Bounded Satisfiablity for PCTL

Nathalie Bertrand, John Fearnley and Sven Schewe

Inria Rennes - University of Liverpool

CSL 2012

Probabilistic Computation Tree Logic

Variant of CTL with probabilistic path quantifiers.

- A deadlock is reached with probability no more than 0.6: $\mathbb{P}_{\leq 0.6}(\diamond \text{deadlock})$
- Almost surely whenever a message is sent, with probability more than 0.9 it will be delivered within the next 3 discrete steps:

 P₌₁(□sent → *P*_{>0.9}(◊^{≤3}received))

Probabilistic Computation Tree Logic

Variant of CTL with probabilistic path quantifiers.

- ► A deadlock is reached with probability no more than 0.6: P_{≤0.6}(◊deadlock)
- Almost surely whenever a message is sent, with probability more than 0.9 it will be delivered within the next 3 discrete steps:

 P₌₁(□sent → ℙ_{>0.9}(◊^{≤3}received))

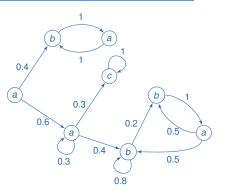
Syntax of PCTL

- state formulae: $\psi ::= tt |a|\psi_1 \wedge \psi_2 |\neg \psi| \mathbb{P}_{\bowtie \lambda}(\varphi)$
- path formulae: $\varphi ::= \bigcirc \psi | \psi_1 U \psi_2 | \psi_1 U_{\leq n} \psi_2 | \Box \psi | \diamondsuit \psi \cdots$

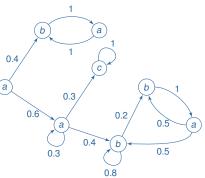
$$s \models \mathbb{P}_{\bowtie \lambda}(\varphi)$$
 iff $Pr(s \models \varphi) \bowtie \lambda$

PCTL models: Markov chains Discrete time Markov chain $\mathcal{M} = (S, \mathbf{P}, L)$

- S set of states
- P probability matrix
- $L: S \rightarrow 2^{AP}$ labelling function



• $L: S \rightarrow 2^{AP}$ labelling function



PCTL model checking for Markov chains Linear in $|\varphi|$ and polynomial in $|\mathcal{M}|$.

Mature tools: e.g. PRISM, MRMC.

Longstanding open problem!

Longstanding open problem!

Qualitative PCTL: thresholds 0 and 1 only.

Decidability for qualitative fragment [BFKK08] Satisfiability for qualitative PCTL is EXPTIME-complete.

Longstanding open problem!

Qualitative PCTL: thresholds 0 and 1 only.

Decidability for qualitative fragment [BFKK08] Satisfiability for qualitative PCTL is EXPTIME-complete.

 $\mathbb{P}_{=1}(\square\mathbb{P}_{>0}(\bigcirc a)) \land \mathbb{P}_{>0}(\square \neg a)$ is satisfiable but has no finite model.

Simple Markov chains

- $\mathcal{M} = (S, \mathbf{P}, L)$ is simple if
 - ► *L* has a special atomic proposition *a*_{real},
 - coefficients in **P** belong to $\{0, \frac{1}{2}, 1\}$.

Representation: graph where each vertex has 2 successors.

Simple Markov chains

- $\mathcal{M} = (S, \mathbf{P}, L)$ is simple if
 - L has a special atomic proposition a_{real},
 - coefficients in **P** belong to $\{0, \frac{1}{2}, 1\}$.

Representation: graph where each vertex has 2 successors.

Simple Markov chains can simulate rational probabilities.

PCTL semantics: only real states matter.

Only implementable and small models are interesting to practitioners!

Bounded satisfiability problem

Given ψ a PCTL formula and $b \in \mathbb{N}$ a size bound, does ψ have a **simple** model with **at most** *b* **states**?

Only implementable and small models are interesting to practitioners!

Bounded satisfiability problem Given ψ a PCTL formula and $b \in \mathbb{N}$ a size bound, does ψ have a **simple** model with **at most** *b* **states**?

