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Randomization in distributed computing

e To prevent attacks
e To improve complexity
e average complexity may only be better than worst-case
e To make impossible things possible!
e impossibility of symmetric solution to dining philosophers problem
e use randomness to break symmetry [Lehman Rabin'81]

e impossibility of consensus in asynchronous setting as soon as one
process can crash [Fischer Lynch Paterson’85]

e use randomness to rule out non-terminating executions [BenOr'83]
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Fault-tolerant distributed algorithms

e n processes communicate by asynchronous message broadcast
e f processes are faulty in the current execution

e tis a known upper bound on f

Resilience condition constrains parameters n, f, t ensuring correctness
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Fault-tolerant distributed algorithms

e n processes communicate by asynchronous message broadcast
e f processes are faulty in the current execution

e tis a known upper bound on f

Resilience condition constrains parameters n, f, t ensuring correctness

Ben Or’s randomized algorithm solves consensus assuming f < t < £

Verifying randomized distributed algorithms — Nathalie Bertrand June 17th 2020 — DisCoTec — 3/ 27



The need for parameterized and automated verification

Need for parameterized verification

e correctness should hold under all parameter valuations that meet
the resilience condition

ntf f<t<g = Cnbl--[ICm Il IF o
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The need for parameterized and automated verification

Need for parameterized verification

e correctness should hold under all parameter valuations that meet
the resilience condition

ntf f<t<g = Cnbl--[ICm Il IF o

Need for automated verification
e mostly hand-written proofs in the literature
e non-determinism combined with probabilities

Proofs of correctness for probabilistic distributed systems are extremely slippery
[Lehmann Rabin’'81]
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Threshold automata to the rescue

for non-randomized fault-tolerant distributed algorithms

e |ocations represent algorithm control points
e shared variables count sent messages of each type
e guards as linear constraints on variables and parameters

[Konnov Veith Widder CAV'15, Konnov Lazi¢ Veith Widder POPL'17]
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for non-randomized fault-tolerant distributed algorithms
e |ocations represent algorithm control points
e shared variables count sent messages of each type
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Semantics of threshold automata

e infinite counter system

e finitely many counters: 1 per location of the TA
e unbounded counter values because of parameters
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Specifying and verifying correctness

e ELTLgr: LTL fragment without Next, and with counters

e atomic propositions: whether counter value is 0 or not
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Specifying and verifying correctness

e ELTLgr: LTL fragment without Next, and with counters

e atomic propositions: whether counter value is 0 or not
Agreement: No two correct processes decide differently (safety)
F k[D,)>0 — G k[Di_,]=0
Termination: Eventually all correct processes decide (liveness)

F N k=0

LeL\{Do,D; }

Given a threshold automaton TA, a specification ¢ in ELTLgr, and a
resilience condition RC, one can decide whether for all parameters
satisfying RC, Sys(TA) E ¢

Tool support: ByMC at forsyte.at/software/bymc/
[Konnov Veith Widder CAV'15, Konnov Lazi¢ Veith Widder POPL'17]
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Outline

Probabilistic Threshold automata
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How to handle randomization?

Ben Or’s randomized algorithm for consensus [Ben Or'83]

bool v := input_value ({0, 1});
int ri=1;
while (true) do
send (R,r,v) to all;
wait for n — t messages (R,r,x);
if received (n + t) / 2 messages (R,r,w)
then send (P,r,w,D) to all;
else send (P,r,?) to all;
wait for n — t messages (P,r,x);
if received at least t + 1
messages (P,r,w,D) then {
v o= w; /* enough support —> update estimate %/
if received at least (n +t) / 2
messages (P, r,w,D)

then decide w; /* strong majority —> decide x*/
} else v:=random(0, 1) ; /* unclear —> coin toss x/
r=r+1;
od
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How to handle randomization?

Ben Or’s randomized algorithm for consensus [Ben Or'83]

bool v := input_value ({0, 1});
int r:=1;
while (true) do
send (R,r,v) to all;
wait for n — t messages (R,r,x);
if received (n + t) / 2 messages (R,r,w)
then send (P,r,w,D) to all;
else send (P,r,?) to all;
wait for n — t messages (P,r,x);
if received at least t + 1
messages (P,r,w,D) then {
v o= w; /* enough support —> update estimate %/
if received at least (n +t) / 2
messages (P, r,w,D)

then decide w; /+ strong majority —> decide x/
} else v:=random(0, 1) ; /* unclear —> coin toss x/
r=r+1;
od

Modeling challenges
e unboundedly many rounds

e probabilistic choices for local/global coin tosses
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Probabilistic threshold automata

Illustration on Ben Or's algorithm

Verifying randomized distributed algorithms — Nathalie Bertrand June 17th 2020 — DisCoTec — 10/ 27



Probabilistic threshold automata

Illustration on Ben Or's algorithm
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Probabilistic threshold automata

Illustration on Ben Or's algorithm

Unboundedly many rounds ~ : .-
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Correctness properties

