
April 5th 2022 – FoSSaCS’22 invited talk

Parameterized verification
of round-based distributed algorithms

Nathalie Bertrand
Inria Rennes & IRISA

ETAPS 2022 - Munich

based on joint work with
Bastien Thomas, Josef Widder
Nicolas Markey, Ocan Sankur, Nicolas Waldburger

Model checking in a nutshell

Does

system

satisfy

requirement

?

|| · · · ||
model

AG
(∧

i 6=j (Criti =⇒ ¬Critj)
)

property

?|=

model-checking
algorithm

⊕ generic, successfully applied to hardware/software verification
embedded softwares, real-time systems, controllers in avionics,
telecommunications, planning, etc.

ª undecidable in general, scalability issues

2 Turing awards
Ï Pnueli, 1996: temporal logic; program and systems verification
Ï Clarke, Emerson and Sifakis, 2007: model checking as highly effective verification technology

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 2 / 26

Model checking in a nutshell

Does

system

satisfy

requirement

?

|| · · · ||
model

AG
(∧

i 6=j (Criti =⇒ ¬Critj)
)

property

?|=

model-checking
algorithm

⊕ generic, successfully applied to hardware/software verification
embedded softwares, real-time systems, controllers in avionics,
telecommunications, planning, etc.

ª undecidable in general, scalability issues

2 Turing awards
Ï Pnueli, 1996: temporal logic; program and systems verification
Ï Clarke, Emerson and Sifakis, 2007: model checking as highly effective verification technology

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 2 / 26

Model checking in a nutshell

Does

system

satisfy

requirement

?

|| · · · ||
model

AG
(∧

i 6=j (Criti =⇒ ¬Critj)
)

property

?|=

model-checking
algorithm

⊕ generic, successfully applied to hardware/software verification
embedded softwares, real-time systems, controllers in avionics,
telecommunications, planning, etc.

ª undecidable in general, scalability issues

2 Turing awards
Ï Pnueli, 1996: temporal logic; program and systems verification
Ï Clarke, Emerson and Sifakis, 2007: model checking as highly effective verification technology

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 2 / 26

Model checking in a nutshell

Does

system

satisfy

requirement

?

|| · · · ||
model

AG
(∧

i 6=j (Criti =⇒ ¬Critj)
)

property

?|=

model-checking
algorithm

⊕ generic, successfully applied to hardware/software verification
embedded softwares, real-time systems, controllers in avionics,
telecommunications, planning, etc.

ª undecidable in general, scalability issues

2 Turing awards
Ï Pnueli, 1996: temporal logic; program and systems verification
Ï Clarke, Emerson and Sifakis, 2007: model checking as highly effective verification technology

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 2 / 26

Model checking in a nutshell

Does

system

satisfy

requirement

?

|| · · · ||
model

AG
(∧

i 6=j (Criti =⇒ ¬Critj)
)

property

?|=

model-checking
algorithm

⊕ generic, successfully applied to hardware/software verification
embedded softwares, real-time systems, controllers in avionics,
telecommunications, planning, etc.

ª undecidable in general, scalability issues

2 Turing awards
Ï Pnueli, 1996: temporal logic; program and systems verification
Ï Clarke, Emerson and Sifakis, 2007: model checking as highly effective verification technology

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 2 / 26

Standard model checking for distributed algorithms

Peterson’s algorithm [Peterson IPL 1981]
Ï mutual exclusion
Ï processes P0 and P1
Ï shared variables x , b0 and b1 (bi read-only to Pi−1)

l oop f o r e v e r ;
... /∗ non− c r i t i c a l a c t i o n s ∗/
bi :=> ; x := 1− i ; /∗ r e q u e s t ∗/
wa i t u n t i l (x = i)∨(b1−i =⊥) ;
do c r i t i c a l s e c t i o n od ;
bi =⊥ ; /∗ r e l e a s e ∗/
...
end l oop

Correctness: processes are not in their critical section simultaneously

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 3 / 26

Standard model checking for distributed algorithms

Peterson’s algorithm [Peterson IPL 1981]
Ï mutual exclusion
Ï processes P0 and P1
Ï shared variables x , b0 and b1 (bi read-only to Pi−1)

l oop f o r e v e r ;
... /∗ non− c r i t i c a l a c t i o n s ∗/
bi :=> ; x := 1− i ; /∗ r e q u e s t ∗/
wa i t u n t i l (x = i)∨(b1−i =⊥) ;
do c r i t i c a l s e c t i o n od ;
bi =⊥ ; /∗ r e l e a s e ∗/
...
end l oop

Correctness: processes are not in their critical section simultaneously

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 3 / 26

Modelling and verifying Peterson’s algorithm
[Baier Katoen MIT Press 2008]

ni wi ci
bi :=>;x :=1−i (x=i)∨(b1−i=⊥)

bi :=⊥

Product transition system representing all interleavings

w0,c1,x=1,b0=>,b1=> c0,w1,x=0,b0=>,b1=>

w0,w1,x=1,b0=>,b1=> w0,w1,x=0,b0=>,b1=>

w0,n1,x=1,b0=>,b1=⊥ n0,w1,x=0,b0=⊥,b1=>

n0,n1,x=1,b0=⊥,b1=⊥ n0,n1,x=0,b0=⊥,b1=⊥

c0,n1,x=1,b0=⊥,b1=⊥ n0,c1,x=0,b0=⊥,b1=⊥

correctness reduces to: no state (c0,c1,_,_,_) is reachable

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 4 / 26

Modelling and verifying Peterson’s algorithm
[Baier Katoen MIT Press 2008]

ni wi ci
bi :=>;x :=1−i (x=i)∨(b1−i=⊥)

bi :=⊥

Product transition system representing all interleavings

w0,c1,x=1,b0=>,b1=> c0,w1,x=0,b0=>,b1=>

w0,w1,x=1,b0=>,b1=> w0,w1,x=0,b0=>,b1=>

w0,n1,x=1,b0=>,b1=⊥ n0,w1,x=0,b0=⊥,b1=>

n0,n1,x=1,b0=⊥,b1=⊥ n0,n1,x=0,b0=⊥,b1=⊥

c0,n1,x=1,b0=⊥,b1=⊥ n0,c1,x=0,b0=⊥,b1=⊥

correctness reduces to: no state (c0,c1,_,_,_) is reachable

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 4 / 26

Modelling and verifying Peterson’s algorithm
[Baier Katoen MIT Press 2008]

ni wi ci
bi :=>;x :=1−i (x=i)∨(b1−i=⊥)

bi :=⊥

Product transition system representing all interleavings

w0,c1,x=1,b0=>,b1=> c0,w1,x=0,b0=>,b1=>

w0,w1,x=1,b0=>,b1=> w0,w1,x=0,b0=>,b1=>

w0,n1,x=1,b0=>,b1=⊥ n0,w1,x=0,b0=⊥,b1=>

n0,n1,x=1,b0=⊥,b1=⊥ n0,n1,x=0,b0=⊥,b1=⊥

c0,n1,x=1,b0=⊥,b1=⊥ n0,c1,x=0,b0=⊥,b1=⊥

correctness reduces to: no state (c0,c1,_,_,_) is reachable

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 4 / 26

Limitations of standard model checking techniques
for the verification of distributed algorithms

" state-space explosion: product transition system is exponential in
number of processes, and of variables
→ tools hardly scale to large number of processes or real-life examples

partial solutions to improve scalability: BDD encodings, POR techniques,
bounded model-checking, CEGAR approaches

" models with fixed number of processes
→ correctness should be proven for arbitrary number of processes

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 5 / 26

Limitations of standard model checking techniques
for the verification of distributed algorithms

" state-space explosion: product transition system is exponential in
number of processes, and of variables
→ tools hardly scale to large number of processes or real-life examples
partial solutions to improve scalability: BDD encodings, POR techniques,
bounded model-checking, CEGAR approaches

" models with fixed number of processes
→ correctness should be proven for arbitrary number of processes

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 5 / 26

Limitations of standard model checking techniques
for the verification of distributed algorithms

" state-space explosion: product transition system is exponential in
number of processes, and of variables
→ tools hardly scale to large number of processes or real-life examples
partial solutions to improve scalability: BDD encodings, POR techniques,
bounded model-checking, CEGAR approaches

" models with fixed number of processes
→ correctness should be proven for arbitrary number of processes

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 5 / 26

Parameterized verification: to infinity and beyond!

from to

Ï correctness should hold for every number of clients

∀n C || · · · || C︸ ︷︷ ︸
n times

|| S |= ϕ

Ï more generally: for every number of participants, for every network
topologies, for every potential failures, for every parameter valuations

" model checking infinitely many instances at once

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 6 / 26

Parameterized verification: to infinity and beyond!

from to

Ï correctness should hold for every number of clients

∀n C || · · · || C︸ ︷︷ ︸
n times

|| S |= ϕ

Ï more generally: for every number of participants, for every network
topologies, for every potential failures, for every parameter valuations

" model checking infinitely many instances at once

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 6 / 26

Parameterized verification: to infinity and beyond!

from to

Ï correctness should hold for every number of clients

∀n C || · · · || C︸ ︷︷ ︸
n times

|| S |= ϕ

Ï more generally: for every number of participants, for every network
topologies, for every potential failures, for every parameter valuations

