Games with arbitrarily many players Nathalie Bertrand - Inria Rennes joint work with Patricia Bouyer and Anirban Majumdar

CFV online seminar - June 5th 2020

2-player concurrent games

How to play?

- token is initially in vertex v_0
- ▶ Player 1 and Player 2 choose actions simultaneously
- next vertex is determined by the combination of actions

Player 1 has a winning strategy if she can win whatever Player 2 does

Motivations for parameterized concurrent games

a distinguished agent trying to achieve a goal against **arbitrarily many** adversaries

Eve vs Rest of the world

Games with a parameterized number of players - Nathalie Bertrand

Motivations for parameterized concurrent games

a distinguished agent trying to achieve a goal against **arbitrarily many** adversaries

Eve vs Rest of the world

arbitrarily many agents trying to achieve a goal as a coalition

Strategy synthesis for coalition

Framework for parameterized concurrent games

From 2 players to arbitrarily many

L_{ij} languages of finite words

Framework for parameterized concurrent games

From 2 players to arbitrarily many

L_{ij} languages of finite words

How to play?

- number of players k is fixed initially, yet unknown to them
- ▶ players know their "position" (e.g. Player 3 is third in list)
- they observe the sequence of vertices
- ► each player chooses an action, forming altogether a finite word ∀*i* Player *i* choosing a_i yields the word w = a₁ ··· a_k;
- ▶ to which language **w** belongs determines the next vertex

Framework for parameterized concurrent games

From 2 players to arbitrarily many

L_{ij} languages of finite words

How to play?

- \blacktriangleright number of players ${\bf k}$ is fixed initially, yet unknown to them
- ▶ players know their "position" (e.g. Player 3 is third in list)
- they observe the sequence of vertices
- ► each player chooses an action, forming altogether a finite word ∀*i* Player *i* choosing a_i yields the word w = a₁ ··· a_k;
- ▶ to which language **w** belongs determines the next vertex
- Rk: choice of k and resolution of non-determinism is adversarial Games with a parameterized number of players – Nathalie Bertrand June 5th 2020 – C

A first parameterized reachability game

Eve vs Rest of the world

A first parameterized reachability game

Eve vs Rest of the world

▶ game starts at v₀

- the number of players k is fixed but unknown to the players
- ▶ Player 1 plays *a*, other players each choose an action in Σ
- if $\mathbf{k} = 2$, the token moves to v_1 , otherwise, it moves to v_2
- ▶ in v₃, Player 1 can ensure to reach v₄: choose a (resp. b) if the play went to v₁ (resp. v₂)

$$\blacktriangleright v_0 \xrightarrow{aa} v_1 \xrightarrow{ab} v_3 \xrightarrow{aa} v_4 \in \mathsf{Plays}_2 \qquad v_0 \xrightarrow{aab} v_2 \xrightarrow{abb} v_3 \xrightarrow{baa} v_4 \in \mathsf{Plays}_3$$

Player 1 can reach v₄ independently of the number of opponents

A second parameterized reachability game

Strategy synthesis for coalition

A second parameterized reachability game

Strategy synthesis for coalition

▶ game starts at v₀

the number of players k is fixed but unknown to the players

as a coalition all players can ensure to reach v₁ at step i, Player i plays b and all others play a

 $\blacktriangleright \mathsf{Play}_{\mathbf{k}} = v_0 \xrightarrow{ba^{\mathbf{k}-1}} v_0 \xrightarrow{aba^{\mathbf{k}-2}} v_0 \cdots v_0 \xrightarrow{a^{\mathbf{k}-1}b} v_1$

Players can collectively reach v₁ independently of their number

Formalization of our two problems of interest

Eve vs Rest of the world

Input: a parameterized arena, a winning objective **Win** Output: whether Eve has a winning strategy to achieve **Win** independently of the number of her opponents

 $\exists \sigma_E \ \forall \mathbf{k} \ \forall \sigma_2 \cdots \sigma_{\mathbf{k}} \ \mathsf{Plays}(\sigma_E, \sigma_2, \cdots, \sigma_{\mathbf{k}}) \subseteq \mathsf{Win}?$

Formalization of our two problems of interest

Eve vs Rest of the world

Input: a parameterized arena, a winning objective **Win** Output: whether Eve has a winning strategy to achieve **Win** independently of the number of her opponents

 $\exists \sigma_E \ \forall \mathbf{k} \ \forall \sigma_2 \cdots \sigma_{\mathbf{k}} \ \mathsf{Plays}(\sigma_E, \sigma_2, \cdots, \sigma_{\mathbf{k}}) \subseteq \mathsf{Win}?$

Strategy synthesis for coalition

$$\exists \sigma_1 \sigma_2 \cdots \forall \mathbf{k} \; \mathsf{Plays}(\sigma_1, \sigma_2, \cdots, \sigma_{\mathbf{k}}) \subseteq \mathsf{Win}$$
?