Agreement: No two correct processes decide differently (safety)
(Vk € Ng) (VK € Ng) A (F k[Dy,k] >0 — G k[Dy_,, k'] =0)
Validity: Any decided value was proposed initially (safety)
(Vk eNo) A (F k[h—,,0]=0 — G k[D1_,,k] =0)

Almost sure termination: under every adversary, with probability 1
every correct process eventually decides (prob. liveness)

Pa(View, V G N wlLK=0)=1

ve{0,1}  ¢eL\{D,}
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Correctness properties

Agreement: No two correct processes decide differently (safety)
(Vk € No) (VK € Ng) A (F k[Dy,k] >0 — G k[D1_,, k'] =0)
Validity: Any decided value was proposed initially (safety)
(Vk eNo) A (F k[h—,,0]=0 — G k[D1_,,k]=0)

Almost sure termination: under every adversary, with probability 1
every correct process eventually decides (prob. liveness)

Pa(Veew, V G N\ wlLK=0)=1

ve{0,1}  ¢eL\{D,}

Verification challenges
e specifications over multiple rounds

e probabilistic guarantees
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Outline

Proving safety properties
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lllustration on Ben Or's algorithm

(Vk € No) (VK" € Np)
A (F [D,,kl>0 — G k[D:i_,,K']=0)

E’:&‘ &0 Agreement
o

must hold on all executions
— probabilistic choices can be transformed into non-determinism

Remaining challenges

e unboundedly many rounds

e specifications over multiple rounds
Solution

e reduce to one-round threshold automaton

e reduce to one-round specifications
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Reduction to single-round TA

Communication-closure hyp.: only messages of current round impact
— reordering to analyze rounds in isolation

Verifying randomized distributed algorithms — Nathalie Bertrand June 17th 2020 — DisCoTec — 14/ 27



Reduction to single-round TA

Communication-closure hyp.: only messages of current round impact
— reordering to analyze rounds in isolation
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Reduction to single-round TA

Communication-closure hyp.: only messages of current round impact
— reordering to analyze rounds in isolation
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Reordering preserves validity of ELTLgt specifications.
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Reduction to single-round specifications

Agreement
if Fdecision v in k

then G no decision 1—v in k'
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Reduction to single-round specifications

Agreement
if Fdecision v in k

then G no decision 1—v in k'

2 sufficient conditions on 1-round TA

b 00 if F decision v in k
® (T .
then G empty final locs with 1—v in k

o cn

o
¥ O
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Reduction to single-round specifications

Agreement
if Fdecision v in k

then G no decision 1—v in k'

2 sufficient conditions on 1-round TA

b 00 if F decision v in k
& .
O then G empty final locs with 1—v in k

og cm if G empty initial with 1—v in k

%\

then G empty final with 1—v in k
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Outline

Proving almost-sure termination
Round-rigid adversaries
Weak adversaries
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lllustration on Ben Or's algorithm

0 (04 8)/2— Fos yoit 5.0 o | Almost sure termination
2

<g vaP, (\/ \/ 6 A «&lLK=0)=1
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must hold for all adversaries, on almost all executions
— probabilities matter!
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lllustration on Ben Or's algorithm

Almost sure termination

vaP, (\/ \/ 6 A «&lLK=0)=1

keNgve{0,1}  £€L\{Dy}

must hold for all adversaries, on almost all executions
— probabilities matter!

Extra challenge: reordering in the presence of probabilistic branching

round 3
Em—
round 5

round 2
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lllustration on Ben Or's algorithm

Almost sure termination

vaP, (\/ \/ 6 A «&lLK=0)=1

keNgve{0,1}  £€L\{Dy}

must hold for all adversaries, on almost all executions
— probabilities matter!

Extra challenge: reordering in the presence of probabilistic branching

round 3
Em—
round 5

round 2

Solution

e restrict to round-rigid or weak adversaries
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Round-rigid adversaries

Round-rigid adversary
e respects round order

e schedules probabilistic choices at the end of rounds
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Round-rigid adversaries

Round-rigid adversary
e respects round order

e schedules probabilistic choices at the end of rounds

Nl

round 1

round 2

NI

Verifying randomized distributed algorithms — Nathalie Bertrand June 17th 2020 — DisCoTec — 18/ 27



Reduction to single-round specifications

From almost-sure to being lucky

Almost-sure termination
for every round-rigid adv. almost surely

(g F all decide in k

L Ve PV VLB A, sl K = 0) = 1

x> (n+6)/2— F s yort

X (n+t)/2—f it

Verifying randomized distributed algorithms — Nathalie Bertrand June 17th 2020 — DisCoTec — 19/ 27



Reduction to single-round specifications

From almost-sure to being lucky

x> (n+6)/2— f s yort

A

X = (n+8)/2—F syt

Almost-sure termination
for every round-rigid adv. almost surely

all decide in k

Va, ]P’a(\/k V., G /\I/;KDV w[l, k] = 0) =1

2 sufficient conditions on 1-round PTA

I E
KO\ D, O %CS G
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Reduction to single-round specifications