" model checking infinitely many instances at once

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 6 / 26

Parameterized verification for distributed algorithms

From... algorithm pseudo-code and requirements
boo l v := inpu t_va l u e ({0 , 1 }) ;
i n t r := 1 ;
a0 := [1 , 0 , 0 . . .] ; a1 := [1 , 0 , 0 , . . .] ;
wh i l e (t r u e) do
r ead a0 [r] and a1 [r] ;
i f ∃b , ab [r] = 1 and a1−b [r] = 0
then v := b ; f i
w r i t e 1 i n av [r]
r ead a1−v [r −1] ;
i f a1−v [r −1] = 0
then r e t u r n v ;
e l s e r := r+1 ; f i od

• correctness for all n

... derive model, formulas

, model checking algorithms and tools

A0

A1

B0

B1

C0

C1

D0

D1

R0

R1

E0

E1

read0b0 (>)

read0b1 (>)

read0b0 (⊥)

read
0
b1
(⊥)

read
0
b1
(⊥)

read0b0 (⊥)
read0b1 (>)

read0b0 (>)
writeb0 (>)

writeb1 (>)

read−1b1
(>)

read−1b0
(>)

Inc

Inc

read−1b1
(⊥)

read−1b0
(⊥)

v = 0

v = 1

• ϕ1∧·· ·∧ϕk
(independent of n)

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 7 / 26

Parameterized verification for distributed algorithms

From... algorithm pseudo-code and requirements
boo l v := inpu t_va l u e ({0 , 1 }) ;
i n t r := 1 ;
a0 := [1 , 0 , 0 . . .] ; a1 := [1 , 0 , 0 , . . .] ;
wh i l e (t r u e) do
r ead a0 [r] and a1 [r] ;
i f ∃b , ab [r] = 1 and a1−b [r] = 0
then v := b ; f i
w r i t e 1 i n av [r]
r ead a1−v [r −1] ;
i f a1−v [r −1] = 0
then r e t u r n v ;
e l s e r := r+1 ; f i od

• correctness for all n

... derive model, formulas

, model checking algorithms and tools

A0

A1

B0

B1

C0

C1

D0

D1

R0

R1

E0

E1

read0b0 (>)

read0b1 (>)

read0b0 (⊥)

read
0
b1
(⊥)

read
0
b1
(⊥)

read0b0 (⊥)
read0b1 (>)

read0b0 (>)
writeb0 (>)

writeb1 (>)

read−1b1
(>)

read−1b0
(>)

Inc

Inc

read−1b1
(⊥)

read−1b0
(⊥)

v = 0

v = 1

• ϕ1∧·· ·∧ϕk
(independent of n)

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 7 / 26

Parameterized verification for distributed algorithms

From... algorithm pseudo-code and requirements
boo l v := inpu t_va l u e ({0 , 1 }) ;
i n t r := 1 ;
a0 := [1 , 0 , 0 . . .] ; a1 := [1 , 0 , 0 , . . .] ;
wh i l e (t r u e) do
r ead a0 [r] and a1 [r] ;
i f ∃b , ab [r] = 1 and a1−b [r] = 0
then v := b ; f i
w r i t e 1 i n av [r]
r ead a1−v [r −1] ;
i f a1−v [r −1] = 0
then r e t u r n v ;
e l s e r := r+1 ; f i od

• correctness for all n

... derive model, formulas, model checking algorithms and tools

A0

A1

B0

B1

C0

C1

D0

D1

R0

R1

E0

E1

read0b0 (>)

read0b1 (>)

read0b0 (⊥)

read
0
b1
(⊥)

read
0
b1
(⊥)

read0b0 (⊥)
read0b1 (>)

read0b0 (>)
writeb0 (>)

writeb1 (>)

read−1b1
(>)

read−1b0
(>)

Inc

Inc

read−1b1
(⊥)

read−1b0
(⊥)

v = 0

v = 1

• ϕ1∧·· ·∧ϕk
(independent of n)

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 7 / 26

Which distributed algorithms?
A variety of settings to explore
Ï addressed problem: consensus, leader election, DB consistency, etc.
Ï timing model: asynchronous, synchronous, etc.
Ï communication paradigm: shared variable, broadcast, etc.
Ï failure model: no failures, crash, Byzantine processes

A fun playground for model checking
raising theoretical and practical issues

This talk: round-based consensus algorithms
1. asynchronous, broadcast, Byzantine processes
2. asynchronous, shared-memory, no failures

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 8 / 26

Which distributed algorithms?
A variety of settings to explore
Ï addressed problem: consensus, leader election, DB consistency, etc.
Ï timing model: asynchronous, synchronous, etc.
Ï communication paradigm: shared variable, broadcast, etc.
Ï failure model: no failures, crash, Byzantine processes

A fun playground for model checking
raising theoretical and practical issues

This talk: round-based consensus algorithms
1. asynchronous, broadcast, Byzantine processes
2. asynchronous, shared-memory, no failures

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 8 / 26

Which distributed algorithms?
A variety of settings to explore
Ï addressed problem: consensus, leader election, DB consistency, etc.
Ï timing model: asynchronous, synchronous, etc.
Ï communication paradigm: shared variable, broadcast, etc.
Ï failure model: no failures, crash, Byzantine processes

A fun playground for model checking
raising theoretical and practical issues

This talk: round-based consensus algorithms
1. asynchronous, broadcast, Byzantine processes
2. asynchronous, shared-memory, no failures

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 8 / 26

Which distributed algorithms?
A variety of settings to explore
Ï addressed problem: consensus, leader election, DB consistency, etc.
Ï timing model: asynchronous, synchronous, etc.
Ï communication paradigm: shared variable, broadcast, etc.
Ï failure model: no failures, crash, Byzantine processes

A fun playground for model checking
raising theoretical and practical issues

This talk: round-based consensus algorithms
1. asynchronous, broadcast, Byzantine processes
2. asynchronous, shared-memory, no failures

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 8 / 26

Round-based algorithms for consensus
Consensus
Ï fundamental problem in distributed computing
Ï processes each with an initial value must agree on a common value
Ï difficult problem under asynchrony and/or failures

[Fischer Lynch Paterson JACM 1985]

Requirements for consensus algorithms
agreement all correct processes decide the same value

validity values decided by correct processes must be initial ones
termination eventually all correct processes decide

Rounds are useful:
Ï for a correct process to be once the leader [Berman Garay MST 1993]
Ï to eventually sample a common value in randomized algorithms

[BenOr PODC’85]
Ï for asynchrony to help a correct process to decide [Aspnes JA 1992]

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 9 / 26

Round-based algorithms for consensus
Consensus
Ï fundamental problem in distributed computing
Ï processes each with an initial value must agree on a common value
Ï difficult problem under asynchrony and/or failures

[Fischer Lynch Paterson JACM 1985]

Requirements for consensus algorithms
agreement all correct processes decide the same value

validity values decided by correct processes must be initial ones
termination eventually all correct processes decide

Rounds are useful:
Ï for a correct process to be once the leader [Berman Garay MST 1993]
Ï to eventually sample a common value in randomized algorithms

[BenOr PODC’85]
Ï for asynchrony to help a correct process to decide [Aspnes JA 1992]

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 9 / 26

Round-based algorithms for consensus
Consensus
Ï fundamental problem in distributed computing
Ï processes each with an initial value must agree on a common value
Ï difficult problem under asynchrony and/or failures

[Fischer Lynch Paterson JACM 1985]

Requirements for consensus algorithms
agreement all correct processes decide the same value

validity values decided by correct processes must be initial ones
termination eventually all correct processes decide

Rounds are useful:
Ï for a correct process to be once the leader [Berman Garay MST 1993]
Ï to eventually sample a common value in randomized algorithms

[BenOr PODC’85]
Ï for asynchrony to help a correct process to decide [Aspnes JA 1992]

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 9 / 26

Part 1: Broadcast fault-tolerant algorithms

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 10 / 26

Threshold-based round-based fault-tolerant algorithms

Phase King algorithm [Berman Garay MST 1993]
Ï binary consensus
Ï n processes communicate by broadcasts in synchronous rounds
Ï t is a known upper bound on unknown number of faulty processes f

i n t i d := i d e n t i f i e r ({0 . . . n−1});
boo l v := inpu t_va l u e ({0 , 1 }) ;
f o r r=0 to t do

b roadca s t (r , id , v) ;
r e c e i v e a l l (r ,_ ,_) ;
i f # of (r ,_, 0) r e c e i v e d > n/2 + t /∗ ma j o r i t y o f 0 ∗/

v := 0 ; /∗ adopt v a l u e 0 ∗/
e l s e i f # of (r ,_, 1) r e c e i v e d > n/2 + t /∗ ma j o r i t y o f 1 ∗/

v := 1 ; /∗ adopt v a l u e 1 ∗/
e l s e v := v ’ where (r , r , v ’) r e c e i v e d ; /∗ adopt k i ng v a l u e ∗/

• local variable v stores current value
• at round r , process with id r is the King
• if majority is unclear, processes adopt King’s value for next round

