Games with arbitrarily many players

Nathalie Bertrand - Inria Rennes
joint work with Patricia Bouyer and Anirban Majumdar
CFV online seminar - June 5th 2020

2-player concurrent games

How to play?

- token is initially in vertex v_{0}
- Player 1 and Player 2 choose actions simultaneously
- next vertex is determined by the combination of actions

Player 1 has a winning strategy if she can win whatever Player 2 does

Motivations for parameterized concurrent games

a distinguished agent trying to achieve a goal against arbitrarily many adversaries

Eve vs Rest of the world

Motivations for parameterized concurrent games

a distinguished agent trying to achieve a goal against arbitrarily many adversaries

Eve vs Rest of the world

arbitrarily many agents trying to achieve a goal as a coalition

Strategy synthesis for coalition

Framework for parameterized concurrent games

From 2 players to arbitrarily many
$L_{i j}$ languages of finite words

Framework for parameterized concurrent games

From 2 players to arbitrarily many
$L_{i j}$ languages of finite words

How to play?

- number of players \mathbf{k} is fixed initially, yet unknown to them
- players know their "position" (e.g. Player 3 is third in list)
- they observe the sequence of vertices
- each player chooses an action, forming altogether a finite word $\forall i$ Player i choosing a_{i} yields the word $w=a_{1} \cdots a_{k}$;
- to which language w belongs determines the next vertex

Framework for parameterized concurrent games

From 2 players to arbitrarily many
$L_{i j}$ languages of finite words

How to play?

- number of players \mathbf{k} is fixed initially, yet unknown to them
- players know their "position" (e.g. Player 3 is third in list)
- they observe the sequence of vertices
- each player chooses an action, forming altogether a finite word $\forall i$ Player i choosing a_{i} yields the word $w=a_{1} \cdots a_{k}$;
- to which language w belongs determines the next vertex
$\mathbf{R} \mathbf{k}$: choice of \mathbf{k} and resolution of non-determinism is adversarial

A first parameterized reachability game

Eve vs Rest of the world

A first parameterized reachability game

Eve vs Rest of the world

- game starts at v_{0}
- the number of players \mathbf{k} is fixed but unknown to the players
- Player 1 plays a, other players each choose an action in Σ
- if $\mathbf{k}=2$, the token moves to v_{1}, otherwise, it moves to v_{2}
- in v_{3}, Player 1 can ensure to reach v_{4} :
choose a (resp. b) if the play went to $v_{1}\left(\right.$ resp. $\left.v_{2}\right)$
- $v_{0} \xrightarrow{a a} v_{1} \xrightarrow{a b} v_{3} \xrightarrow{a a} v_{4} \in$ Plays $_{2} \quad v_{0} \xrightarrow{a a b} v_{2} \xrightarrow{a b b} v_{3} \xrightarrow{\text { baa }} v_{4} \in$ Plays $_{3}$

Player 1 can reach v_{4} independently of the number of opponents

A second parameterized reachability game

Strategy synthesis for coalition

A second parameterized reachability game

Strategy synthesis for coalition

- game starts at v_{0}
- the number of players \mathbf{k} is fixed but unknown to the players
- as a coalition all players can ensure to reach v_{1} at step i, Player i plays b and all others play a
- Play $_{\mathbf{k}}=v_{0} \xrightarrow{b a^{k-1}} v_{0} \xrightarrow{a b a^{k-2}} v_{0} \cdots v_{0} \xrightarrow{a^{k-1} b} v_{1}$

Players can collectively reach v_{1} independently of their number

Formalization of our two problems of interest

Eve vs Rest of the world
Input: a parameterized arena, a winning objective Win Output: whether Eve has a winning strategy to achieve Win independently of the number of her opponents

$$
\exists \sigma_{E} \forall \mathbf{k} \forall \sigma_{2} \cdots \sigma_{\mathbf{k}} \operatorname{Plays}\left(\sigma_{E}, \sigma_{2}, \cdots, \sigma_{\mathbf{k}}\right) \subseteq \mathbf{W i n} ?
$$

