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Abstract We prove a general finite-time convergence theorem for fixpoint expressions
over a well-quasi-ordered set. This has immediate applications for the verification of well-
structured systems, where a main issue is the computability of fixpoint expressions, and
in particular for game-theoretical properties and probabilistic systems where nesting and
alternation of least and greatest fixpoints are common.

Keywords Verification of well-structured systems · Verification of probabilistic systems ·
mu-Calculus · Infinite-state systems

1 Introduction

Regular model checking [10, 26, 61, 81] is a popular paradigm for the symbolic verifica-
tion of models with infinite state space. It has been applied to varied families of systems
ranging from parameterized distributed algorithms [4] and channel systems [7] to hybrid
systems [23] and list-manipulating programs [24].

In regular model checking, one works with regular sets of states and handles them via
finite descriptions, e.g., finite-state automata or regular expressions. Models amenable to
regular model checking are such that, when U ⊆ Conf is a “regular” set of configurations,
then Post(U) and/or Pre(U), the sets of 1-step successors (respectively, predecessors) of
configurations from U , is again a regular set that can be computed effectively from U . Since
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regular sets are closed under Boolean operations, one can try to compute the reachability set
Post∗(Init), or the co-reachability set Pre∗(Final), as the limit of the sequences

U0 := Init; U1 :=U0 ∪ Post(U0); . . . ; Un+1 :=Un ∪ Post(Un); . . . ; (1)

V0 := Final; V1 := V0 ∪ Pre(V0); . . . ; Vn+1 := Vn ∪ Pre(Vn); . . . . (2)

Such computations, essential to any kind of symbolic verification, are possible with any
class of representation closed under, and providing algorithms for, Pre or Post, Boolean
operations, vacuity [55, 61].

With infinite-state models, the main difficulty is convergence. It is very rare that a fixpoint
computation like Eqs. (1)–(2) converges in finite time [18], and innovative techniques that
try to compute directly, or guess and check, or approximate the limit sets, are currently under
active scrutiny (see, e.g., [18, 20, 22, 25, 53]).

Well-structured transition systems (WSTS) are a generic family of models for which the
co-reachability set Pre∗(Final) can be computed symbolically using exactly the sequence
(2) [6, 48]. For WSTS’s, convergence of the fixpoint computation is ensured by WQO the-
ory: one handles upward-closed sets, and increasing sequences of upward-closed subsets of
a WQO (a well-quasi-ordered set) always converge in finite time (see Fact 1 below).

Computing Pre∗(Final) for reachability analysis is just a special case of fixpoint computa-
tion. When considering richer properties, e.g., temporal logic properties, one is interested in
computing more complex fixpoints. Indeed, the set of states where a temporal logic property
holds is often definable with Pre, Boolean operations, and (sometimes nested) fixpoints [30].
The same holds for game-theoretic and qualitative probabilistic properties, albeit with more
complex fixpoint expressions.

Our contribution In this article, we define a notion of μ-expressions where recursion is
guarded by upward-closure operators, and give a general finite-time convergence theorem
for all such expressions when evaluated over the powerset of a WQO. The consequence is
that these fixpoint expressions can be evaluated symbolically by an iterative procedure. The
guarded fragment we isolate is very relevant for the verification of well-structured transition
systems. We illustrate this point by providing direct proofs of decidability results on several
classes of WSTS models, ranging from monotonic counter systems to probabilistic lossy
channel systems.

Related work Henzinger et al. give general conditions for the convergence of fixpoints
computations for temporal [55] or game-theoretic [35] properties, but the underlying frame-
work is different: it relies on finite quotients and mainly aims at timed and hybrid systems.
For WSTS’s, a generic computability result for a fragment of the μ-language we consider is
briefly mentioned in [63]. Our applications to well-structured transition systems generalize
results from [2, 5, 65, 72, 73] that rely on more ad-hoc proofs of convergence.

Outline The first part of this article, Sects. 2–4, presents our framework and our main
theorems in a generic way, using simple explanatory examples to illustrate the main ideas.
Applications to the verification of well-structured transition systems are covered in a second
part, Sects. 5–9.
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2 A mu-calculus for symbolic verification

Symbolic verification of infinite-state systems can be formalized in several ways (among
other possibilities let us mention automatic structures [62], decidable logics, and the abstract
interpretation framework [34]).

In this article, we adopt a simple generic approach, called “monotonic region algebra”,
that is sufficient for our purposes. It is based on a simple algebra of computable sets that
is embedded in the powerset (a complete lattice) of a WQO, and where only monotonic
operations on sets are considered.

We start by recalling some classic notions from WQO theory [64, 69]: A quasi-ordering
over a set W is a reflexive and transitive relation �⊆W ×W . A quasi-ordering is a well-
quasi-ordering (a WQO) if it admits no infinite antichains, i.e., infinite subsets of mutually
incomparable elements, and is well-founded, i.e., admits no infinite strictly decreasing se-
quences. Equivalently, � is a WQO iff any infinite sequence w1,w2,w3, . . . of elements of
W contains an infinite increasing subsequence of the form wi1 � wi2 � wi3 � · · · (where
i1 < i2 < i3 < · · · ). In the rest of this article, we assume that (W,�) is a well-quasi-ordered
set, i.e., a set equipped with a WQO.

