
Verification of Probabilistic Systems with

Faulty Communication ?

P. A. Abdulla a, N. Bertrand b,
A. Rabinovich c, and Ph. Schnoebelen b

aUppsala University, Sweden
bLSV, CNRS & ENS de Cachan, France

cTel Aviv University, Israel

Abstract

Many protocols are designed to operate correctly even in the case where the under-
lying communication medium is faulty. To capture the behavior of such protocols,
Lossy Channel Systems (LCS’s) have been proposed. In an LCS the communication
channels are modeled as unbounded FIFO buffers which are unreliable in the sense
that they can nondeterministically lose messages.

Recently, several attempts have been made to study Probabilistic Lossy Channel
Systems (PLCS’s) in which the probability of losing messages is taken into account.
In this article, we consider a variant of PLCS’s which is more realistic than those
studied previously. More precisely, we assume that during each step in the execution
of the system, each message may be lost with a certain predefined probability.
We show that for such systems the following model-checking problem is decidable:
to verify whether a linear-time property definable by a finite-state ω-automaton
holds with probability one. We also consider other types of faulty behavior, such as
corruption and duplication of messages, and insertion of new messages, and show
that the decidability results extend to these models.

1 Introduction

Finite-state machines which communicate asynchronously through unbounded
buffers have been popular in the modeling of communication protocols [7,8].

? This article is based on [4] and [6].
Email addresses: parosh@it.uu.se (P. A. Abdulla),

bertrand@lsv.ens-cachan.fr (N. Bertrand), rabino@math.tau.ac.il (A.
Rabinovich), phs@lsv.ens-cachan.fr (Ph. Schnoebelen).

Preprint submitted to Elsevier Science 7 September 2005

One disadvantage with such a model is that it has the full computational power
of Turing machines [8], implying undecidability of all nontrivial verification
problems. On the other hand, many protocols are designed to operate correctly
even in the case where the underlying communication medium is faulty. To
capture the behavior of such protocols, lossy channel systems (LCS’s) [3,9]
have been proposed as an alternative model. In an LCS the communication
channels are modeled as FIFO buffers which are unbounded but also unreliable
in the sense that they can nondeterministically lose messages. For LCS’s it
has been shown that the reachability problem is decidable [3] while progress
properties are undecidable [2].

Since we are dealing with unreliable communication media, it is natural to
consider models where the probability of errors is taken into account. Recently,
several attempts have been made to study Probabilistic Lossy Channel Systems
(PLCS’s) which introduce randomization into the behavior of LCS’s [17,5,1].
The decidability of model checking for the proposed models depends heavily
on the semantics provided. The works in [5,1] define different semantics for
PLCS’s depending on the manner in which the messages may be lost inside
the channels.

Baier and Engelen consider a model where it is assumed that at most one single
message may be lost during each step of the execution of the system [5]. They
show decidability of model checking under the assumption that the probability
of losing messages is at least 0.5. This implies that, along each computation of
the system, there are almost surely infinitely many points where the channels
of the system are empty, and therefore the model-checking problem reduces
to checking decidable properties of the underlying (non-probabilistic) LCS.

The model in [1] assumes that messages can only be lost during send opera-
tions. Once a message is successfully sent to a channel, it continues to reside
inside the channel until it is removed by a receive operation. Both the reach-
ability and repeated reachability problems are shown to be undecidable for
this model of PLCS’s. The idea of the proof is to choose sufficiently low prob-
abilities for message losses to enable the system to simulate the behavior of
(non-probabilistic) systems with perfect channels.

In this article, we consider a variant of PLCS’s which are more realistic than
that in [5,1]. More precisely, we assume that, during each step in the execution
of the system, each message may be lost with a certain predefined probability.
This means that the probability of losing a certain message will not decrease
with the length of the channels (as it is the case with [5]). As a consequence,
and in contrast to [5], our method is not dependent on the precise transition
probabilities for establishing the qualitative properties of the system. For this
model, we show decidability of both the reachability and repeated reachability
problems.

2

The decidability results are achieved in two steps. First, we prove general the-
orems about (infinite-state) Markov chains which serve as sufficient conditions
for decidability of model checking 1 . To do that, we introduce the concept of
attractor sets : all computations of the system eventually visit the attractor al-
most surely. The existence of finite attractors implies that deciding reachability
and repeated reachability in the PLCS can be reduced to checking reachabil-
ity problems in the underlying LCS. Next, we show that all PLCS’s, when
interpreted according to our semantics, have finite attractors. More precisely,
we prove the existence of an attractor defined as the set of all configurations
where the channels are empty. In fact, the systems considered in [5] have the
same attractor (when the probability of losing messages is at least 0.5), and
therefore the decidability results in [5] can be seen as a consequence of the
properties we show for attractors.

We also show that our decidability results extend to PLCS’s with different
sources of unreliability, such as duplication, corruption, and insertion com-
bined with lossiness [9]. Furthermore, we extend our decidability results to
more general properties specified by finite-state automata or equivalently by
formulas of the monadic logic of order.

Outline. In the next two Sections we recall basic notions on transition sys-
tems and Markov chains respectively, and we introduce the concept of attrac-
tors. In Section 4 we present sufficient conditions for checking reachability and
repeated reachability for Markov chains. In Section 5 we extract from these
conditions algorithms for PLCS’s. In Section 6 we consider models involving
different sources of unreliability combined with lossiness. In Section 7 we gen-
eralize our results to the verification of properties definable by the ω-behavior
of finite-state automata (or equivalently by formulas in the monadic logic of
order). Finally, we give conclusions and directions for future work in Section 8.

2 Transition Systems

In this section, we recall some basic concepts of transition systems.

A transition system T is a pair (S,−→) where S is a (possibly infinite) set
of states, and −→ is a binary relation on S. We write s1 −→ s2 to denote

that (s1, s2) ∈ −→ and use
∗
−→ and

+
−→ to denote the reflexive transitive (resp.

transitive) closure of −→. We say that s2 is reachable from s1 if s1
∗
−→ s2. For

sets Q1, Q2 ⊆ S, we say that Q2 is reachable from Q1, denoted Q1
∗
−→ Q2, if

1 Existing works on the verification of infinite-state Markov chains, e.g., the prob-
abilistic pushdown automata considered in [12], rely on other methods.

3

there are s1 ∈ Q1 and s2 ∈ Q2 with s1
∗
−→ s2. A path p from s to s′ is of the

form s0 −→ s1 −→ · · · −→ sn, where s0 = s and sn = s′. For a set Q ⊆ S, we
say that p reaches Q if si ∈ Q for some i : 0 ≤ i ≤ n. For Q1, Q2 ⊆ S, we
define the set Until(Q1, Q2) to be the set of all states s0 such that there is a
path s0 −→ s1 −→ · · · −→ sn from s0 satisfying the following property: there is
an i : 0 ≤ i ≤ n such that si ∈ Q2 and for each j : 0 ≤ j < i we have sj ∈ Q1.

For Q ⊆ S, we define the graph of Q, denoted Graph(Q), to be the subgraph

of (S,
+
−→) induced by Q, that is, the transition system (Q,−→′) where s1 −→

′ s2

iff s1
+
−→ s2.

A strongly connected component (SCC) in T is a maximal set C ⊆ S such
that s1

∗
−→ s2 for each s1, s2 ∈ C. We say that C is a bottom SCC (BSCC) if

there is no other SCC C ′ in T with C
∗
−→ C ′. In other words, the BSCCs are

the leaves in the acyclic graph of SCCs (ordered by reachability).

We shall later refer to the following two problems for transition systems:

Reachability

Instance: A transition system T = (S,−→), and sets Q1, Q2 ⊆ S.

Question: Is Q2 reachable from Q1?

Constrained Reachability

Instance: A transition system T = (S,−→), a state s, and sets Q1, Q2 ⊆ S.

Question: Does s ∈ Until(Q1, Q2)?

3 Markov Chains and Their Attractors

In this section, we recall some basic concepts of Markov chains and introduce
attractors which will later play a key role in our analysis.

A Markov chain M is a pair (S, P) where S is a countable (possibly infinite)
set of states and P is a mapping from S × S to the real interval [0, 1], such
that

∑

s′∈S P (s, s′) = 1 for each s ∈ S. A computation π (from s0) of M is an
infinite sequence s0, s1, . . . of states. We use π(i) to denote si.