Complexity

Bounded satisfiability is an NP-complete problem in the joint size of ψ and b. Approximating the size of the smallest simple model of ψ within a factor polynomial in $|\psi|$ is NP-hard. SMT: Is a logical formula in boolean logic with additional theories satisfiable?

Theories: linear real arithmetic and uninterpreted function symbols

SMT: Is a logical formula in boolean logic with additional theories satisfiable?

Theories: linear real arithmetic and uninterpreted function symbols

From ψ and *b*, build *C* set of SMT constraints s.t. ψ has a simple model with *b* states \iff *C* is satisfiable

 \rightarrow Linear time transformation

Run Yices SMT solver on C: unsat or sat + model description

Encoding a simple Markov chain

- ► States = {1, · · · , b}
- ▶ left : States \rightarrow States, right : States \rightarrow States
- real : States $\rightarrow \mathbb{B}$
- truth_a : States $\rightarrow \mathbb{B}$, for each atomic proposition a

Encoding a simple Markov chain

- ► States = {1, · · · , b}
- ▶ left : States \rightarrow States, right : States \rightarrow States
- real : States $\rightarrow \mathbb{B}$
- truth_a : States $\rightarrow \mathbb{B}$, for each atomic proposition a
- ► Finitely many hidden states between two real states. dist : States → [0, 1]
 - $\forall s \operatorname{real}(s) \leftrightarrow \operatorname{dist}(s) = 0$
 - ▶ $\forall s \neg real(s) \rightarrow (dist(s) > dist(left(s))) \lor (dist(s) > dist(right(s)))$

 $\operatorname{sat}_{\phi}:\operatorname{States}\to\mathbb{B},\,\forall\phi$ subformula of ψ

 \blacktriangleright constraints on \mathtt{sat}_ϕ depend on the type of ϕ

 $\operatorname{sat}_{\phi} : \operatorname{States} \to \mathbb{B}, \forall \phi \text{ subformula of } \psi$

- constraints on sat_ϕ depend on the type of ϕ
- Next operator: $\phi = \mathbb{P}_{\bowtie \lambda}(\bigcirc \phi')$
 - ► $\forall s \operatorname{sat}_{\phi}(s) \leftrightarrow \frac{1}{2} \cdot \left(\operatorname{sat}_{\phi'}(\operatorname{left}(s)) + \operatorname{sat}_{\phi'}(\operatorname{right}(s)) \right) \bowtie \lambda$

 $\operatorname{sat}_{\phi}: \operatorname{States} \to \mathbb{B}, \forall \phi \text{ subformula of } \psi$

- constraints on sat_ϕ depend on the type of ϕ
- Next operator: $\phi = \mathbb{P}_{\bowtie \lambda}(\bigcirc \phi')$
 - ► $\forall s \operatorname{sat}_{\phi}(s) \leftrightarrow \frac{1}{2} \cdot \left(\operatorname{sat}_{\phi'}(\operatorname{left}(s)) + \operatorname{sat}_{\phi'}(\operatorname{right}(s))\right) \bowtie \lambda$ $\rightarrow \text{ Only the next real state is meaningful!}$

 $\operatorname{sat}_{\phi} : \operatorname{States} \to \mathbb{B}, \forall \phi \text{ subformula of } \psi$

- constraints on sat $_{\phi}$ depend on the type of ϕ
- Next operator: $\phi = \mathbb{P}_{\bowtie \lambda}(\bigcirc \phi')$
 - ► $\forall s \operatorname{sat}_{\phi}(s) \leftrightarrow \frac{1}{2} \cdot \left(\operatorname{sat}_{\phi'}(\operatorname{left}(s)) + \operatorname{sat}_{\phi'}(\operatorname{right}(s))\right) \bowtie \lambda$
 - \rightarrow Only the next real state is meaningful!
 - value_{ϕ} : States \rightarrow [0, 1]
 - $\forall s \operatorname{real}(s) \land \operatorname{sat}_{\phi'}(s) \rightarrow \operatorname{value}_{\phi}(s) = 1$
 - $\forall s \operatorname{real}(s) \land \neg \operatorname{sat}_{\phi'}(s) \rightarrow \operatorname{value}_{\phi}(s) = 0$
 - $\forall s \neg real(s) \rightarrow value_{\phi}(s) =$
 - $\frac{1}{2} \cdot \left(\texttt{value}_{\phi}(\texttt{left}(s)) + \texttt{value}_{\phi}(\texttt{right}(s)) \right)$