We say that a subset V of W is upward-closed if v ∈ V and v � w implies w ∈ V . Our
developments rely on the Finite-Time Convergence Property, a basic fact from WQO theory,
stating that any infinite increasing sequence of upward-closed subsets of a WQO stabilizes
after finitely many steps.

Fact 1 (Finite-Time Convergence Property) Let V0 ⊆ V1 ⊆ V2 ⊆ · · · be an infinite in-
creasing sequence of upward-closed subsets of a WQO W . Then for some index k ∈ N,
Vk = Vk+1 = Vk+2 = · · · =⋃

i∈N
Vi .

In algebraic terminology, this simply states that upward-closed subsets of W satisfy the
Ascending Chain Condition, and is another characterization of WQO’s (see, e.g., [60, The-
orem 1.2]).

There is a symmetric notion of downward-closed subsets of W . Since the complement of
an upward-closed subset is downward-closed and vice versa, the Finite-Time Convergence
Property also states that, dually, an infinite decreasing sequence of downward-closed subsets
of W eventually stabilizes.

Remark 2 (On complexity and the time to convergence) The complexity analysis of an
algorithm whose termination relies on the Finite-Time Convergence Property requires some
bound on the index k at which stabilization is achieved. In this article, we focus on generic
decidability issues. The concluding section discusses complexity and feasibility issues and
provides relevant pointers.

Given a set V ⊆W , we write C↑(V ) for its upward-closure, i.e., the smallest upward-
closed set containing V , and K↑(V ) for its upward-interior, i.e., the largest upward-closed
set included in V . The downward-closure of V , written C↓(V ) and its downward-interior,
written K↓(V ), are defined analogously. Observe that C↑ and C↓ are extensive, K↑ and K↓
are contractive, and the following dualities hold:

W � K↑(V )= C↓(W � V ), W � K↓(V )= C↑(W � V ). (3)
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2.1 Monotonic region algebra

Let O = {o1, o2, . . .} be a countable set of operator names equipped with an arity function
ar : O → N. Here ar(o) is the number of arguments taken by o, and the pair (O,ar) is
called a signature. When ar(o)= 0, o is called a constant.

Definition 3 A monotonic region algebra over W is a structure R = 〈W,R; (oR)o∈O〉
where

1. R⊆ 2W is a set of distinguished subsets of W , called regions, that contains in particular
∅ and W , and

2. for every k ∈ N and every o ∈ O with ar(o) = k, the interpretation oR of o is a k-ary
map oR : (2W)k → (2W) on subsets of W that satisfies:

– monotonicity w.r.t. set-inclusion, i.e.,

U1 ⊆ V1 ∧ · · · ∧Uk ⊆ Vk implies oR(U1, . . . ,Uk)⊆ oR(V1, . . . , Vk), (4)

– preservation of regions, i.e.,

U1, . . . ,Uk ∈R implies oR(U1, . . . ,Uk) ∈R (5)

for all U1, . . . ,Uk,V1, . . . , Vk ∈ 2W .

As a special case of Eq. (5), constants must be interpreted as regions: oR ∈ R when
ar(o)= 0. For simplicity, we often just write o instead of oR when this causes no confusion.

When ar(o) = n = ar(o′), we write oR ≤ o′R , or just o ≤ o′, when oR(U1, . . . ,Un) ⊆
o′R(U1, . . . ,Un) for all U1, . . . ,Un ⊆W . A unary operator oR is extensive if U ⊆ oR(U)

for all U . It is contractive if oR(U)⊆U .
We say that a monotonic region algebra is effective when, informally, the oR operations

restricted on regions are recursive, and some fundamental predicates like vacuity and equal-
ity of regions, are decidable. We do not want to make the definition more pedantically formal
but of course this assumes that R is countable, that an index system (or a data structure) ex-
ists for denoting the sets in R, and that the recursive functions implementing the operations
in O are given uniformly when O is infinite. In practice, one only considers a finite set of
operations (that may admit extra parameters) and typically uses data structures inspired by
automata theory or constraint solving.

Example 4 (Subword ordering and regular regions) Let Σ = {a, b, . . .} be a finite alphabet.

