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Randomization in distributed computing

• To prevent attacks
• To improve complexity

• average complexity may only be better than worst-case
• To make impossible things possible!

• impossibility of symmetric solution to dining philosophers problem
• use randomness to break symmetry [Lehman Rabin’81]

• impossibility of consensus in asynchronous setting as soon as one
process can crash [Fischer Lynch Paterson’85]
• use randomness to rule out non-terminating executions [BenOr’83]
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Fault-tolerant distributed algorithms

• n processes communicate by asynchronous message broadcast
• f processes are faulty in the current execution
• t is a known upper bound on f

Resilience condition constrains parameters n, f , t ensuring correctness

Ben Or’s randomized algorithm solves consensus assuming f ≤ t < n
5
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The need for parameterized and automated verification

Need for parameterized verification
• correctness should hold under all parameter valuations that meet

the resilience condition

∀n, t, f f ≤ t < n
5 =⇒ C(n, t)|| · · · ||C(n, t)||F || · · · ||F |= ϕ

Need for automated verification
• mostly hand-written proofs in the literature
• non-determinism combined with probabilities

Proofs of correctness for probabilistic distributed systems are extremely slippery
[Lehmann Rabin’81]
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Threshold automata to the rescue
for non-randomized fault-tolerant distributed algorithms

• locations represent algorithm control points
• shared variables count sent messages of each type
• guards as linear constraints on variables and parameters

I0

I1

E0

CT0

CT1D1

D0

E1

x0 ++

x 1+
+

x1 ≥ (n + t)/2− f 7→ y1++

x0 ≥ (n + t)/2− f 7→ y0++

send <x1> to all
if received <x1>

from at least (n + t)/2
distinct processes

then send <y1> to all

[Konnov Veith Widder CAV’15, Konnov Lazić Veith Widder POPL’17]
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Semantics of threshold automata

• infinite counter system
• finitely many counters: 1 per location of the TA
• unbounded counter values because of parameters

I0

I1

E0

CT0

CT1D1

D0

E1

x0 ++

x 1+
+

x1 ≥ (n + t)/2− f 7→ y1++

x0 ≥ (n + t)/2− f 7→ y0++

κ[I1] = 1 κ[E1] = 2

κ[D1] = 1

count how many processes are in
every location

one process
decided 1
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Specifying and verifying correctness

• ELTLFT: LTL fragment without Next, and with counters
• atomic propositions: whether counter value is 0 or not

Agreement: No two correct processes decide differently (safety)

F κ[Dv ] > 0 → G κ[D1−v ] = 0

Termination: Eventually all correct processes decide (liveness)

F
∧

`∈L\{D0,D1}

κ[`] = 0

Given a threshold automaton TA, a specification ϕ in ELTLFT, and a
resilience condition RC , one can decide whether for all parameters
satisfying RC , Sys(TA) |= ϕ

Tool support: ByMC at forsyte.at/software/bymc/
[Konnov Veith Widder CAV’15, Konnov Lazić Veith Widder POPL’17]

Verifying randomized distributed algorithms – Nathalie Bertrand June 17th 2020 – DisCoTec – 7/ 27

forsyte.at/software/bymc/


Specifying and verifying correctness

• ELTLFT: LTL fragment without Next, and with counters
• atomic propositions: whether counter value is 0 or not

Agreement: No two correct processes decide differently (safety)

F κ[Dv ] > 0 → G κ[D1−v ] = 0

Termination: Eventually all correct processes decide (liveness)

F
∧

`∈L\{D0,D1}

κ[`] = 0

Given a threshold automaton TA, a specification ϕ in ELTLFT, and a
resilience condition RC , one can decide whether for all parameters
satisfying RC , Sys(TA) |= ϕ

Tool support: ByMC at forsyte.at/software/bymc/
[Konnov Veith Widder CAV’15, Konnov Lazić Veith Widder POPL’17]
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Outline