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 11 / 26

Threshold-based round-based fault-tolerant algorithms

Phase King algorithm [Berman Garay MST 1993]
Ï binary consensus
Ï n processes communicate by broadcasts in synchronous rounds
Ï t is a known upper bound on unknown number of faulty processes f

i n t i d := i d e n t i f i e r ({0 . . . n−1});
boo l v := inpu t_va l u e ({0 , 1 }) ;
f o r r=0 to t do

b roadca s t (r , id , v) ;
r e c e i v e a l l (r ,_ ,_) ;
i f # of (r ,_, 0) r e c e i v e d > n/2 + t /∗ ma j o r i t y o f 0 ∗/

v := 0 ; /∗ adopt v a l u e 0 ∗/
e l s e i f # of (r ,_, 1) r e c e i v e d > n/2 + t /∗ ma j o r i t y o f 1 ∗/

v := 1 ; /∗ adopt v a l u e 1 ∗/
e l s e v := v ’ where (r , r , v ’) r e c e i v e d ; /∗ adopt k i ng v a l u e ∗/

• local variable v stores current value
• at round r , process with id r is the King
• if majority is unclear, processes adopt King’s value for next round

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 11 / 26

Modelling Phase King algorithm

Layered threshold automata
variant of threshold automata [Konnov Veith Widder CAV’15]

capture asynchronous or synchronous communications

Ï one model for all processes identifiers abstracted away
Ï automaton with states arranged in layers (finer than rounds in general)

kb : King and value b; vb not King and value b
Ï unbounded number of rounds (parameter t)

0

k0

v0

v1

k1

1

k0

v0

v1

k1

2

k0

v0

v1

k1

···

···

···

···

···

Ï processes broadcast their local state
Ï threshold guards on transitions " constraining current layer only

e.g. g(v r
0 ,v r+1

1)= v r
1 + f > n/2+ t ∨ (

v r
0 ≤ n/2+ t ∧ kr

1 > 0
)

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 12 / 26

Modelling Phase King algorithm

Layered threshold automata
variant of threshold automata [Konnov Veith Widder CAV’15]

capture asynchronous or synchronous communications

Ï one model for all processes identifiers abstracted away
Ï automaton with states arranged in layers (finer than rounds in general)

kb : King and value b; vb not King and value b
Ï unbounded number of rounds (parameter t)

0

k0

v0

v1

k1

1

k0

v0

v1

k1

2

k0

v0

v1

k1

···

···

···

···

···

Ï processes broadcast their local state
Ï threshold guards on transitions " constraining current layer only

e.g. g(v r
0 ,v r+1

1)= v r
1 + f > n/2+ t ∨ (

v r
0 ≤ n/2+ t ∧ kr

1 > 0
)

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 12 / 26

Modelling Phase King algorithm

Layered threshold automata
variant of threshold automata [Konnov Veith Widder CAV’15]

capture asynchronous or synchronous communications

Ï one model for all processes identifiers abstracted away
Ï automaton with states arranged in layers (finer than rounds in general)

kb : King and value b; vb not King and value b
Ï unbounded number of rounds (parameter t)

0

k0

v0

v1

k1

1

k0

v0

v1

k1

2

k0

v0

v1

k1

···

···

···

···

···

Ï processes broadcast their local state
Ï threshold guards on transitions " constraining current layer only

e.g. g(v r
0 ,v r+1

1)= v r
1 + f > n/2+ t ∨ (

v r
0 ≤ n/2+ t ∧ kr

1 > 0
)

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 12 / 26

Semantics of layered threshold automata
0

k0

v0

v1

k1

1

k0

v0

v1

k1

2

k0

v0

v1

k1

···

···

···

···

···
g(v0,v1)= v1+ f > n/2+ t ∨

(k1 > 0 ∧ v0 ≤ n/2+ t)

Full configuration stores for each process
history of local states, and received messages from every process

Example with n = 4, f = t = 1

state p0 v1 v0 · · ·
p1 v1 v1 k1 v1 ·
p2 v0 k1 v1 · ·

received(p0) p0 v1 v0 · · ·
p1 v1 v1 k1 · ·
p2 v0 k1 · · ·

received(p1) · · · · · ·
received(p2) · · · · · ·

state p0 v1 v0 · · ·
p1 v1 v1 k1 v1 ·
p2 v0 k1 v1 · ·

received(p0) p0 v1 v0 · · ·
p1 v1 v1 k1 · ·
p2 v0 k1 · · ·

received(p1) · · · · · ·
received(p2) · · · · · ·

k1 > 0 ∧ v0 ≤ n/2+ t

v1 v0 v1 · ·
v1 v1 k1 v1 ·
v0 k1 v1 · ·
v1 v0 · · ·
v1 v1 k1 · ·
v0 k1 · · ·

· · ·
· · ·

v1 v0 v1 · ·
v1 v1 k1 v1 ·
v0 k1 v1 · ·
v1 v0 · · ·
v1 v1 k1 v1 ·
v0 k1 · · ·

· · ·
· · ·

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 13 / 26

Semantics of layered threshold automata
0

k0

v0

v1

k1

1

k0

v0

v1

k1

2

k0

v0

v1

k1

···

···

···

···

···
g(v0,v1)= v1+ f > n/2+ t ∨

(k1 > 0 ∧ v0 ≤ n/2+ t)

Full configuration stores for each process
history of local states, and received messages from every process

Example with n = 4, f = t = 1

state p0 v1 v0 · · ·
p1 v1 v1 k1 v1 ·
p2 v0 k1 v1 · ·

received(p0) p0 v1 v0 · · ·
p1 v1 v1 k1 · ·
p2 v0 k1 · · ·

received(p1) · · · · · ·
received(p2) · · · · · ·

state p0 v1 v0 · · ·
p1 v1 v1 k1 v1 ·
p2 v0 k1 v1 · ·

received(p0) p0 v1 v0 · · ·
p1 v1 v1 k1 · ·
p2 v0 k1 · · ·

received(p1) · · · · · ·
received(p2) · · · · · ·

k1 > 0 ∧ v0 ≤ n/2+ t

v1 v0 v1 · ·
v1 v1 k1 v1 ·
v0 k1 v1 · ·
v1 v0 · · ·
v1 v1 k1 · ·
v0 k1 · · ·

· · ·
· · ·

v1 v0 v1 · ·
v1 v1 k1 v1 ·
v0 k1 v1 · ·
v1 v0 · · ·
v1 v1 k1 v1 ·
v0 k1 · · ·

· · ·
· · ·

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 13 / 26

Semantics of layered threshold automata
0

k0

v0

v1

k1

1

k0

v0

v1

k1

2

k0

v0

v1

k1

···

···

···

···

···
g(v0,v1)= v1+ f > n/2+ t ∨

(k1 > 0 ∧ v0 ≤ n/2+ t)

Full configuration stores for each process
history of local states, and received messages from every process

Example with n = 4, f = t = 1

state p0 v1 v0 · · ·
p1 v1 v1 k1 v1 ·
p2 v0 k1 v1 · ·

received(p0) p0 v1 v0 · · ·
p1 v1 v1 k1 · ·
p2 v0 k1 · · ·

received(p1) · · · · · ·
received(p2) · · · · · ·

state p0 v1 v0 · · ·
p1 v1 v1 k1 v1 ·
p2 v0 k1 v1 · ·

received(p0) p0 v1 v0 · · ·
p1 v1 v1 k1 · ·
p2 v0 k1 · · ·

received(p1) · · · · · ·
received(p2) · · · · · ·

k1 > 0 ∧ v0 ≤ n/2+ t

v1 v0 v1 · ·
v1 v1 k1 v1 ·
v0 k1 v1 · ·
v1 v0 · · ·
v1 v1 k1 · ·
v0 k1 · · ·

· · ·
· · ·

v1 v0 v1 · ·
v1 v1 k1 v1 ·
v0 k1 v1 · ·
v1 v0 · · ·
v1 v1 k1 v1 ·
v0 k1 · · ·

· · ·
· · ·

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 13 / 26

Semantics of layered threshold automata
0

k0

v0

v1

k1

1

k0

v0

v1

k1

2

k0

v0

v1

k1

···

···

···

···

···
g(v0,v1)= v1+ f > n/2+ t ∨

(k1 > 0 ∧ v0 ≤ n/2+ t)

Full configuration stores for each process
history of local states, and received messages from every process

Example with n = 4, f = t = 1

state p0 v1 v0 · · ·
p1 v1 v1 k1 v1 ·
p2 v0 k1 v1 · ·

received(p0) p0 v1 v0 · · ·
p1 v1 v1 k1 · ·
p2 v0 k1 · · ·

received(p1) · · · · · ·
received(p2) · · · · · ·

state p0 v1 v0 · · ·
p1 v1 v1 k1 v1 ·
p2 v0 k1 v1 · ·

received(p0) p0 v1 v0 · · ·
p1 v1 v1 k1 · ·
p2 v0 k1 · · ·

received(p1) · · · · · ·
received(p2) · · · · · ·

k1 > 0 ∧ v0 ≤ n/2+ t

v1 v0 v1 · ·
v1 v1 k1 v1 ·
v0 k1 v1 · ·
v1 v0 · · ·
v1 v1 k1 · ·
v0 k1 · · ·

· · ·
· · ·

v1 v0 v1 · ·
v1 v1 k1 v1 ·
v0 k1 v1 · ·
v1 v0 · · ·
v1 v1 k1 v1 ·
v0 k1 · · ·

· · ·
· · ·

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 13 / 26

Semantics of layered threshold automata
0

k0

v0

v1

k1

1

k0

v0

v1

k1

2

k0

v0

v1

k1

···

···

···

···

···
g(v0,v1)= v1+ f > n/2+ t ∨

(k1 > 0 ∧ v0 ≤ n/2+ t)

