When are timed automata determinizable?

C. Baier¹, N. Bertrand², P. Bouyer³, T. Brihaye⁴

¹Technische Universität Dresden – Germany

²INRIA Rennes Bretagne Atlantique – France

³LSV – CNRS & ENS Cachan – France

⁴Université de Mons - Belgium

DistribCom Meeting – February 27th 2009

- Timed automata
- 2 A determinization procedure
 - Unfolding into an infinite tree
 - Region equivalence
 - Symbolic determinization
 - Clock reduction
 - Location reduction
- Summary

Syntax and semantics

Timed automata

A timed automaton is a tuple $A = (L, \Sigma, X, E)$ with

- ► L finite set of locations ► X finite set of clocks
- ▶ Σ finite alphabet $E \subseteq L \times \Sigma \times \mathcal{G} \times 2^X \times L$ set of edges where $\mathcal{G} = \{ \bigwedge x \sim c \mid x \in X, c \in \mathbb{N} \}$ is the set of guards.

States of $A: L \times (\mathbb{R}_+)^X$

Transitions between states of A:

- ▶ Delay transitions: $(\ell, v) \xrightarrow{t} (\ell, v + t)$
- ▶ Discrete transitions: $(\ell, v) \xrightarrow{a} (\ell', v')$ if $\exists (\ell, a, g, Y, \ell') \in E$ with $v \models g, v'(x) = 0$ if $x \in Y$, and v'(x) = v(x) otherwise.

Run of A:

$$(\ell_0, v_0) \xrightarrow{\tau_0} (\ell_0, v_0 + \tau_0) \xrightarrow{a_0} (\ell_1, v_1) \xrightarrow{\tau_1, a_1} (\ell_1, v_1 + \tau_1) \xrightarrow{a_1} (\ell_2, v_2) \dots$$
 or simply:
$$(\ell_0, v_0) \xrightarrow{\tau_0, a_0} (\ell_1, v_1) \xrightarrow{\tau_1, a_1} (\ell_2, v_2) \dots$$

Timed language

Timed word: $w = (a_0, t_0)(a_1, t_1) \dots (a_k, t_k)$ with $a_i \in \Sigma$ and $(t_i)_{0 \le i \le k}$ nondecreasing sequence in \mathbb{R}_+ .

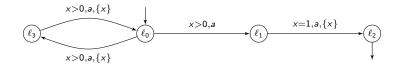
 $\mathcal{A} = (L, \ell_0, L_{acc}, \Sigma, X, E)$ timed automaton equipped with ℓ_0 initial location, and L_{acc} set of accepting locations.

Accepted timed word

A timed word $w=(a_0,t_0)(a_1,t_1)\dots(a_k,t_k)$ is accepted in \mathcal{A} , if there is a run $\rho=(\ell_0,v_0)\xrightarrow{\tau_0,a_0}(\ell_1,v_1)\xrightarrow{\tau_1,a_1}\dots(\ell_{k+1},v_{k+1})$ in \mathcal{A} with $\ell_{k+1}\in L_{acc}$, and $t_i=\sum_{j< i}\tau_j$.

Accepted timed language: $\mathcal{L}(\mathcal{A}) = \{ w \mid w \text{ accepted by } \mathcal{A} \}.$

A running example



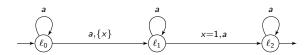
$$\mathcal{L}(A) = \{(a, t_1)(a, t_2) \cdots (a, t_{2n}) \mid 0 < t_1 < t_2 < \cdots < t_{2n-1}$$
 and $t_{2n} - t_{2n-2} = 1\}$

Deterministic timed automata

Deterministic timed automata

 \mathcal{A} is deterministic whenever for every timed word w, there is at most one initial run on w in \mathcal{A} .

Some timed automata are not determinizable [AD90].



$$\mathcal{L}(\mathcal{A}) = \{(a, t_1) \dots (a, t_n) \mid n \geq 2 \text{ and } \exists i < j \text{ s.t. } t_j - t_i = 1\}$$
 $\longrightarrow \text{ infinitely many clocks needed}$

Theorem [Finkel 06]

Checking whether a given timed automata is determinizable is undecidable.

