Playing optimally on Timed Automata with Random Delays

Nathalie Bertrand and Sven Schewe

Inria Rennes - University of Liverpool

Formats 2012

1 Stochastic timed automata

2 The TAMDP model

3 Existence of optimal schedulers

Timed automata with random delays and random actions.

Semantics: from any state

- **1** sample a delay, according to a fixed probability distribution
- 2 select randomly an enabled edge
 - → Infinite-state Markov chain.

Timed automata with random delays and random actions.

Semantics: from any state

- 1 sample a delay, according to a fixed probability distribution
- 2 select randomly an enabled edge
 - → Infinite-state Markov chain.

uniform distributions on delays and actions

Timed automata with random delays and random actions.

Semantics: from any state

- 1 sample a delay, according to a fixed probability distribution
- 2 select randomly an enabled edge
 - → Infinite-state Markov chain.

almost-surely "G green" is satisfied

Almost-sure model checking Is φ almost-surely is satisfied?

Almost-sure model checking Is φ almost-surely is satisfied?

Decidability of almost-sure model-checking

One can decide whether $\mathbb{P}(\varphi) = 1$ if

- safety properties, or
- 1-clock timed automaton, or
- reactive timed automata

Almost-sure model checking Is φ almost-surely is satisfied?

Decidability of almost-sure model-checking

One can decide whether $\mathbb{P}(\varphi) = 1$ if

- safety properties, or
- 1-clock timed automaton, or
- reactive timed automata

Technique: build an equivalent discrete finite-state Markov chain.

Almost-sure model checking Is φ almost-surely is satisfied?

Decidability of almost-sure model-checking

One can decide whether $\mathbb{P}(\varphi) = 1$ if

- safety properties, or
- 1-clock timed automaton, or
- reactive timed automata

Technique: build an equivalent discrete finite-state Markov chain.

Extends to quantitative properties for 1-clock timed automata under some additional assumptions.

STA as modelling formalism

IP address allocation protocol

device entering a network

- selects an IP at random
- sends message to find out whether the IP is already taken

STA as modelling formalism

IP address allocation protocol

device entering a network

- selects an IP at random
- sends message to find out whether the IP is already taken

Stochastic timed automata

2 The TAMDP model

3 Existence of optimal schedulers

4 Towards extensions

6 Concluding remarks

Timed automata Markov decision processes

From any state,

- **1** sample a delay, according to a fixed probability distribution
- 2 select an enabled action

From any state,

- 1 sample a delay, according to a fixed probability distribution
- 2 select an enabled action

Assumptions

- reactive timed automaton for every state and every delay, some action is enabled
- exponential distributions on delays

Timed automata Markov decision processes

From any state,

- 1 sample a delay, according to a fixed probability distribution
- 2 select an enabled action

Assumptions

- reactive timed automaton for every state and every delay, some action is enabled
- exponential distributions on delays

Timed automata Markov decision processes

From any state,

- 1 sample a delay, according to a fixed probability distribution
- 2 select an enabled action

Assumptions

- reactive timed automaton for every state and every delay, some action is enabled
- exponential distributions on delays

Special cases CTMDP = TAMDP without clocks STA = TAMDP with a single action

Scheduler

- resolves non-determinism
- associates with each prefix run and delay, a distribution over enabled actions

 $\sigma: \mathsf{Runs}(\mathcal{M}) \times \mathbb{R}_{\geq 0} \to \mathsf{Dist}(\mathsf{Act})$

Late scheduler: decision is made right before discrete transition

Scheduler

- resolves non-determinism
- associates with each prefix run and delay, a distribution over enabled actions

 $\sigma: \mathsf{Runs}(\mathcal{M}) \times \mathbb{R}_{\geq 0} \to \mathsf{Dist}(\mathsf{Act})$

Late scheduler: decision is made right before discrete transition

Given TAMDP \mathcal{M}, σ defines a probability measure \mathbb{P}_{σ} over runs.

Measurability constraints on σ to be well-defined

Problem statement

Paths reaching goal G within T, from (ℓ_0, v_0)

$$\mathsf{Reach}_{\mathcal{M}}(\ell, v, G, T) = \{ (\ell_0, v_0) \xrightarrow{t_0, e_0, p_0} (\ell_1, v_1) \cdots (\ell_n, v_n) | \\ \exists i \le n, \ \ell_i \in G \text{ and } \sum_{j < i} t_j \le T \}.$$

Optimal probability

$$\operatorname{Opt}_{\mathcal{M}}(\ell, v, G, T) = \sup_{\sigma} \mathbb{P}_{\sigma}(\operatorname{Reach}_{\mathcal{M}}(\ell, v, G, T)).$$