A Markov chain induces a transition system, where the transition relation con-
sists of pairs of states related by strictly positive probabilities. Formally, the
underlying transition system of M is (S,−→) where s1 −→ s2 iff P (s1, s2) > 0.
In this manner, the concepts defined for transition systems can be lifted to
Markov chains. For instance, an SCC in M is an SCC in the underlying tran-
sition system.

4

A Markov chain (S, P) induces a natural measure on the set of computations
from every state s (see, e.g., [14] or [15]).

Let us recall some basic notions from probability theory.

A measurable space is a pair (Ω, ∆) consisting of a non empty set Ω and a σ-
algebra ∆ of its subsets that are called measurable sets and represent random
events in some probability context. A σ-algebra over Ω contains Ω and is closed
under complementation and countable union. Adding to a measurable space
a probability measure P : ∆ → [0, 1] that is countably additive and such that
P(Ω) = 1, one obtains a probability space (Ω, ∆, P).

Consider a state s of a Markov chain (S, P). Over the set of computations
that start at s, the probability space (Ω, ∆, P) is defined as follows:

• Ω = sSω is the set of all infinite sequences of states starting from s,
• ∆ is the σ-algebra generated by the basic cylindric sets Du = uSω, for every

u ∈ sS∗,
• P, the probability measure, is defined by P(Du) =

∏

0≤i<n P (si, si+1) where
u = s0s1...sn; it is well known that this measure is extended in a unique
way to the elements of the σ-algebra generated by the basic cylindric sets.

Let Q ⊆ S be a set of states. Using standard temporal logic notations, we
write π |= 3Q to denote that π visits Q (i.e., π(i) ∈ Q for some i ∈ N) and
π |= 23Q to denote that π visits Q infinitely many times (i.e., π(i) ∈ Q for
infinitely many i ∈ N). For singleton sets, we shortly write, e.g., “3s1” instead
of “3{s1}”.

It is well known (and easily seen) that the set of executions in sSω that sat-
isfy some linear-time formula ϕ of the form 3Q or 23Q is measurable in
(Ω, ∆, P) [21]. When ϕ is such a property, or a Boolean combination of these,
we write Ps(ϕ) for the measure P({π : π starts from s and satisfies ϕ}) and
call it the probability that ϕ will be satisfied (starting from s).

Consider a Markov chain (S, P). A recurrent state is a state s ∈ S such that
Ps(23s) = 1, i.e., starting from s one visits s infinitely often with probability
1. A transient state is a state s ∈ S such that Ps(23s) = 0, i.e., starting from
s one visits s infinitely often with probability 0. Since, starting from s, the
probability of visiting s again is either 1 or less than 1, all states are either
recurrent or transient. Furthermore, all states reachable from a recurrent state
are recurrent.

5

Similarly, when state s2 is reachable from s1, the probability of visiting s1

infinitely often coincides with the probability of visiting s1 and s2 infinitely
often (starting from a given s). Or, using temporal logic notation:

Lemma 3.1 If s1
∗
−→ s2 then Ps(23s1 ∧ 23s2) = Ps(23s1).

PROOF. (Idea) Since s2 is reachable from s1, every time one visits s1 there
is a strictly positive probability that s2 will be visited before a given number
of steps. Thus if one visits s1 infinitely often, then almost surely s2 is visited
eventually, and then almost surely visited infinitely often. 2

We now introduce attractors, which will play a key role in our analysis:

Definition 3.2 A set A ⊆ S of states is an attractor if Ps(3A) = 1 for all
s ∈ S.

In other words, regardless of the state in which we start, we will almost surely
enter the attractor eventually. Observe that if A is an attractor, then for all
s ∈ S, Ps(23A) = 1: we will almost surely visit A infinitely many times.

The next Lemma describes a property of the BSCCs of the graph of a finite
attractor A, which will be useful in our algorithms (to prove Lemma 4.1 and
Lemma 4.2).

Lemma 3.3 Consider a finite attractor A, a BSCC C in Graph(A), and a
state s ∈ C. Then, for all s′ ∈ C, Ps(23s′) = 1.

PROOF. Ps(23A) = 1 since A is an attractor. Since C is a BSCC of
Graph(A), A \ C is not reachable from C. Thus Ps(23A) = 1 translates
into Ps(23C) = 1 (since s ∈ C). Now, A being finite, C is finite too and
there must be some s′ ∈ C s.t. Ps(23s′) = 1. Since C is a BSSC of Graph(A)
every state in C is reachable from every other state, so that Ps(23s′) = 1 for
some s′ ∈ C entails Ps(23s′) = 1 for all s′ ∈ C (by Lemma 3.1). 2

The next Lemma enables us to characterize certain properties of the sets of
reachable states in the systems of Section 5 through Section 6

Lemma 3.4 Consider a finite attractor A and a set A′. If A′ is reachable
from each state s ∈ A, then A′ is also an attractor.

6

PROOF. Consider s ∈ S. We have Ps(23A) = 1. Since A is finite, there
must be s1 ∈ A such that Ps(23s1) = 1. By assumption, there is s2 ∈
A′ reachable from s1. By Lemma 3.1, Ps(23s2) = 1, hence Ps(23A′) = 1.
(Observe that s1 and s2 depend on s.) 2

Lemma 3.5 Assume A is a finite attractor and write C1, . . . , Cp for the BSCCs
of Graph(A). For any s ∈ S

Ps(3C1) + · · · + Ps(3Cp) = Ps(23C1) + · · · + Ps(23Cp) = 1.

PROOF. Since C1∪· · ·∪Cp is reachable from any state in A, it is an attractor
(Lemma 3.4). For i 6= j, Ci is not reachable from Cj, hence Ps(3Ci ∧ 3Cj) =
0. Thus Ps(3(C1 ∪ · · · ∪ Cp)) = 1 entails Ps(3C1) + · · · + Ps(3Cp) = 1. We
conclude by observing that, for any i, Ps(3Ci) = Ps(23Ci) (Lemma 3.3). 2

This can be refined in

Lemma 3.6 Assume A is a finite attractor and s ∈ S is some state. Let
C1, . . . , Ck be the BSCCs in Graph(A) that are reachable from s. Then

Ps(3C1) + · · · + Ps(3Ck) = Ps(23C1) + · · · + Ps(23Ck) = 1.

PROOF. From Lemma 3.5, relying on the fact that Ps(3C) = Ps(23C) = 0
when C is not reachable from s. 2

4 Reachability Analysis for Markov Chains

In this section we explain how to check reachability and repeated reachability
for Markov chains. We show how to reduce qualitative properties of the above
two types into the analysis of the underlying (non-probabilistic) transition
system of the Markov chain.

Formally, the problems we consider are:

Probabilistic Reachability

Instance: A Markov chain M = (S, P), a state s ∈ S, and a set Q ⊆ S.

Question: Does Ps(3Q) = 1?, i.e., is Q almost surely reached from s?

7

Probabilistic Repeated Reachability

Instance: A Markov chain M = (S, P), a state s ∈ S, and a set Q ⊆ S.

Question: Does Ps(23Q) = 1?, i.e., is Q almost surely repeatedly reached
from s?

Observe that the above problems are not yet algorithmic problems since we
did not specify how an instance is to be finitely encoded (we do not assume
that the Markov chain (S, P) is finite). In Sections 5–7 we consider reacha-
bility and repeated reachability problems when countable Markov chains are
described by probabilistic lossy channel systems. For such finite descriptions
we investigate the corresponding algorithmic problems.

For a countable Markov chain (S, P) containing a finite attractor A, the follow-
ing Lemma reduces probabilistic reachability problems in (S, P) to reachability
problems in Graph(A).

Lemma 4.1 Assume A is a finite attractor, s ∈ S is some state and Q ⊆ S is
some set of states. Then Ps(3Q) < 1 iff there exists a BSCC C in Graph(A)
such that:
(1) Q is not reachable from C, and
(2) it is possible to reach C from s without traversing Q.

PROOF. (⇐): Let u be a finite path leading from s to C without visiting Q.
Since Q is not reachable from C, any run with prefix u never visits Q. The set
of such runs has measure P(Du) > 0. Thus Ps(¬3Q) ≥ P(Du) > 0, entailing
Ps(3Q) < 1.