About universality

$$\mathcal{A}$$
 is universal if $\mathcal{L}(\mathcal{A}) = (\Sigma \times \mathbb{R}_+)^*$

Theorem [AD90]

Universality is undecidable for timed automata.

However, universality is decidable for some subclasses

- event-clock timed automata [AFH94]
- one-clock timed automata [OW04]

Event-clock timed automata

For every $a \in \Sigma$ there is a clock x_a reset at each occurrence of a.

Strong timed bisimulation

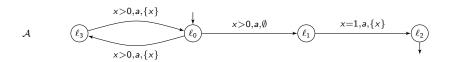
Strong timed (bi)simulation

 \mathfrak{R} is a strong timed simulation between transition systems \mathcal{T}_1 and \mathcal{T}_2 if for every $s_1 \, \mathfrak{R} \, s_2$ and $s_1 \xrightarrow{t_1,a} s_1'$ for some $t_1 \in \mathbb{R}_+$ and $a \in \Sigma$, then there exists $s_2' \in S_2$ such that $s_2 \xrightarrow{t_1,a} s_2'$ and $s_1' \, \mathfrak{R} \, s_2'$. \mathfrak{R} is a strong timed bisimulation if \mathfrak{R} and \mathfrak{R}^{-1} are strong timed simulations.

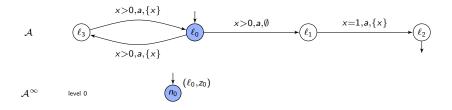
Strong timed bisimulation (preserving initial and accepting states) implies language equivalence.

- Timed automata
- 2 A determinization procedure
 - Unfolding into an infinite tree
 - Region equivalence
 - Symbolic determinization
 - Clock reduction
 - Location reduction
- Summary

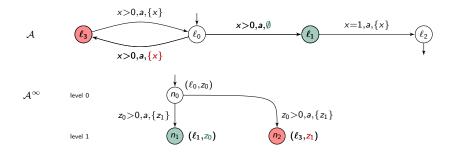
- \blacktriangleright A unfolded into a tree \mathcal{A}^{∞} with a fresh clock at each step.
- ightharpoonup clocks of \mathcal{A} are mapped to their reference in the new set of clocks.



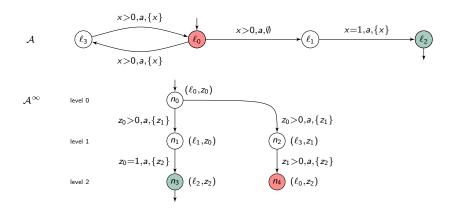
- $ightharpoonup \mathcal{A}$ unfolded into a tree \mathcal{A}^{∞} with a fresh clock at each step.
- \triangleright clocks of \mathcal{A} are mapped to their reference in the new set of clocks.

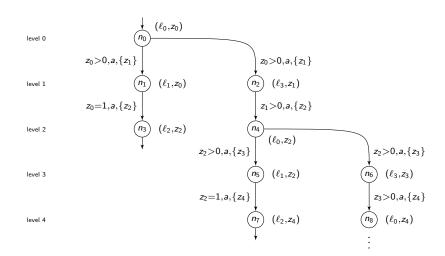


- $ightharpoonup \mathcal{A}$ unfolded into a tree \mathcal{A}^{∞} with a fresh clock at each step.
- \triangleright clocks of \mathcal{A} are mapped to their reference in the new set of clocks.



- $ightharpoonup \mathcal{A}$ unfolded into a tree \mathcal{A}^{∞} with a fresh clock at each step.
- \triangleright clocks of \mathcal{A} are mapped to their reference in the new set of clocks.





Properties of the unfolding

Input-determinacy property:

for every timed word w, there is a unique valuation v_w s.t. every initial run on w ends in some (n, v_w) with level(n) = |w|.

Lemma

 \mathcal{A} and \mathcal{A}^{∞} are strongly timed bisimilar; in particular $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^{\infty})$.

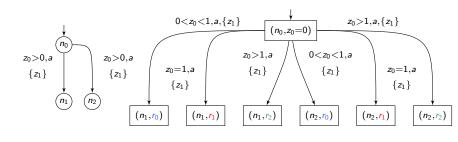
Drawbacks:

- $\triangleright \mathcal{A}^{\infty}$ has infinitely many locations.
- $ightharpoonup \mathcal{A}^{\infty}$ has infinitely many clocks.