Problem statement

Paths reaching goal G within T, from (ℓ_0, v_0)

$$\begin{aligned} \mathsf{Reach}_{\mathcal{M}}(\ell, v, G, T) &= \{ (\ell_0, v_0) \xrightarrow{t_0, e_0, p_0} (\ell_1, v_1) \cdots (\ell_n, v_n) | \\ \exists i \leq n, \ \ell_i \in G \ \text{and} \ \sum_{j < i} t_j \leq T \}. \end{aligned}$$

Optimal probability

$$\operatorname{Opt}_{\mathcal{M}}(\ell, v, G, T) = \sup_{\sigma} \mathbb{P}_{\sigma}(\operatorname{Reach}_{\mathcal{M}}(\ell, v, G, T)).$$

Fundamental questions

- Is the optimal realized? sup = max?
- For what class of schedulers?

Stochastic timed automata

2 The TAMDP model

3 Existence of optimal schedulers

4 Towards extensions

5 Concluding remarks

Approximations from below

Paths reaching G within T and in less than N discrete steps Reach^N(ℓ , v, G, T)

 $\operatorname{Opt}^{N}_{\mathcal{M}}(\ell, v, G, T) = \sup_{\sigma} \mathbb{P}_{\sigma}(\operatorname{Reach}^{N}_{\mathcal{M}}(\ell, v, G, T)).$

Approximations from below

Paths reaching G within T and in less than N discrete steps Reach^N(ℓ , v, G, T)

$$\operatorname{Opt}^{N}_{\mathcal{M}}(\ell, v, G, T) = \sup_{\sigma} \mathbb{P}_{\sigma}(\operatorname{Reach}^{N}_{\mathcal{M}}(\ell, v, G, T)).$$

Optimal probability is the limit of step-bounded optimals $\lim_{N\to\infty} \operatorname{Opt}^N_{\mathcal{M}}(\ell, v, G, T) = \operatorname{Opt}_{\mathcal{M}}(\ell, v, G, T)$

Approximations from below

Paths reaching G within T and in less than N discrete steps Reach^N(ℓ , v, G, T)

$$\operatorname{Opt}^{N}_{\mathcal{M}}(\ell, v, G, T) = \sup_{\sigma} \mathbb{P}_{\sigma}(\operatorname{Reach}^{N}_{\mathcal{M}}(\ell, v, G, T)).$$

Optimal probability is the limit of step-bounded optimals $\lim_{N\to\infty} \operatorname{Opt}^N_{\mathcal{M}}(\ell, v, G, T) = \operatorname{Opt}_{\mathcal{M}}(\ell, v, G, T)$

Sketch

fix scheduler σ ε-optimal

$$\mathbb{P}_{\sigma}(\mathsf{Reach}_{\mathcal{M}}) \geq \mathsf{Opt}_{\mathcal{M}} - \varepsilon$$

▶ fix step-bound *N* s.t.

$$\mathbb{P}_{\sigma}(\mathsf{Reach}_{\mathcal{M}}^{N}) \geq \mathbb{P}_{\sigma}(\mathsf{Reach}_{\mathcal{M}}) - \varepsilon$$

Properties

Characterization

 $Opt_{\mathcal{M}}^{0}(\ell, v, G, T) = 0 \text{ if } \ell \notin G$ $Opt_{\mathcal{M}}^{N}(\ell, v, G, T) = 1 \text{ if } \ell \in G$ $Opt_{\mathcal{M}}^{N+1}(\ell, v, G, T) = \int_{0}^{T} \max_{\substack{e \in E \\ (\ell, v) \longrightarrow (\ell', v')}} p \cdot Opt_{\mathcal{M}}^{N}(\ell', v', G, T - t) \cdot \Lambda(\ell) \cdot e^{-\Lambda(\ell)t} dt$

Properties

Characterization

$$Opt^{0}_{\mathcal{M}}(\ell, v, G, T) = 0 \text{ if } \ell \notin G$$
$$Opt^{N}_{\mathcal{M}}(\ell, v, G, T) = 1 \text{ if } \ell \in G$$
$$Opt^{N+1}_{\mathcal{M}}(\ell, v, G, T) = \int_{0}^{T} \max_{\substack{e \in E \\ (\ell, v) \longrightarrow (\ell', v')}} p \cdot Opt^{N}_{\mathcal{M}}(\ell', v', G, T - t) \cdot \Lambda(\ell) \cdot e^{-\Lambda(\ell)t} dt$$

Uniform continuity

 $Opt_{\mathcal{M}}(\ell, v + t, G, T - t)$ is uniformly continuous in *t* and *v*.

