Distributed local strategies in broadcast networks

Nathalie Bertrand Inria Rennes, France

joint work with Paulin Fournier and Arnaud Sangnier

CDPS, August 2016, Singapore

CDPS 2016 - Singapore - August 2016, 1/28

Motivation

Verification of networks of processes of unbounded size

Why considering such networks?

- Distributed algorithms (mutual exclusion, leader election,...)
- Telecommunication protocols (routing,...)
- Algorithms for ad-hoc networks
- Biological systems
- ► ...

Crowd networks

All the processes have the same behavior

They form a crowd [Esparza, STACS'14]

More precisely:

- Every process follows a same given protocol
- Processes can communicate, by either
 - Message passing
 - Shared variables
 - Rendez-vous communications
 - Broadcast communications
 - Multi-diffusion (selective broadcasts)

Question:

Is a goal reachable in some network with N processes ?

This talk

Decidability and complexity of reachability problems in parameterized networks

Features:

- Simple protocols with broadcast communication
- Simple reachability questions
- Taking into account some locality assumptions

Outline

Outline

A model for reconfigurable broadcast networks

Main characteristics

[Delzanno et al. CONCUR'10]

- No creation/deletion of nodes
- Each node executes the same finite state process
- Broadcast of the messages to the neighbors
- Communication topology evolves non-deterministically

Reconfigurable Broadcast Networks: syntax

A protocol

Finite state automaton. Transitions labelled with:

- 1. broadcast of messages !!m
- 2. reception of messages ??m
- 3. internal actions ε

A protocol defines a reconfigurable broadcast network

Configurations

- Initial configurations: all vertices labelled with the initial state
- Notation : $lab(\gamma)$ for all the labels present in γ

Remarks:

Size of configurations is not bounded

⇒ Broadcast networks are infinite state systems

Reconfigurable Broadcast Networks: semantics

Transition system associated with P

- C : set of configurations
- C₀ : set of initial configurations
- $\blacktriangleright \rightarrow: \mathcal{C} \times \mathcal{C}$: transition relation
 - Choice a of process
 - Choice of a neighbor set
 - Execution of an action

Reconfigurable Broadcast Networks: semantics

Transition system associated with P

- C : set of configurations
- C₀ : set of initial configurations
- $\blacktriangleright \rightarrow: \mathcal{C} \times \mathcal{C}$: transition relation
 - Choice a of process
 - Choice of a neighbor set
 - Execution of an action

Characteristics

- The number of vertices does not change
- Two kinds of transitions
 - 1. local actions one process performs an internal action ε
 - broadcast one process emits a message with !!m, all its neighbors that can receive it with ??m must receive it

Reconfigurable Broadcast Networks: an example

Parameterized reachability

Parameter: Number of processes

Control State Reachability (REACH)

Input: A protocol and a control state q; Output: Does there exist $\gamma \in C_0$ and $\gamma' \in C$ s.t. $\gamma \rightarrow^* \gamma'$ and $q \in lab(\gamma')$? Parameterized reachability

Parameter: Number of processes

Control State Reachability (REACH)

Input: A protocol and a control state q; Output: Does there exist $\gamma \in C_0$ and $\gamma' \in C$ s.t. $\gamma \rightarrow^* \gamma'$ and $q \in lab(\gamma')$?

Remarks:

- Infinite number of possible initial configurations
- Reachability of a given configuration \(\gamma'\) is easy, since the number of processes is fixed

Parameterized reachability

Parameter: Number of processes

Control State Reachability (REACH)

Input: A protocol and a control state q; **Output:** Does there exist $\gamma \in C_0$ and $\gamma' \in C$ s.t. $\gamma \rightarrow^* \gamma'$ and $q \in lab(\gamma')$?

Remarks:

- Infinite number of possible initial configurations
- Reachability of a given configuration \(\gamma'\) is easy, since the number of processes is fixed

Theorem

[Delzanno et al. FSTTCS'12]

REACH is PTIME-complete for reconfigurable broadcast networks

Outline

1 Networks of reconfigurable broadcast protocols

Local strategies

Processes do not really behave the same!

- ▶ They all follow the same protocol *P*, yet...
- ... if the protocol is non-deterministic, each process can take a different choice!

Local strategies

Processes do not really behave the same!

- ▶ They all follow the same protocol *P*, yet...
- ... if the protocol is non-deterministic, each process can take a different choice!

Local strategies dictate processes what to do given their (local) past Two processes with same past behave similarly

Local strategy $\sigma = (\sigma_a, \sigma_r)$

- ► σ_a : Path(P) \mapsto (Q × ({!!m} ∪ {ε}) × Q) active actions
- $\sigma_r : \operatorname{Path}(P) \times \Sigma \mapsto (Q \times \{??m\} \times Q)$ receptions

Reachability question under local strategies

An execution respects a local strategy iff each process chooses transitions as given by the strategy

Control State Reachability (REACH[L])

Input: A protocol and a control state $q \in Q$; Output: Does there exist $\gamma \in C_0$ and $\gamma' \in C$ and a local strategy σ s.t. $\gamma \rightarrow^* \gamma'$ respects σ and $q \in lab(\gamma')$?