- Timed automata
- A determinization procedure
 - Unfolding into an infinite tree
 - Region equivalence
 - Symbolic determinization
 - Clock reduction
 - Location reduction
- Summary

Region equivalence

Region construction on \mathcal{A}^{∞} : at level *i* regions over $\{z_0, \dots, z_i\}$.



where $r_0=0=z_1< z_0<1$, $r_1=0=z_1< z_0=1$ and $r_2=0=z_1<1< z_0$

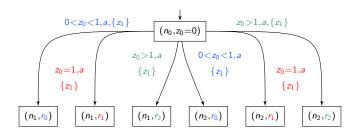
Lemma

 \mathcal{A}^{∞} and $R(\mathcal{A}^{\infty})$ are strongly timed bisimilar; thus $\mathcal{L}(\mathcal{A}) = \mathcal{L}(R(\mathcal{A}^{\infty}))$.

- Timed automata
- 2 A determinization procedure
 - Unfolding into an infinite tree
 - Region equivalence
 - Symbolic determinization
 - Clock reduction
 - Location reduction
- Summary

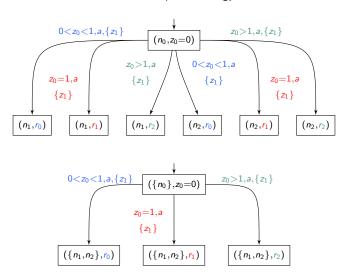
Symbolic determinization

Determinization at level *i* on the alphabet $\operatorname{Reg}_i \times \Sigma \times Z$.



Symbolic determinization

Determinization at level i on the alphabet $\operatorname{Reg}_i \times \Sigma \times Z$.



Properties of the symbolic determinization

The symbolic determinization corresponds to determinization of the timed system.

SymbDet(A) is deterministic!

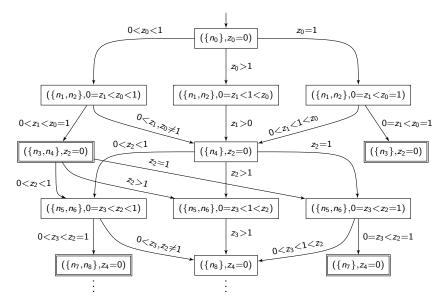
Lemma

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathsf{SymbDet}(R(\mathcal{A}^{\infty}))).$$

Drawbacks:

- ▶ SymbDet($R(A^{\infty})$) has infinitely many locations.
- ▶ SymbDet($R(A^{\infty})$) has infinitely many clocks.

Symbolic determinization on the example



- Timed automata
- 2 A determinization procedure
 - Unfolding into an infinite tree
 - Region equivalence
 - Symbolic determinization
 - Clock reduction
 - Location reduction
- Summary

Clock reduction

Active clocks: given a node of SymbDet(R(A)), its active clocks is the set of clocks appearing in the region of the node.

Clock boundedness

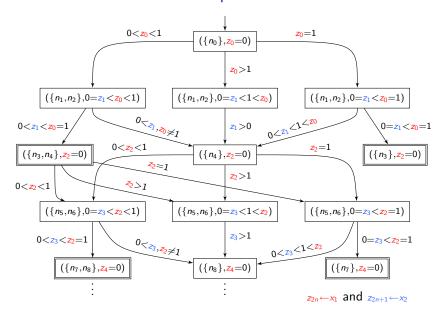
SymbDet($R(A^{\infty})$) is γ -clock bounded if in every node the number of active clocks is bounded by γ .

Under the clock-boundedness assumption: $\Gamma_{\gamma}(\mathsf{SymbDet}(R(\mathcal{A}^{\infty}))) = \mathsf{reduction}$ of $\mathsf{SymbDet}(R(\mathcal{A}^{\infty}))$ to set of clocks $\{x_1, \cdots, x_{\gamma}\}$.