(⇒): Write C1, . . . , Cp for the BSCCs of Graph(A) and UC for C1 ∪ · · · ∪ Cp.
Since UC is an attractor, Ps(23UC) = 1, so that Ps(3Q) = Ps(3Q ∧
23UC). Since a Ci is not reachable from a Cj when i 6= j, the events 23C1,
23C2, . . . , 23Cp form a partition of 23UC. Hence Ps(3Q ∧ 23UC) =
Ps(3Q ∧ 23C1) + · · · + Ps(3Q ∧ 23Cp). Thus Ps(3Q) < 1 entails that
Ps(3Q ∧ 23C) < Ps(23C) for one C among C1, . . . , Cp.

If Q is reachable from C, then Ps(23C) = Ps(23C ∧ 23Q) (by Lemma 3.1).
Similarly, if all runs from s that reach C visit Q, then Ps(23C) = Ps(23C ∧
3Q). Thus, if Ps(3Q ∧ 23C) < Ps(23C), then C satisfies (1) and (2). 2

From Lemma 4.1 we conclude that we can define a scheme for solving the
probabilistic reachability problem as follows.

8

Scheme – Probabilistic Reachability

Input: Markov chain M = (S, P) with an underlying transition
system T = (S,−→), a state s ∈ S, and a set Q ⊆ S.

Output: true if Q is reached from s with probability one.

begin
1. construct a finite attractor A

2. construct Graph(A) and list its BSCCs C1, . . . , Cp

3. for each BSCC C in Graph(A)
3a. if s ∈ Until(S \ Q,C)

3b. and ¬
(

C
∗
−→ Q

)

3c. then return(false)
4. return(true)

end

For solving the probabilistic repeated reachability problem, we rely on the
following Lemma:

Lemma 4.2 Consider a finite attractor A, a state s ∈ S, and a set Q ⊆ S.
Then Ps(23Q) = 1 iff Q is reachable from each BSCC C of Graph(A) that is
reachable from s.

PROOF. (⇐) Let C1, . . . , Ck be the BSCCs that are reachable from s. Write
UC for C1 ∪ · · · ∪ Ck. We have Ps(23UC) = 1 (by Lemma 3.6) and then
Ps(23UC ∧ 23Q) = 1 (by Lemma 3.1) since Q is reachable from any state
in UC.
(⇒) If Q is not reachable from C then Ps(23Q) ≤ 1 − Ps(3C) < 1. 2

From Lemma 4.2 we conclude that we can define a scheme for solving the
repeated reachability problem by modifying the previous algorithmic scheme
as follows:

3a. if C is reachable from s

The correctness of the two schemes follows immediately from Lemma 4.1 and
Lemma 4.2. Furthermore, we observe that, in order to turn these schemes into
algorithms for checking the reachability and repeated reachability problems,
it is sufficient to establish the following three effectiveness properties for the
operations involved:

(1) Existence and computability of a finite attractor. This condition allows

9

computing the set A.
(2) Decidability of the reachability problem for the underlying transition sys-

tem T . This condition allows computing Graph(A) and checking the var-
ious reachability conditions like “C

∗
−→ Q” or “s

∗
−→ C”.

(3) Decidability of the constrained reachability problem for the underlying
transition system. This condition is only used in the reachability algo-
rithm.

5 Lossy Channel Systems

In this section we consider (probabilistic) lossy channel systems: processes with
a finite set of local states operating on a number of unbounded and unreliable
channels. We use the schemes defined in Section 4 to solve the problem of
whether a set of local states is (repeatedly) reachable from a given initial
state with probability one.

5.1 Basic Notions

Structure of Channel Systems. A lossy channel system consists of a
finite-state process operating on a finite set of channels, and where each chan-
nel behaves as an unbounded FIFO buffer which is unreliable in the sense
that it can nondeterministically lose messages. Formally, a lossy channel sys-
tem (LCS) L is a tuple (S, C, M, T) where S is a finite set of local states, C is a
finite set of channels, M is a finite message alphabet, and T is a set of transitions
each of the form (s1, op, s2), where s1, s2 ∈ S, and op is an operation of one
of the forms c!m (sending message m to channel c), or c?m (receiving message
m from channel c). A global state s is of the form (s, w) where s ∈ S and w is
a mapping from C to M∗ that gives the current contents of each channel. By
abuse of notations, we write ε for denoting both the empty word in M∗ and
the “empty” map that associates ε with each c ∈ C.

For words x, y ∈ M∗, we let x • y denote the concatenation of x and y. We use
|x| to denote the length of x, and x(i) to denote the ith element of x where
1 ≤ i ≤ |x|. We write x � y to denote that x is a (not necessarily contiguous)
substring of y. Since M is finite, Higman’s Lemma [13] implies that � is a
well-quasi-ordering (a wqo), hence for each infinite sequence x0, x1, x2, . . . of
words from M∗, there are i and j with i < j and xi � xj. For w, w′ ∈ (C 7→ M∗),
we define |w| =

∑

c∈C |w(c)| and use w � w′ to denote that w(c) � w′(c) for each
c ∈ C: this is again a wqo. We further extend this to a wqo on S× (C 7→ M∗),
by defining (s1, w1) � (s2, w2) iff s1 = s2 and w1 � w2.

10

Operational Semantics. The LCS L induces a transition system (S,−→),
where S is the set of global states, i.e., S = (S× (C 7→ M∗)). We start by
defining normal steps (where messages are not lost): there is a step (s1, w1) −→
(s2, w2) if one of the following conditions is satisfied

• There is a t ∈ T, where t is of the form (s1, c!m, s2) and w2 is the result of
appending m to the end of w1(c).

• There is a t ∈ T, where t is of the form (s1, c?m, s2) and w2 is the result of
removing m from the head of w1(c) (thus w1(c) must be of the form m • x).

In any of these cases we define t(s1, w1) = (s2, w2) and say that t is enabled at
(s1, w1). We let enabled(s, w) = {t : t is enabled at (s, w)}. A state (s, w) is
a deadlock state if enabled(s, w) is empty. An LCS is deadlock-free if there are
no deadlock states. It is easy to check whether an LCS is deadlock-free (see
Section 8.3).

The definition of the transition system (S,−→) is complete after we take into
account the possibility of message losses: if (s1, w1) −→ (s2, w2) is a normal step,
then for each w′2 � w2, (s1, w1) −→ (s2, w

′
2) is also a step.

For the rest of this section we assume an LCS L = (S, C, M, T) whose behavior
is given by the associated transition system (S,−→) 2 .

For Q ⊆ S, we define a Q-state to be a state of the form (s, w) where s ∈ Q.

A set Q ⊆ S is said to be upward closed if s1 ∈ Q and s1 � s2 imply s2 ∈ Q.
Notice that, for any Q ⊆ S, the set of Q-states is an upward closed set. The
upward closure Q ↑ of a set Q is the set {s : ∃s′ ∈ Q. s′ � s}. We use min(Q)
to denote the set of minimal elements of Q (with respect to �). This set is
unique and (by Higman’s lemma) finite. Furthermore, if Q is upward closed
then Q is completely characterized by min(Q) in the sense that Q = min(Q) ↑.

Lemma 5.1 [3] For states s1 and s2, it is decidable whether s2 is reachable
from s1.

Lemma 5.2 [3] For a state s and a set Q ⊆ S, it is decidable whether the set
of Q-states is reachable from s.

2
Remark on notation: Observe that we use s and S to range over local states

and sets of local states respectively, while we use s and S to range over states and
sets of states of the induced transition system (states of the transition system are
global states of the LCS).

11

5.2 Probabilistic Lossy Channel Systems

A probabilistic lossy channel system (PLCS) L is of the form (S, C, M, T, λ, w),
where (S, C, M, T) is an LCS, λ ∈ (0, 1), and w is a mapping from T to the
positive natural numbers. Intuitively, we derive a Markov chain from the PLCS
L by assigning probabilities to the transitions of the underlying transition
system (S, C, M, T). The probability of performing a transition t from a global
state (s, w) is determined by the weight w(t) of t compared to the weights of
the other transitions which are enabled at (s, w). Furthermore, after performing
each transition, each message which resides inside one of the channels may be
lost with a probability λ. This means that the probability of reaching (s2, w2)
from (s1, w1) is equal to (the sum over all (s3, w3) of) the probability of reaching
some (s3, w3) from (s1, w1) through performing a transition of the underlying
LCS, multiplied by the probability of reaching (s2, w2) from (s3, w3) through
the loss of messages.