 $\operatorname{sat}_{\phi} : \operatorname{States} \to \mathbb{B}, \forall \phi \text{ subformula of } \psi$

- constraints on sat_ϕ depend on the type of ϕ
- Next operator: $\phi = \mathbb{P}_{\bowtie \lambda}(\bigcirc \phi')$
 - ► $\forall s \operatorname{sat}_{\phi}(s) \leftrightarrow \frac{1}{2} \cdot \left(\operatorname{sat}_{\phi'}(\operatorname{left}(s)) + \operatorname{sat}_{\phi'}(\operatorname{right}(s))\right) \bowtie \lambda$
 - → Only the next real state is meaningful!
 - value_{ϕ} : States \rightarrow [0, 1]
 - $\forall s \operatorname{real}(s) \land \operatorname{sat}_{\phi'}(s) \rightarrow \operatorname{value}_{\phi}(s) = 1$
 - $\forall s \operatorname{real}(s) \land \neg \operatorname{sat}_{\phi'}(s) \rightarrow \operatorname{value}_{\phi}(s) = 0$
 - $\forall s \neg real(s) \rightarrow value_{\phi}(s) =$
 - $\frac{1}{2} \cdot \left(\texttt{value}_{\phi}(\texttt{left}(s)) + \texttt{value}_{\phi}(\texttt{right}(s)) \right)$

▶ $\forall s \operatorname{sat}_{\phi}(s) \leftrightarrow \frac{1}{2} \cdot \left(\operatorname{value}_{\phi}(\operatorname{left}(s)) + \operatorname{value}_{\phi}(\operatorname{right}(s)) \right) \bowtie \lambda$

- Until operator: $\phi = \mathbb{P}_{\bowtie \lambda}(\phi_1 U \phi_2)$
 - ▶ value_{ϕ} : States → [0, 1]

- Until operator: $\phi = \mathbb{P}_{\bowtie \lambda}(\phi_1 U \phi_2)$
 - value_{ϕ} : States \rightarrow [0, 1]
 - $\forall s \operatorname{real}(s) \land \operatorname{sat}_{\phi_2}(s) \rightarrow \operatorname{value}_{\phi}(s) = 1$
 - ► $\forall s \operatorname{real}(s) \land \neg \operatorname{sat}_{\phi_1}(s) \land \neg \operatorname{sat}_{\phi_2}(s) \to \operatorname{value}_{\phi}(s) = 0$
 - ► $\forall s \neg real(s) \lor (sat_{\phi_1}(s) \land \neg sat_{\phi_2}(s)) \rightarrow$ $value_{\phi}(s) = \frac{1}{2} \cdot (value_{\phi}(left(s)) + value_{\phi}(right(s)))$

- Until operator: $\phi = \mathbb{P}_{\bowtie \lambda}(\phi_1 U \phi_2)$
 - value_{ϕ} : States \rightarrow [0, 1]
 - $\forall s \operatorname{real}(s) \land \operatorname{sat}_{\phi_2}(s) \rightarrow \operatorname{value}_{\phi}(s) = 1$
 - ► $\forall s \operatorname{real}(s) \land \neg \operatorname{sat}_{\phi_1}(s) \land \neg \operatorname{sat}_{\phi_2}(s) \to \operatorname{value}_{\phi}(s) = 0$
 - ► $\forall s \neg real(s) \lor (sat_{\phi_1}(s) \land \neg sat_{\phi_2}(s)) \rightarrow$
 - $value_{\phi}(s) = \frac{1}{2} \cdot (value_{\phi}(\texttt{left}(s)) + value_{\phi}(\texttt{right}(s)))$
 - dist_{ϕ} : States \rightarrow [0, 1] to ensure ϕ_2 is reached w. positive proba
 - $\forall s \operatorname{real}(s) \land \operatorname{sat}_{\phi_2}(s) \leftrightarrow \operatorname{dist}_{\phi}(s) = 0$
 - $\forall s \text{ value}_{\phi}(s) = 0 \leftrightarrow \text{dist}_{\phi}(s) = 1$
 - ► $\forall s \text{ value}_{\phi}(s) \neq 0 \land (\neg \text{real}(s) \lor \neg \text{sat}_{\phi_2}(s)) \rightarrow$