Eve vs Rest of the world

Reduction to simpler games: counting is enough

Observation Eve's opponents act as a coalition

ightarrow only their number matter, not their actions

Reduction to simpler games: counting is enough

Observation Eve's opponents act as a coalition \rightarrow only their number matter, not their actions

How to play?

- > environment chooses number of players k, unknown to Eve
- at vertex v, Eve chooses action a

environment chooses edge $v \xrightarrow{a,S} v'$ with $\mathbf{k} \in S$

• game proceeds from v'

Reduction to simpler games: counting is enough

Observation Eve's opponents act as a coalition \rightarrow only their number matter, not their actions

How to play?

- environment chooses number of players k, unknown to Eve
- ▶ at vertex v, Eve chooses action a

environment chooses edge $v \xrightarrow{a,S} v'$ with $\mathbf{k} \in S$

• game proceeds from v'

Rk: for a regular language L, **count**(L) is semi-linear

Knowledge game

2-player turn-based game encoding Eve's knowledge on nb of opponents

- \blacktriangleright \bigcirc chooses actions, \square chooses next vertex
- ▶ initial vertex (v_0, \mathbb{N}) owned by \bigcirc
- knowledge of Eve is updated according to moves

Knowledge game

2-player turn-based game encoding Eve's knowledge on nb of opponents

- \blacktriangleright \bigcirc chooses actions, \square chooses next vertex
- ▶ initial vertex (v_0, \mathbb{N}) owned by \bigcirc
- knowledge of Eve is updated according to moves

Eve wins the parameterized game $\iff \bigcirc$ wins the knowledge game

Knowledge game

2-player turn-based game encoding Eve's knowledge on nb of opponents

- \blacktriangleright \bigcirc chooses actions, \square chooses next vertex
- ▶ initial vertex (v_0, \mathbb{N}) owned by \bigcirc
- knowledge of Eve is updated according to moves

Eve wins the parameterized game $\iff \bigcirc$ wins the knowledge game

Knowledge game can be solved in polynomial time in its size

Games with a parameterized number of players - Nathalie Bertrand

Knowledge game on an example

Resolution of concurrent parameterized games

Decidability and complexity

The parameterized game problem for **reachability objectives** is decidable, with the following complexities

	Deterministic	Non-deterministic
Intervals	PTIME-complete	
Finite unions of intervals	NP-complete	PSPACE-complete
Semilinear sets	PSPACE-complete	

Resolution of concurrent parameterized games

Decidability and complexity

The parameterized game problem for **reachability objectives** is decidable, with the following complexities

	Deterministic	Non-deterministic
Intervals	PTIME-complete	
Finite unions of intervals	NP-complete	PSPACE-complete
Semilinear sets	PSPACE-complete	

Simple case of intervals

knowledge game is quadratic in the number of end-points

Resolution of concurrent parameterized games

Decidability and complexity

The parameterized game problem for **reachability objectives** is decidable, with the following complexities

	Deterministic	Non-deterministic
Intervals	PTIME-complete	
Finite unions of intervals	NP-complete	PSPACE-complete
Semilinear sets	PSPACE-complete	

Simple case of intervals

knowledge game is quadratic in the number of end-points

General case: semi-linear sets

knowledge game is at most exponential in the number of semilinear sets but there is a polynomial space algorithm

PSPACE upper bound for semilinear constraints

Parameterized game problem for reachability objectives is in PSPACE

Proof idea

- decompose the knowledge game into subgames with objective to reduce the knowledge while remaining winning
- ▶ DFS algorithm tagging states (v, K) with \checkmark/\checkmark up to (v_0, \mathbb{N})