We say that a word x ∈ Σ∗ is a (scattered) subword of y ∈ Σ∗, written x � y,
def⇔ there

exists a factorization x = x1 . . . xn of x and padding words z0, . . . , zn ∈ Σ∗ such that y =
z0x1z1x2 . . . zn−1xnzn. In other words, x can be obtained by erasing some letters from y. It
is well known that (Σ∗,�) is a WQO when Σ is finite (Higman’s Lemma). A standard
example of a monotonic region algebra over W = Σ∗ is obtained by choosing all regular

languages as regions: we denote this algebra with RReg(Σ)
def= 〈Σ∗,Reg(Σ); . . .〉 where

the set of monotonic operators is left implicit (and will vary with applications). It is an easy
exercise to show that the closure operators preserve regions (see [52] for efficient algorithms
when R is given by a NFA), and that the interior operators are region-preserving too since
the complement of R ⊆Σ∗ is regular when R is.
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The signature can include any monotonic region-preserving operators. Most standard op-

erations on languages, e.g., concatenation L1.L2, shuffle L1 ‖L2, mirroring
←
L, star-closure

L∗, left- and right-residuals (L−1L′ def= {v | ∃u ∈ L,uv ∈ L′}), conjugacy (L̃
def= {vu |uv ∈

R}), homomorphic and inverse-homomorphic images, are collecting, i.e., lifted from func-

tions or relations on words, according to the pattern o(L1,L2)
def= {o′(u, v) |u ∈ L1, v ∈ L2}

or some variant. Such languages operators are always monotonic, and the main issue is
whether they preserve regularity. This is the case for all the examples above, and many
more [70]. Complementation is not allowed because it is not monotonic, but this is not a

true limitation in practice since the dual õ(L1, . . .)
def= Σ∗

� o(Σ∗
� L1, . . .) of any mono-

tonic regularity-preserving operator is itself monotonic and regularity-preserving, hence can
be added to the signature.

Finally, regarding effectiveness, it is well known that all the operators we mentioned
are effective for regular regions represented in any of the standard ways, e.g., via FSA’s or
regular expressions.

Example 5 (Subword ordering and computability of Higman-Haines languages) A general
fact about WQO’s is that the upward and downward closures of arbitrary sets have simple
finite representations [46]. In the case of (Σ∗,�), the closures of arbitrary languages, called
Higman-Haines sets, and their interiors, are always regular. However this is usually not
effective [42, 52].

Consider for example RCF(Σ), the region algebra having context-free languages R ∈
CF(Σ) as regions. It accommodates closure and interior operators since they return regular
languages and CF(Σ) contains Reg(Σ). It accommodates other region-preserving opera-
tors, e.g., set-union, concatenation and star-closure in its signature, but not set-intersection
since R,R′ ∈CF(Σ) does not imply R ∩R′ ∈CF(Σ).

Regarding effectiveness, (FSA’s for) the closures C↑(R) and C↓(R) can be computed
effectively from (a context-free grammar for) R ∈ CF(Σ) [80]. However, the interior op-
erators are not effective. Indeed, universality is undecidable for context-free grammars but
decidable for regular languages, and R =Σ∗ iff K↑(R)=K↓(R)=Σ∗.

Example 6 (Natural numbers and semilinear sets) The set N
d of all d-dimensional vectors

of natural numbers is naturally ordered by the product ordering: for any a= (a1, . . . , ad) and

b= (b1, . . . , bd), b≤ a def⇔ a1 ≤ b1∧· · ·∧ad ≤ bd . It is well known that (Nd ,≤) is a WQO
when d is finite (Dickson’s Lemma). A standard monotonic region algebra over W = N

d ,
denoted RSL(d) in the sequel, is obtained by choosing as regions all semilinear subsets,
or equivalently, all subsets definable in Presburger arithmetic. Many natural operators on
sets of vectors, including the closure and interior operators, can be defined in Presburger
arithmetic, hence they are region-preserving. In practice, many of them are collecting and
hence monotonic.

In the rest of this article, we always assume that O contains the unary operators
C↑,C↓,K↑,K↓, and that these requisite operators are given their standard WQO-theoretical
interpretation.

2.2 Region algebra with fixpoints

We now extend the symbolic framework with least and greatest fixpoints. Let χ = {X,Y, . . .}
be a countable set of variables. We write Lμ(O), or shortly Lμ when O is understood, for
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the set of O-terms with least and greatest fixpoints, given by the following abstract syntax:

ϕ ::= o(ϕ1, . . . , ϕk) | X | μX.ϕ | νX.ϕ

where X runs over variables from χ , and o over k-ary operators from O . Terms μX.ϕ and
νX.ϕ are fixpoint expressions, classically used in μ-calculi [12]. We make the standard
assumption that no variable has both bound and free occurrences in some ϕ, and that no two
fixpoint subterms bind the same variable: this can always be ensured by renaming bound
variables.

As is standard, we write ϕ(X1, . . . ,Xn) to stress that the free variables occurring in
ϕ are among X1, . . . ,Xn, and we use ϕ(ψ1, . . . ,ψn) to denote the term obtained from
ϕ(X1, . . . ,Xn) by replacing all occurrences of the Xi ’s by the corresponding ψi ’s terms.