Now, we show how to define formally these probabilities. For simplicity, and
throughout the rest of this article, we assume that PLCS’s are deadlock-free.
We refer to Section 8.3 for indications on how to deal with PLCS’s having
deadlock states.

First, we compute probabilities of reaching states through the loss of messages.
For x, y ∈ M∗, we define # (x, y) to be the size of the set

{(i1, . . . , in) : i1 < · · · < in and x = y(i1) • · · · • y(in)} .

In other words, # (x, y) is the number of the different ways in which we can
delete symbols in the word y in order to obtain x. We also define

PL(x, y) = # (y, x) · λ|x|−|y| · (1 − λ)|y|. (5.1)

PL(x, y) is the probability that the string x becomes y by losing some of its
symbols when each symbol can be lost with probability λ. One readily checks
that

∑

y∈M∗ PL(x, y) = 1 for all x ∈ M∗, using the following two combinatorial
equalities:

∀k ∈ N :
∑

y∈Mk

(y, x) =

(

|x|

k

)

, (5.2)

|x|
∑

k=0

(

|x|

k

)

· λ|x|−k · (1 − λ)k = [λ + (1 − λ)]|x| = 1. (5.3)

We extend PL to a probability of transforming a state to another state by mes-
sage losses. For w1, w2 ∈ (C 7→ M∗), we define PL(w1, w2) =

∏

c∈C PL (w1(c), w2(c)).

12

Notice that PL(w1, w2) = 0 in case w1 6� w2. We take

PL((s1, w1) , (s2, w2)) =







PL(w1, w2) if s1 = s2,

0 otherwise.
(5.4)

We define w(s, w) =
∑

t∈enabled(s,w) w(t).

The PLCS L induces a Markov chain (S, P), where

S = S× (C 7→ M∗), (5.5)

P ((s1, w1) , (s2, w2)) =
∑

t∈T

(

w(t)

w(s1, w1)
PL

(

t(s1, w1), (s2, w2)
)

)

. (5.6)

The restriction to deadlock-free PLCS’s ensures that no division by zero occurs
in Equation (5.6). Observe that, for all (s1, w1) ∈ S, Equation (5.6) ensures
∑

(s2,w2)∈S P ((s1, w1) , (s2, w2)) = 1, so that (S, P) is indeed a Markov chain.

We now instantiate the probabilistic reachability problems considered in Sec-
tion 3 and Section 4 to PLCS’s.

Below, we assume a PLCS L = (S, C, M, T, λ, w) inducing a Markov chain M =
(S, P) with an underlying transition system T = (S,−→): observe that (S,−→)
is the same transition system we associated with the (non-probabilistic) LCS
given by (S, C, M, T).

We shall consider the probabilistic (repeated) reachability problem for PLCS’s.
We check whether an upward closed set, represented by its minimal elements,
is (repeatedly) reached from a given initial state with probability one. We show
that the (repeated) reachability problem instantiated in this manner fulfills
the three conditions required for effective implementation of the probabilistic
(repeated) reachability schemes of Section 4.

5.3 Finite Attractors in Probabilistic Lossy Channel Systems

The following crucial Lemma shows that there always exists a finite attractor
in the Markov chain associated with a PLCS.

Lemma 5.3 For each PLCS (S, C, M, T, λ, w) with λ > 0, the set Q0 = {(s, ε) : s ∈ S}
is an attractor.

The intuition behind this result is simple: in a state (s, w) with |w| large enough,
the system is more likely to move “down” to a next state with less messages
(because of losses), than “up” to a next state with one more message (this
requires a send operation and no losses). Thus the system is attracted “down”

13

to small states. Now, whatever finite set A of small states turns out to be an
attractor, Q0 is reachable from any state in A (by message losses) and is thus
an attractor (Lemma 3.4).

In the rest of this section, we turn this intuition into a rigorous proof, using
only elementary notions. This requires tedious work where one builds ade-
quate upper- and lower-bounds for the probabilities of going “up” or “down”.
(A possible alternative approach would be to use standard arguments of mar-
tingale theory [14].)

Assume L = (S, C, M, T, λ, w) is fixed. For any n ∈ N, write Qn for {(s, w) : |w| = n},
the set of global states in which the channels currently contain a total of n

messages. We want to prove that Q0 is an attractor.

For any global state (s, w), let Ps,w denote P(s,w)(3Q0). We have:

Ps,w =















∑

(s′,w′)

P ((s, w) , (s′, w′)) × Ps′,w′ if w 6= ε,

1 otherwise.

(5.7)

Write Pn for min {Ps,w : (s, w) ∈ Qn} and Qn for min {Pi : 0 ≤ i ≤ n}: P0 =
Q0 = 1, and the sequence (Qn)n∈N is positive and non-increasing.

For any n > 0 and (s, w) ∈ Qn, we can split the sum in Equation (5.7) by
distinguishing whether (s′, w′) is in Qn+1, in Qn or in Q≤n−1 (shorthand for
⋃

i<n Qi). For this, we introduce the following terms:

as,w =
∑

(s′,w′)∈Q≤n−1

P ((s, w) , (s′, w′)),

bs,w =
∑

(s′,w′)∈Qn

P ((s, w) , (s′, w′)),

cs,w =
∑

(s′,w′)∈Qn+1

P ((s, w) , (s′, w′)).

Observe that as,w + bs,w + cs,w = 1.

Using Q|w′| ≤ Ps′,w′ , and observing that P ((s, w) , (s′, w′)) = 0 when |w′| > n+1,
Equation (5.7) entails

Ps,w ≥ as,wQn−1 + bs,wQn + cs,wQn+1. (5.8)

Pick one of the (s, w)’s in Qn that make Ps,w minimal and write an, bn and cn

for as,w, bs,w, and cs,w respectively. From Equation (5.8) we derive

Pn ≥ anQn−1 + bnQn + cnQn+1. (5.9)

14

Since an + bn + cn = 1 and (Qi)i∈N is non-increasing

Qn−1 ≥ anQn−1 + bnQn + cnQn+1 (5.10)

holds obviously. Now, by definition, Qn = min(Pn, Qn−1). Thus, combining
Equations (5.9) and (5.10), we deduce

Qn ≥ anQn−1 + bnQn + cnQn+1, (5.11)

and then (again using an + bn + cn = 1)

cn(Qn − Qn+1) ≥ an(Qn−1 − Qn). (5.12)

Write now δn for Qn−Qn+1: since (Qi)i∈N is non-increasing and stays positive,
(δn)n∈N is positive with limn→∞ δn = 0. Equation (5.12) rewrites as δn−1 ≤
cn

an
δn, entailing, for any n and k

δn ≤
cn+1

an+1

cn+2

an+2

· · ·
cn+k

an+k

δn+k. (5.13)

We now use the intuition that message losses make the system attracted to
small states. Assume (s, w) ∈ Qn. Then, using Equations (5.1) and (5.6), one
sees that cs,w ≤ (1−λ)n+1 (equality holds when all operations available in state
(s, w) are send operations). Similarly, bs,w ≤ n(1 − λ)nλ. Thus limn→∞ cn =
limn→∞ bn = 0, entailing limn→∞ an = 1 and

lim
k→∞

k
∏

i=1

cn+i

an+i

= 0 (5.14)

for all n ∈ N.

Combining Equations (5.13) and (5.14) shows that δn = 0. This holds for all n

so that Qn = 1 for all n, and hence Ps,w = 1 for all (s, w). This exactly means
that Q0 is an attractor.

5.4 Verification of Probabilistic Lossy Channel Systems

From Lemma 5.1, and the fact that the transition system underlying a PLCS
(S, C, M, T, λ, w) is independent of λ we obtain:

Lemma 5.4 One can build effectively Graph(A) when given a finite set of
states A.

Furthermore, for two PLCS’s L = (S, C, M, T, λ, w) and L′ = (S, C, M, T, λ′, w′)
which differ only by probabilities (we assume that, for all t ∈ T, w(t) > 0 iff

15

w′(t) > 0), A has the same graph in both PLCS’s. Now we are ready to solve
Probabilistic Reachability and Probabilistic Repeated Reachability problems
for PLCS’s.

Probabilistic Reachability for PLCS’s

Instance: A PLCS M = (S, C, M, T, λ, w), a state s, and a set Q ⊆ S.

Question: Is the set of Q-states reachable from s with probability one?