Full configuration stores for each process
history of local states, and received messages from every process

Example with n = 4, f = t = 1

state p0 v1 v0 · · ·
p1 v1 v1 k1 v1 ·
p2 v0 k1 v1 · ·

received(p0) p0 v1 v0 · · ·
p1 v1 v1 k1 · ·
p2 v0 k1 · · ·

received(p1) · · · · · ·
received(p2) · · · · · ·

state p0 v1 v0 · · ·
p1 v1 v1 k1 v1 ·
p2 v0 k1 v1 · ·

received(p0) p0 v1 v0 · · ·
p1 v1 v1 k1 · ·
p2 v0 k1 · · ·

received(p1) · · · · · ·
received(p2) · · · · · ·

k1 > 0 ∧ v0 ≤ n/2+ t

v1 v0 v1 · ·
v1 v1 k1 v1 ·
v0 k1 v1 · ·
v1 v0 · · ·
v1 v1 k1 · ·
v0 k1 · · ·

· · ·
· · ·

v1 v0 v1 · ·
v1 v1 k1 v1 ·
v0 k1 v1 · ·
v1 v0 · · ·
v1 v1 k1 v1 ·
v0 k1 · · ·

· · ·
· · ·

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 13 / 26

Model checking layered threshold automata

The parameterized model checking of layered threshold automata is
undecidable, for safety properties already.

Our approach: incomplete yet refinable method
1. successive abstractions of semantics: removal of received messages

(thanks to layered assumption); counting abstraction
2. overapproximation of sets of behaviours by a guard automaton

using predicate abstraction; enabling refinement by adding more
predicates

[B. Thomas Widder Concur’21]

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 14 / 26

Model checking layered threshold automata

The parameterized model checking of layered threshold automata is
undecidable, for safety properties already.

Our approach: incomplete yet refinable method
1. successive abstractions of semantics: removal of received messages

(thanks to layered assumption); counting abstraction
2. overapproximation of sets of behaviours by a guard automaton

using predicate abstraction; enabling refinement by adding more
predicates

[B. Thomas Widder Concur’21]

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 14 / 26

Abstraction steps

Full Configuration
state p0 v0 k1 v1 · ·

p1 v1 v1 k1 v1 ·
p2 v1 v0 v1 · ·

received(p0) p0 v0 k1 v1 · ·
p1 v1 v1 · · ·
p2 v1 v0 · · ·

received(p1) · · · · · ·
received(p2) · · · · · ·

Succinct Configuration
p0 v0 k1 v1 · ·
p1 v1 v1 k1 v1 ·
p2 v1 v0 v1 · ·

≈
v0

k0

v1

k1

v0

k0

v1

k1

v0

k0

v1

k1

v0

k0

v1

k1

· · ·

· · ·

· · ·

· · ·

p0:

p1:p2

Counter Configuration, n = 4, t = 1, f = 1

v0 :

k0 :

v1 :

k1 :

1

0

2

0

1

0

1

1

0

0

2

1

0

0

1

0

· · ·

· · ·

· · ·

· · ·

Guard Configuration
v0 > 0 T T F F · · ·
k0 > 0 F F F F · · ·
v1 > 0 T T T T · · ·
k1 > 0 F T T F · · ·

2(v0+k0+ f)> n+2t F F F F · · ·
2(v1+k1+ f)> n+2t F F T F · · ·

2(v0+k0)> n+2t F F F F · · ·
2(v1+k1)> n+2t F F F F · · ·

v0+k0+v1+k1+ f ≥ n T T T F · · ·

layered hyp.

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 15 / 26

Abstraction steps

Full Configuration
state p0 v0 k1 v1 · ·

p1 v1 v1 k1 v1 ·
p2 v1 v0 v1 · ·

received(p0) p0 v0 k1 v1 · ·
p1 v1 v1 · · ·
p2 v1 v0 · · ·

received(p1) · · · · · ·
received(p2) · · · · · ·

Succinct Configuration
p0 v0 k1 v1 · ·
p1 v1 v1 k1 v1 ·
p2 v1 v0 v1 · ·

≈
v0

k0

v1

k1

v0

k0

v1

k1

v0

k0

v1

k1

v0

k0

v1

k1

· · ·

· · ·

· · ·

· · ·

p0:

p1:p2

Counter Configuration, n = 4, t = 1, f = 1

v0 :

k0 :

v1 :

k1 :

1

0

2

0

1

0

1

1

0

0

2

1

0

0

1

0

· · ·

· · ·

· · ·

· · ·

Guard Configuration
v0 > 0 T T F F · · ·
k0 > 0 F F F F · · ·
v1 > 0 T T T T · · ·
k1 > 0 F T T F · · ·

2(v0+k0+ f)> n+2t F F F F · · ·
2(v1+k1+ f)> n+2t F F T F · · ·

2(v0+k0)> n+2t F F F F · · ·
2(v1+k1)> n+2t F F F F · · ·

v0+k0+v1+k1+ f ≥ n T T T F · · ·

layered hyp.

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 15 / 26

Abstraction steps

Full Configuration
state p0 v0 k1 v1 · ·

p1 v1 v1 k1 v1 ·
p2 v1 v0 v1 · ·

received(p0) p0 v0 k1 v1 · ·
p1 v1 v1 · · ·
p2 v1 v0 · · ·

received(p1) · · · · · ·
received(p2) · · · · · ·

Succinct Configuration
p0 v0 k1 v1 · ·
p1 v1 v1 k1 v1 ·
p2 v1 v0 v1 · ·

≈
v0

k0

v1

k1

v0

k0

v1

k1

v0

k0

v1

k1

v0

k0

v1

k1

· · ·

· · ·

· · ·

· · ·

p0:

p1:p2

Counter Configuration, n = 4, t = 1, f = 1

v0 :

k0 :

v1 :

k1 :

1

0

2

0

1

0

1

1

0

0

2

1

0

0

1

0

· · ·

· · ·

· · ·

· · ·

Guard Configuration
v0 > 0 T T F F · · ·
k0 > 0 F F F F · · ·
v1 > 0 T T T T · · ·
k1 > 0 F T T F · · ·

2(v0+k0+ f)> n+2t F F F F · · ·
2(v1+k1+ f)> n+2t F F T F · · ·

2(v0+k0)> n+2t F F F F · · ·
2(v1+k1)> n+2t F F F F · · ·

v0+k0+v1+k1+ f ≥ n T T T F · · ·

layered hyp.

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 15 / 26

Abstraction steps

Full Configuration
state p0 v0 k1 v1 · ·

p1 v1 v1 k1 v1 ·
p2 v1 v0 v1 · ·

received(p0) p0 v0 k1 v1 · ·
p1 v1 v1 · · ·
p2 v1 v0 · · ·

received(p1) · · · · · ·
received(p2) · · · · · ·

Succinct Configuration
p0 v0 k1 v1 · ·
p1 v1 v1 k1 v1 ·
p2 v1 v0 v1 · ·

≈
v0

k0

v1

k1

v0

k0

v1

k1

v0

k0

v1

k1

v0

k0

v1

k1

· · ·

· · ·

· · ·

· · ·

p0:

p1:p2

Counter Configuration, n = 4, t = 1, f = 1

v0 :

k0 :

v1 :

k1 :

1

0

2

0

1

0

1

1

0

0

2

1

0

0

1

0

· · ·

· · ·

· · ·

· · ·

Guard Configuration
v0 > 0 T T F F · · ·
k0 > 0 F F F F · · ·
v1 > 0 T T T T · · ·
k1 > 0 F T T F · · ·

2(v0+k0+ f)> n+2t F F F F · · ·
2(v1+k1+ f)> n+2t F F T F · · ·

2(v0+k0)> n+2t F F F F · · ·
2(v1+k1)> n+2t F F F F · · ·

v0+k0+v1+k1+ f ≥ n T T T F · · ·

layered hyp.

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 15 / 26

Guard automaton
Finite set of predicates: taken from formula and transition guards

Ï states = valuations of predicates
Ï transitions obtained via predicate abstraction; automated with SMT solver

v0+k0+v1+k1+ f ≥ n
2(v1+k1)> n+2t
2(v0+k0)> n+2t

2(v1+k1+ f)> n+2t
2(v0+k0+ f)> n+2t

k1 > 0
v1 > 0
k0 > 0
v0 > 0 T

T

T

T

T
T

T

T
T

T

T

T
F

F
F
F
F
F

F

F
F
F
F

F
F

F

F
F

F
F

F
F
F
F
F
F

F
F
F
F
F
F
F
F
F · · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

γ0 γ1 γ2 γ3 γ4

guard configuration

γ0

γ1

γ2

γ3

γ4δ

· · ·

guard automaton

The language of the guard automaton overapproximates the set of
executions of the layered threshold automaton.