Assuming a monotonic region algebra R, the interpretation of Lμ terms is as expected:
a term �ϕ(X1, . . . ,Xn)� denotes a mapping from (2W){X1,...,Xn} to 2W . In other words, given
an environment env : {X1, . . . ,Xn} → 2W that associates a subset of W with each Xi free
in ϕ, �ϕ�(env), more simply denoted �ϕ�env, is a subset of W . We often consider that �ϕ�
has type (2W)n → 2W and write �ϕ�(U1, . . . ,Un) —or �ϕ� when n= 0— instead of �ϕ�env

(where env(Xi)=Ui ): this only assumes that the correspondence between free variables and
arguments of �ϕ� is understood.

Definition 7 (Semantics of Lμ) �ϕ�env is defined by structural induction:

�X�env
def= env(X),

�
o(ϕ1, . . . , ϕk)

�
env

def= oR(
�ϕ1 �env, . . . , �ϕk �env

)
,

�μX.ϕ�env
def= lfp

(
Ω[ϕ,X, env]), �νX.ϕ�env

def= gfp
(
Ω[ϕ,X, env]),

where Ω[ϕ,X, env](U)
def= �ϕ�env⊕[X �→U ].

Here env ⊕ [X �→ U ] denotes the environment obtained by extending env to one
more variable, while lfp(Ω[. . .]) and gfp(Ω[. . .]) are the least and greatest fixpoints of a
unary mapping Ω[ϕ,X, env] : 2W → 2W that could be informally defined with Ω(V ) =
�ϕ�(V , env(X1), . . . , env(Xn)).

Observe that the semantics of the fixpoint terms is well defined. Indeed, (2W ,⊆) is a
complete lattice and every �ϕ(X1, . . . ,Xn)� is monotonic in its n arguments (this is shown
by induction on the structure of ϕ) so that Ω[ϕ,X, env], being �ϕ� with some arguments
already fixed, is monotonic in its remaining argument and has well-defined least and greatest
fixpoints (Knaster-Tarski Theorem).

Moreover, U1 ⊆ V1, . . . , Un ⊆ Vn implies �ϕ�(U,U1, . . . ,Un)⊆ �ϕ�(U,V1, . . . , Vn) by
monotonicity of �ϕ�. Hence, if env(Xi) = Ui and env′(Xi) = Vi for i = 1, . . . , n, then
Ω[ϕ,X, env](U)⊆Ω[ϕ,X, env′](U), written more simply Ω ≤Ω ′. This entails lfp(Ω)⊆
lfp(Ω ′) (i.e., �μX.ϕ�(U1, . . . ,Un)⊆ �μX.ϕ�(V1, . . . , Vn)) and gfp(Ω)⊆ gfp(Ω ′). In other
words, �μX.ϕ� and �νX.ϕ� are monotonic.

We now make a crucial observation: for an Lμ term ϕ(X1, . . . ,Xn) and regions
U1, . . . ,Un, the set �ϕ�(U1, . . . ,Un) is in general not a region. That is, �ϕ� is usually not
region-preserving (and not computable even when R = 〈W,R; . . .〉 is effective). This is be-
cause R is usually not a complete sub-lattice of 2W . At the moment, only the terms ϕ that do
not use fixpoints can be guaranteed to have �ϕ� ∈R. In the next section, we present a larger
fragment of Lμ for which �ϕ� is guaranteed to be region-preserving (and computable).
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Example 8 (Fixpoints in the algebra of regular languages) Consider the region algebra
RReg(Σ) from Example 4. Using concatenation, set-union and constants, one can write
terms like μX.ε + a ·X · b whose value is {anbn |n ∈ N} �∈ Reg(Σ). With least and great-
est fixpoints, and when a few more primitive (monotonic) operators like intersection, mor-
phisms, etc., are allowed, one can describe complex languages, well beyond the recursive
ones [59, 66].

We abuse notation and write ϕ(X1, . . . ,Xn) ≤ ϕ′(X1, . . . ,Xn) when �ϕ� ≤ �ϕ′�. Note
that ϕ ≤ ϕ′ entails μX.ϕ ≤ μX.ϕ′. We say that ϕ and ϕ′ are equivalent, and write ϕ = ϕ′,
when they denote the same mapping, or equivalently when ϕ ≤ ϕ′ ≤ ϕ.

In the following, and in particular in the application sections, we often transform Lμ

terms into equivalent ones that are more convenient. This is done using simple logical or
algebraic transformations, e.g., lattice-theoretical properties like distributivity of ∩ w.r.t. ∪,
etc. (This assumes that ∩ and ∪ appear in the signature O and have their set-theoretical
meaning.) Some of the transformations we use are more specific to μ-calculi, and we list
them here for the sake of completeness.

Lemma 9 (Some useful μ-calculus laws)

• Unfolding: for any ϕ(X,Y1, . . . , Yn) in Lμ,

μX.ϕ(X, . . .)= ϕ
(
μX.ϕ(X, . . .), . . .

)= μX.ϕ
(
ϕ(X, . . .), . . .

)
,

νX.ϕ(X, . . .)= ϕ
(
νX.ϕ(X, . . .), . . .

)= νX.ϕ
(
ϕ(X, . . .), . . .

)
.