Probabilistic Repeated Reachability for PLCS’s

Instance: A PLCS M = (S, C, M, T, λ, w), a state s, and a set Q ⊆ S.

Question: Is the set of Q-states repeatedly reachable from s with probability
one?

Theorem 5.5 Probabilistic Reachability and Probabilistic Repeated Reacha-
bility are decidable for PLCS’s.

PROOF. Lemmas 5.2, 5.3, and 5.4 provide the effective procedures required
to implement the scheme (from Section 4) for probabilistic repeated reacha-
bility in Markov chains. For probabilistic reachability, a possible proof is by
extending Lemma 5.2 and showing decidability of constrained reachability in
LCS’s.

However, another proof is possible. For PLCS’s, Probabilistic Reachability
easily reduces to Probabilistic Repeated Reachability. The probability that
the set of Q-states will be reached in some PLCS L is exactly the probability
that this set will be repeatedly reached in the variant PLCS L′ one obtains
by removing in L all transitions of the form (s1, op, s2) having s1 ∈ Q, and
replacing them by looping transitions (s1, c!m, s1) for some arbitrary c and
m. 2

Remark 5.6 In our definition of LCS’s and PLCS’s, we assume that mes-
sages are lost only after performing non-lossy transitions. This choice sim-
plifies the definition of the Markov chain associated with a PLCS. However,
our analysis can be modified in a straightforward manner to deal with the case
where losses occur before, and the case where losses occur both before and after
non-lossy transitions.

6 Duplication, Corruption, and Insertion

We consider PLCS’s with different sources of unreliability such as duplication,
corruption, and insertion combined with lossiness.

16

6.1 Duplication

We analyze a variant of PLCS’s, where we add another source of unreliability;
namely a message inside a channel may be duplicated [9].

An LCS L with duplication errors is of the same form (S, C, M, T) as an LCS.
We define the behavior of L as follows. For a ∈ M, we use an to denote the
concatenation of n copies of a. For x = a1a2 · · · an with x ∈ M∗, we define
Duplicate(x) to be the set

{b1b2 · · · bn : either bi = ai or bi = a2
i for each i : 1 ≤ i ≤ n} .

In other words, we get each member of Duplicate(x) by duplicating some of
the elements of x. We extend the definition of Duplicate to S × (C 7→ M∗)
in a similar manner to Section 5. The transition relation of an LCS L with
duplication errors extends that of the corresponding standard LCS in the sense
that:

• If (s1, w1) −→ (s2, w2) according to the definition of Section 5 then (s1, w1) −→
(s′2, w

′
2) for each (s′2, w

′
2) ∈ Duplicate(s2, w2).

In [9], it is shown that the reachability problem is decidable for LCS’s with
duplication errors. Hence we have

Lemma 6.1 Given an LCS with duplication errors.

(1) For states s1 and s2, it is decidable whether s2 is reachable from s1 [9].
Hence, Graph(A) is computable for any finite set A of states.

(2) For a state s and a set Q ⊆ S, it is decidable whether the set of Q-states
is reachable from s [9].

A PLCS with duplication errors is of the form (S, C, M, T, λ, w, λD), where
(S, C, M, T, λ, w) is a PLCS, and λD ∈ [0, 1]. The value of λD represents the
probability by which any given message is duplicated inside the channels.

To obtain the Markov chain induced by a PLCS with duplication errors, we
compute probabilities of reaching states through duplication of messages. For
x, y ∈ M∗, where x = a1a2 · · · an, we define #D (x, y) to be the size of the set
{

(i1, . . . , in) : 1 ≤ ij ≤ 2 and y = ai1
1 ai2

2 · · · ain
n

}

. In other words, #D (x, y) is
the number of different ways in which we can duplicate symbols in the word
x in order to obtain y. In a similar manner to the case of losing messages
(Section 5), we define

PD(x, y) = #D (x, y) · λ
|y|−|x|
D · (1 − λD)|x|, (6.1)

and PD(w1, w2) =
∏

c∈C PD (w1(c), w2(c)). The PLCS with duplication errors L

17

induces a Markov chain (S, P ′
D) with S = (S× (C 7→ M∗)) as before, and

P ′
D ((s1, w1) , (s2, w2)) =

∑

w3∈(C7→M∗)

P ((s1, w1) , (s2, w3)) · PD (w3, w2) , (6.2)

where P has the same definition as in Section 5.

Remark 6.2 The above choice of a definition for P ′
D is partly arbitrary. For

example, it considers that duplications occur randomly after normal transitions
and losses, and that a message is duplicated at most once during a single
step. Similar remarks apply to our definitions (in the following subsections)
for systems with corruptions, insertions, and other unreliability sources.

All these choices aim at simplicity, and variant definitions are possible. We
let the reader convince herself that these variants would lead to decidability
results that are essentially identical to the ones we present for our definitions.

Lemma 6.3 For each PLCS (S, C, M, T, λ, w, λD) with λ ≥ λD > 0, the set
Q0 = {(s, ε) : s ∈ S} is an attractor.

PROOF. (Sketch) Let s = (s, w) be a state with n messages and consider
what happens to each individual message in the corruption phase (i.e., losses
and duplications). With probability λ, the message is lost. With probability
(1 − λ)λD it is duplicated, and with probability (1 − λ)(1 − λD) it is kept
unmodified. Observe that all messages are lost, or duplicated, or kept unmod-
ified, independently of the other messages.

For k between −n and n, write δk
n for the probability that the corruption phase

ends up with n+k messages. The assumption λ ≥ λD entails δ−k
n ≥ δk

n for any
positive k. In other words, the number of messages in the channels is more
likely to decrease by k than to increase by k through corruption.

If we now take into account the fact that a normal step can at most write one
message, the expected number of messages after a step from s is

∑

s′∈S

P ′
D(s, s′) × |s′| ≤ n + 1 +

n+1
∑

k=−n−1

kδk
n+1.

Using λ > 0, one can show this expected number is < n for n large enough.
Thus, when n is large enough, the system is attracted to small states.

These considerations can be turned into a rigorous proof similar to (but nec-
essarily more tedious than) the proof of Lemma 5.3. Here too a shorter albeit
less elementary proof can be obtained with martingale theory. 2

18

As in Section 5, we derive from Lemma 6.1 and Lemma 6.3:

Theorem 6.4 Probabilistic Reachability and Probabilistic Repeated Reacha-
bility are decidable for PLCS’s with duplication errors when λ ≥ λD > 0.

6.2 Corruption

We consider LCS’s with corruption errors, i.e., where a message inside a
channel may be changed to any other message. For simplicity, we assume
|M| > 1. We extend the semantics of LCS’s to include corruption errors in
the same manner as we did above for duplication errors. For x ∈ M∗, we de-
fine Corrupt(x) to be the set {y ∈ M∗ : |y| = |x|}, i.e., we get a member of
Corrupt(x) by changing any number of symbols in x to another symbol in
M. We extend the definition to S × (C 7→ M∗) in the same manner as before.
Furthermore, we enlarge the transition relation of an LCS:

• If (s1, w1) −→ (s2, w2) according to the definition of Section 5 then (s1, w1) −→
(s′2, w

′
2) for each (s′2, w

′
2) ∈ Corrupt(s2, w2).

Decidability of the reachability problem for LCS’s with corruption errors fol-

lows from the fact (s1, w1)
+
−→ (s2, w2) implies (s1, w1)

+
−→ (s2, w3) for each w3

with |w3(c)| = |w2(c)| for all c ∈ C. This implies that the only relevant informa-
tion to consider about the channels in the reachability algorithm is the length
of their contents. In other words, the problem is reduced to a special case of
LCS’s where the set M can be considered to be a singleton. The constrained
reachability problem can be solved in a similar manner. Hence,

Lemma 6.5 Given an LCS with corruption errors.

(1) For states s1 and s2, it is decidable whether s2 is reachable from s1. Hence,
Graph(A) is computable for any finite set A of states.

(2) For a state s and a set Q ⊆ S, it is decidable whether the set of Q-states
is reachable from s.

A PLCS with corruption errors is of the form (S, C, M, T, λ, w, λC), where λC ∈
[0, 1] represents the probability by which any given message is corrupted to
some other message. For x, y ∈ M∗, we define #C (x, y) to be the size of the set
{i : x(i) 6= y(i)}. In other words, #C (x, y) is the number of elements which
must change in order to obtain y from x. We define

PC(x, y) =















(

λC

|M|−1

)#C(x,y)
(1 − λC)|x|−#C(x,y) if |x| = |y|,

0 otherwise.