" Incomplete method yet
sufficient to prove correctness of Phase King (safety and liveness)
possible refinement by adding predicates

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 16 / 26

Guard automaton
Finite set of predicates: taken from formula and transition guards

Ï states = valuations of predicates
Ï transitions obtained via predicate abstraction; automated with SMT solver

v0+k0+v1+k1+ f ≥ n
2(v1+k1)> n+2t
2(v0+k0)> n+2t

2(v1+k1+ f)> n+2t
2(v0+k0+ f)> n+2t

k1 > 0
v1 > 0
k0 > 0
v0 > 0 T

T

T

T

T
T

T

T
T

T

T

T
F

F
F
F
F
F

F

F
F
F
F

F
F

F

F
F

F
F

F
F
F
F
F
F

F
F
F
F
F
F
F
F
F · · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

γ0 γ1 γ2 γ3 γ4

guard configuration

γ0

γ1

γ2

γ3

γ4δ

· · ·

guard automaton

The language of the guard automaton overapproximates the set of
executions of the layered threshold automaton.

" Incomplete method yet
sufficient to prove correctness of Phase King (safety and liveness)
possible refinement by adding predicates

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 16 / 26

Guard automaton
Finite set of predicates: taken from formula and transition guards

Ï states = valuations of predicates
Ï transitions obtained via predicate abstraction; automated with SMT solver

v0+k0+v1+k1+ f ≥ n
2(v1+k1)> n+2t
2(v0+k0)> n+2t

2(v1+k1+ f)> n+2t
2(v0+k0+ f)> n+2t

k1 > 0
v1 > 0
k0 > 0
v0 > 0 T

T

T

T

T
T

T

T
T

T

T

T
F

F
F
F
F
F

F

F
F
F
F

F
F

F

F
F

F
F

F
F
F
F
F
F

F
F
F
F
F
F
F
F
F · · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

γ0 γ1 γ2 γ3 γ4

guard configuration

γ0

γ1

γ2

γ3

γ4δ

· · ·

guard automaton

The language of the guard automaton overapproximates the set of
executions of the layered threshold automaton.

" Incomplete method yet
sufficient to prove correctness of Phase King (safety and liveness)
possible refinement by adding predicates

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 16 / 26

Guard automaton
Finite set of predicates: taken from formula and transition guards

Ï states = valuations of predicates
Ï transitions obtained via predicate abstraction; automated with SMT solver

v0+k0+v1+k1+ f ≥ n
2(v1+k1)> n+2t
2(v0+k0)> n+2t

2(v1+k1+ f)> n+2t
2(v0+k0+ f)> n+2t

k1 > 0
v1 > 0
k0 > 0
v0 > 0 T

T

T

T

T
T

T

T
T

T

T

T
F

F
F
F
F
F

F

F
F
F
F

F
F

F

F
F

F
F

F
F
F
F
F
F

F
F
F
F
F
F
F
F
F · · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

γ0 γ1 γ2 γ3 γ4

guard configuration

γ0

γ1

γ2

γ3

γ4

δ

· · ·

guard automaton

The language of the guard automaton overapproximates the set of
executions of the layered threshold automaton.

" Incomplete method yet
sufficient to prove correctness of Phase King (safety and liveness)
possible refinement by adding predicates

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 16 / 26

Guard automaton
Finite set of predicates: taken from formula and transition guards

Ï states = valuations of predicates
Ï transitions obtained via predicate abstraction; automated with SMT solver

v0+k0+v1+k1+ f ≥ n
2(v1+k1)> n+2t
2(v0+k0)> n+2t

2(v1+k1+ f)> n+2t
2(v0+k0+ f)> n+2t

k1 > 0
v1 > 0
k0 > 0
v0 > 0 T

T

T

T

T
T

T

T
T

T

T

T
F

F
F
F
F
F

F

F
F
F
F

F
F

F

F
F

F
F

F
F
F
F
F
F

F
F
F
F
F
F
F
F
F · · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

γ0 γ1 γ2 γ3 γ4

guard configuration

γ0

γ1

γ2

γ3

γ4δ

· · ·

guard automaton

The language of the guard automaton overapproximates the set of
executions of the layered threshold automaton.

" Incomplete method yet
sufficient to prove correctness of Phase King (safety and liveness)
possible refinement by adding predicates

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 16 / 26

Guard automaton
Finite set of predicates: taken from formula and transition guards

Ï states = valuations of predicates
Ï transitions obtained via predicate abstraction; automated with SMT solver

v0+k0+v1+k1+ f ≥ n
2(v1+k1)> n+2t
2(v0+k0)> n+2t

2(v1+k1+ f)> n+2t
2(v0+k0+ f)> n+2t

k1 > 0
v1 > 0
k0 > 0
v0 > 0 T

T

T

T

T
T

T

T
T

T

T

T
F

F
F
F
F
F

F

F
F
F
F

F
F

F

F
F

F
F

F
F
F
F
F
F

F
F
F
F
F
F
F
F
F · · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

γ0 γ1 γ2 γ3 γ4

guard configuration

γ0

γ1

γ2

γ3

γ4δ

· · ·

guard automaton

The language of the guard automaton overapproximates the set of
executions of the layered threshold automaton.

" Incomplete method yet
sufficient to prove correctness of Phase King (safety and liveness)
possible refinement by adding predicates

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 16 / 26

Guard automaton
Finite set of predicates: taken from formula and transition guards

Ï states = valuations of predicates
Ï transitions obtained via predicate abstraction; automated with SMT solver

v0+k0+v1+k1+ f ≥ n
2(v1+k1)> n+2t
2(v0+k0)> n+2t

2(v1+k1+ f)> n+2t
2(v0+k0+ f)> n+2t

k1 > 0
v1 > 0
k0 > 0
v0 > 0 T

T

T

T

T
T

T

T
T

T

T

T
F

F
F
F
F
F

F

F
F
F
F

F
F

F

F
F

F
F

F
F
F
F
F
F

F
F
F
F
F
F
F
F
F · · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

γ0 γ1 γ2 γ3 γ4

guard configuration

γ0

γ1

γ2

γ3

γ4δ

· · ·

guard automaton

The language of the guard automaton overapproximates the set of
executions of the layered threshold automaton.

" Incomplete method yet
sufficient to prove correctness of Phase King (safety and liveness)
possible refinement by adding predicates

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 16 / 26

Guard automaton
Finite set of predicates: taken from formula and transition guards

Ï states = valuations of predicates
Ï transitions obtained via predicate abstraction; automated with SMT solver

v0+k0+v1+k1+ f ≥ n
2(v1+k1)> n+2t
2(v0+k0)> n+2t

2(v1+k1+ f)> n+2t
2(v0+k0+ f)> n+2t

k1 > 0
v1 > 0
k0 > 0
v0 > 0 T

T

T

T

T
T

T

T
T

T

T

T
F

F
F
F
F
F

F

F
F
F
F

F
F

F

F
F

F
F

F
F
F
F
F
F

F
F
F
F
F
F
F
F
F · · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

γ0 γ1 γ2 γ3 γ4

guard configuration

γ0

γ1

γ2

γ3

γ4δ

· · ·

guard automaton

The language of the guard automaton overapproximates the set of
executions of the layered threshold automaton.

" Incomplete method yet
sufficient to prove correctness of Phase King (safety and liveness)
possible refinement by adding predicates

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 16 / 26

Guard automaton
Finite set of predicates: taken from formula and transition guards

Ï states = valuations of predicates
Ï transitions obtained via predicate abstraction; automated with SMT solver

v0+k0+v1+k1+ f ≥ n
2(v1+k1)> n+2t
2(v0+k0)> n+2t

2(v1+k1+ f)> n+2t
2(v0+k0+ f)> n+2t

k1 > 0
v1 > 0
k0 > 0
v0 > 0 T

T

T

T

T
T

T

T
T

T

T

T
F

F
F
F
F
F

F

F
F
F
F

F
F

F

F
F

F
F

F
F
F
F
F
F

F
F
F
F
F
F
F
F
F · · ·

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

γ0 γ1 γ2 γ3 γ4

guard configuration

γ0

γ1

γ2

γ3

γ4δ

· · ·

guard automaton

The language of the guard automaton overapproximates the set of
executions of the layered threshold automaton.