(6)

• Fixpoint rule: for any ϕ(X,Y1, . . . , Yn) and ψ(Y1, . . . , Yn) in Lμ,

ϕ
(
ψ(Y1, . . .), Y1, . . .

)≤ψ(Y1, . . .) implies μX.ϕ(X,Y1, . . .)≤ψ(Y1, . . .). (7)

• Extensive/contractive fixpoints: for any ϕ(X, . . .) and ψ(X, . . .) in Lμ,

μX.(X ∩ψ)∪ ϕ = μX.ϕ, νX.(X ∪ψ)∩ ϕ = νX.ϕ, (8)

while for any ϕ(X,Y, . . .) in Lμ,

μY.νX.(Y ∪ ϕ)= μY.νX.ϕ, νY.μX.(Y ∩ ϕ)= νY.μX.ϕ. (9)

• Commutation of extensive fixpoints: if f , g are extensive unary operators,

μX.f
(
g(X)

)= μX.
[
f (X)∪ g(X)

]= μX.g
(
f (X)

)
. (10)

Proof [Sketch] The unfolding equalities and the fixpoint rule are well known [12]. We prove
equalities (8) and (10) for the sake of illustration. Equation (9)—see [19] for a proof—is an
extension of (8) that we use in Sect. 9.

For Eq. (8), let ϕ′(X, . . .)
def= (X ∩ψ)∪ ϕ(X, . . .). Now ϕ′(μX.ϕ, . . .)= (μX.ϕ)∩ψ ∪

ϕ(μX.ϕ, . . .) by def. of ϕ′, = (μX.ϕ) ∩ ψ ∪ μX.ϕ by Eq. (6), = μX.ϕ. The fixpoint rule
applies and yields μX.ϕ′ ≤ μX.ϕ. But ϕ ≤ ϕ′ by definition, so that μX.ϕ ≤ μX.ϕ′. Finally,
μX.ϕ = μX.ϕ′ = μX.X ∩ψ ∪ ϕ. The other half of Eq. (8) is entailed by duality.

For Eq. (10), let h(X)
def= f (X) ∪ g(X). Since f , g and h are extensive, and since

f ≤ h and g ≤ h, we deduce that h ≤ f ◦ g ≤ h ◦ h, hence μX.h(X) ≤ μX.f (g(X)) ≤
μX.h(h(X)) by monotonicity. On the other hand μX.h(h(X))= μX.h(X) by Eq. (6). Thus
μX.h(x)= μX.f (g(X)). �
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3 Guarded terms and finite-time convergence

We now come to the concept of guardedness by closure and interior operators.

Definition 10 (Guarded variables and guarded terms) Let ϕ ∈ Lμ.

1. A variable X is upward-guarded in ϕ if each of its free occurrences in ϕ is under the
scope1 of one of the upward operators C↑ or K↑, i.e., appears in a subterm of the form
C↑(ψ) or K↑(ψ).

2. A variable X is downward-guarded in ϕ if, symmetrically, each of its free occurrences
in ϕ is under the scope of C↓ or K↓.

3. The term ϕ is guarded if all its subterms of the form μX.ψ have X upward-guarded in
ψ , and all its subterms of the form νX.ψ have X downward-guarded in ψ .

Guardedness ensures that fixpoint terms can be computed via their approximants. For-
mally, for ϕ, X and env, the approximants of �μX.ϕ�env are the sequence (Mi)i∈N of subsets
of W defined inductively with M0 = ∅ and Mi+1 = �ϕ�env⊕[X �→Mi ]. Similarly, the approxi-
mants of �νX.ϕ�env are the sequence (Ni)i∈N defined by N0 =W and Ni+1 = �ϕ�env⊕[X �→Ni ].
Writing simply Ω for Ω[ϕ,X, env], Mi is Ωi(∅) and Ni is Ωi(W). These approximants are
linearly ordered:

M0 ⊆M1 ⊆M2 ⊆ · · · ⊆ lfp(Ω)= �μX.ϕ�env,

N0 ⊇N1 ⊇N2 ⊇ · · · ⊇ gfp(Ω)= �νX.ϕ�env.
(11)

Lemma 11 (Finite-time convergence of approximants) For ϕ ∈ Lμ, let (Mi)i∈N and (Ni)i∈N

be, respectively, the approximants of �μX.ϕ�env and �νX.ϕ�env.
If X is upward-guarded in ϕ, then there exists an index k ∈N such that

�μX.ϕ�env =Mk =Mk+1 =Mk+2 = · · · . (12)

Dually, if X is downward-guarded in ϕ, then there exists a k ∈N such that

�νX.ϕ�env =Nk =Nk+1 =Nk+2 = · · · . (13)

Proof We only prove the first half since the other half is dual. Let ψ1, . . . ,ψm be the max-
imal subterms of ϕ that are immediately under the scope of a C↑ or a K↑ operator. Then ϕ

can be decomposed under the form

ϕ ≡Φ(⇑ψ1, . . . ,⇑ψm)

where Φ(Y1, . . . , Ym) is a context with fresh variables Y1, . . . , Ym, and where, for j =
1, . . . ,m, ⇑ ψj is either C↑(ψj ) or K↑(ψj ), depending on how ψj appears in ϕ. In either
case, and for any environment env′, the set �⇑ψj �env′ is upward-closed.

