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Motivations

Various applications call for models with real time and probabilities
I clock synchronisation protocols
I root contention protocol
I CSMA: random backoff retransmission time
I molecular reactions
I thermostatically controlled loads
I etc.

Models from the literature combining real time and probabilities
I CTMC
I generalized semi-Markov processes
I stochastic timed automata
I Markov automata
I stochastic differential equations
I continuous-space pure jump Markov processes
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Example

Generalized semi-Markov process for a 2-machine network
I crash events follow exponential distribution
I reboot events follow a uniform distribution

M1 up
M2 up{crash1, crash2}

M1 down
M2 down {reboot1, reboot2}

M1 up
M2 down

{reboot1, crash2}

M1 down
M2 up

{crash1, reboot2}

crash2

crash1 crash2

crash1

reboot2

reboot1 reboot2

reboot1

In state (M1 up, M2 down)
. delays are sampled for events crash1 and reboot2

. race condition determines next state
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Real-time stochastic systems

Challenges
I intricate combination of dense time and probabilities
I uncountable state-space
I uncountable branching
I countinuous probability distributions

Model checking objectives
I qualitative: decide if probability of a given property is 1
I quantitative: compute the probability of a given property, or

approximate it with arbitrary precision
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Discrete-time Markov chains

Discrete-time Markov chain (DTMC)
M = (S, s0, δ) with δ : S → Dist(S)

Examples:
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Finite DTMC - Quantitative model checking

Aim: Compute probability of reachability property FGoal

For state s ∈ S, let xs = Ps(FGoal).

xs =


xs = 1 if s ∈ Goal
xs = 0 if s 6|= ∃FGoal
xs =

∑
t∈S P(s, t) xt otherwise.

→ resolution of a system of linear equations
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Countable DTMC - Quantitative model checking

Aim: Compute probability of reachability property FGoal
Trap = {s ∈ S | s 6|= ∃FGoal}

Approximation scheme [IN97]
given precision ε{

pyes
n = Ps0 (F≤nGoal)

pno
n = Ps0 (¬Goal U≤nTrap)

until pyes
n + pno

n ≥ 1− ε

s

G T
s ′

α1 α2

α3

pyes
1 ≤ P(s |= FGoal) ≤ 1− pno

1

G T
s ′′

β1

β3

β2pyes
2 ≤ P(s |= FGoal) ≤ 1− pno

2

Does it terminate?
[IN97] P. Iyer and M. Narasimha. Probabilistic lossy channel systems. TAPSOFT’97, LNCS 1214, 667–681.
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Non-converging example

s1 s2

2
3

s0

1
3

· · ·

2
3

1
3

1

1
3

For Goal = {s0}
I Trap = ∅, thus ∀n, pno

n = Ps1 (F≤nTrap) = 0
I Ps1 (FGoal) = 2

3 , thus ∀n, pyes
n ≤ 2

3
I pyes

n + pno
n ≤ 2

3
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Decisiveness

Decisiveness [ABM07]
M is decisive w.r.t. Goal if ∀s ∈ S, Ps(FGoal ∨ FTrap) = 1

Examples of decisive Markov chains:
finite Markov chains, probabilistic lossy channel systems, probabilistic
vector addition systems, noisy Turing machines

Counterexample:

s1 s2

2
3

s0

1
3

· · ·

2
3

1
3

1

1
3

not decisive w.r.t. Goal = {s0}
since Ps1 (FGoal ∨ FTrap) = 2

3

Termination for decisive Markov chains [ABM07]
If M is decisive w.r.t. Goal, then the approximation scheme is correct
and terminates.

