Parameterized verification of probabilistic selective broadcast networks

Gandalf 2015

Nathalie Bertrand

Inria Rennes Bretagne Atlantique, France

joint work with Paulin Fournier and Arnaud Sangnier

Motivation

- Distributed algorithms (mutual exclusion, leader election, ...)
- Telecommunication protocols (routing, ...)
- Algorithms for ad-hoc networks
- Model for biological systems

Motivation

- Distributed algorithms (mutual exclusion, leader election, ...)
- Telecommunication protocols (routing, ...)
- Algorithms for ad-hoc networks
- Model for biological systems

All participants have the same behavior

They form a crowd

[Esparza, STACS'14]

Crowd networks

- Every process follows a same given protocol
- Processes can communicate, by either
 - Message passing
 - Shared variables
 - Rendez-vous communications
 - Broadcast communications
 - Multi-diffusion (selective broadcasts)

Crowd networks

- Every process follows a same given protocol
- Processes can communicate, by either
 - Message passing
 - Shared variables
 - Rendez-vous communications
 - Broadcast communications
 - Multi-diffusion (selective broadcasts)

Parameterized verification of crowd networks

Does the network conform to a given specification independently of the number of participants?

In this talk

Decidability and complexity of parameterized reachability problems in probabilistic networks

Features:

- Probabilistic protocols
- Multi-diffusion communications
- Simple reachability questions

In this talk

Decidability and complexity of parameterized reachability problems in probabilistic networks

Features:

- Probabilistic protocols
- Multi-diffusion communications
- Simple reachability questions

Challenge:

parameterized system + non-determinism + probabilities

Outline

1 Probabilistic reconfigurable broadcast networks

2 Parity reconfigurable broadcast networks

3 Solving probabilistic networks via parity networks

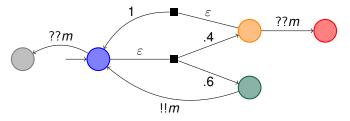
Outline

1 Probabilistic reconfigurable broadcast networks

2 Parity reconfigurable broadcast networks

Solving probabilistic networks via parity networks

A model for probabilistic protocols



Probabilistic protocol

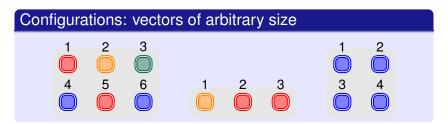
Finite state system whose transitions are labelled with:

- **1** probabilistic internal actions ε
- 2 broadcast of messages !!m
- 3 reception of messages ??m

for *m* in a finite alphabet Σ .

A probabilistic protocol defines a probabilistic network

Configurations



Initial configurations: all nodes are in the initial state

Remarks:

Size of configurations is not bounded

⇒ Networks are infinite state systems

Probabilistic Networks: semantics

Markov decision process over set of configurations.

- C: (infinite) set of configurations
- $\Rightarrow: C \times C \cup C \times Dist(C)$: Transition relation
- C₀: (infinite) set of initial configurations

The number of nodes does not change along an execution

Probabilistic Networks: semantics

Markov decision process over set of configurations.

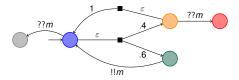
- C: (infinite) set of configurations
- $\Rightarrow: C \times C \cup C \times Dist(C)$: Transition relation
- C₀: (infinite) set of initial configurations

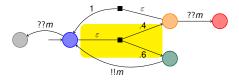
The number of nodes does not change along an execution

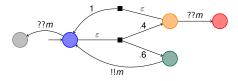
Transition relation

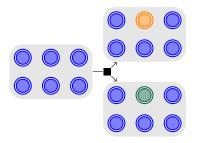
Decomposed in three steps

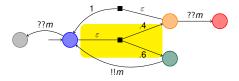
- Choice of a process
- Ochoice of a reception set (= set of neighbours)
- 3 Execution of an action
 - local action the process performs an internal action ε
 - **communication** the process sends a message (!!*m*), and its neighbours receive it (??*m*) if they can

