \xrightarrow{\operatorname{Inc.}} A_0, 0 \rangle \quad \langle B_0 \xrightarrow{\operatorname{read}_{b_1}^0(\bot)} C_0, 1 \rangle \quad \langle C_0 \xrightarrow{\operatorname{write}_{b_0}(\top)} D_0, 0 \rangle$ $\langle E_0 \xrightarrow{\operatorname{Inc.}} A_0, 1 \rangle \qquad \langle E_0 \xrightarrow{\operatorname{Inc.}} A_0, 1 \rangle \quad \langle C_1 \xrightarrow{\operatorname{write}_{b_1}(\top)} D_1, 0 \rangle$
- while maintaining abstract configuration

Proof high-level idea: iteratively on rounds

- guess a feasible sequence of moves leading to an error state $\langle A_0 \xrightarrow{\operatorname{read}_{b_0}^0(\bot)} B_0, 0 \rangle \quad \langle E_0 \xrightarrow{\operatorname{Inc}} A_0, 0 \rangle \quad \langle B_0 \xrightarrow{\operatorname{read}_{b_1}^0(\bot)} C_0, 1 \rangle \quad \langle C_0 \xrightarrow{\operatorname{write}_{b_0}(\top)} D_0, 0 \rangle$ $\langle E_0 \xrightarrow{\operatorname{Inc}} A_0, 1 \rangle \quad \langle B_0 \xrightarrow{\operatorname{read}_{b_1}^{-1}(\bot)} C_0, 2 \rangle \quad \langle C_0 \xrightarrow{\operatorname{write}_{b_0}(\top)} D_0, 2 \rangle \quad \langle E_0 \xrightarrow{\operatorname{Inc}} A_0, 1 \rangle$ $\langle A_1 \xrightarrow{\operatorname{read}_{b_1}^0(\bot)} B_1, 0 \rangle \quad \langle C_1 \xrightarrow{\operatorname{write}_{b_1}(\top)} D_1, 0 \rangle \quad \langle D_0 \xrightarrow{\operatorname{read}_{b_1}^{-1}(\bot)} R_0, 2 \rangle$
- while maintaining abstract configuration

Proof high-level idea: iteratively on rounds

- guess a feasible sequence of moves leading to an error state $\begin{array}{c} \langle A_0 \xrightarrow{\operatorname{read}_{b_0}^0(\bot)} B_0, 0 \rangle & \langle E_0 \xrightarrow{\operatorname{Inc}} A_0, 0 \rangle & \langle B_0 \xrightarrow{\operatorname{read}_{b_1}^0(\bot)} C_0, 1 \rangle & \langle C_0 \xrightarrow{\operatorname{write}_{b_0}(\top)} D_0, 0 \rangle \\ \langle E_0 \xrightarrow{\operatorname{Inc}} A_0, 1 \rangle & \langle B_0 \xrightarrow{\operatorname{read}_{b_1}^{-1}(\bot)} C_0, 2 \rangle & \langle C_0 \xrightarrow{\operatorname{write}_{b_0}(\top)} D_0, 2 \rangle & \langle E_0 \xrightarrow{\operatorname{Inc}} A_0, 1 \rangle \\ \langle A_1 \xrightarrow{\operatorname{read}_{b_1}^0(\bot)} B_1, 0 \rangle & \langle C_1 \xrightarrow{\operatorname{write}_{b_1}(\top)} D_1, 0 \rangle & \langle D_0 \xrightarrow{\operatorname{read}_{b_1}^{-1}(\bot)} R_0, 2 \rangle \end{array}$
- while maintaining abstract configuration

Polynomial space suffices thanks to visibility window w

► information propagation when inserting moves of round k and forgetting moves of rounds k - w - 1

Proof high-level idea: iteratively on rounds

• guess a feasible sequence of moves leading to an error state

$$\langle E_0 \xrightarrow{\operatorname{Inc}} A_0, 1 \rangle \quad \langle B_0 \xrightarrow{\operatorname{read}_{b_1}^{-1}(\bot)} C_0, 2 \rangle \quad \langle C_0 \xrightarrow{\operatorname{write}_{b_0}(\top)} D_0, 2 \rangle \quad \langle E_0 \xrightarrow{\operatorname{Inc}} A_0, 1 \rangle$$

• while maintaining abstract configuration

Polynomial space suffices thanks to visibility window w

► information propagation when inserting moves of round k and forgetting moves of rounds k - w - 1

Proof high-level idea: iteratively on rounds

• guess a feasible sequence of moves leading to an error state

$$\langle E_0 \xrightarrow{\operatorname{Inc}} A_0, 1 \rangle \quad \langle B_0 \xrightarrow{\operatorname{read}_{b_1}^{-1}(\bot)} C_0, 2 \rangle \quad \langle C_0 \xrightarrow{\operatorname{write}_{b_0}(\top)} D_0, 2 \rangle \quad \langle E_0 \xrightarrow{\operatorname{Inc}} A_0, 1 \rangle$$

• while maintaining abstract configuration

Polynomial space suffices thanks to visibility window w

► information propagation when inserting moves of round k and forgetting moves of rounds k - w - 1

applies to prove safety (agreement and validity) of Aspnes' algorithm

Summary

Parameterized verification techniques

apply to simple standard distributed algorithms

provide automated correctness proofs in contrast to error-prone manual proofs and non-exhaustive simulation

Summary

Parameterized verification techniques

- apply to simple standard distributed algorithms
- provide automated correctness proofs in contrast to error-prone manual proofs and non-exhaustive simulation
- This talk: round-based algorithms
 - 1. fault-tolerant broadcast algorithms

[B. Thomas Widder Concur'21]

- · layered threshold automata
- undecidable in general
- predicate abstraction: incomplete yet refinable analysis
- 2. shared-memory algorithms

[B. Markey Sankur Waldburger, submitted]

- shared-registers automata
- safety verification is PSPACE-complete
- · exponential cutoff, minimal covering length, and drift

Other parameterized verification frameworks for distributed algorithms

 threshold automata [Konnov Lazić Veith Widder POPL'17]
 broadcast protocols [Esparza Finkel Mayr LICS'99] [Delzanno Sangnier Zavattaro Concur'10]
 global sync. protocols [Jaber Jacobs Wagner Kulkarni Samanta CAV'20]
 shared-memory models [Esparza Ganty Majumdar JACM 2016] [Bouyer Markey Randour Sangnier Stan ICALP'16]
 token-passing algorithms on lines/rings [Lin Rümmer CAV'16]
 population protocols [Esparza Ganty Leroux Majumdar Acta Inf. 2017]
 synchronous algorithms on rings [Aiswarya Bollig Gastin I&C 2018]

Special thanks to

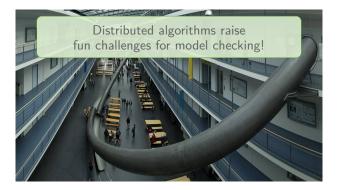
Arnaud Sangnier

Josef Widder

Special thanks to

Arnaud Sangnier

Josef Widder



Parameterized verification for distributed algorithms - N. Bertrand

April 5th 2022 - FoSSaCS'22 invited talk - 26 / 26

Special thanks to

Arnaud Sangnier

Josef Widder

Parameterized verification for distributed algorithms - N. Bertrand