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Motivation

• Distributed algorithms (mutual exclusion, leader election, ...)
• Telecommunication protocols (routing, ...)
• Algorithms for ad-hoc networks
• Model for biological systems

All participants have the same behavior

They form a crowd [Esparza, STACS’14]
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Crowd networks

• Every process follows a same given protocol
• Processes can communicate, by either

• Message passing
• Shared variables
• Rendez-vous communications
• Broadcast communications
• Multi-diffusion (selective broadcasts)

Parameterized verification of crowd networks

Does the network conform to a given specification
independently of the number of participants?
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In this talk

Decidability and complexity
of parameterized reachability problems

in probabilistic networks

Features:
• Probabilistic protocols
• Multi-diffusion communications
• Simple reachability questions

Challenge:
parameterized system + non-determinism + probabilities
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Outline

1 Probabilistic reconfigurable broadcast networks

2 Parity reconfigurable broadcast networks
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A model for probabilistic protocols

ε
.4

.6

??m

ε1

!!m

??m

Probabilistic protocol
Finite state system whose transitions are labelled with:

1 probabilistic internal actions - ε
2 broadcast of messages - !!m
3 reception of messages - ??m

for m in a finite alphabet Σ.

A probabilistic protocol defines a probabilistic network
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Configurations

Configurations: vectors of arbitrary size

1 2 3

4 5 6 1 2 3

1 2

3 4

• Initial configurations: all nodes are in the initial state

Remarks:
• Size of configurations is not bounded

⇒ Networks are infinite state systems
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Probabilistic Networks: semantics
Markov decision process over set of configurations.
• C: (infinite) set of configurations
• ⇒: C × C ∪ C × Dist(C): Transition relation
• C0: (infinite) set of initial configurations

The number of nodes does not change along an execution

Transition relation
Decomposed in three steps

1 Choice of a process
2 Choice of a reception set (= set of neighbours)
3 Execution of an action

• local action - the process performs an internal action ε
• communication - the process sends a message (!!m), and its

neighbours receive it (??m) if they can
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Schedulers to resolve non-determinism
Scheduler π resolves the non-determinism

by choosing the active process, its action and its neighbours
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Parameterized reachability problems

scheduler π on N nodes induce a finite Markov chain of measure PN
π

• Is an error state almost surely reachable, under some scheduler,
and for some number of nodes?

∃N, ∃π, PN
π (♦qerr) = 1

• Is an error state avoidable almost surely, under all adversarial
schedulers, and for any number of nodes?

∀N, ∀π, PN
π (♦qerr) = 0

REACH∼b
opt opt ∈ {min,max},∼∈ {>,<,≤,≥,=}, b ∈ {0, 1}

Input: A process and a control state qF ∈ Q;
Output: Does there exists N such that opt

π

{
PN
π (♦qF )

}
∼ b?
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Monotocity property and consequences

Monotonicity
With more nodes in the network, the maximum reachability probability
can only increase.

Idea: ignore additional nodes

As a consequence, e.g.

∃N, ∃π, PN
π (♦qF ) = 0⇐⇒ ∃π, P1

π(♦qF ) = 0

REACH=0
max is decidable in PTIME by considering a single node.
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Solving REACH>0
max

Does there exists a N and a scheduler π such that PN
π (♦qF ) > 0?

• Equivalent to parameterized control state reachability
• Decidable in PTIME [Delzanno et al., FSTTCS’12]
• One can compute the set of reachable control states in PTIME

• Note: there exists an execution reaching a configuration with an
arbitrary number of nodes in each reachable control state

Not as easy for REACH=1
max!
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Finite vs infinite MDPs

• Qualitative reachability is solvable in PTIME for finite MDPs by
simple graph algorithms.

• Qualitative reachability in infinite-state MDPs: restricted to
particular classes with ad hoc algorithms

• non-deterministic and Probabilistic Lossy Channel Systems
[Baier et al. 2007]

• recursive Markov Decision Processes [Etessami et al. 2015]

• Alternative technique in the finite case: transformation into
µ-calculus formula or parity game. [Chatterjee et al. 2007]

How to adapt this methodology to probabilistic networks?

Main issues:
1 Transform MDP into equivalent parity game at the protocol level
2 Solve parity networks
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A model for parity protocol

1:!!m

1:?
?m

2:ε

4:ε

4:ε

3:!!m

0:!!m

0:
??

m

Parity protocol

• states of Player 1

• states of Player 2
• Transitions are labelled with:

1 internal actions from Player 2’s states – ε
2 broadcast of messages – !!m
3 reception of messages – ??m

4 parities in N
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Semantics

Configurations: vectors of arbitrary size

Roles are asymmetric
• Player 1 chooses the active process, and its neighbours
• If the active process is in a Player i’s state, Player i chooses its

action

Strategy profile (σ, τ) yields a play ρ
In communication transitions, the parity is the one of the
corresponding broadcast
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An example of play
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Parameterized game problem

Winning condition
Win consists of infinite plays such that the maximal color repeated
infinitely often is even.

Does Player 1 has a winning strategy for the parity objective for some
number of nodes?