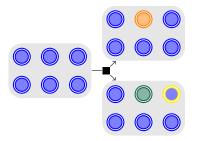


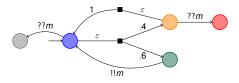


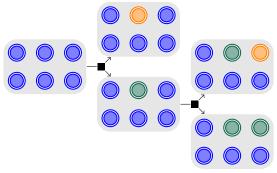


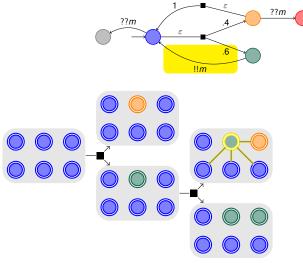


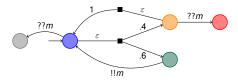


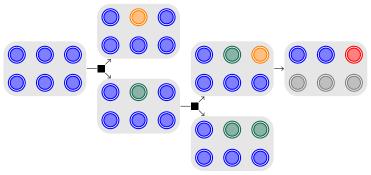


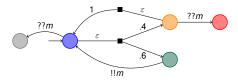


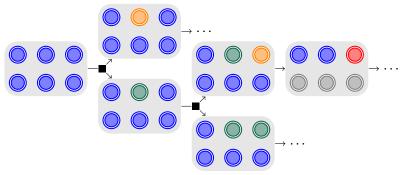












Parameterized reachability problems

scheduler π on *N* nodes induce a finite Markov chain of measure \mathbb{P}_{π}^{N}

Parameterized reachability problems

scheduler π on *N* nodes induce a finite Markov chain of measure \mathbb{P}_{π}^{N}

• Is an error state almost surely reachable, under some scheduler, and for some number of nodes?

$$\exists N, \exists \pi, \mathbb{P}_{\pi}^{N}(\Diamond q_{\texttt{err}}) = 1$$

• Is an error state avoidable almost surely, under all adversarial schedulers, and for any number of nodes?

$$\forall N, \forall \pi, \mathbb{P}^{N}_{\pi}(\Diamond q_{\texttt{err}}) = 0$$

Parameterized reachability problems

scheduler π on *N* nodes induce a finite Markov chain of measure \mathbb{P}_{π}^{N}

 Is an error state almost surely reachable, under some scheduler, and for some number of nodes?
REACH⁻¹_{max}

$$\exists N, \exists \pi, \mathbb{P}_{\pi}^{N}(\Diamond q_{\texttt{err}}) = 1$$

 Is an error state avoidable almost surely, under all adversarial schedulers, and for any number of nodes? ¬REACH^{>0}_{max}

$$\forall N, \forall \pi, \mathbb{P}^N_{\pi}(\Diamond q_{\texttt{err}}) = 0$$

REACH $_{opt}^{\sim b}$ $opt \in \{\min, \max\}, \sim \in \{>, <, \leq, \geq, =\}, b \in \{0, 1\}$ Input: A process and a control state $q_F \in Q$;Output: Does there exists N such that $opt_{\pi} \{\mathbb{P}_{\pi}^N(\Diamond q_F)\} \sim b$?

Monotocity property and consequences

Monotonicity

With more nodes in the network, the maximum reachability probability can only increase.

Idea: ignore additional nodes

Monotocity property and consequences

Monotonicity

With more nodes in the network, the maximum reachability probability can only increase.

Idea: ignore additional nodes

As a consequence, e.g.

$$\exists N, \exists \pi, \mathbb{P}^{N}_{\pi}(\Diamond q_{F}) = 0 \iff \exists \pi, \mathbb{P}^{1}_{\pi}(\Diamond q_{F}) = 0$$

 $REACH_{max}^{=0}$ is decidable in PTIME by considering a single node.

Solving REACH^{>0}max

Does there exists a *N* and a scheduler π such that $\mathbb{P}^{N}_{\pi}(\Diamond q_{F}) > 0$?

- · Equivalent to parameterized control state reachability
- Decidable in PTIME [Delzanno et al., FSTTCS'12]
- One can compute the set of reachable control states in PTIME
- Note: there exists an execution reaching a configuration with an arbitrary number of nodes in each reachable control state

Not as easy for $REACH_{max}^{=1}$!