" Incomplete method yet
sufficient to prove correctness of Phase King (safety and liveness)
possible refinement by adding predicates

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 16 / 26

Part 2: Shared-memory algorithms

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 17 / 26

Shared-memory round-based algorithms
Aspnes’ algorithm [Aspnes JA 1992]
Ï binary consensus in noisy environment
Ï n processes asynchronously write to and read from shared

registers

boo l v := inpu t_va l u e ({0 , 1 }) ;
i n t r := 1 ;
b0 := [> ,⊥ ,⊥ . . .] ; b1 := [> ,⊥ ,⊥ , . . .] ; /∗ 2 r e g i s t e r s pe r round ∗/
wh i l e (t r u e) do
r ead b0 [r] and b1 [r] ; /∗ r e a d i n g c u r r e n t round r e g i s t e r s ∗/
i f ∃w, bw [r] = > and b1−w [r] = ⊥
then v := w; f i
w r i t e > i n bv [r] /∗ p ropo s i ng v a l u e v by s e t t i n g r e g i s t e r to > ∗/
read b1−v [r −1] ;
i f b1−v [r −1] = ⊥ /∗ check i ng noone proposed 1−v i n p r e v i o u s round ∗/
then r e t u r n v ;
e l s e r := r+1 ; f i od

• local variable v stores current value
• a process at round r can read from registers of rounds r−1 and r ,
and write to round r registers

• value v is returned if no process already proposed opposite value
1−v in last and current round

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 18 / 26

Shared-memory round-based algorithms
Aspnes’ algorithm [Aspnes JA 1992]
Ï binary consensus in noisy environment
Ï n processes asynchronously write to and read from shared

registers
boo l v := inpu t_va l u e ({0 , 1 }) ;
i n t r := 1 ;
b0 := [> ,⊥ ,⊥ . . .] ; b1 := [> ,⊥ ,⊥ , . . .] ; /∗ 2 r e g i s t e r s pe r round ∗/
wh i l e (t r u e) do
r ead b0 [r] and b1 [r] ; /∗ r e a d i n g c u r r e n t round r e g i s t e r s ∗/
i f ∃w, bw [r] = > and b1−w [r] = ⊥
then v := w; f i
w r i t e > i n bv [r] /∗ p ropo s i ng v a l u e v by s e t t i n g r e g i s t e r to > ∗/
read b1−v [r −1] ;
i f b1−v [r −1] = ⊥ /∗ check i ng noone proposed 1−v i n p r e v i o u s round ∗/
then r e t u r n v ;
e l s e r := r+1 ; f i od

• local variable v stores current value
• a process at round r can read from registers of rounds r−1 and r ,
and write to round r registers

• value v is returned if no process already proposed opposite value
1−v in last and current round

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 18 / 26

Modelling Aspnes’ algorithm

Shared-memory protocols with rounds
extend shared memory protocols [Esparza Ganty Majumdar JACM 2016]

Ï one model for all processes
Ï unbounded number of rounds
Ï d shared registers per round (unboundedly many in total)

A0

B0

C0 D0 R0

E0

read0b0 (>)

read0b0 (⊥) read
0
b1
(⊥)

read0b1 (>)

writeb0 (>)

read−1b1
(>)Inc

read−1b1
(⊥)

v = 0

v = 1

Ï actions: read from current and previous registers within window w, write
to current registers, round increment

d= 2, w= 1, read0b0(⊥), read−1b1 (>), writeb0(>), Inc

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 19 / 26

Modelling Aspnes’ algorithm

Shared-memory protocols with rounds
extend shared memory protocols [Esparza Ganty Majumdar JACM 2016]

Ï one model for all processes
Ï unbounded number of rounds
Ï d shared registers per round (unboundedly many in total)

A0

B0

C0 D0 R0

E0

read0b0 (>)

read0b0 (⊥) read
0
b1
(⊥)

read0b1 (>)

writeb0 (>)

read−1b1
(>)Inc

read−1b1
(⊥)

v = 0

v = 1

Ï actions: read from current and previous registers within window w, write
to current registers, round increment

d= 2, w= 1, read0b0(⊥), read−1b1 (>), writeb0(>), Inc

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 19 / 26

Modelling Aspnes’ algorithm

Shared-memory protocols with rounds
extend shared memory protocols [Esparza Ganty Majumdar JACM 2016]

Ï one model for all processes
Ï unbounded number of rounds
Ï d shared registers per round (unboundedly many in total)

A0

B0

C0 D0 R0

E0

read0b0 (>)

read0b0 (⊥) read
0
b1
(⊥)

read0b1 (>)

writeb0 (>)

read−1b1
(>)Inc

read−1b1
(⊥)

v = 0

v = 1

Ï actions: read from current and previous registers within window w, write
to current registers, round increment

d= 2, w= 1, read0b0(⊥), read−1b1 (>), writeb0(>), Inc

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 19 / 26

Semantics of shared-memory models with rounds

A0

A1

B0

B1

C0

C1

D0

D1

R0

R1

E0

E1

read0b0 (>)

read0b1 (>)

read0b0 (⊥)

read
0
b1
(⊥)

read
0
b1
(⊥)

read0b0 (⊥)
read0b1 (>)

read0b0 (>)
writeb0 (>)

writeb1 (>)

read−1b1
(>)

read−1b0
(>)

Inc

Inc

read−1b1
(⊥)

read−1b0
(⊥)

v = 0

v = 1

Concrete configuration stores
values of shared registers, and for each process its local state and round

Example with n = 3

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

Inc

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

writeb0(>)
> R0,1
⊥ A0,1
> C1,0
⊥
...

read−1b1 (⊥)

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 20 / 26

Semantics of shared-memory models with rounds

A0

A1

B0

B1

C0

C1

D0

D1

R0

R1

E0

E1

read0b0 (>)

read0b1 (>)

read0b0 (⊥)

read
0
b1
(⊥)

read
0
b1
(⊥)

read0b0 (⊥)
read0b1 (>)

read0b0 (>)
writeb0 (>)

writeb1 (>)

read−1b1
(>)

read−1b0
(>)

Inc

Inc

read−1b1
(⊥)

read−1b0
(⊥)

v = 0

v = 1

Concrete configuration stores
values of shared registers, and for each process its local state and round

Example with n = 3

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

Inc

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

writeb0(>)
> R0,1
⊥ A0,1
> C1,0
⊥
...

read−1b1 (⊥)

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 20 / 26

Semantics of shared-memory models with rounds

A0

A1

B0

B1

C0

C1

D0

D1

R0

R1

E0

E1

read0b0 (>)

read0b1 (>)

read0b0 (⊥)

read
0
b1
(⊥)

read
0
b1
(⊥)

read0b0 (⊥)
read0b1 (>)

read0b0 (>)
writeb0 (>)

writeb1 (>)

read−1b1
(>)

read−1b0
(>)

Inc

Inc

read−1b1
(⊥)

read−1b0
(⊥)

v = 0

v = 1

Concrete configuration stores
values of shared registers, and for each process its local state and round

Example with n = 3

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

Inc

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

writeb0(>)
> R0,1
⊥ A0,1
> C1,0
⊥
...

read−1b1 (⊥)

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 20 / 26

Semantics of shared-memory models with rounds

A0

A1

B0

B1

C0

C1

D0

D1

R0

R1

E0

E1

read0b0 (>)

read0b1 (>)

read0b0 (⊥)

read
0
b1
(⊥)

read
0
b1
(⊥)

read0b0 (⊥)
read0b1 (>)

read0b0 (>)
writeb0 (>)

writeb1 (>)

read−1b1
(>)

read−1b0
(>)

Inc

Inc

read−1b1
(⊥)

read−1b0
(⊥)

v = 0

v = 1

Concrete configuration stores
values of shared registers, and for each process its local state and round

Example with n = 3

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

Inc

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

writeb0(>)
> R0,1
⊥ A0,1
> C1,0
⊥
...

read−1b1 (⊥)

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 20 / 26

Semantics of shared-memory models with rounds

A0

A1

B0

B1

C0

C1

D0

D1

R0

R1

E0

E1

read0b0 (>)

read0b1 (>)

read0b0 (⊥)

read
0
b1
(⊥)

read
0
b1
(⊥)

read0b0 (⊥)
read0b1 (>)

read0b0 (>)
writeb0 (>)

writeb1 (>)

read−1b1
(>)

read−1b0
(>)

Inc

Inc

read−1b1
(⊥)

read−1b0
(⊥)

v = 0

v = 1

Concrete configuration stores
values of shared registers, and for each process its local state and round

Example with n = 3

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

Inc

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

writeb0(>)
> R0,1
⊥ A0,1
> C1,0
⊥
...

read−1b1 (⊥)

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 20 / 26

Semantics of shared-memory models with rounds

A0

A1

B0

B1

C0

C1

D0

D1

R0

R1

E0

E1

read0b0 (>)

read0b1 (>)

read0b0 (⊥)

read
0
b1
(⊥)

read
0
b1
(⊥)

read0b0 (⊥)
read0b1 (>)

read0b0 (>)
writeb0 (>)

writeb1 (>)

read−1b1
(>)

read−1b0
(>)

Inc

Inc

read−1b1
(⊥)

read−1b0
(⊥)

v = 0

v = 1

Concrete configuration stores
values of shared registers, and for each process its local state and round

Example with n = 3

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

Inc

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

writeb0(>)

> R0,1
⊥ A0,1
> C1,0
⊥
...

read−1b1 (⊥)

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 20 / 26

Semantics of shared-memory models with rounds

A0

A1

B0

B1

C0

C1

D0

D1

R0

R1

E0

E1

read0b0 (>)

read0b1 (>)

read0b0 (⊥)

read
0
b1
(⊥)

read
0
b1
(⊥)

read0b0 (⊥)
read0b1 (>)

read0b0 (>)
writeb0 (>)

writeb1 (>)

read−1b1
(>)

read−1b0
(>)

Inc

Inc

read−1b1
(⊥)

read−1b0
(⊥)

v = 0

v = 1

Concrete configuration stores
values of shared registers, and for each process its local state and round