(6.3)

19

Thus PC(x, y) is the probability that x will become y when its |x| letters are
independently corrupted with probability λC . Observe that for any x ∈ M∗ we
have

∑

y∈M∗ PC(x, y) = 1: this is seen by noting that, for k ≤ |x|, there are

exactly (|M| − 1)k
(

|x|
k

)

words y for which #C (x, y) = k.

We extend PC from M∗ to S× (C 7→ M∗) as before. In a manner similar to the
previous case with duplication, the PLCS with corruption errors L induces a
Markov chain (S, P ′

C) with

P ′
C ((s1, w1) , (s2, w2)) =

∑

w3∈(C7→M∗)

P ((s1, w1) , (s2, w3)) · PC (w3, w2) . (6.4)

Lemma 6.6 For each PLCS (S, C, M, T, λ, w, λC) with λ > 0, the set Q0 =
{(s, ε) : s ∈ S} is an attractor.

From Lemma 6.5 and Lemma 6.6 we can derive in a similar manner to Sec-
tion 5.

Theorem 6.7 Probabilistic Reachability and Probabilistic Repeated Reacha-
bility are decidable for PLCS’s with corruption errors.

6.3 Insertion

We consider LCS’s with insertion errors, i.e., where arbitrary messages can
be inserted spuriously inside a channel [9]. As before, we extend the semantics
of LCS’s to include insertion errors: for x ∈ M∗, we define Insert(x) to be the
set {y ∈ M∗ : x � y}. We extend this in the usual way to obtain a definition
of Insert(s) where s is a state in S× (C 7→ M∗). Then we enlarge the transition
relation on an LCS:

• If (s1, w1) −→ (s2, w2) according to the definition of Section 5 then (s1, w1) −→
(s′2, w

′
2) for each (s′2, w

′
2) ∈ Insert(s2, w2).

Decidability of the reachability problem for LCS’s with insertion errors is
easy [9] since, for one-step moves, it holds that

(s1, w1) −→ (s2, w2) iff (s1, w1) −→ (s2, ε) .

A PLCS with insertion errors is of the form (S, C, M, T, λ, w, λI) where λI ∈
[0, 1) commands the probability that some message is inserted. We assume a
geometric distribution, where there is a probability λk

I (1−λI) that k messages
will be inserted during one step, but other choices are possible.

20

The definition of PI(x, y), the probability that x is transformed into y by
insertion errors, considers several cases. We let PI(x, x) = (1− λI) and, when
|y| > |x|, we define PI(x, y) by induction on the number |y| − |x| of inserted
messages:

PI(x, y) = λI

∑

z∈M|x|+1

(x, z)

|M| · (1 + |x|)
PI(z, y). (6.5)

In all other cases, we let PI(x, y) = 0.

Using the following combinatorial equality:

∑

z∈M|x|+1

(x, z) = |M| · (1 + |x|), (6.6)

and induction on k, one easily shows that

∑

y∈M|x|+k

PI(x, y) = λk
I (1 − λI) (6.7)

as intended. Note that, as a consequence,
∑

y∈M∗ PI(x, y) = 1 for all x ∈ M∗.

We extend PI from M∗ to S × (C 7→ M∗) as before. In a manner similar to
the previous cases, the PLCS with insertion errors L induces a Markov chain
(S, P ′

I) with

P ′
I ((s1, w1) , (s2, w2)) =

∑

w3∈(C7→M∗)

P ((s1, w1) , (s2, w3)) · PI (w3, w2) . (6.8)

Since the probability that k messages will be inserted in one step does not
depend on the size of the current state (Eq. (6.7)), the system is attracted to
small states.

Lemma 6.8 For each PLCS (S, C, M, T, λ, w, λI) with λ > 0, the set Q0 =
{(s, ε) : s ∈ S} is an attractor.

Since the necessary reachability properties are decidable for PLCS’s with in-
sertion errors, Lemma 6.8 allows us to proceed as in Section 5.

Theorem 6.9 Probabilistic Reachability and Probabilistic Repeated Reacha-
bility are decidable for PLCS’s with insertion errors.

6.4 Other Unreliability Sources

The approach we just developed for duplication, corruption and insertion er-
rors can be adapted to deal with variant, or restricted, versions of these three

21

main kinds of errors. Furthermore, we can combine different sources of unreli-
ability. For instance, we can consider models where we have both duplication
and corruption together with lossiness. In all these cases, our methods will
carry over when reachability remains decidable and when a finite attractor
exists. In general, this requires that unreliability sources which may increase
the number of messages inside the channels (such as insertion and duplication
but not corruption) have sufficiently low probabilities (compared to lossiness).

7 Automata-Definable Properties

In this section we consider more general properties than reachability and re-
peated reachability for PLCS’s. Let ϕ be a property of computations (also
called a linear-time property). We are interested in whether Ps(ϕ) = 1 for s

a state of a PLCS, i.e., whether a run starting from s almost surely satisfies
ϕ. We show that if the properties of computations are specified by (the ω-
behavior of) finite-state automata, or equivalently by formulas of the monadic
logic of order, called “MSO formulas”, then the above problem is decidable.
Similar results hold for the other families of faulty probabilistic systems we
considered in Section 6. Since the proofs for these systems follow the same
pattern as for PLCS’s, we will confine ourselves to PLCS’s here.

7.1 State-Labeled Systems and ω-Automata

In order to check a property defined by a deterministic finite-state automaton
A, we shall build a product of A with the given PLCS. This approach assumes
that we extend LCS’s with a labeling function: a state-labeled LCS is an LCS
together with a finite alphabet Σ and a labeling function lab from the local
states to Σ. Throughout this section we assume that LCS’s are state-labeled
and will often use “LCS” for “state-labeled LCS”. We lift the labeling from an
LCS L to the state-labeled transition system T = (S,−→, Σ, lab) it induces: the
label of every state (s, w) in T is the label lab(s) of its local state component.
When we deal with probabilistic lossy channel systems we also assume that
the underlying LCS is labeled, and this labeling is lifted to the labeling of the
corresponding Markov chain. In this manner we obtain state-labeled PLCS’s
inducing state-labeled Markov chains.

A path s0, s1, . . . in a state-labeled transition system gives rise to its trace,
the ω-string lab(s0).lab(s1) . . . over the alphabet Σ. We consider properties
of paths that are defined using automata: the trace of the path must be ac-
cepted by the automaton. Recall that a finite (Muller) automaton A is a

22

tuple (Q, Σ,→, q0,F), consisting of a finite set Q of states, a finite alphabet
Σ, a transition relation → which is a subset of Q × Σ × Q, an initial state
q0 ∈ Q, and a collection F ⊆ 2Q of fairness conditions. We write q

a
→ q′ if

〈q, a, q′〉 ∈→. We say that A is deterministic if for every state q ∈ Q and
every letter a ∈ Σ there is one and only one q′ ∈ Q such that q

a
→ q′.

A run of A is an ω-sequence q0a0q1a1 . . . such that qi
ai→ qi+1 for all i. With

such a run we associate the set Inf of all q ∈ Q that appear infinitely many
times. A run meets the fairness conditions F if its Inf set belongs to F (Muller
acceptance). An ω-string a0a1 . . . over Σ is accepted by A if there is a run
q0a0q1a1 . . . that meets the fairness conditions of A. The ω-language accepted
by A is the set of all ω-strings accepted by A.

We recall the following classical theorem (see [20]) stating that automata have
the same expressive power as the monadic logic of order:

Theorem 7.1 For an ω-language L, the following conditions are equivalent:
1. L is accepted by a finite-state automaton,
2. L is accepted by a deterministic Muller automaton,
3. L is definable by a MSO formula.

7.2 Products With Automata

Consider an automaton A = (Q, Σ,→, q0,F), and a state-labeled transition
system T = (S,−→, Σ, lab). The product A × T of A and T is a state-labeled
transition system T ′ = (S ′,−→′, Σ, lab ′) defined as follows:

States: S ′ = Q× S is the Cartesian product of the states of A and of T .
Labeling: A state (q, s) is labeled by lab(s), i.e., it has the same label as s in
T .