Since X is upward-guarded in ϕ, it has no occurrence in Φ(Y1, . . . , Ym), only in the ψj ’s,
so that

Mi+1 = �ϕ�env⊕[X �→Mi ] = �Φ�
(

�⇑ψ1 �env⊕[X �→Mi ], . . . , �⇑ψm�env⊕[X �→Mi ]
)

= �Φ�(Li,1, . . . ,Li,m)

1Note that the occurrence of X is not required to be under the immediate scope of a closure or interior
operator. See the guarded term in Example 13.
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writing Li,j for �⇑ ψj �env⊕[X �→Mi ]. Note that Li,j is upward-closed. By monotonicity of
�⇑ ψj �, M0 ⊆ M1 ⊆ M2 ⊆ · · · entails L0,j ⊆ L1,j ⊆ L2,j ⊆ · · · . Since the Li,j ’s are
upward-closed, for each j = 1, . . . ,m, there is an index kj such that Li,j = Lkj ,j for all
i ≥ kj (Fact 1). Picking K =max(k1, . . . , km) gives for any i ≥K

Mi+1 = �Φ�(Li,1, . . . ,Li,m)= �Φ�(Lk1,1, . . . ,Lkm,m)

= �Φ�(LK,1, . . . ,LK,m)=MK+1.

Thus,
⋃

i∈N
Mi =MK+1 =MK+2 and MK+1 is a fixpoint of Ω[ϕ,X, env], hence the least

one thanks to Eq. (11). Picking k =K + 1 satisfies Eq. (12). �

Lemma 11 is the key to our main theorem:

Theorem 12 (Guarded terms are computable) If ϕ(X1, . . . ,Xn) ∈ Lμ is guarded then �ϕ�
is a region-preserving (monotonic) function. Furthermore, if the region algebra is effective,
then �ϕ� is a computable function (over regions).

Proof The proof is by structural induction on ϕ. For this, observe that if ϕ is guarded, all its
subterms are guarded too. We consider four cases.

1. If ϕ =X is a variable, �ϕ� is the identity function, IdW , and is region-preserving.
2. If ϕ is some o(ϕ1, . . . , ϕk), the �ϕi �’s are (computable) region-preserving by induction

hypothesis. By definition, oR too is region-preserving (and computable when the region
algebra is effective). Then �ϕ�, being the composition of oR and the �ϕi �’s, is region-
preserving (and computable). Note that this includes the case where o is nullary (is a
constant): �o� is a (computable) region.

3. If ϕ is some μX.ψ(X,X1, . . . ,Xn), we consider any environment env such that env(Xj )

is a region for j = 1, . . . , n and prove by induction on i that each approximant Mi of
�ϕ�env is a region. M0 = ∅ is a region by definition, and if Mi is a region, then Mi+1 =
�ψ �(Mi, env(X1), . . . , env(Xn)) is one too, since by induction hypothesis �ψ � is region-
preserving. We conclude that �ϕ�env, being some Mk’s by Lemma 11, is a region. When
R is effective, the Mi ’s can be computed effectively, and one can detect when Mk =Mk+1

since region equality is decidable by assumption. Then �ϕ�env =Mk can be computed
effectively.

4. If ϕ is some νX.ψ , the reasoning is similar to the previous case.
�

Example 13 (Guarded fixpoints in the algebra of regular languages) We continue Exam-
ples 4 and 8. While Lμ-terms can describe very complex languages, guarded terms are
guaranteed to describe regular languages. E.g., with Σ = {a, b}, the language defined by
νX.K↓(ε+ a+ b+ a ·X · a+ b ·X · b) (inspired by the definition of palindromes) must be
regular since it is some �νX.ψ(X)� where X is downward-guarded in ψ .

Furthermore, this language can be computed effectively as a limit of approximants. One
starts with N0 =Σ∗. To compute N1 = �ψ �(N0)=K↓(ε+ a + b+ a ·N0 · a + b ·N0 · b),
we use Eq. (3), or “K↓ = ¬C↑¬”: the complement of ε+ a+ b+ aΣ∗a+ bΣ∗b is aΣ∗b+
bΣ∗a, whose upward-closure is C↑(ab) + C↑(ba), whose complement is N1 = a∗ + b∗.
Then N2

def= �ψ �(N1)= a∗ + b∗ =N1: the fixpoint �νX.ψ(X)� was reached after finitely
many steps.
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4 Systems of fixpoint equations

Fixpoint equations are an alternative way of writing μ-calculus terms. This presentation can
make nested fixpoints easier to read, and it can simplify a large term by eliminating the need
to duplicate repeated identical subterms. In this section we explain how to adapt the notion
of guardedness for this setting in order to extend Theorem 12.