Motivations

Probabilistic Threshold automata

Proving safety properties

Proving almost-sure termination
Round-rigid adversaries
Weak adversaries

Conclusions

Verifying randomized distributed algorithms – Nathalie Bertrand June 17th 2020 – DisCoTec – 8/ 27



How to handle randomization?
Ben Or’s randomized algorithm for consensus [Ben Or’83]

b o o l v := i n p u t v a l u e ({0 , 1} ) ;
i n t r := 1 ;
w h i l e ( t r u e ) do

send (R , r , v ) to a l l ;
w a i t f o r n − t messages (R , r , ∗ ) ;
i f r e c e i v e d ( n + t ) / 2 messages (R , r , w)
then send (P , r , w,D) to a l l ;
e l s e send (P , r , ? ) to a l l ;
w a i t f o r n − t messages (P , r , ∗ ) ;
i f r e c e i v e d a t l e a s t t + 1

messages (P , r , w,D) then {
v := w ; /∗ enough s u p p o r t −> update e s t i m a t e ∗/
i f r e c e i v e d a t l e a s t ( n + t ) / 2

messages (P , r , w,D)
then d e c i d e w ; /∗ s t r o n g m a j o r i t y −> d e c i d e ∗/
} e l s e v := random(0, 1) ; /∗ u n c l e a r −> c o i n t o s s ∗/

r := r + 1 ;
od

Modeling challenges
• unboundedly many rounds
• probabilistic choices for local/global coin tosses
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Probabilistic threshold automata
Illustration on Ben Or’s algorithm

I0

I1

E0

CT0

CT1D1

D0

E1

x0 ++

x 1+
+

x1 ≥ (n + t)/2− f 7→ y1++

x0 ≥ (n + t)/2− f 7→ y0++
1
2

1
2

1
2

1
2

Probabilistic choice
(coin toss)

Unboundedly many rounds
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Correctness properties

Agreement: No two correct processes decide differently (safety)

(∀k ∈ N0) (∀k ′ ∈ N0) A
(
F κ[Dv , k] > 0 → G κ[D1−v , k ′] = 0

)
Validity: Any decided value was proposed initially (safety)

(∀k ∈ N0) A
(
F κ[I1−v , 0] = 0 → G κ[D1−v , k] = 0

)
Almost sure termination: under every adversary, with probability 1
every correct process eventually decides (prob. liveness)

Pa
( ∨

k∈N0

∨
v∈{0,1}

G
∧

`∈L\{Dv}

κ[`, k] = 0
)

= 1

Verification challenges
• specifications over multiple rounds

• probabilistic guarantees
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Illustration on Ben Or’s algorithm

I0

I1

E0

CT0

CT1D1

D0

E1

x0 ++

x 1+
+

x1 ≥ (n + t)/2− f 7→ y1++

x0 ≥ (n + t)/2− f 7→ y0++
1
2

1
2

Agreement

(∀k ∈ N0) (∀k′ ∈ N0)

A
(

F κ[Dv , k] > 0 → G κ[D1−v , k′] = 0
)

must hold on all executions
→ probabilistic choices can be transformed into non-determinism

Remaining challenges
• unboundedly many rounds
• specifications over multiple rounds

Solution
• reduce to one-round threshold automaton
• reduce to one-round specifications
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Reduction to single-round TA
Communication-closure hyp.: only messages of current round impact

→ reordering to analyze rounds in isolation

P1

P2

P3
fast

slow

slow
fast

slow

P1

P2

P3

round 1 round 2 round 3

Reordering preserves validity of ELTLFT specifications.

Verifying randomized distributed algorithms – Nathalie Bertrand June 17th 2020 – DisCoTec – 14/ 27



Reduction to single-round TA
Communication-closure hyp.: only messages of current round impact

→ reordering to analyze rounds in isolation

P1

P2

P3
fast

slow

slow
fast

slow

P1

P2

P3

round 1 round 2 round 3

Reordering preserves validity of ELTLFT specifications.