Transition relation: There is a transition (q, s) −→′ (q′, s′) iff there are a

transition s −→ s′ in T and a transition q
lab(s)
−−→ q′ in A.

We also define the product R = A × M of a deterministic automaton and a
state-labeled Markov chain M = (S, P, Σ, lab). Here the states and labels are
as in A× T . The probability P ′ in R is given by

P ′((q, s) , (q′, s′)) =







P (s, s′) if q
lab(s)
−−→ q′ in A,

0 otherwise.

Observe that the requirement that A is deterministic ensures that the sum of
probabilities of the transitions from the state (q, s) in R is the same as the
sum of probabilities of the transitions from the state s in M , i.e., the sum
is one. Hence the product is indeed a labeled Markov chain. Observe further

23

that if T is the transition system underlying M , then A × T is exactly the
transition system underlying A× M .

Finally, the product L′ = A×L of an automaton with an LCS is defined along
the same lines: the local states are pairs (q, s) of a state of A and a local state
of L. The transitions T′ of L′ are all ((q, s) , op, (q′, s′)) such that (s, op, s′) is

a transition of L and q
lab(s)
−−→ q′ is a transition in A. We define the product of

a deterministic A and a PLCS L along the same lines.

A crucial property of these constructions is the following:

Lemma 7.2
1. If T is the transition system induced by an LCS L then A×T is (isomorphic
to) the transition system induced by the LCS A× L.
2. If M is the Markov chain induced by a PLCS L then A×M is (isomorphic
to) the Markov chain induced by the PLCS A× L.

Here the isomorphism associates (q, (s, w)), a state of A × T (resp. A × M),
with ((q, s) , w), a state of the transition system (resp. Markov chain) induced
by A× L.

We extend the notion of Inf sets to computations (q0, s0) (q1, s1) . . . in some
A× T or some A× M : it is the set of states (from Q) that appear infinitely
many times in the sequence q0q1

Lemma 7.3 Let A be a deterministic automaton with a set F of fairness
conditions, let M be a labeled Markov chain, let R be the product A × M .
Then the probability that a computation of M starting from s is accepted by A
is the probability that a computation of R starting from (q0, s) has Inf ∈ F .

PROOF. (Idea) With a path π = s0s1 . . . in M we associate πA, the only

path in R of the form (q0, s0) (q1, s1) . . . with qi

lab(si)
−−−→ qi+1 for all i. For any π,

πA exists and is unique because A is deterministic. Furthermore, any path in
R is πA for some path π in M . The measure of a set L of paths in M is exactly
the measure in R of LA, the set

{

πA : π ∈ L
}

. It remains to observe that π

is accepted by A iff πA has Inf ∈ F . See [10, § 4.1] for more details. 2

7.3 Probabilistic Model Checking

We can now verify whether a probabilistic LCS satisfies an automata-definable
(or MSO) property almost surely. We consider the following problem:

24

Probabilistic Model Checking for PLCS’s

Instance: A state-labeled PLCS L which defines a state-labeled Markov chain
M , a state s in M , and an automaton A.

Question: Are the computations of M starting from s accepted by A with
probability one?

In the rest of this section we prove the following:

Theorem 7.4 Probabilistic Model Checking for PLCS’s is decidable.

Assume A = (Q, Σ,→, q0,F) is deterministic (or replace it with an equivalent
deterministic automaton, using Theorem 7.1). Let R be the product of A
with the labeled Markov chain M induced by L. It is enough to check whether
P(q0,s)(Inf ∈ F) = 1 in R (Lemma 7.3).

Lemma 7.5 Assume B is a finite attractor of R. Then the following are
equivalent:

(1) P(q0,s)(Inf ∈ F) = 1.
(2) For each BSCC C in Graph(B), if C is reachable from (q0, s) then there

is F in F such that:
(a) if (q, u) is reachable from C in R then q ∈ F and
(b) for each q ∈ F there is u ∈ M such that (q, u) is reachable from C

in R.

PROOF. (1) ⇒ (2): Assume that C is a BSSC in Graph(B) reachable from
(q0, s): then P(3C) > 0, and P(23C) > 0 by Lemma 3.5. If P(Inf ∈ F) = 1
then P(23C ∧ Inf ∈ F) > 0, so that there must exist some F ∈ F with

P(23C ∧ Inf = F) > 0. (7.1)

This requires that, for every q ∈ F , some (q, u) is reachable from C. Further-
more, if some (q, u) is reachable from C then, by Lemma 3.1, P(23C ⇒
23 (q, u)) = 1. Therefore (7.1) entails q ∈ F .

(2) ⇒ (1): Assume that for a BSCC C there is some F ∈ F satisfying (2a)
and (2b). Then (2a) entails P(23C) = P(23C ∧ Inf ⊆ F). On the other
hand, for each q ∈ F , (2b) and Lemma 3.1 entail that P(23C) = P(23C ∧
23 (q, u)) = P(23C ∧ q ∈ Inf). Thus P(23C) = P(23C ∧ Inf ∈ F). Since
this holds for every BSCC reachable from (q0, s), we obtain P(Inf ∈ F) = 1
by Lemma 3.6. 2

Now, since R is also the Markov chain induced by the PLCS L′ = A × L
(Lemma 7.2), the set B of states with empty channels in R is a finite attrac-

25

tor for R (Lemma 5.3). Thus Lemma 7.5 applies and provides necessary and
sufficient conditions for the computations of M that start at s to be accepted
by A with probability one.

It remains to show that these conditions can be checked effectively. First
Graph(B) is computable using reachability algorithms on L′. Then the con-
ditions of Lemma 7.5(2) can be checked with algorithms for reachability of
upward-closed sets (again on L′): condition (a) requires that ((Q \ F) × S) ↑
is not reachable, and condition (b) requires that each ({q}× S) ↑ is reachable.

8 Concluding Remarks

We have shown decidability of model checking for a realistic class of probabilis-
tic lossy channel systems, where during each step of the runs of the systems,
any message inside the channels may be lost with a certain predefined proba-
bility.

8.1 Comparison With Other Work

A work closely related to this article is [5]. In fact, our work can be seen as
a generalization of the ideas presented in [5]. More precisely, in [5], a formal
model of PLCS’s is considered where at most one message can be lost during
each step of the execution of the system. Thus a PLCS L = (S, C, M, T, λ, w)
induces a Markov chain (S× (C 7→ M∗), P) where P is defined 3 as follows:

P ((s1, w1) , (s2, w2)) =



















































(1 − λ)w(t)

w(s1, w1)
if (s2, w2) = t(s1, w1) and |w1| > 0,

w(t)

w(s1, w1)
if (s2, w2) = t(s1, w1) and |w1| = 0,

λ
(w1, w2)

|w1|
if |w1| > 0 and |w2| = |w1| − 1.

Then [5] restricts to the case where the probability λ of losing messages is
assumed to be at least 0.5 and shows decidability of model checking LTL\X

formulas (i.e., LTL formulas that are insensitive to stuttering [16]). Decid-
ability of model checking is shown by proving that, under the assumption
that λ ≥ 0.5, one gets a probabilistic input-enabled PLCS : a system where
in any state there is probability at least 0.5 that the size of the channel

3 We give a simplified version of the definition, where we do not account for the
fact that several different transitions may allow reaching (s2, w2) from (s1, w1).

26

contents decreases. In fact, for probabilistic input enabled PLCS’s, the set
{(s, w) : |w| = 0} is an attractor, and decidability of model checking follows
then in a similar manner to Section 5 and Section 7.

There are, however, some problems with the definition in [5] (disregarding
the issues of whether it is more natural to have the probability λ applying
independently to all messages in a channel, or globally to its whole contents, or
whether λ ≥ 0.5 is commonplace). Their operational semantics keeps message
losses apart from perfect steps (while we amalgamate them). As a consequence
the product of an automaton A with the Markov chain M associated with some
PLCS L is not (isomorphic to) the Markov chain of some L′. In other words,
their definition does not support a result like our Lemma 7.2. Furthermore,
their definition makes it possible for an automaton to observe losses: in their
framework, it is undecidable whether the traces of a state-labeled PLCS almost
surely belong to L.Σω for a finitary regular language L.