[ABM07] P.A. Abdulla, N. Ben Henda, R. Mayr: Decisive Markov Chains. LMCS 3(4) (2007)
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Beyond reachability - repeated reachability

Aim: Compute probability of repeated reachability property GFGoal

variant of approximation scheme using coTrap = {s ∈ S | s 6|= ∃FTrap}

Approximation scheme
given precision ε {

qyes
n = Ps0 (F≤ncoTrap)

qno
n = Ps0 (F≤nTrap)

until qyes
n + qno

n ≥ 1− ε

qyes
n ≤ Ps0 (GFGoal) ≤ 1− qno

n

Termination for decisive Markov chains
If M is decisive w.r.t. Goal and Trap, the approximation scheme is
correct and terminates.
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Beyond reachability - ω-regular properties

Aim: Compute probability of Muller property Inf ∈ F

Attractor
Attr is an attractor for M if ∀s ∈ S, Ps(FAttr) = 1

M admits a finite attractor Attr =⇒ M is decisive w.r.t. any Goal

. From Attr build Graph(Attr) and compute its BSCCs.

. Identify BSCC that are good regarding the Muller condition.

s

B C1

Cn

C1 is good iff ∃F ∈ F
∀q (C1 →? q)⇒ (q ∈ F )
∀q (q ∈ F )⇒ (q →? C1)

. Ps(Inf ∈ F) =
∑

C Good BSCC Ps(FC).
. Use approximation scheme to compute Ps(FC)

[ABRS05] P. A. Abdulla, NB, A. Rabinovich, P. Schnoebelen: Verification of probabilistic systems with faulty communication. I&C, 2005.
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Stochastic transitions systems

Stochastic transition systems (STS)
T = (S,Σ, κ) with (S,Σ) a measurable space and κ : S × Σ→ [0, 1]
a Markov kernel such that ∀s ∈ S, κ(s, ·) ∈ Dist(S)

Examples of STS
I countable Markov chains: Σ = 2S

I continuous time Markov chains (CTMC)
I stochastic timed automata
I generalised semi-Markov processes
I etc.
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Stochastic timed automata

Stochastic timed automata (STA):
timed automata with random delays

`0

x≤1

`1

`2

`3

e1

e0, x :=0 e2,x<1

e3,x≥1

distrib. on possible delays
uniform distribution in `0
exponential distribution in `1

Semantics: from state s
1. pick a delay τ following the distribution
2. choose at random an edge enabled at s + τ

STA remedy artefacts of standard timed automata such as
I arbitrary precision
I time-convergence

Markov models with uncountable state-space; real-time behaviour
[BBBM+14] NB, P. Bouyer, T. Brihaye, Q. Menet et al. Stochastic timed automata. LMCS, 2014.
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Extending decisiveness beyond countable DTMC

Difficulty: s |= ∃FGoal 6⇒ Ps(FGoal) > 0

Example on STA:

`0

`1

`2

e1,x<1

e2,x=1

I (`0, 0) |= ∃F(`3, ·)
I P(`0,0)(F(`3, ·)) = 0

→ trap must be redefined: Trap = {s ∈ S | Ps(FGoal) = 0}

Decisiveness
T is decisive w.r.t. Goal if ∀µ ∈ Dist(S), Pµ(FGoal ∨ FTrap) = 1

How to check decisiveness?
How to perform qualitative/quantitative model checking of decisive STS?

Through the lense of an abstraction function!
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Abstractions

Abstraction
For two STS T1 = (S1,Σ1, κ1) and T2 = (S2,Σ2, κ2), and
α : (S1,Σ1)→ (S2,Σ2) a measurable function

· · ·

· · ·

· · ·

· · ·

· · ·

T1

α

T2

· · ·

· · ·

p1 > 0 p2 > 0q1 = 1 q2 = 1

I T2 is an α-abstraction of T1 whenever p1 > 0⇐⇒ p2 > 0.
I T2 is a sound α-abstraction of T1 whenever for each B ∈ Σ2:

PT2 (FB) = 1 ⇒ PT1 (Fα−1(B)) = 1
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Abstractions, decisiveness and attractors

Example
T1

s1 s2s0 · · ·

p1

1−p11−p1

1−p1

p1 p1

1−p1

T2

s0 s1 s2 · · ·1−p2

p2

1−p2

p2

1−p2

p2

1−p2

α(si ) = si , for all i ∈ N.