 $\left(\texttt{dist}_{\phi}(\texttt{s}) > \texttt{dist}_{\phi}(\texttt{left}(\texttt{s}))\right) \lor \left(\texttt{dist}_{\phi}(\texttt{s}) > \texttt{dist}_{\phi}(\texttt{right}(\texttt{s}))\right)$

- Until operator: $\phi = \mathbb{P}_{\bowtie \lambda}(\phi_1 U \phi_2)$
 - value_{ϕ} : States \rightarrow [0, 1]
 - $\forall s \operatorname{real}(s) \land \operatorname{sat}_{\phi_2}(s) \rightarrow \operatorname{value}_{\phi}(s) = 1$
 - ► $\forall s \operatorname{real}(s) \land \neg \operatorname{sat}_{\phi_1}(s) \land \neg \operatorname{sat}_{\phi_2}(s) \to \operatorname{value}_{\phi}(s) = 0$
 - ► $\forall s \neg real(s) \lor (sat_{\phi_1}(s) \land \neg sat_{\phi_2}(s)) \rightarrow$
 - $\mathtt{value}_{\phi}(s) = \frac{1}{2} \cdot (\mathtt{value}_{\phi}(\mathtt{left}(s)) + \mathtt{value}_{\phi}(\mathtt{right}(s)))$
 - dist_{ϕ} : States \rightarrow [0, 1] to ensure ϕ_2 is reached w. positive proba
 - $\forall s \operatorname{real}(s) \land \operatorname{sat}_{\phi_2}(s) \leftrightarrow \operatorname{dist}_{\phi}(s) = 0$
 - $\forall s \text{ value}_{\phi}(s) = 0 \leftrightarrow \text{dist}_{\phi}(s) = 1$
 - ► $\forall s \text{ value}_{\phi}(s) \neq 0 \land (\neg real(s) \lor \neg sat_{\phi_2}(s)) \rightarrow$
 - $\left(\mathsf{dist}_\phi(s) > \mathsf{dist}_\phi(\mathsf{left}(s)) \right) \lor \left(\mathsf{dist}_\phi(s) > \mathsf{dist}_\phi(\mathsf{right}(s)) \right)$
 - ► $\forall s \operatorname{sat}_{\phi}(s) \leftrightarrow \operatorname{real}(s) \land \operatorname{value}_{\phi}(s) \bowtie \lambda.$

- Until operator: $\phi = \mathbb{P}_{\bowtie \lambda}(\phi_1 U \phi_2)$
 - value_{ϕ} : States \rightarrow [0, 1]
 - $\forall s \operatorname{real}(s) \land \operatorname{sat}_{\phi_2}(s) \rightarrow \operatorname{value}_{\phi}(s) = 1$
 - ► $\forall s \operatorname{real}(s) \land \neg \operatorname{sat}_{\phi_1}(s) \land \neg \operatorname{sat}_{\phi_2}(s) \to \operatorname{value}_{\phi}(s) = 0$
 - ► $\forall s \neg real(s) \lor (sat_{\phi_1}(s) \land \neg sat_{\phi_2}(s)) \rightarrow$
 - $\mathtt{value}_{\phi}(s) = \frac{1}{2} \cdot (\mathtt{value}_{\phi}(\mathtt{left}(s)) + \mathtt{value}_{\phi}(\mathtt{right}(s)))$
 - dist_{ϕ} : States \rightarrow [0, 1] to ensure ϕ_2 is reached w. positive proba
 - $\forall s \operatorname{real}(s) \land \operatorname{sat}_{\phi_2}(s) \leftrightarrow \operatorname{dist}_{\phi}(s) = 0$
 - $\forall s \text{ value}_{\phi}(s) = 0 \leftrightarrow \text{dist}_{\phi}(s) = 1$
 - ► $\forall s \text{ value}_{\phi}(s) \neq 0 \land (\neg real(s) \lor \neg sat_{\phi_2}(s)) \rightarrow$
 - $\left(\mathsf{dist}_\phi(s) > \mathsf{dist}_\phi(\mathsf{left}(s)) \right) \lor \left(\mathsf{dist}_\phi(s) > \mathsf{dist}_\phi(\mathsf{right}(s)) \right)$
 - ► $\forall s \operatorname{sat}_{\phi}(s) \leftrightarrow \operatorname{real}(s) \land \operatorname{value}_{\phi}(s) \bowtie \lambda.$
- Bounded until operator: generalisation of next operator.