8.2 Complexity Analysis

Our method for checking that a state, or a set of states, will be reached almost
surely in a PLCS L reduces the problem to polynomially-many reachability
questions on the underlying (non-probabilistic) LCS. In the other direction,
it is easy to reduce reachability in an LCS to probabilistic reachability in
some associated PLCS: we conclude that the verification of qualitative proba-
bilistic properties on PLCS’s and the verification of reachability properties on
LCS’s are equally hard. Recall that reachability in LCS’s cannot be solved in
primitive recursive time [19].

When verifying a linear-time property given by a deterministic Muller au-
tomaton A, our method reduces the problem to reachability problems in the
product A × L. When the property is given via a nondeterministic automa-
ton, our method requires a determinization step that can cause an exponential
blowup. In that case, we require time bounded by some F (|L| × exp(|A|)) for
a nonprimitive recursive F . An interesting question is whether one can avoid
the price of analyzing the product A × L, i.e., whether there exist methods
that only require time of the form F (|L|)×G(|A|) where G is simpler than F

(e.g., G is elementary).

In the same direction, it would be interesting to see whether we could apply
the recent results by Couvreur et al. [11] to our problems. For finite Markov
chains, these authors show how to verify properties described with unambigu-
ous separated ω-automata instead of just deterministic ones, thereby saving
one exponential blowup when translating from LTL formulas. Applying their
method requires extending it from finite chains to countable chains with a

27

finite attractor, and further proving that it provides a reduction to decidable
questions on the underlying LCS.

8.3 Dealing With Deadlock States

PLCS’s with deadlock states raise some difficulties. First one has to fix the
definition of the Markov chain induced by the PLCS, since Equation (5.6)
assumes that the PLCS is deadlock-free. In order to retain Markov chain
models, we introduce a dummy sink state and define for any state s:

P (s, sink) =







1 if s is a deadlock state, or s = sink ,

0 otherwise.

When s is not a deadlock state and s′ is not sink , P (s, s′) is as before.

Now, if we write Q0 for the set of states where the channels are empty, then
Q0 ∪ {sink} is a finite attractor. We can thus reuse our approach based on fi-
nite attractors to prove that Probabilistic Reachability, Probabilistic Repeated
Reachability and Probabilistic Model Checking are decidable for PLCS’s with
deadlock states.

For this, we only need to prove the necessary effectiveness conditions: that
Graph(Q0∪{sink}) is constructible, etc. Everything boils down to the following
Lemma, that we prove in the rest of this section.

Lemma 8.1 It is decidable whether sink is reachable from a given state u.

Reachability of sink amounts to reachability of a deadlock state in the under-
lying LCS. Let us write D for the set of deadlock states. D is usually infinite,
and is not an upward-closed set of states. It is not downward-closed either 4 .
However, a closure property satisfied by D is

(s, w) ∈ D implies (s, ε) ∈ D.

Say a local state s in S is deadlockable if all transitions (s, op, s′) in T are
receiving transitions, i.e., with op the form c?m.

Lemma 8.2 Assume u 6∈ D. Then D is reachable from u iff there exists a
deadlockable s s.t. (s, ε) is reachable from u.

4 This is because our definition in Section 5 groups normal steps and message losses
in a way where losses occur after normal steps.

28

PROOF. If (s, w) 6= u is reachable from u then (s, ε) is also reachable from
u: it is enough to lose all messages from w in the last step of the path from u

to (s, w). Furthermore, if (s, w) ∈ D then s is deadlockable. 2

This reduces reachability of sink to a finite number of (decidable) reachability
questions, establishing Lemma 8.1.

8.4 Perspectives

There are several problems left open in this article, which we believe are worth
considering in future research.

In view of our positive results, it is natural to investigate more elaborate mod-
els of PLCS’s, allowing the combination of nondeterministic and probabilistic
behavior. We refer to [6] for a preliminary study of such extensions.

Along another direction, it is also natural to ask whether quantitative verifi-
cation is possible for PLCS’s. A typical quantitative problem is the following:

Computing Probability of Reachability

Instance: A PLCS L = (S, C, M, T, λ, w), a state s, and a set Q ⊆ S.

Question: What is the probability r that, starting from s, one reaches the
set of Q-states?

A related problem is to decide whether r ≥ h for some given h.

These problems are still open. It is not even known that r is an algebraic
number, or is expressible by standard mathematical functions.

However, the third author recently showed how to solve the following approx-
imate quantitative verification problem [18]:

Approximating Probability of MSO Properties for PLCS’s

Instance: A PLCS L = (S, C, M, T, λ, w), a starting state s, an MSO property
A, and a rational τ > 0 (called the tolerance).

Question: Compute a rational r such that the probability that the runs of L
are accepted by A is in the interval [r − τ, r + τ].

29

References

[1] P. A. Abdulla, C. Baier, S. Purushothaman Iyer, and B. Jonsson. Simulating
perfect channels with probabilistic lossy channels. Information and
Computation, 197(1–2):22–40, 2005.

[2] P. A. Abdulla and B. Jonsson. Undecidable verification problems for programs
with unreliable channels. Information and Computation, 130(1):71–90, 1996.

[3] P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels.
Information and Computation, 127(2):91–101, 1996.

[4] P. A. Abdulla and A. Rabinovich. Verification of probabilistic systems with
faulty communication. In Proc. 6th Int. Conf. Foundations of Software Science
and Computation Structures (FOSSACS 2003), volume 2620 of Lecture Notes
in Computer Science, pages 39–53. Springer, 2003.

[5] C. Baier and B. Engelen. Establishing qualitative properties for probabilistic
lossy channel systems: An algorithmic approach. In Proc. 5th Int. AMAST
Workshop Formal Methods for Real-Time and Probabilistic Systems (ARTS
’99), volume 1601 of Lecture Notes in Computer Science, pages 34–52. Springer,
1999.

[6] N. Bertrand and Ph. Schnoebelen. Model checking lossy channels systems is
probably decidable. In Proc. 6th Int. Conf. Foundations of Software Science
and Computation Structures (FOSSACS 2003), volume 2620 of Lecture Notes
in Computer Science, pages 120–135. Springer, 2003.

[7] G. von Bochmann. Finite state description of communication protocols.
Computer Networks and ISDN Systems, 2:361–372, 1978.

[8] D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal
of the ACM, 30(2):323–342, 1983.

[9] G. Cécé, A. Finkel, and S. Purushothaman Iyer. Unreliable channels are easier
to verify than perfect channels. Information and Computation, 124(1):20–31,
1996.

[10] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic
verification. Journal of the ACM, 42(4):857–907, 1995.

[11] J.-M. Couvreur, N. Saheb, and G. Sutre. An optimal automata approach to
LTL model checking of probabilistic systems. In Proc. 10th Int. Conf. Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR 2003), volume
2850 of Lecture Notes in Artificial Intelligence, pages 361–375. Springer, 2003.

[12] J. Esparza, A. Kucera, and R. Mayr. Model checking probabilistic pushdown
automata. In Proc. 19th IEEE Symp. Logic in Computer Science (LICS 2004),
pages 12–21. IEEE Comp. Soc. Press, 2004.

[13] G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math.
Soc. (3), 2(7):326–336, 1952.

30

[14] J. G. Kemeny, J. L. Snell, and A. W. Knapp. Denumerable Markov Chains. D.
Van Nostrand Co., Princeton, NJ, USA, 1966.

[15] P. Panangaden. Measure and probability for concurrency theorists. Theoretical
Computer Science, 253(2):287–309, 2001.

[16] D. Peled and T. Wilke. Stutter-invariant temporal properties are expressible
without the next-time operator. Information Processing Letters, 63(5):243–246,
1997.

[17] S. Purushothaman Iyer and M. Narasimha. Probabilistic lossy channel systems.
In Proc. 7th Int. Joint Conf. Theory and Practice of Software Development
(TAPSOFT ’97), volume 1214 of Lecture Notes in Computer Science, pages
667–681. Springer, 1997.

[18] A. Rabinovich. Quantitative analysis of probabilistic lossy channel systems. In
Proc. 30th Int. Coll. Automata, Languages, and Programming (ICALP 2003),
volume 2719 of Lecture Notes in Computer Science, pages 1008–1021. Springer,
2003.

[19] Ph. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive
complexity. Information Processing Letters, 83(5):251–261, 2002.

[20] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, chapter 4, pages 133–191. Elsevier
Science, 1990.

[21] M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. In Proc. 26th IEEE Symp. Foundations of Computer Science (FOCS
’85), pages 327–338, 1985.

31