Verifying randomized distributed algorithms – Nathalie Bertrand June 17th 2020 – DisCoTec – 14/ 27



Reduction to single-round TA
Communication-closure hyp.: only messages of current round impact

→ reordering to analyze rounds in isolation

P1

P2

P3
fast

slow

slow
fast

slow

P1

P2

P3

round 1 round 2 round 3

Reordering preserves validity of ELTLFT specifications.

Verifying randomized distributed algorithms – Nathalie Bertrand June 17th 2020 – DisCoTec – 14/ 27



Reduction to single-round TA
Communication-closure hyp.: only messages of current round impact

→ reordering to analyze rounds in isolation

P1

P2

P3
fast

slow

slow
fast

slow

P1

P2

P3

round 1 round 2 round 3

Reordering preserves validity of ELTLFT specifications.
Verifying randomized distributed algorithms – Nathalie Bertrand June 17th 2020 – DisCoTec – 14/ 27



Reduction to single-round specifications

I0

I1

E0

CT0

CT1D1

D0

E1

Agreement
if F decision v in k
then G no decision 1−v in k′

I0

I1

E0

CT0

CT1D1

D0

E1

2 sufficient conditions on 1-round TA
if F decision v in k
then G empty final locs with 1−v in k

if G empty initial with 1−v in k

then G empty final with 1−v in k
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Illustration on Ben Or’s algorithm

I0

I1

E0

CT0

CT1D1

D0

E1

x0 ++

x 1+
+

x1 ≥ (n + t)/2− f 7→ y1++

x0 ≥ (n + t)/2− f 7→ y0++
1
2

1
2

Almost sure termination
∀a Pa

( ∨
k∈N0

∨
v∈{0,1}

G
∧

`∈L\{Dv}

κ[`, k] = 0
)

= 1

must hold for all adversaries, on almost all executions
→ probabilities matter!

Extra challenge: reordering in the presence of probabilistic branching

round 5

round 3

round 2

Solution
• restrict to round-rigid or weak adversaries
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Round-rigid adversaries

Round-rigid adversary
• respects round order
• schedules probabilistic choices at the end of rounds

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
21
2

1
21
2

1
21
2

1
2

round 1

round 2

Verifying randomized distributed algorithms – Nathalie Bertrand June 17th 2020 – DisCoTec – 18/ 27



Round-rigid adversaries

Round-rigid adversary
• respects round order
• schedules probabilistic choices at the end of rounds

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
21
2

1
21
2

1
21
2

1
2

round 1

round 2

Verifying randomized distributed algorithms – Nathalie Bertrand June 17th 2020 – DisCoTec – 18/ 27



Reduction to single-round specifications
From almost-sure to being lucky

I0

I1

E0

CT0

CT1D1

D0

E1

x0 ++

x 1+
+

x1 ≥ (n + t)/2− f 7→ y1++

x0 ≥ (n + t)/2− f 7→ y0++
1
2

1
2

Almost-sure termination
for every round-rigid adv. almost surely
F all decide in k

∀a, Pa
(∨

k
∨

v G
∧

` 6=Dv κ[`, k] = 0
)

= 1

I0

I1

E0

CT0

CT1D1

D0

E1

1
2

1
2

2 sufficient conditions on 1-round PTA
One may be lucky
for every adv. with bounded probability
G empty final with 1−v in k

Luckiness implies termination in next round
if G empty initial with 1−v in k

then F all decide v in k
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Reduction to single-round specifications
Checking that one may be lucky

for every adv. with bounded probability G empty final with 1−v in k
• the possibility of being lucky implies a bounded probability