Game problem for parity networks
Input: A parity protocol P
Question: Does there exists N and a strategy σ for Player 1 such that
for all strategies τ for Player 2 ρ(σ, τ,N) ∈Win.
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Parameterized game problem

Winning condition
Win consists of infinite plays such that the maximal color repeated
infinitely often is even.

Does Player 1 has a winning strategy for the parity objective for some
number of nodes?

Game problem for parity networks
Input: A parity protocol P
Question: Does there exists N and a strategy σ for Player 1 such that
for all strategies τ for Player 2 ρ(σ, τ,N) ∈Win.

Parity reconfigurable broadcast networks 19



Solving games on parity networks

Two steps
1 state-based strategies for Player 2 are enough
2 decidability of the existence of an infinite cycle in reconfigurable

broadcast networks (i.e. networks of 1-player games)

State-based strategies
• only depend on the control state labeling the active node
• there are finitely many
• given a fixed state-based strategy for Player 2, one obtains a

reconfigurable broadcast network

Parity reconfigurable broadcast networks 20



Step 1: Restricting to state-based strategies

Proposition
If there exists a number of nodes such that Player 1 has a winning
strategy against any state-based strategy of Player 2, then there exists
a number of nodes such that Player 1 has a winning strategy against
any strategy of Player 2.

Proof by induction of the number of states of Player 2

• For the induction step, isolate a Player 2 state with two
possible internal actions εL and εR

• By induction, if edge εR is deleted, Player 1 has a winning
strategy σL for NL nodes, and symmetrically

• A winning strategy is obtained combining σL and σR on NL + NR
nodes

Parity reconfigurable broadcast networks 21



Building a strategy using σL and σR

NL nodes

σL winning

...σL

εL

σL ...σL

εRεL

σL

NR nodes

σR winning

...σR

εLεR

σR

Swap

σL

...σR σR
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Test animation
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Step 2: Detecting infinite paths

• For a fixed state-based strategy for Player 2, one obtains a
reconfigurable broadcast network

• One can compute its set of reachable control states; there exists
an execution reaching a configuration with an arbitrary number of
nodes in each reachable state

• An infinite path corresponds to a positive cycle in a vector
addition system with states (VASS)

q0 q1

q2 q3

!!m

??m

s

t

u

x0 −−
x2 −−

x3 + +
x1 + +

• Detecting positive cycles in VASS can be done in PTIME
[Kosaraju & Sullivan 1988]
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Deciding the game problem for parity networks

Theorem
The game problem for parity RBN is in CONP.

Proof idea:
• Guess a state-based strategy τ for Player 2
• Check whether it is winning for any number of nodes and against

any strategies for Player 1
• If the VASS has a positive cycle, τ it is not winning
• Can be decided in PTIME

• If the state-based strategy τ is winning, then return NO
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Solving REACH=1
max : ∃N, ∃π, PN

π (♦qF ) = 1

qF

ε
.4

.6

ε

!!a

??a

Idea of the reduction:
• Player 2 decides the outcome of probabilistic choices
• Fairness is ensured using parities

1, ε

2, ε

2, ε

1, ε

1, ε

1, ε

1, ε

1, !!a

1, ??a
2, ε
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Correctness of the reduction for REACH=1
max

configurations in prob. network ≡ configurations in parity network
schedulers ≡ Player 1 strategies

Key: REACH=1
max iff from every reachable configuration there is a path

to a target configuration

Proof idea:
• If Player 1 has a winning strategy

case 1 Player 2 always decides the outcome of
probabilistic choices; corresponds to paths in null
measure set

case 2 Player 2 eventually always leave decision to
Player 1; from each reachable configuration, there
is a path to the target

• If Player 1 has no winning strategy
For every σ, Player 2 eventually lets Player 1 decide the outcome
of probabilistic choices;

there exists a configuration from which target is not reachable
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Complexity of almost-sure reachability

Theorem
REACH=1

max is CONP-complete.

• membership in NP by reduction to games on parity networks
• NP-hardness is obtained by reducing UNSAT
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NP-hardness of almost-sure reachability

ϕ = (a ∨ b ∨ c̄) ∧ (a ∨ b̄ ∨ c) ∧ (ā ∨ b̄ ∨ c̄)

x1,0

x0,0

x2,0

x0,1

x1,1

x2,1

x0,2

x1,2

x2,2

x0,3

x1,3

x2,3

r1

rp w

a
a1

ā1

a2

ā2

b
b1

b̄1

b2

b̄2

c
c1

c̄1

c2

c̄2

??ā ??b̄ ??c
!!ok

??ā ??b ??c̄ !!ok

??a ??b ??c
!!ok

1
2 1

2

1
2

1
2

!!a

!!ā

??ok

??ok

1
2

1
2

!!b

!!b̄

??ok

??ok

1
2

1
2

!!c

!!c̄

??ok

??ok

If ϕ is UNSAT, for any assignment, choose a clause so that the
probability to reach w is .5.
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Conclusion

Summary

• model: probabilistic selective broadcast networks
• properties: parameterized qualitative reachability questions
• resolution: via parity networks, yet another new model
• complexities: PTIME or CONP-complete

Perspectives

• move to quantitative questions
• beyond reachability

• consider other communication means

• logical characterization of parameterized parity games

• schedulers taking into account processes local view
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