Local strategies on an example

- There is no local strategy to reach q₄
 - From q_0 , either all processes move to q_1 , or they all move to q_3

Local strategies on an example

- There is no local strategy to reach q₄
 - ▶ from q₀, either all processes move to q₁, or they all move to q₃
- There exists a local strategy to reach q₆

Local executions on an example

Strategy patterns for reconfigurable networks

Local strategies can be represented by trees

- Each path in the tree is a path in the unfolded protocol
- From each node in the tree:
 - At most one outgoing edge is labelled by an active action (broadcast or internal action)
 - ► At most one outgoing edge labelled ??m per message m
- Strategy patterns are underspecified local strategies: they may represent several local strategies

Example of strategy patterns

An admissible strategy pattern

A strategy pattern

An admissible strategy pattern

- A strategy pattern + a total order on the edges s.t.
 - The order in the tree is satisfied
 - Each ??m is preceded by some !!m

An admissible strategy pattern

- A strategy pattern + a total order on the edges s.t.
 - The order in the tree is satisfied
 - Each ??m is preceded by some !!m

An admissible strategy pattern

- A strategy pattern + a total order on the edges s.t.
 - The order in the tree is satisfied
 - Each ??m is preceded by some !!m

Checking whether there exists an order such that the strategy pattern is admissible can be done in polynomial time

Solving REACH[L]

How to use strategy patterns ?

Soundness and correctness

A state is reachable in Reconfigurable Networks under a local strategy iff there is an admissible strategy pattern containing it.

Solving REACH[L]

How to use strategy patterns ?

Soundness and correctness

A state is reachable in Reconfigurable Networks under a local strategy iff there is an admissible strategy pattern containing it.

Minimization

If there exists an admissible strategy pattern containing q, then there exists one of polynomial size.

Solving REACH[L]

How to use strategy patterns ?

Soundness and correctness

A state is reachable in Reconfigurable Networks under a local strategy iff there is an admissible strategy pattern containing it.

Minimization

If there exists an admissible strategy pattern containing q, then there exists one of polynomial size.

Theorem

REACH[L] is in NP for Reconfigurable Broadcast Networks.

NP-hardness

- Reduction from 3SAT
- ▶ 3SAT formula $\bigwedge_{i \in [1..k]} \ell_1^i \lor \ell_2^i \lor \ell_3^i$ over the variables $\{x_1, \ldots, x_r\}$

NP-hardness

- Reduction from 3SAT
- ► 3SAT formula $\bigwedge_{i \in [1..k]} \ell_1^i \lor \ell_2^i \lor \ell_3^i$ over the variables $\{x_1, \ldots, x_r\}$

- Locality \implies Uniform choice for x_i or $\neg x_i$
- Local strategy = Valuation
- \triangleright q_k reachable iff formula satisfiable

NP-hardness

- Reduction from 3SAT
- ▶ 3SAT formula $\bigwedge_{i \in [1..k]} \ell_1^i \lor \ell_2^i \lor \ell_3^i$ over the variables $\{x_1, \ldots, x_r\}$

- Locality \implies Uniform choice for x_i or $\neg x_i$
- Local strategy = Valuation
- *q_k* reachable iff formula satisfiable

Theorem

REACH[L] is NP-complete in Reconfigurable Broadcast Networks.

Convergence Problem

Target State Convergence (TARGET)

Input: A protocol and a set of control states *T*; **Output:** Does there exist $\gamma \in C_0$ and $\gamma' \in C$ s.t. $\gamma \rightarrow^* \gamma'$ and $lab(\gamma') \subset T$?

Theorem

TARGET[L] is NP-complete in Reconfigurable Broadcast Networks.

Idea of the proof:

- Again based on strategy patterns
- Refine the notion of admissibility: the order must ensure one can 'empty' nodes towards the target set
- Still polynomial size admissible trees

Fully connected networks

Clique topology

Every broadcast necessarily reaches all participants.

Theorem

REACH[L] and TARGET[L] are undecidable in Clique Networks.

Idea of the proof:

- Encode the behavior of a Minsky machine
- For TARGET[L], as for TARGET in Clique Networks

► For REACH[L]:

- Simulate the same run twice
- Locality forces to do the same simulation
- The second run can use at most as many processes for the counters as in the first run
- Clique topology guarantees increment/decrement by 1 only

How to regain decidability?

A complete protocol

- From every state, at least one edge is labelled with an active action (internal or broadcast)
- From every state, for each message m, some edge is labelled with ??m

Property of complete protocols in clique networks: at each broadcast, all processes change their past

Theorem

REACH[L] in Clique Networks of complete protocols is decidable.

Idea of the proof:

- Abstraction: Represent processes with the same past by a single process
- Well-structured transition system

Outline

1 Networks of reconfigurable broadcast protocols

2 Restricting to local strategies

Conclusion

Local strategies in reconfigurable broadcast networks

Adding locality assumption

- all processes behave the same
- reachability and convergence are NP-complete
- technical tool: strategy patterns
- polynomial cutoff on the number of processes needed
- undecidability for clique topology (unless restricting to complete protocols)