(for fixed parameter values)
E G empty final with 1−v in k =⇒ Pa

(
G empty final with 1−v in k

)
≥ p > 0

• probabilistic choices can be abstracted to obtain a TA

I0

I1

E0

D1

D0

E1

x0 ++

x 1+
+

x1 ≥ (n + t)/2− f 7→ y1++

x0 ≥ (n + t)/2− f 7→ y0++

CT
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Experimental evaluation

• 6 randomized consensus algorithms
• several one-round safety and liveness properties for each
• tool support: forsyte.at/software/bymc/

Algorithm Verif time per property

- Ben-Or’s Byzantine random. consensus ≤ 1 sec
- Ben-Or’s crash random. consensus ≤ 1 sec
- Ben-Or’s clean crash random. consensus ≤ 1 sec
- Bracha’s randomized consensus ≤ 1 sec
- Raynal’s k-set agreement 3–40 sec
- Song’s and van Renesse’s BOSCO 3 hours on a cluster
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Weak adversaries

Weak adversary
• does not see outcome of random choices
• sees sender and type of messages, not contents
• tags messages with IDs “deliver message 42 to P1”

round 5

round 3

round 2

forbidden

round 5

round 3

round 3

allowed

Need for refined model for probabilistic threshold automaton with
message IDs, process IDs, etc.
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Probabilistic threshold automata with IDs
Illustration on Ben Or’s algorithm

Pi :

I0

I1

E0

CT0

CT1D1

D0

E1

snd(x0)

snd(x1)
reci (x1) ≥ (n + t)/2− f 7→ snd(y1)

reci (x0) ≥ (n + t)/2− f 7→ snd(y0)
1
2

1
2

• local variables count received messages of each type
• global set of sent messages
• equivalence on locations that weak adversaries do not distinguish

Specifications still in ELTLFT
atomic propositions: whether some/no process is in ` at round k
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Reduction to round-rigid adversaries

For every weak adversary a, there is a round-rigid weak adversary a′

such that for every specification ϕ in ELTLFT, Pa(ϕ) = Pa′(ϕ).

Key ideas

• transform into a communication-closed adversary
by postponing delivery of messages from future rounds

• further transform into a round-rigid adversary by re-ordering
swapped transitions

σ0 σ2 σs σ′s+1

σs+2

σ̄s+2

α0, `0 . . .
αs+1, `s+1 αs

`s

¯̀s

σ0 σ2 σs

σs+1

σ̄s+1

σs+2

σ̄s+2

α0, `0 . . .
αs

`s

¯̀s

αs+1, `s+1

αs+1, `s+1

establish correspondence between models with and without IDs
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Contributions

• Modeling of randomized fault-tolerant distributed algorithms
I0

I1

E0

CT0

CT1D1

D0

E1

x0 ++

x 1+
+

x1 ≥ (n + t)/2− f 7→ y1++

x0 ≥ (n + t)/2− f 7→ y0++
1
2

1
2

Pi :

I0

I1

E0

CT0

CT1D1

D0

E1

snd(x0)

snd(x1)
reci (x1) ≥ (n + t)/2− f 7→ snd(y1)

reci (x0) ≥ (n + t)/2− f 7→ snd(y0)
1
2

1
2

probabilistic threshold automata (PTA) probabilistic threshold automata with IDs (PTA-ID)

• Efficient verification techniques for PTA to prove
• non-probabilistic specs
• prob. specs under round-rigid adversaries

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
21
2

1
21
2

1
21
2

1
2

• Experimental validation on randomized consensus algorithms
• Verification framework for PTA-ID to prove

• non-prob. and prob. specs under weak adversaries round 5

round 3

round 3

Verifying randomized distributed algorithms – Nathalie Bertrand June 17th 2020 – DisCoTec – 26/ 27



On-going and future work

• Formalisation of correspondence between PTA and PTA-ID

• Structural conditions to enable reordering for strong(er) adversaries
• Quantitative verification techniques for performance evaluation

average number of rounds before termination

• Models and verification techniques for other classes of randomized
distributed algorithms

global coin tosses
randomized adversary

Nirringrazzjak
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