We start by recalling the necessary notations and definitions (see also [12]).

Definition 14 An n-dimensional system of fixpoint equations is a sequence of the form

X1
λ1= ϕ1(X1, . . . ,Xn,Y1, . . . , Ym),
...

Xn
λn= ϕn(X1, . . . ,Xn,Y1, . . . , Ym),

where, for i = 1, . . . , n, λi is either μ or ν, and where ϕ1, . . . , ϕn are Lμ terms.

Such a system is often denoted in the shorter vector form �X Λ= �ϕ( �X, �Y ), where Λ is a
vector of n symbols μ or ν. It defines a unique mapping from (2W)

�Y to (2W)n—or more
simply from (2W)m to (2W)n—, called its solution, and denoted �Λ �X. �ϕ�.

For env ∈ (2W)
�Y , the definition of �Λ �X. �ϕ�env extends Definition 7 and is by induction

on n. When n = 0, �Λ �X. �ϕ�env is the empty tuple 〈〉. For n > 0, �Λ �X. �ϕ�env is the tuple
〈U1, . . . ,Un〉 given by

〈U2, . . . ,Un〉 def=

�

�
�
�

X2
λ2= ϕ2(ψ1(X2, . . . ,Xn, �Y ),X2, . . . ,Xn, �Y)
...

Xn
λn= ϕn(ψ1(X2, . . . ,Xn, �Y),X2, . . . ,Xn, �Y )

	





�

env

, (14)

U1
def= �ψ1(X2, . . . ,Xn, �Y )�env⊕[X2 �→U2,...,Xn �→Un], (15)

where

ψ1(X2, . . . ,Xn, �Y )
def= λ1X1.ϕ1(X1, . . . ,Xn, �Y ). (16)

Remark 15 (On the semantics of mutually recursive equations) In the special case where
n = 1, the above definition gives �ψ1( �Y)�, i.e., �λ1X1.ϕ1(X1, �Y )� as a solution, in accor-
dance with the semantics of Lμ terms. More generally, it can be seen as a kind of Gaus-
sian elimination that transforms any system of n mutually recursive fixpoint equations into
an equivalent non-recursive definition “X1 = Φ1( �Y), . . . ,Xn = Φn( �Y)” based on usual Lμ

terms.

Example 16 Consider the following system

X1
μ= Y1 ∪X1 ∪X2, X2

ν= Y2 ∩X1 ∩X2, (17)

where we assume that ∪ and ∩ have their standard set-theoretical meaning.
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One solves this system by first letting ψ1(X2, Y1, Y2)
def= μX1.(Y1 ∪ X1 ∪ X2). This

simplifies as ψ1 = Y1 ∪X2 with Eq. (8). Now one rewrites the second equation as

X2
ν= Y2 ∩ψ1(X2, Y1, Y2)∩X2, that is, X2

ν= Y2 ∩ (Y1 ∪X2)∩X2,

whose solution is �νX2.Y2 ∩ (Y1 ∪ X2) ∩ X2 �, or more simply �νX2.Y2 � = �Y2 � using
Eq. (8). Now ψ1(X2, Y1, Y2) simplifies as Y1 ∪ Y2 and the whole system is equivalent to
“X1 = Y1 ∪ Y2, X2 = Y2”.

Observe that the order in which the fixpoint equations are listed in a system is relevant
when it comes to defining what takes precedence among the mixed least and greatest fixpoint
selectors. In effect, the higher-numbered λi ’s have priority over the lower-numbered ones.
If we now reverse the order of the equations, we get a system

X2
ν= Y2 ∩X1 ∩X2, X1

μ= Y1 ∪X1 ∪X2, (17′)

solved by writing ψ ′
2(X1, Y1, Y2)

def= νX2.Y2∩X1∩X2, or equivalently ψ ′
2 = Y2∩X1. Then

μX1.Y1 ∪ X1 ∪ (Y2 ∩ X1) = Y1 and ψ ′
2(X1, Y1, Y2) = Y1 ∩ Y2. We end up with “X1 = Y1,

X2 = Y1 ∩ Y2”.

We now provide a notion of guardedness for systems of fixpoint equations. For this, we
slightly extend our terminology and use “μ-guarded” (resp. “ν-guarded”) as synonymous
with “upward-guarded” (resp. “downward-guarded”).

Definition 17 (Guarded systems of fixpoint equations) A system X1
λ1= ϕ1(X1, . . . ,

Xn, �Y), . . . ,Xn
λn= ϕn(X1, . . . ,Xn, �Y ) is guarded if one of the following two condition

holds:

Xi is λj -guarded in ϕj for all 1≤ i ≤ j ≤ n, or (C1)

Xi is λi-guarded in ϕj for all 1≤ j ≤ i ≤ n. (C2)

Lemma 18 If X1
λ1= ϕ1, . . . ,Xn

λn= ϕn is a guarded system of fixpoint equations, then the
derived system—see Eq. (14)—is guarded too.