Lemma

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\Gamma_{\gamma}(\mathsf{SymbDet}(R(\mathcal{A}^{\infty}))))$$

Clock reduction on the example



- Timed automata
- 2 A determinization procedure
 - Unfolding into an infinite tree
 - Region equivalence
 - Symbolic determinization
 - Clock reduction
 - Location reduction
- Summary

Location reduction

Property of $\Gamma_{\gamma}(\mathsf{SymbDet}(R(\mathcal{A}^{\infty})))$:

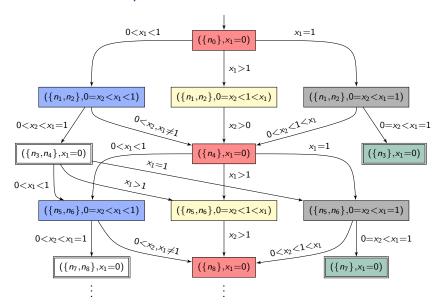
Nodes sharing the same label (= set of locations + region + assignment of the clocks) are isomorphic.

 $\mathcal{B}_{\mathcal{A},\gamma}$: $\Gamma_{\gamma}(\mathsf{SymbDet}(R(\mathcal{A}^{\infty})))$ after merging isomorphic nodes.

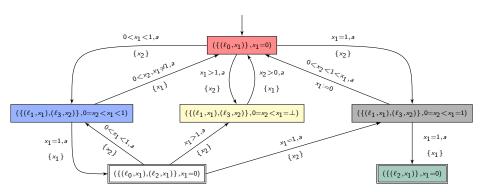
Theorem

 $\mathcal{B}_{\mathcal{A},\gamma}$ is a deterministic timed automaton such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{B}_{\mathcal{A},\gamma})$.

Back to the example



A deterministic version of the example



- Timed automata
- A determinization procedure
 - Unfolding into an infinite tree
 - Region equivalence
 - Symbolic determinization
 - Clock reduction
 - Location reduction
- Summary

Recap of the procedure

- 1. Unfolding into a timed tree with infinitely many clocks and nodes
- Region construction on the timed tree (still infinitely many clocks and nodes)
- 3. Symbolic determinization of the region tree (corresponding to a determinization of the timed system)
- 4. Reduction of the number of clocks (under the γ -clock bounded hypothesis)
- 5. Reduction of the number of locations

Determinizable classes

p-assumption

Let $p \in \mathbb{N}$. A satisfies the *p*-assumption if for every $n \geq p$, for every run

$$\rho = (\ell_0, v_0) \xrightarrow{\tau_1, a_1} (\ell_1, v_1) \dots \xrightarrow{\tau_n, a_n} (\ell_n, v_n)$$

for every clock x, either x is reset along ρ , of $v_n(x) > M$.

If A satisfies the p-assumption, then $\mathsf{SymbDet}(R(A^{\infty}))$ is p-clock bounded.

Classes of determinizable TA

- ▶ Event-clock TA ($|\Sigma|$ -clock bounded)
- ► Strongly non-Zeno TA (satisfy the *p*-assumption)
- ► TA with integer resets

Complexity issues

Upper bound

Universality for timed automata can be checked in nondeterministic space logarithmic in the size of the deterministic timed automaton.

Given $\mathcal{A}=(L,\ell_0,L_{acc},X,M,E)$ such that $\mathsf{SymbDet}(R(\mathcal{A}^\infty))$ is γ -clock bounded, $\mathcal{B}_{\mathcal{A},\gamma}$ has $2^{|L|}\cdot \gamma^{|X|}\cdot \left((2M+2)^{(\gamma+1)^2}\cdot \gamma!\right)$ locations.

Universality can be decided in EXPSPACE for timed automata satisfying the *p*-assumption, and for integer resets timed automata.

Lower bound

Checking universality in timed automata either satisfying the p-assumption or with integer resets is EXPSPACE-hard.

Summary complexity

	size of the det. TA	universality problem	inclusion problem
TA_p	doubly exp.	EXPSPACE-compl.	EXPSPACE-compl.
SnZTA	doubly exp.	trivial	EXPSPACE-compl.
ECTA	exp.	PSPACE-compl.	PSPACE-compl.
IRTA	doubly exp.	EXPSPACE-compl.	EXPSPACE-compl.