I T2 is an α-abstraction of T1 as soon as p1, p2 ∈ (0, 1).
I T2 is a sound α-abstraction of T1 iff (p1 >

1
2 ⇐⇒ p2 >

1
2 ).

Transferring decisiveness and attractors
If T2 is a sound α-abstraction of T1,

T2 decisive w.r.t. Goal =⇒ T1 decisive w.r.t. α−1(Goal)
Attr ∈ Σ2 attractor for T2 =⇒ α−1(Attr) attractor for T1
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Reachability model checking for decisive STS

Approximation scheme
given precision ε{

pyes
n = Ps0 (F≤nGoal)

pno
n = Ps0 (¬Goal U≤nTrap)

until pyes
n + pno

n ≥ 1− ε

Quantitative reachability analysis
Let T be a general STS. If T is decisive w.r.t. Goal, then the pyes

n
and (1−pno

n ) both converge to P(FGoal).

Applicability: the approximation scheme is effective if
I Trap can computed
I one can evaluate the values pyes

n and (1−pno
n );

i.e. one can compute (or approximate!) probabilities of cylinders of
the form Cyl(S · · · SGoal) and Cyl(¬Goal · · · ¬GoalTrap)
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Model checking ω-regular properties

Framework:
I T1 general STS
I T2 countable Markov chain with finite attractor
I T2 sound α-abstraction of T1

Model checking Muller properties
. almost-sure model checking of Muller property in T1 reduces to

almost-sure model checking of reachability property in T2;
. computation of the probability of Muller property on T1 reduces to

computation of a reachability probability in T1.
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Tameable stochastic timed automata

Natural abstraction: Markov chain build on region automaton

STA with an attractor
I single-clock STA

Attr = {(`, 0)} ∪ {(`, r) | ∀(`, r)→∗ (`′, r ′), r ′ = r}

I reactive STA, i.e. STA where from every state all delays are possible

Attr = {(`, r) | ∀x , x = 0 or x > M in r}

Model checking STA
I we recover all known decidability/approximability results...
I ... and extend them! (e.g. Muller properties)
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Beyond tameable STA
Finding sound abstractions that are decisive is non trivial...

`0

x=0
0<y<1

`1 `2`3`4
y < 1 y = 1

y := 0

x > 1 ∧ y < 1
x := 0

1 < y < 2y = 2
y := 0

x > 2 ∧ y < 1
x := 0

Converging phenomenon:
on entering `0 the value of clock y increases → P(F`2) < 1
First attempt

(`0, r0) (`1, r1) (`2, r2)(`3, r3)(`4, r4)

T2

1
2

1
2

→ PT2
q (F`2) = 1. not sound!

Second attempt
(`0, r0) (`1, r1) (`2, r2)(`3, r3)(`4, r4)

T2

1
2n1− 1

2n

→ PT2
q (F`2) < 1. not decisive!
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Contributions

I decisiveness and attractor notions for general stochastic systems
I generic approach to analysing countinuous stochastic systems

I algorithms for qualitative model checking
I approximation schemes for quantitative model checking

I application to subclasses of real-time systems
I stochastic timed automata
I generalised semi-Markov processes
I stochastic time Petri nets

I recovering and extending known results from the literature

→ more results and all technical details in the article
NB, Patricia Bouyer, Thomas Brihaye and Pierre Carlier

When are Stochastic Transition Systems Tameable?
JLAMP 2018
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Future work

I applicability to other classes of systems
I candidate: timed lossy channel systems

I convergence speed of the approximation schemes
I beyond purely stochastic systems

I decisiveness of Markov decision processes; already for countable
MDP!

I compositionality of the approach

Dank U!
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