Example with n = 3

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

Inc

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

writeb0(>)

> R0,1
⊥ A0,1
> C1,0
⊥
...

read−1b1 (⊥)

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 20 / 26

Semantics of shared-memory models with rounds

A0

A1

B0

B1

C0

C1

D0

D1

R0

R1

E0

E1

read0b0 (>)

read0b1 (>)

read0b0 (⊥)

read
0
b1
(⊥)

read
0
b1
(⊥)

read0b0 (⊥)
read0b1 (>)

read0b0 (>)
writeb0 (>)

writeb1 (>)

read−1b1
(>)

read−1b0
(>)

Inc

Inc

read−1b1
(⊥)

read−1b0
(⊥)

v = 0

v = 1

Concrete configuration stores
values of shared registers, and for each process its local state and round

Example with n = 3

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

Inc

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

writeb0(>)

> R0,1
⊥ A0,1
> C1,0
⊥
...

read−1b1 (⊥)

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 20 / 26

Semantics of shared-memory models with rounds

A0

A1

B0

B1

C0

C1

D0

D1

R0

R1

E0

E1

read0b0 (>)

read0b1 (>)

read0b0 (⊥)

read
0
b1
(⊥)

read
0
b1
(⊥)

read0b0 (⊥)
read0b1 (>)

read0b0 (>)
writeb0 (>)

writeb1 (>)

read−1b1
(>)

read−1b0
(>)

Inc

Inc

read−1b1
(⊥)

read−1b0
(⊥)

v = 0

v = 1

Concrete configuration stores
values of shared registers, and for each process its local state and round

Example with n = 3

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

Inc

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

writeb0(>)

> R0,1
⊥ A0,1
> C1,0
⊥
...

read−1b1 (⊥)

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 20 / 26

Semantics of shared-memory models with rounds

A0

A1

B0

B1

C0

C1

D0

D1

R0

R1

E0

E1

read0b0 (>)

read0b1 (>)

read0b0 (⊥)

read
0
b1
(⊥)

read
0
b1
(⊥)

read0b0 (⊥)
read0b1 (>)

read0b0 (>)
writeb0 (>)

writeb1 (>)

read−1b1
(>)

read−1b0
(>)

Inc

Inc

read−1b1
(⊥)

read−1b0
(⊥)

v = 0

v = 1

Concrete configuration stores
values of shared registers, and for each process its local state and round

Example with n = 3

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

round 0 b0 :> C0,1
b1 :⊥ E0,0

round 1 b0 :⊥ C1,0
b1 :⊥

...

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

Inc

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

> C0,1
⊥ A0,1
⊥ C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

> D0,1
⊥ A0,1
> C1,0
⊥
...

writeb0(>)
> R0,1
⊥ A0,1
> C1,0
⊥
...

read−1b1 (⊥)

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 20 / 26

Model checking shared-memory protocols with rounds

[B. Markey Sankur Waldburger, submitted]

The parameterized model checking of safety properties for
shared-memory protocols with rounds is PSPACE-complete.

Objective: prove ∀n, ∀γ0 ∈ Γinit(n), ∀γ0 ∗−→ γ : qerr ∉ γ
dually, look for a counterexample: ∃n, ∃γ0 ∈ Γinit(n), ∃γ0 ∗−→ γ : qerr ∈ γ

Challenges: exponential lower bounds everywhere!

• minimum round at which qerr is reached;
• number of processes needed to reach qerr;
• number of required active rounds on executions reaching qerr
all may be exponential in the protocol size

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 21 / 26

Model checking shared-memory protocols with rounds

[B. Markey Sankur Waldburger, submitted]

The parameterized model checking of safety properties for
shared-memory protocols with rounds is PSPACE-complete.

Objective: prove ∀n, ∀γ0 ∈ Γinit(n), ∀γ0 ∗−→ γ : qerr ∉ γ

dually, look for a counterexample: ∃n, ∃γ0 ∈ Γinit(n), ∃γ0 ∗−→ γ : qerr ∈ γ

Challenges: exponential lower bounds everywhere!

• minimum round at which qerr is reached;
• number of processes needed to reach qerr;
• number of required active rounds on executions reaching qerr
all may be exponential in the protocol size

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 21 / 26

Model checking shared-memory protocols with rounds

[B. Markey Sankur Waldburger, submitted]

The parameterized model checking of safety properties for
shared-memory protocols with rounds is PSPACE-complete.

Objective: prove ∀n, ∀γ0 ∈ Γinit(n), ∀γ0 ∗−→ γ : qerr ∉ γ
dually, look for a counterexample: ∃n, ∃γ0 ∈ Γinit(n), ∃γ0 ∗−→ γ : qerr ∈ γ

Challenges: exponential lower bounds everywhere!

• minimum round at which qerr is reached;
• number of processes needed to reach qerr;
• number of required active rounds on executions reaching qerr
all may be exponential in the protocol size

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 21 / 26

Model checking shared-memory protocols with rounds

[B. Markey Sankur Waldburger, submitted]

The parameterized model checking of safety properties for
shared-memory protocols with rounds is PSPACE-complete.

Objective: prove ∀n, ∀γ0 ∈ Γinit(n), ∀γ0 ∗−→ γ : qerr ∉ γ
dually, look for a counterexample: ∃n, ∃γ0 ∈ Γinit(n), ∃γ0 ∗−→ γ : qerr ∈ γ

Challenges: exponential lower bounds everywhere!

• minimum round at which qerr is reached;
• number of processes needed to reach qerr;
• number of required active rounds on executions reaching qerr
all may be exponential in the protocol size

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 21 / 26

Exploiting monotonicity

Copycat property on states and written values
• if a state can be populated by a process, it can be populated by an
arbitrary number of them;

• if a value can be written to a register once, it can be written arbitrarily
many times

Abstract configuration stores
which states are populated, and which registers have been written to

round 0 b0 :> C0,1
b1 :⊥ A0,1

round 1 b0 :> C1,0
b1 :⊥ C1,0

A0,1
...

full config.

reg(b0,0) C0,1
reg(b0,1) A0,1

C1,0

abstract config.

"Limited monotonicity: two reachable states may not be mutually reachable

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 22 / 26

Exploiting monotonicity

Copycat property on states and written values
• if a state can be populated by a process, it can be populated by an
arbitrary number of them;

• if a value can be written to a register once, it can be written arbitrarily
many times

Abstract configuration stores
which states are populated, and which registers have been written to

round 0 b0 :> C0,1
b1 :⊥ A0,1

round 1 b0 :> C1,0
b1 :⊥ C1,0

A0,1
...

full config.

reg(b0,0) C0,1
reg(b0,1) A0,1

C1,0

abstract config.

"Limited monotonicity: two reachable states may not be mutually reachable

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 22 / 26

Exploiting monotonicity

Copycat property on states and written values
• if a state can be populated by a process, it can be populated by an
arbitrary number of them;

• if a value can be written to a register once, it can be written arbitrarily
many times

Abstract configuration stores
which states are populated, and which registers have been written to

round 0 b0 :> C0,1
b1 :⊥ A0,1

round 1 b0 :> C1,0
b1 :⊥ C1,0

A0,1
...

full config.

reg(b0,0) C0,1
reg(b0,1) A0,1

C1,0

abstract config.

"Limited monotonicity: two reachable states may not be mutually reachable

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 22 / 26

Checking parameterized safety in PSPACE

Proof high-level idea:

iteratively on rounds

• guess a feasible sequence of moves leading to an error state

〈A0
read0b0

(⊥)
−−−−−−−−−→B0 ,0〉 〈E0 Inc−−→A0 ,0〉 〈B0

read0b1
(⊥)

−−−−−−−−−→C0 ,1〉 〈C0
writeb0 (>)−−−−−−−−−→D0 ,0〉

〈E0 Inc−−→A0 ,1〉 〈B0
read−1b1

(⊥)
−−−−−−−−−→C0 ,2〉 〈C0

writeb0 (>)−−−−−−−−−→D0 ,2〉 〈E0 Inc−−→A0 ,1〉

〈A1
read0b1

(⊥)
−−−−−−−−−→B1 ,0〉 〈C1

writeb1 (>)−−−−−−−−−→D1 ,0〉 〈D0
read−1b1

(⊥)
−−−−−−−−−→R0 ,2〉

• while maintaining abstract configuration

Polynomial space suffices thanks to visibility window w
Ï information propagation when inserting moves of round k and

forgetting moves of rounds k −w−1

applies to prove safety (agreement and validity) of Aspnes’ algorithm

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 23 / 26

Checking parameterized safety in PSPACE

Proof high-level idea: iteratively on rounds
• guess a feasible sequence of moves leading to an error state

〈A0
read0b0

(⊥)
−−−−−−−−−→B0 ,0〉 〈E0 Inc−−→A0 ,0〉 〈B0

read0b1
(⊥)