Properties

Characterization

$$Opt^{0}_{\mathcal{M}}(\ell, v, G, T) = 0 \text{ if } \ell \notin G$$
$$Opt^{N}_{\mathcal{M}}(\ell, v, G, T) = 1 \text{ if } \ell \in G$$
$$Opt^{N+1}_{\mathcal{M}}(\ell, v, G, T) = \int_{0}^{T} \max_{\substack{e \in E \\ (\ell, v) \longrightarrow (\ell', v')}} p \cdot Opt^{N}_{\mathcal{M}}(\ell', v', G, T - t) \cdot \Lambda(\ell) \cdot e^{-\Lambda(\ell)t} dt$$

Uniform continuity

 $Opt_{\mathcal{M}}(\ell, v + t, G, T - t)$ is uniformly continuous in *t* and *v*.

Key idea for uniform continuity in v

•
$$\operatorname{Opt}_{\mathcal{M}}^{N+1}(\ell, v) - \operatorname{Opt}_{\mathcal{M}}^{N+1}(\ell, w) = \int \max_{(\ell, v) \xrightarrow{t, e}} \operatorname{Opt}_{\mathcal{M}}^{N} \cdots - \int \max_{(\ell, w) \xrightarrow{t, e}} \operatorname{Opt}_{\mathcal{M}}^{N} \cdots$$

- bound the measure μ of delays for which enabled edges differ

$$||v - w|| < \delta \quad \Rightarrow \quad m < n \lceil T \rceil \delta$$

Existence of optimal schedulers

Optimal schedulers exist

For every TAMDP M, reachability goal G and time-bound T, there exists a measurable scheduler σ such that:

 $\mathbb{P}_{\sigma}(\mathsf{Reach}_{\mathcal{M}}(\ell_0, 0^X, G, T)) = \mathsf{Opt}_{\mathcal{M}}(\ell_0, 0^X, G, T).$

Existence of optimal schedulers

Optimal schedulers exist

For every TAMDP M, reachability goal G and time-bound T, there exists a measurable scheduler σ such that:

 $\mathbb{P}_{\sigma}(\mathsf{Reach}_{\mathcal{M}}(\ell_0, 0^X, G, T)) = \mathsf{Opt}_{\mathcal{M}}(\ell_0, 0^X, G, T).$

Illustration of the proof

- ► D_a area in Tⁿ⁺¹ where action a is optimal
- by continuity, a is also optimal on D
 _a
- arbitrary order on actions as tie-breaker

Existence of optimal schedulers

Optimal schedulers exist

For every TAMDP M, reachability goal G and time-bound T, there exists a measurable scheduler σ such that:

 $\mathbb{P}_{\sigma}(\mathsf{Reach}_{\mathcal{M}}(\ell_0, 0^X, G, T)) = \mathsf{Opt}_{\mathcal{M}}(\ell_0, 0^X, G, T).$

Illustration of the proof

- ► D_a area in Tⁿ⁺¹ where action a is optimal
- by continuity, a is also optimal on D
 _a
- arbitrary order on actions as tie-breaker

- non-constructive existence proof
- provides a memoryless deterministic measurable scheduler

Stochastic timed automata

2 The TAMDP model

3 Existence of optimal schedulers

5 Concluding remarks

Time unbounded reachability

Optimal schedulers may not exist for time unbounded reachability.

Optimal schedulers may not exist for time unbounded reachability.

• In ℓ_1 , the smaller x the greater the probability.

Optimal schedulers may not exist for time unbounded reachability.

- In ℓ_1 , the smaller x the greater the probability.
- In ℓ₀, for any sampled delay t > 0, a smaller delay can eventually be obtained by looping on ℓ₀.

Simpler schedulers

Optimal polyhedral schedulers may not exist.

constant rate $\Lambda = 1$ time-bound T = 1

Simpler schedulers

Timed automata MDP model

- random delays and nondeterministic actions
- encompass CTMDPs and stochastic timed automata

- Timed automata MDP model
 - random delays and nondeterministic actions
 - encompass CTMDPs and stochastic timed automata
- Other real-time models with probabilities and non-determinism
 - Stochastic timed games
 [BF-icalp09]
 turn-based game between 2 players (choosing delays and actions)
 in a randomized environment
 - Stochastic real-time games [BKKKR-concur10] CTMDPs with an objective given by a deterministic timed automaton
 - Markovian timed automata [CHKM-lics11&rp11&cdc11] Timed automata with exponentially distributed sojourn time

Contribution on TAMDP model

- existence of optimal schedulers for time-bounded reachability
- extends to 2-player games
- does not extend to time unbounded reachability
- optimal schedulers are not region-based

Contribution on TAMDP model

- existence of optimal schedulers for time-bounded reachability
- extends to 2-player games
- does not extend to time unbounded reachability
- optimal schedulers are not region-based

Open questions

- finiteness of partitionning
- decidability of existence of optimal schedulers for time-unbounded reachability
- subclasses with effective schedulers