From almost-sure to being lucky

Almost-sure termination
for every round-rigid adv. almost surely

{g F all decide in k

Va, ]P’a(\/k V., G /\I/;KDV w[l, k] = 0) =1

x> (n+6)/2— f s yort

X = (n+8)/2—F syt

2 sufficient conditions on 1-round PTA

. c One may be lucky
§ ' for every adv. with bounded probability
20 % G empty final with 1—v in k

Py }ng Luckiness implies termination in next round
A (292} if G empty initial with 1—v in k

then F all decide v in k
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Reduction to single-round specifications
Checking that one may be lucky

for every adv. with bounded probability G empty final with 1—v in k

e the possibility of being lucky implies a bounded probability
(for fixed parameter values)
EG empty final with 1—v in k — ]P’a(G empty final with 1—v in k ) >p>0

e probabilistic choices can be abstracted to obtain a TA

xp > (n+t)/2—f — yo++

cT

x1 > (n+t)/2—f— yi++
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Experimental evaluation

e 6 randomized consensus algorithms
e several one-round safety and liveness properties for each

e tool support: forsyte.at/software/bymc/

Algorithm Verif time per property
- Ben-Or's Byzantine random. consensus <1 sec
- Ben-Or's crash random. consensus <1 sec
- Ben-Or's clean crash random. consensus <1 sec
- Bracha’'s randomized consensus <1 sec
- Raynal’s k-set agreement 3-40 sec

- Song's and van Renesse’s BOSCO 3 hours on a cluster
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Weak adversaries

Weak adversary
e does not see outcome of random choices

e sees sender and type of messages, not contents

e tags messages with IDs “deliver message 42 to P1”
round 3 round 3
round 5
round 2
forbidden allowed
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Weak adversaries

Weak adversary
e does not see outcome of random choices

e sees sender and type of messages, not contents

e tags messages with IDs “deliver message 42 to P1”
round 3 round 3
round 5
round 2
forbidden allowed

Need for refined model for probabilistic threshold automaton with
message |IDs, process IDs, etc.
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Probabilistic threshold automata with IDs

Illustration on Ben Or's algorithm

d(x)
reci(x1) > (n+t)/2 — f — snd(y1)

ol :
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Probabilistic threshold automata with IDs

Illustration on Ben Or's algorithm

d(x)
reci(x1) > (n+t)/2 — f — snd(y1)

ol :

e local variables count received messages of each type
e global set of sent messages

e equivalence on locations that weak adversaries do not distinguish
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Probabilistic threshold automata with IDs

Illustration on Ben Or's algorithm
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reci(x1) > (n+t)/2 — f — snd(y1) &Tl

ol :

e local variables count received messages of each type
e global set of sent messages

e equivalence on locations that weak adversaries do not distinguish

Specifications still in ELTLgt

atomic propositions: whether some/no process is in ¢ at round k
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Reduction to round-rigid adversaries

For every weak adversary a, there is a round-rigid weak adversary a’
such that for every specification ¢ in ELTLgt, Pa(¢) = Par ().
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Reduction to round-rigid adversaries

For every weak adversary a, there is a round-rigid weak adversary a’
such that for every specification ¢ in ELTLgt, Pa(¢) = Par ().

Key ideas

transform into a communication-closed adversary NO ;UTQREA
by postponing delivery of messages from future rounds w0 |
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Reduction to round-rigid adversaries

For every weak adversary a, there is a round-rigid weak adversary a’
such that for every specification ¢ in ELTLgt, Pa(¢) = Par ().
Key ideas

transform into a communication-closed adversary
by postponing delivery of messages from future rounds

N FUTURE

o further transform into a round-rigid adversary by re-ordering
swapped transitions
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Reduction to round-rigid adversaries

For every weak adversary a, there is a round-rigid weak adversary a’
such that for every specification ¢ in ELTLgt, Pa(¢) = Par ().

Key ideas

transform into a communication-closed adversary NO :-UTL,REA
by postponing delivery of messages from future rounds &

o further transform into a round-rigid adversary by re-ordering
swapped transitions
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A establish correspondence between models with and without IDs
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Outline

Conclusions
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Contributions

Modeling of randomized fault-tolerant distributed algorithms

probabilistic threshold automata (PTA) probabilistic threshold automata with IDs (PTA-ID)
Efficient verification techniques for PTA to prove

e non-probabilistic specs

e prob. specs under round-rigid adversaries
Experimental validation on randomized consensus algorithms

Verification framework for PTA-ID to prove

e non-prob. and prob. specs under weak adversaries
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On-going and future work

Formalisation of correspondence between PTA and PTA-ID

Structural conditions to enable reordering for strong(er) adversaries

Quantitative verification techniques for performance evaluation
average number of rounds before termination

Models and verification techniques for other classes of randomized
distributed algorithms
global coin tosses
randomized adversary
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Quantitative verification techniques for performance evaluation
average number of rounds before termination

Models and verification techniques for other classes of randomized
distributed algorithms
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randomized adversary

Nirringrazzjak

Verifying randomized distributed algorithms — Nathalie Bertrand June 17th 2020 — DisCoTec — 27/ 27



	Motivations
	Probabilistic Threshold automata
	Proving safety properties
	Proving almost-sure termination
	Round-rigid adversaries
	Weak adversaries

	Conclusions