Formalization of our two problems of interest

Eve vs Rest of the world
Input: a parameterized arena, a winning objective Win Output: whether Eve has a winning strategy to achieve Win independently of the number of her opponents

$$
\exists \sigma_{E} \forall \mathbf{k} \forall \sigma_{2} \cdots \sigma_{\mathbf{k}} \operatorname{Plays}\left(\sigma_{E}, \sigma_{2}, \cdots, \sigma_{\mathbf{k}}\right) \subseteq \mathbf{W i n} ?
$$

Strategy synthesis for coalition

Input: a parameterized arena, a winning objective Win
Output: whether there is a coalition strategy to achieve Win independently of the number of players

$$
\exists \sigma_{1} \sigma_{2} \cdots \forall \mathbf{k} \operatorname{Plays}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{\mathbf{k}}\right) \subseteq \mathbf{W i n} ?
$$

Eve vs Rest of the world

Reduction to simpler games: counting is enough

Observation Eve's opponents act as a coalition
\rightarrow only their number matter, not their actions

Reduction to simpler games: counting is enough

Observation Eve's opponents act as a coalition
\rightarrow only their number matter, not their actions

How to play?

- environment chooses number of players \mathbf{k}, unknown to Eve
- at vertex v, Eve chooses action a environment chooses edge $v \xrightarrow{a, S} v^{\prime}$ with $\mathbf{k} \in S$
- game proceeds from v^{\prime}

Reduction to simpler games: counting is enough

Observation Eve's opponents act as a coalition
\rightarrow only their number matter, not their actions

How to play?

- environment chooses number of players \mathbf{k}, unknown to Eve
- at vertex v, Eve chooses action a environment chooses edge $v \xrightarrow{a, S} v^{\prime}$ with $\mathbf{k} \in S$
- game proceeds from v^{\prime}
$\mathbf{R k}$: for a regular language L, count (L) is semi-linear

Knowledge game

2-player turn-based game encoding Eve's knowledge on nb of opponents

- \bigcirc chooses actions, \square chooses next vertex
- initial vertex $\left(v_{0}, \mathbb{N}\right)$ owned by \bigcirc
- knowledge of Eve is updated according to moves

Knowledge game

2-player turn-based game encoding Eve's knowledge on nb of opponents

- \bigcirc chooses actions, \square chooses next vertex
- initial vertex $\left(v_{0}, \mathbb{N}\right)$ owned by \bigcirc
- knowledge of Eve is updated according to moves

Eve wins the parameterized game $\Longleftrightarrow \bigcirc$ wins the knowledge game

Knowledge game

2-player turn-based game encoding Eve's knowledge on nb of opponents

- \bigcirc chooses actions, \square chooses next vertex
- initial vertex $\left(v_{0}, \mathbb{N}\right)$ owned by \bigcirc
- knowledge of Eve is updated according to moves

Eve wins the parameterized game $\Longleftrightarrow \bigcirc$ wins the knowledge game

Knowledge game can be solved in polynomial time in its size

Knowledge game on an example

Resolution of concurrent parameterized games

Decidability and complexity

The parameterized game problem for reachability objectives is decidable, with the following complexities

	Deterministic	Non-deterministic
Intervals	PTIME-complete	
Finite unions of intervals	NP-complete	PSPACE-complete
Semilinear sets	PSPACE-complete	

Resolution of concurrent parameterized games

Decidability and complexity

The parameterized game problem for reachability objectives is decidable, with the following complexities

	Deterministic	Non-deterministic
Intervals	PTIME-complete	
Finite unions of intervals	NP-complete	PSPACE-complete
Semilinear sets	PSPACE-complete	

Simple case of intervals knowledge game is quadratic in the number of end-points

Resolution of concurrent parameterized games

Decidability and complexity

The parameterized game problem for reachability objectives is decidable, with the following complexities

	Deterministic	Non-deterministic
Intervals	PTIME-complete	
Finite unions of intervals	NP-complete	PSPACE-complete
Semilinear sets	PSPACE-complete	

Simple case of intervals
knowledge game is quadratic in the number of end-points
General case: semi-linear sets
knowledge game is at most exponential in the number of semilinear sets but there is a polynomial space algorithm

