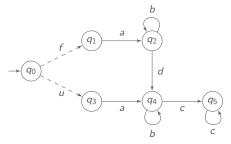
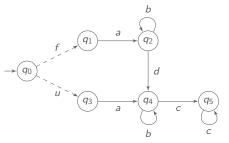
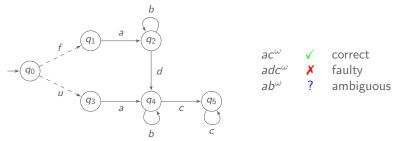
Active diagnosis for probabilistic systems


Nathalie Bertrand, Éric Fabre, Stefan Haar, Serge Haddad, Loïc Hélouët

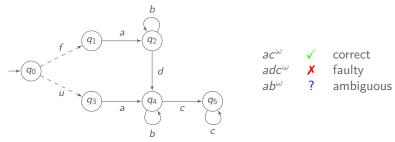
Objective: tell whether a fault occurred, based on observations.



Objective: tell whether a fault occurred, based on observations.



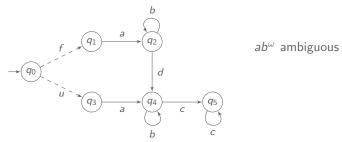
Objective: tell whether a fault occurred, based on observations.


Objective: tell whether a fault occurred, based on observations.

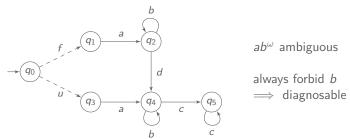
convergence hyp.: no infinite sequence of unobservable events

Objective: tell whether a fault occurred, based on observations.

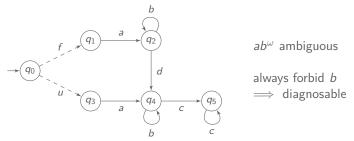
convergence hyp.: no infinite sequence of unobservable events


Diagnosability: all infinite observed sequences are unambiguous.

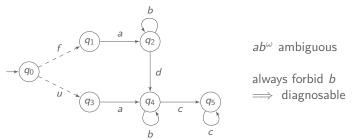
Objective: control the system so that it is diagnosable



Objective: control the system so that it is diagnosable



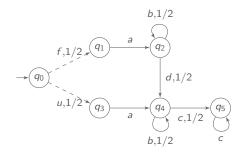
Objective: control the system so that it is diagnosable



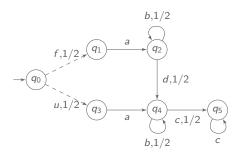
Objective: control the system so that it is diagnosable

Controller: based on observation, decides which actions are allowed $\sigma: \Sigma_{\mathsf{obs}}^* \to 2^{\Sigma_{\mathsf{cont}}}$ (Σ_{cont} controllable actions)

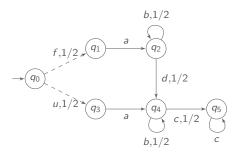
Objective: control the system so that it is diagnosable

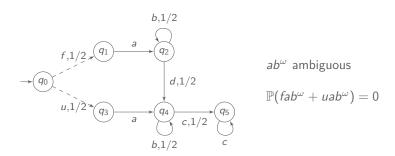

Controller: based on observation, decides which actions are allowed $\sigma: \Sigma_{\text{obs}}^* \to 2^{\Sigma_{\text{cont}}}$ (Σ_{cont} controllable actions)

Active diagnosis problem

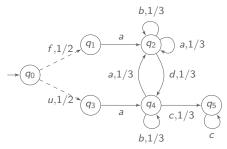

does there exist a controller such that the system is diagnosable?

caution: the system must remain live.

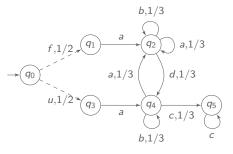



 ab^{ω} ambiguous

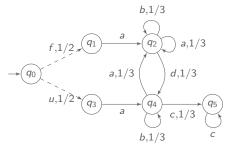
 ab^{ω} ambiguous


$$\mathbb{P}(fab^{\omega} + uab^{\omega}) = 0$$

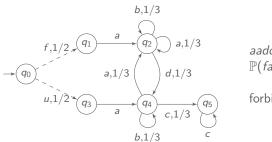
Almost-sure diagnosability: almost all runs have unambiguous observation



Objective: control the system so that it is almost-surely diagnosable



Objective: control the system so that it is almost-surely diagnosable


 $aadc^{\omega}$ ambiguous $\mathbb{P}(faadc^{\omega} + uaadc^{\omega}) > 0$

Objective: control the system so that it is almost-surely diagnosable

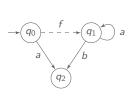
 $aadc^\omega$ ambiguous $\mathbb{P}(faadc^\omega + uaadc^\omega) > 0$ forbid a after first a

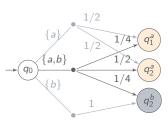
Objective: control the system so that it is almost-surely diagnosable

 $aadc^\omega$ ambiguous $\mathbb{P}(faadc^\omega + uaadc^\omega) > 0$ forbid a after first a

Active probabilistic diagnosis problem

does there exist a controller such that the system is almost-surely diagnosable?