Finite vs infinite MDPs

- Qualitative reachability is solvable in PTIME for finite MDPs by simple graph algorithms.
- Qualitative reachability in infinite-state MDPs: restricted to particular classes with *ad hoc* algorithms
 - non-deterministic and Probabilistic Lossy Channel Systems

recursive Markov Decision Processes

[Baier et al. 2007] [Etessami et al. 2015]

Finite vs infinite MDPs

- Qualitative reachability is solvable in PTIME for finite MDPs by simple graph algorithms.
- Qualitative reachability in infinite-state MDPs: restricted to particular classes with *ad hoc* algorithms
 - non-deterministic and Probabilistic Lossy Channel Systems

[Baier et al. 2007] [Etessami et al. 2015]

- recursive Markov Decision Processes
- Alternative technique in the finite case: transformation into μ-calculus formula or parity game. [Chatterjee et al. 2007]

Finite vs infinite MDPs

- Qualitative reachability is solvable in PTIME for finite MDPs by simple graph algorithms.
- Qualitative reachability in infinite-state MDPs: restricted to particular classes with *ad hoc* algorithms
 - non-deterministic and Probabilistic Lossy Channel Systems
 - recursive Markov Decision Processes
- Alternative technique in the finite case: transformation into μ-calculus formula or parity game. [Chatterjee et al. 2007]

How to adapt this methodology to probabilistic networks?

Main issues:

- 1 Transform MDP into equivalent parity game at the protocol level
- 2 Solve parity networks

[Baier et al. 2007]

[Etessami et al. 2015]

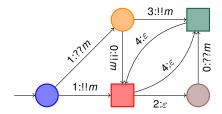
Outline

1 Probabilistic reconfigurable broadcast networks

2 Parity reconfigurable broadcast networks

Solving probabilistic networks via parity networks

A model for parity protocol



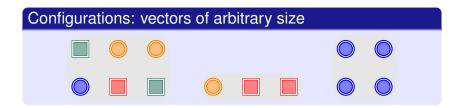
Parity protocol

- states of Player 1
- states of Player 2
- Transitions are labelled with:
 - 1 internal actions from Player 2's states ε
 - 2 broadcast of messages !!m
 - 3 reception of messages ??m
 - ④ parities in ℕ

Semantics

Configurations: vectors of arbitrary size

Semantics



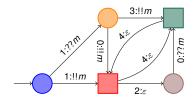
Roles are asymmetric

- · Player 1 chooses the active process, and its neighbours
- If the active process is in a Player i's state, Player i chooses its action

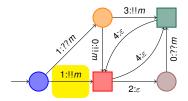
Strategy profile (σ, τ) yields a play ρ

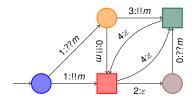
In communication transitions, the parity is the one of the corresponding broadcast

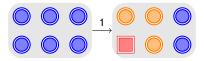
An example of play

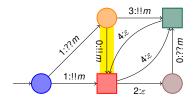


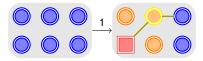
An example of play

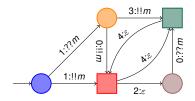


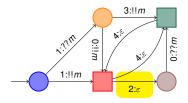


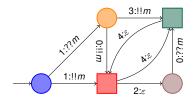




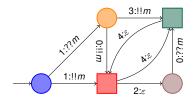


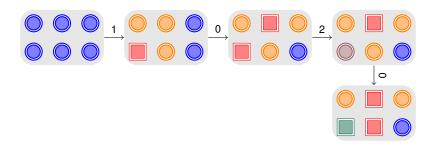


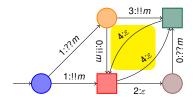


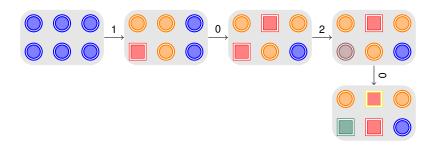


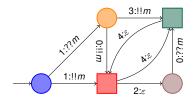


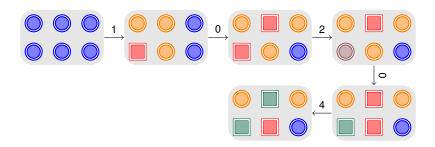


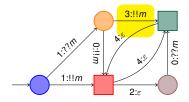


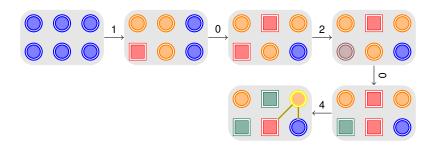


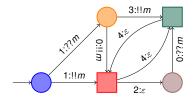


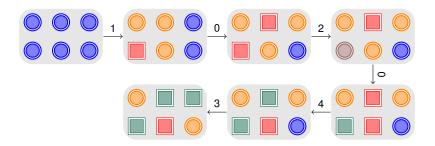


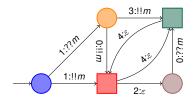


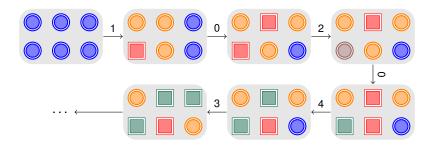












Parameterized game problem

Winning condition

Win consists of infinite plays such that the maximal color repeated infinitely often is even.