Close-up on subgames

for every \bigcirc vertex (v, K) restriction of the knowledge game

- starting at (v, K)
- ► stopping at any (v', K') with $K' \subsetneq K$

or at the target $\ensuremath{\textcircled{}}$

Close-up on subgames

for every \bigcirc vertex (v, K) restriction of the knowledge game

- starting at (v, K)
- ▶ stopping at any (v', K') with $K' \subsetneq K$

or at the target $\ensuremath{\textcircled{}}$

Close-up on tagging algorithm

- \blacktriangleright tag \odot with \checkmark other leaves with \bigstar
- ► tag (v, K) with √ if in the subgame starting at (v, K) ○ has a strategy to reach √

Games with a parameterized number of players - Nathalie Bertrand

Close-up on tagging algorithm

- \blacktriangleright tag \odot with \checkmark other leaves with \bigstar
- tag (v, K) with √if in the subgame starting at (v, K)
 ○ has a strategy to reach √

How to do this in PSPACE?

- in a DFS, store only subgames and tags that are relevant
- any subgame for (v, K) is of polynomial size and has polynomially many exits (v', K')
- the height of the DAG is polynomial
- once a tag is computed, one can forget the whole sub-DAG

Strategy synthesis for coalition

Strategy synthesis for coalition of arbitrarily many players

$$(v_2) \xleftarrow{\Sigma^{\geq 2} \setminus (a^+b + a^*ba^+)} (v_0) \xrightarrow{a^+b} (v_1)$$

 $\exists \sigma_1 \sigma_2 \cdots \forall \mathbf{k} \; \mathsf{Plays}(\sigma_1, \sigma_2, \cdots, \sigma_{\mathbf{k}}) \subseteq \mathsf{Win}?$

Strategy synthesis for coalition of arbitrarily many players

$$(v_2) \xleftarrow{\Sigma^{\geq 2} \setminus (a^+b + a^*ba^+)} (v_0) \xrightarrow{a^+b} (v_1)$$

$$\exists \sigma_1 \sigma_2 \cdots \forall \mathsf{k} \; \mathsf{Plays}(\sigma_1, \sigma_2, \cdots, \sigma_{\mathsf{k}}) \subseteq \mathsf{Win}?$$

At step *i*, Player *i* plays *b* and all others play *a* is a winning coalition strategy to reach v_1

Strategy synthesis for coalition of arbitrarily many players

$$(v_2) \xleftarrow{\Sigma^{\geq 2} \setminus (a^+b + a^*ba^+)} (v_0) \xrightarrow{a^+b} (v_1)$$

$$\exists \sigma_1 \sigma_2 \cdots \forall \mathsf{k} \; \mathsf{Plays}(\sigma_1, \sigma_2, \cdots, \sigma_{\mathsf{k}}) \subseteq \mathsf{Win}?$$

At step *i*, Player *i* plays *b* and all others play *a* is a winning coalition strategy to reach v_1

Collective strategies map histories to ω -words $\vec{\sigma}(v_0^n) = a^{n-1}ba^{\omega}$

How to play?

- environment chooses number of players k, unknown to them
- ► at vertex v, players collectively choose an ω-word w environment chooses edge v → v' with w<k ∈ L</p>
- players may learn some info about their number
- game proceeds from v'

Synthesis of collective strategy for safety objectives

From game arena build tree unfolding and stop

- either if the same label already appears for an ancestor
- ▶ or when label is ☺

equivalently, coalition strategies map inner nodes of the tree to ω -words

Synthesis of collective strategy for safety objectives

From game arena build tree unfolding and stop

- either if the same label already appears for an ancestor
- ▶ or when label is ☺

equivalently, coalition strategies map inner nodes of the tree to $\omega\text{-words}$

One can build a doubly exponential deterministic safety automaton over Σ^m ($m = \sharp$ inner nodes) that accepts winning strategies.

Existence of a winning coalition strategy is in EXPSPACE (and PSPACE-hard)

Games with a parameterized number of players - Nathalie Bertrand

Contributions

Definition of concurrent games with arbitrary many players

- Eve vs Rest of the world
 - reduction to knowledge game (2-player and turn-based)
 - reachability objectives are PSPACE-complete

- Strategy synthesis for coalition
 - safety objective are in EXPSPACE and PSPACE-hard

On-going work

Strategy synthesis for coalition: reachability

A positive instance

A negative instance

$$(v_2) \xleftarrow{\Sigma^{\geq 1} \setminus (ba^*b, ba^*ba^+, b, a)} (v_0) \xrightarrow{ba^*b, a} (v_1)$$

- even for very basic arenas, the problem seems non trivial
- challenge: acceleration techniques seem needed both on knowledge and on ω-words