−−−−−−−−−→C0 ,1〉 〈C0
writeb0 (>)−−−−−−−−−→D0 ,0〉

〈E0 Inc−−→A0 ,1〉 〈B0
read−1b1

(⊥)
−−−−−−−−−→C0 ,2〉 〈C0

writeb0 (>)−−−−−−−−−→D0 ,2〉 〈E0 Inc−−→A0 ,1〉

〈A1
read0b1

(⊥)
−−−−−−−−−→B1 ,0〉 〈C1

writeb1 (>)−−−−−−−−−→D1 ,0〉 〈D0
read−1b1

(⊥)
−−−−−−−−−→R0 ,2〉

• while maintaining abstract configuration

Polynomial space suffices thanks to visibility window w
Ï information propagation when inserting moves of round k and

forgetting moves of rounds k −w−1

applies to prove safety (agreement and validity) of Aspnes’ algorithm

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 23 / 26

Checking parameterized safety in PSPACE

Proof high-level idea: iteratively on rounds
• guess a feasible sequence of moves leading to an error state

〈A0
read0b0

(⊥)
−−−−−−−−−→B0 ,0〉 〈E0 Inc−−→A0 ,0〉 〈C0

writeb0 (>)−−−−−−−−−→D0 ,0〉

〈A1
read0b1

(⊥)
−−−−−−−−−→B1 ,0〉 〈C1

writeb1 (>)−−−−−−−−−→D1 ,0〉
• while maintaining abstract configuration

Polynomial space suffices thanks to visibility window w
Ï information propagation when inserting moves of round k and

forgetting moves of rounds k −w−1

applies to prove safety (agreement and validity) of Aspnes’ algorithm

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 23 / 26

Checking parameterized safety in PSPACE

Proof high-level idea: iteratively on rounds
• guess a feasible sequence of moves leading to an error state

〈A0
read0b0

(⊥)
−−−−−−−−−→B0 ,0〉 〈E0 Inc−−→A0 ,0〉 〈B0

read0b1
(⊥)

−−−−−−−−−→C0 ,1〉 〈C0
writeb0 (>)−−−−−−−−−→D0 ,0〉

〈E0 Inc−−→A0 ,1〉 〈E0 Inc−−→A0 ,1〉

〈A1
read0b1

(⊥)
−−−−−−−−−→B1 ,0〉 〈C1

writeb1 (>)−−−−−−−−−→D1 ,0〉
• while maintaining abstract configuration

Polynomial space suffices thanks to visibility window w
Ï information propagation when inserting moves of round k and

forgetting moves of rounds k −w−1

applies to prove safety (agreement and validity) of Aspnes’ algorithm

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 23 / 26

Checking parameterized safety in PSPACE

Proof high-level idea: iteratively on rounds
• guess a feasible sequence of moves leading to an error state

〈A0
read0b0

(⊥)
−−−−−−−−−→B0 ,0〉 〈E0 Inc−−→A0 ,0〉 〈B0

read0b1
(⊥)

−−−−−−−−−→C0 ,1〉 〈C0
writeb0 (>)−−−−−−−−−→D0 ,0〉

〈E0 Inc−−→A0 ,1〉 〈B0
read−1b1

(⊥)
−−−−−−−−−→C0 ,2〉 〈C0

writeb0 (>)−−−−−−−−−→D0 ,2〉 〈E0 Inc−−→A0 ,1〉

〈A1
read0b1

(⊥)
−−−−−−−−−→B1 ,0〉 〈C1

writeb1 (>)−−−−−−−−−→D1 ,0〉 〈D0
read−1b1

(⊥)
−−−−−−−−−→R0 ,2〉

• while maintaining abstract configuration

Polynomial space suffices thanks to visibility window w
Ï information propagation when inserting moves of round k and

forgetting moves of rounds k −w−1

applies to prove safety (agreement and validity) of Aspnes’ algorithm

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 23 / 26

Checking parameterized safety in PSPACE

Proof high-level idea: iteratively on rounds
• guess a feasible sequence of moves leading to an error state

〈A0
read0b0

(⊥)
−−−−−−−−−→B0 ,0〉 〈E0 Inc−−→A0 ,0〉 〈B0

read0b1
(⊥)

−−−−−−−−−→C0 ,1〉 〈C0
writeb0 (>)−−−−−−−−−→D0 ,0〉

〈E0 Inc−−→A0 ,1〉 〈B0
read−1b1

(⊥)
−−−−−−−−−→C0 ,2〉 〈C0

writeb0 (>)−−−−−−−−−→D0 ,2〉 〈E0 Inc−−→A0 ,1〉

〈A1
read0b1

(⊥)
−−−−−−−−−→B1 ,0〉 〈C1

writeb1 (>)−−−−−−−−−→D1 ,0〉 〈D0
read−1b1

(⊥)
−−−−−−−−−→R0 ,2〉

• while maintaining abstract configuration

Polynomial space suffices thanks to visibility window w
Ï information propagation when inserting moves of round k and

forgetting moves of rounds k −w−1

applies to prove safety (agreement and validity) of Aspnes’ algorithm

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 23 / 26

Checking parameterized safety in PSPACE

Proof high-level idea: iteratively on rounds
• guess a feasible sequence of moves leading to an error state

〈B0
read0b1

(⊥)
−−−−−−−−−→C0 ,1〉

〈E0 Inc−−→A0 ,1〉 〈B0
read−1b1

(⊥)
−−−−−−−−−→C0 ,2〉 〈C0

writeb0 (>)−−−−−−−−−→D0 ,2〉 〈E0 Inc−−→A0 ,1〉

〈D0
read−1b1

(⊥)
−−−−−−−−−→R0 ,2〉

• while maintaining abstract configuration

Polynomial space suffices thanks to visibility window w
Ï information propagation when inserting moves of round k and

forgetting moves of rounds k −w−1

applies to prove safety (agreement and validity) of Aspnes’ algorithm

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 23 / 26

Checking parameterized safety in PSPACE

Proof high-level idea: iteratively on rounds
• guess a feasible sequence of moves leading to an error state

〈B0
read0b1

(⊥)
−−−−−−−−−→C0 ,1〉

〈E0 Inc−−→A0 ,1〉 〈B0
read−1b1

(⊥)
−−−−−−−−−→C0 ,2〉 〈C0

writeb0 (>)−−−−−−−−−→D0 ,2〉 〈E0 Inc−−→A0 ,1〉

〈D0
read−1b1

(⊥)
−−−−−−−−−→R0 ,2〉

• while maintaining abstract configuration

Polynomial space suffices thanks to visibility window w
Ï information propagation when inserting moves of round k and

forgetting moves of rounds k −w−1

applies to prove safety (agreement and validity) of Aspnes’ algorithm

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 23 / 26

Summary

Parameterized verification techniques
Ï apply to simple standard distributed algorithms
Ï provide automated correctness proofs

in contrast to error-prone manual proofs and non-exhaustive simulation

Ï This talk: round-based algorithms
1. fault-tolerant broadcast algorithms

[B. Thomas Widder Concur’21]
• layered threshold automata
• undecidable in general
• predicate abstraction: incomplete yet refinable analysis

2. shared-memory algorithms
[B. Markey Sankur Waldburger, submitted]

• shared-registers automata
• safety verification is PSPACE-complete
• exponential cutoff, minimal covering length, and drift

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 24 / 26

Summary

Parameterized verification techniques
Ï apply to simple standard distributed algorithms
Ï provide automated correctness proofs

in contrast to error-prone manual proofs and non-exhaustive simulation

Ï This talk: round-based algorithms
1. fault-tolerant broadcast algorithms

[B. Thomas Widder Concur’21]
• layered threshold automata
• undecidable in general
• predicate abstraction: incomplete yet refinable analysis

2. shared-memory algorithms
[B. Markey Sankur Waldburger, submitted]

• shared-registers automata
• safety verification is PSPACE-complete
• exponential cutoff, minimal covering length, and drift

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 24 / 26

Other parameterized verification frameworks
for distributed algorithms

Ï threshold automata [Konnov Lazić Veith Widder POPL’17]
Ï broadcast protocols [Esparza Finkel Mayr LICS’99]

[Delzanno Sangnier Zavattaro Concur’10]
Ï global sync. protocols [Jaber Jacobs Wagner Kulkarni Samanta CAV’20]
Ï shared-memory models [Esparza Ganty Majumdar JACM 2016]

[Bouyer Markey Randour Sangnier Stan ICALP’16]
Ï token-passing algorithms on lines/rings [Lin Rümmer CAV’16]
Ï population protocols [Esparza Ganty Leroux Majumdar Acta Inf. 2017]
Ï synchronous algorithms on rings [Aiswarya Bollig Gastin I&C 2018]

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 25 / 26

Special thanks to

Arnaud Sangnier Josef Widder

Distributed algorithms raise
fun challenges for model checking!

Thanks for your attention

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 26 / 26

Special thanks to

Arnaud Sangnier Josef Widder

Distributed algorithms raise
fun challenges for model checking!

Thanks for your attention

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 26 / 26

Special thanks to

Arnaud Sangnier Josef Widder

Distributed algorithms raise
fun challenges for model checking!

Thanks for your attention

Parameterized verification for distributed algorithms – N. Bertrand April 5th 2022 – FoSSaCS’22 invited talk – 26 / 26

	Model checking distributed algorithms
	Parameterized verification for distributed algorithms
	Verification of round-based consensus algorithms
	Fault-tolerant broadcast algorithms
	Shared-memory algorithms

	Conclusion