Parameterized game problem

Winning condition

Win consists of infinite plays such that the maximal color repeated infinitely often is even.

Does Player 1 has a winning strategy for the parity objective for some number of nodes?

Game problem for parity networks

Input: A parity protocol *P* **Question**: Does there exists *N* and a strategy σ for Player 1 such that for all strategies τ for Player 2 $\rho(\sigma, \tau, N) \in Win$.

Solving games on parity networks

Two steps

- state-based strategies for Player 2 are enough
- decidability of the existence of an infinite cycle in reconfigurable broadcast networks (*i.e.* networks of 1-player games)

State-based strategies

- only depend on the control state labeling the active node
- there are finitely many
- given a fixed state-based strategy for Player 2, one obtains a reconfigurable broadcast network

Step 1: Restricting to state-based strategies

Proposition

If there exists a number of nodes such that Player 1 has a winning strategy against any state-based strategy of Player 2, then there exists a number of nodes such that Player 1 has a winning strategy against any strategy of Player 2.

Proof by induction of the number of states of Player 2

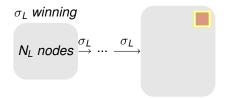
- For the induction step, isolate a Player 2 state with two possible internal actions ε_L and ε_R
- By induction, if edge ε_R is deleted, Player 1 has a winning strategy σ_L for N_L nodes, and symmetrically
- A winning strategy is obtained combining σ_L and σ_R on $N_L + N_R$ nodes

 σ_L winning

N_L nodes

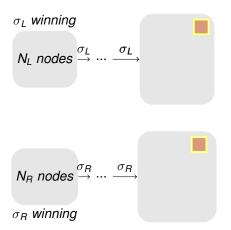
N_R nodes

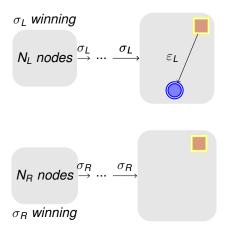
 σ_R winning

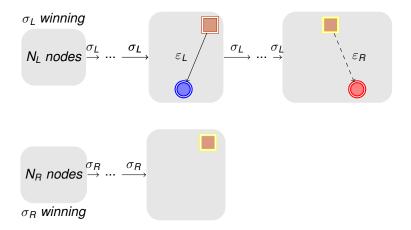


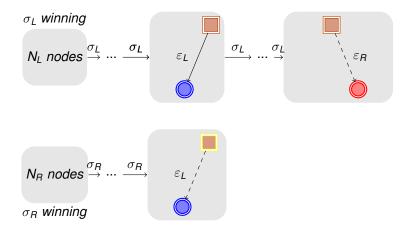
N_R nodes

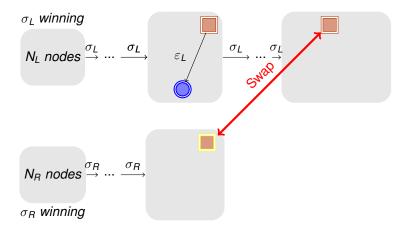
 σ_R winning

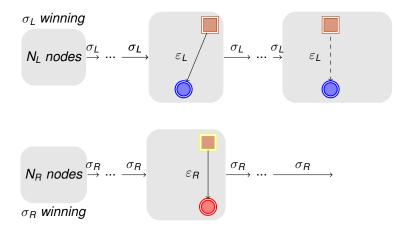












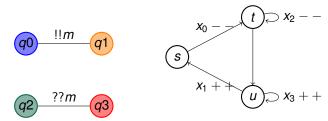
Test animation

Step 2: Detecting infinite paths

- For a fixed state-based strategy for Player 2, one obtains a reconfigurable broadcast network
- One can compute its set of reachable control states; there exists an execution reaching a configuration with an arbitrary number of nodes in each reachable state