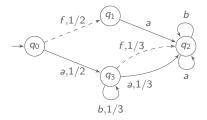

The active probabilistic diagnosis problem is **EXPTIME-complete**.



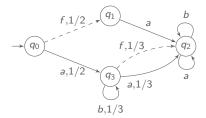
The active probabilistic diagnosis problem is **EXPTIME-complete**.

Proof idea (upper bound)

- ▶ characterize unambiguous sequences by deterministic Büchi automaton \mathcal{B} [HHMS-fsttcs13]
- \blacktriangleright build the product of probabilistic LTS with ${\cal B}$
- ▶ view it as POMDP P

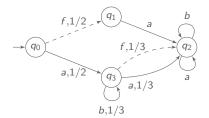

► decide whether there is an almost-surely winning strategy for the Büchi condition on \mathcal{P} [BBG-fossacs08,CDGH-mfcs10]

Objective: avoid fault-provocative controllers


Objective: avoid fault-provocative controllers

all observed sequences ambiguous

Objective: avoid fault-provocative controllers



all observed sequences ambiguous

forbid a after first a \implies diagnosable... but almost all sequences faulty!

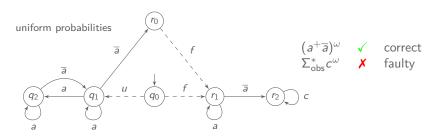
Objective: avoid fault-provocative controllers

all observed sequences ambiguous

forbid a after first a \implies diagnosable... but almost all sequences faulty!

Safe active probabilistic diagnosis

does there exist a controller such that the system is almost-surely diagnosable **and** correct runs have positive probability?


Safe active probabilistic diagnosis – beliefs are not enough!

Infinite memory is needed for safe probabilistic diagnosis.

Safe active probabilistic diagnosis – beliefs are not enough!

Infinite memory is needed for safe probabilistic diagnosis.

- ► Safe controller: infinitely many \overline{a} 's to diagnose all faults... but not too often, to have non-negligible correct runs
- ► Finite-memory controllers almost-surely force a fault.

The safe active probabilistic diagnosis problem is undecidable.

The safe active probabilistic diagnosis problem is undecidable.

Proof idea

- reduction from the existence, in a blind POMDP, of a strategy ensuring a Büchi objective with positive probability
- mimicking example where infinite-memory is needed

The safe active probabilistic diagnosis problem is undecidable.

Proof idea

- reduction from the existence, in a blind POMDP, of a strategy ensuring a Büchi objective with positive probability
- mimicking example where infinite-memory is needed

New result for POMDP

The existence of a strategy ensuring a Büchi objective almost-surely and a safety objective with positive probability is undecidable.

while independently, both problems are decidable

Conclusion

Summary

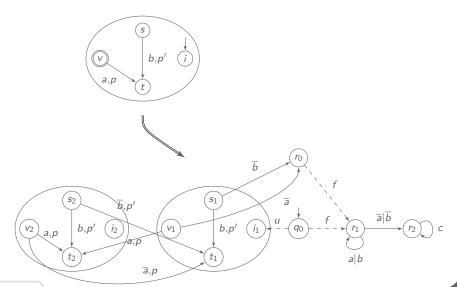
- ▶ (safe) active diagnosis problem for probabilistic systems
- partially observable Markov decision process framework
- active probabilistic diagnosis EXPTIME-complete
- safe active probabilistic diagnosis
 - undecidable in general
 - ► EXPTIME-complete for **finite memory** controllers (new result)

Conclusion

Summary

- ▶ (safe) active diagnosis problem for probabilistic systems
- partially observable Markov decision process framework
- active probabilistic diagnosis EXPTIME-complete
- safe active probabilistic diagnosis
 - undecidable in general
 - ► EXPTIME-complete for **finite memory** controllers (new result)

Future work


- combinations of objectives for POMDP
- towards quantitative questions
- predictability for probabilistic systems

Thanks for your attention

Details for the undecidability proof