PSPACE upper bound for semilinear constraints

Parameterized game problem for reachability objectives is in PSPACE

Proof idea

- decompose the knowledge game into subgames
with objective to reduce the knowledge while remaining winning
- DFS algorithm tagging states (v, K) with \checkmark / X up to $\left(v_{0}, \mathbb{N}\right)$

Close-up on subgames

for every \bigcirc vertex (v, K)
restriction of the knowledge game

- starting at (v, K)
- stopping at any $\left(v^{\prime}, K^{\prime}\right)$ with $K^{\prime} \subsetneq K$
or at the target ${ }^{()}$

Close-up on subgames

for every O vertex (v, K)
restriction of the knowledge game

- starting at (v, K)
- stopping at any $\left(v^{\prime}, K^{\prime}\right)$ with $K^{\prime} \subsetneq K$ or at the target ${ }^{()}$

DAG of subgames

Close-up on tagging algorithm

$-\operatorname{tag}$) with \checkmark other leaves with \boldsymbol{X}

- tag (v, K) with \checkmark if in the subgame starting at (v, K)
has a strategy to reach \checkmark

Close-up on tagging algorithm

$-\operatorname{tag}$) with \checkmark other leaves with \boldsymbol{X}

- tag (v, K) with \checkmark if in the subgame starting at (v, K) \bigcirc has a strategy to reach \checkmark

How to do this in PSPACE?

- in a DFS, store only subgames and tags that are relevant
- any subgame for (v, K) is of polynomial size and has polynomially many exits (v^{\prime}, K^{\prime})
- the height of the DAG is polynomial
- once a tag is computed, one can forget the whole sub-DAG

Strategy synthesis for coalition

Strategy synthesis for coalition of arbitrarily many players

$$
\exists \sigma_{1} \sigma_{2} \cdots \forall \mathbf{k} \operatorname{Plays}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{\mathbf{k}}\right) \subseteq \mathbf{W i n} ?
$$

Strategy synthesis for coalition of arbitrarily many players

$$
\exists \sigma_{1} \sigma_{2} \cdots \forall \mathbf{k} \operatorname{Plays}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{\mathbf{k}}\right) \subseteq \mathbf{W i n} ?
$$

At step i, Player i plays b and all others play a is a winning coalition strategy to reach v_{1}

Strategy synthesis for coalition of arbitrarily many players

$$
\exists \sigma_{1} \sigma_{2} \cdots \forall \mathbf{k} \operatorname{Plays}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{\mathbf{k}}\right) \subseteq \mathbf{W i n} ?
$$

At step i, Player i plays b and all others play a is a winning coalition strategy to reach v_{1}

Collective strategies map histories to ω-words

$$
\vec{\sigma}\left(v_{0}^{n}\right)=a^{n-1} b a^{\omega}
$$

How to play?

- environment chooses number of players \mathbf{k}, unknown to them
- at vertex v, players collectively choose an ω-word w environment chooses edge $v \xrightarrow{L} v^{\prime}$ with $\mathbf{w}_{\leq k} \in L$
- players may learn some info about their number
- game proceeds from v^{\prime}

Synthesis of collective strategy for safety objectives

From game arena build tree unfolding and stop

- either if the same label already appears for an ancestor
- or when label is $(\underset{)}{ }$

equivalently, coalition strategies map inner nodes of the tree to ω-words

Synthesis of collective strategy for safety objectives

From game arena build tree unfolding and stop

- either if the same label already appears for an ancestor
- or when label is $(\underset{ }{-}$

equivalently, coalition strategies map inner nodes of the tree to ω-words

One can build a doubly exponential deterministic safety automaton over Σ^{m} ($m=\sharp$ inner nodes) that accepts winning strategies.

Existence of a winning coalition strategy is in EXPSPACE (and PSPACE-hard)

Contributions

- Definition of concurrent games with arbitrary many players
- Eve vs Rest of the world

- reduction to knowledge game (2-player and turn-based)
- reachability objectives are PSPACE-complete
- Strategy synthesis for coalition

- safety objective are in EXPSPACE and PSPACE-hard

On-going work

Strategy synthesis for coalition: reachability

A positive instance

A negative instance

- even for very basic arenas, the problem seems non trivial
- challenge: acceleration techniques seem needed both on knowledge and on ω-words