- Until operator: $\phi = \mathbb{P}_{\bowtie \lambda}(\phi_1 U \phi_2)$
 - value_{ϕ} : States \rightarrow [0, 1]
 - $\forall s \operatorname{real}(s) \land \operatorname{sat}_{\phi_2}(s) \rightarrow \operatorname{value}_{\phi}(s) = 1$
 - ► $\forall s \operatorname{real}(s) \land \neg \operatorname{sat}_{\phi_1}(s) \land \neg \operatorname{sat}_{\phi_2}(s) \to \operatorname{value}_{\phi}(s) = 0$
 - ► $\forall s \neg real(s) \lor (sat_{\phi_1}(s) \land \neg sat_{\phi_2}(s)) \rightarrow$
 - $\mathsf{value}_{\phi}(s) = \frac{1}{2} \cdot (\mathsf{value}_{\phi}(\mathsf{left}(s)) + \mathsf{value}_{\phi}(\mathsf{right}(s)))$
 - dist $_{\phi}$: States \rightarrow [0, 1] to ensure ϕ_2 is reached w. positive proba
 - $\forall s \operatorname{real}(s) \land \operatorname{sat}_{\phi_2}(s) \leftrightarrow \operatorname{dist}_{\phi}(s) = 0$
 - $\forall s \text{ value}_{\phi}(s) = 0 \leftrightarrow \text{dist}_{\phi}(s) = 1$
 - ► $\forall s \text{ value}_{\phi}(s) \neq 0 \land (\neg \text{real}(s) \lor \neg \text{sat}_{\phi_2}(s)) \rightarrow 0$
 - $\left(\texttt{dist}_{\phi}(s) > \texttt{dist}_{\phi}(\texttt{left}(s))\right) \lor \left(\texttt{dist}_{\phi}(s) > \texttt{dist}_{\phi}(\texttt{right}(s))\right)$
 - ► $\forall s \operatorname{sat}_{\phi}(s) \leftrightarrow \operatorname{real}(s) \land \operatorname{value}_{\phi}(s) \bowtie \lambda.$
- Bounded until operator: generalisation of next operator.
- Global constraint: $real(1) \land sat_{\psi}(1)$.

Experiments

A lossy channel specification

- ► *n* users sending messages over lossy channel.
- Formula for *n* users has a model with n + 1 states.
- ► 6 users: more than two hours.
- Does not scale in model size!
 - \rightarrow Not suitable for synthesis from specification.

Experiments

A lossy channel specification

- ► *n* users sending messages over lossy channel.
- Formula for *n* users has a model with n + 1 states.
- 6 users: more than two hours.
- Does not scale in model size!
 - \rightarrow Not suitable for synthesis from specification.
- A buggy lossy channel specification
 - Formula for n users has a model with 4 states.
 - Hundreds of users / probabilistic operators: less than 1 hour.

Scales in formula size.

 \rightarrow Useful for "sanity" check.

Conclusion

PCTL satisfiability

- Iong-standing open problem
- no finite model property, already for qualitative fragment

Contribution

- focus on simple and small models
- satisfiability check and model construction using SMT solver
- useful for sanity check rather than synthesis
- adaptable to qualitative PCTL satisfiability