Step 2: Detecting infinite paths

- For a fixed state-based strategy for Player 2, one obtains a reconfigurable broadcast network
- One can compute its set of reachable control states; there exists an execution reaching a configuration with an arbitrary number of nodes in each reachable state
- An infinite path corresponds to a positive cycle in a vector addition system with states (VASS)



 Detecting positive cycles in VASS can be done in PTIME [Kosaraju & Sullivan 1988]

Deciding the game problem for parity networks

Theorem

The game problem for parity RBN is in CONP.

Proof idea:

- Guess a state-based strategy τ for Player 2
- Check whether it is winning for any number of nodes and against any strategies for Player 1
 - If the VASS has a positive cycle, τ it is not winning
 - Can be decided in PTIME
- If the state-based strategy τ is winning, then return NO

Outline

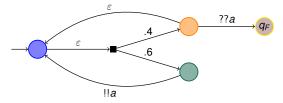
Probabilistic reconfigurable broadcast networks

2 Parity reconfigurable broadcast networks

3 Solving probabilistic networks via parity networks

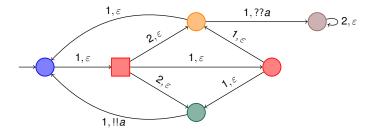
Solving $\operatorname{Reach}_{\max}^{=1}$: $\exists N, \exists \pi, \mathbb{P}_{\pi}^{N}(\Diamond q_{F}) = 1$

Solving REACH⁼¹_{max} : $\exists N, \exists \pi, \mathbb{P}^N_{\pi}(\Diamond q_F) = 1$



Idea of the reduction:

- Player 2 decides the outcome of probabilistic choices
- Fairness is ensured using parities



Correctness of the reduction for REACH⁼¹_{max}

configurations in prob. network \equiv configurations in parity network schedulers \equiv Player 1 strategies

Correctness of the reduction for REACH⁼¹_{max}

configurations in prob. network \equiv configurations in parity network schedulers \equiv Player 1 strategies

Key: $REACH_{max}^{=1}$ iff from every reachable configuration there is a path to a target configuration

Correctness of the reduction for REACH⁼¹_{max}

configurations in prob. network \equiv configurations in parity network schedulers \equiv Player 1 strategies

Key: $REACH_{max}^{=1}$ iff from every reachable configuration there is a path to a target configuration

Proof idea:

- If Player 1 has a winning strategy
 - case 1 Player 2 always decides the outcome of probabilistic choices; corresponds to paths in null measure set
 - case 2 Player 2 eventually always leave decision to Player 1; from each reachable configuration, there is a path to the target
- If Player 1 has no winning strategy For every σ, Player 2 eventually lets Player 1 decide the outcome of probabilistic choices;

there exists a configuration from which target is not reachable

Complexity of almost-sure reachability

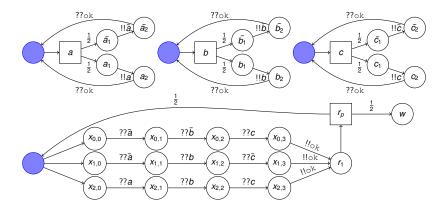
Theorem

 $REACH_{max}^{=1}$ is coNP-complete.

- membership in NP by reduction to games on parity networks
- NP-hardness is obtained by reducing UNSAT

NP-hardness of almost-sure reachability

 $\varphi = (a \lor b \lor \bar{c}) \land (a \lor \bar{b} \lor c) \land (\bar{a} \lor \bar{b} \lor \bar{c})$



If φ is UNSAT, for any assignment, choose a clause so that the probability to reach *w* is .5.

Conclusion

Summary

- model: probabilistic selective broadcast networks
- properties: parameterized qualitative reachability questions
- resolution: via parity networks, yet another new model
- complexities: PTIME or CONP-complete

Conclusion

Summary

- model: probabilistic selective broadcast networks
- properties: parameterized qualitative reachability questions
- resolution: via parity networks, yet another new model
- complexities: PTIME or CONP-complete

Perspectives

- move to quantitative questions
- beyond reachability
- consider other communication means
- · logical characterization of parameterized parity games
- schedulers taking into account processes local view