Proof Being guarded, the system under consideration satisfies condition (C1) or (C2).
Assume that it satisfies (C1). We show that the derived system too satisfies (C1): Indeed,

for 2≤ i ≤ j the occurrences of Xi in ϕj (ψ1,X2, . . . ,Xn, �Y ) are either, so-called previous,
occurrences in ϕj (__,X2, . . . ,Xn, �Y ), or new ones in ψ1. In the first case, they are λj -
guarded as in the original system. In the second case, they occur in a term that replaces
X1 whose occurrences in ϕj (X1, . . .) were λj -guarded by assumption, hence they are λj -
guarded too in ϕj (ψ1, . . .).

If, on the other hand, we assume that the original system satisfies condition (C2),
we can show that the derived system too satisfies (C2). The reasoning is unchanged
for previous occurrences of some Xi in some ϕj (ψ1,X2, . . .) when 2 ≤ j ≤ i ≤ n.

For the new occurrences of Xi , we observe that they appear in the subterm ψ1
def=

λ1X1.ϕ1(X1,X2, . . . ,Xn, . . .) where they are λi -guarded since, by assumption, they were
λi -guarded in ϕ1(X1,X2, . . . ,Xn, . . .). �



Form Methods Syst Des

Theorem 19 Let �X Λ= �ϕ( �X, �Y) be a guarded system of fixpoint equations. Then �Λ �X. �ϕ�

is a region-preserving mapping with values in (2W)
�Y . Furthermore, if the region algebra is

effective, �Λ �X. �ϕ� is computable.

Proof The proof is by induction on the dimension n of the system, the base case where
n= 0 holding vacuously.

Assume now that n≥ 1 and write ψ1 for λ1X1.ϕ1(X1, . . . ,Xn, �Y). Recall that �Λ �X. �ϕ�env

is 〈U1,U2, . . . ,Un〉, where 〈U2, . . . ,Un〉 is the value over env of a derived system—see
Eq. (14)—, and where U1 is �ψ1 �env⊕[X2 �→U2,...,Xn �→Un].

We assume that env(Yj ) is a region for all Yj ∈ �Y and consider the derived system. By
Lemma 18, this system is guarded. The induction hypothesis applies and we deduce that
U2, . . . ,Un are regions. Furthermore they can be computed from env when the region algebra
is effective.

Consider now ψ1 and observe that, thanks to condition (C1) or (C2), X1 is λ1-guarded
in ϕ1. Hence, by Theorem 12, �ψ1 � is region-preserving, (and computable when the region
algebra is effective). Thus U1 = �ψ1 �env⊕[X2 �→U2,...,Xn �→Un] is also a (computable) region. �

Remark 20 For a system of n fixpoint equations, guardedness as defined in Definition 17
requires guardedness of Xi in ϕj for n(n+1)

2 pairs (i, j). Unfortunately, simpler conditions
will not be sufficient for Theorem 19. Consider for example the following condition:

Xi is λi-guarded in ϕi(X1, . . . ,Xn, �Y ) for all 1≤ i ≤ n. (C0)

Then the following system “X1
μ= X2, X2

μ= o(X1)” satisfies condition (C0) but its solution
is 〈V,V 〉 for V = �μX.o(X)�. In general V is not a region.

Note that this example can be reproduced with any condition that tries to weaken (C1) or
(C2) by omitting some of their (i, j) pairs.

5 Applications to the verification of well-structured counter systems

In the second part of this article, we show how the results of Sects. 3 and 4 apply to a
variety of verification problems for well-structured transition systems (WSTS). This is not
an exhaustive survey (and applications exist outside of verification).

This section focuses on basic verification problems and (several kinds of) counter sys-
tems since they are a simple and ubiquitous model. We consider lossy channel systems in
the following sections since this latter model is better suited to the game-theoretical and/or
probabilistic questions we use for illustration. This choice of applications is motivated by
their prominence in the WSTS literature, but the majority of the results we present can be
adapted more or less directly to other WSTS settings.

5.1 Well-structured transition systems

Recall that a (labeled) transition system is a structure T = (Conf ,Σ,→) where Conf =
{σ, τ, γ, . . .} is a set of configurations, or “states” of the system, where Σ = {�, �′, . . .} is
a set of labels, and →⊆ Conf × Σ × Conf is a labeled transition relation. A transition

(σ, �, σ ′) ∈→ is customarily called a step of T and denoted σ
�−→ σ ′, or just σ −→ σ ′ when

the label � is not relevant, or when one deals with unlabeled transition systems.
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Definition 21 [6, 48, 55] A well-structured transition system is a transition system T =
(Conf ,Σ,→,�) enriched with a WQO � over Conf , and such that the transitions satisfy

the following monotonicity property:2 for all steps σ
�−→ σ ′ and configurations τ � σ , there

exists a step τ
�−→ τ ′ such that τ ′ � σ ′.

Using standard notations, we let Pre[�](γ ′) def= {γ ∈ Conf | γ �−→ γ ′} denote the sets
of 1-step predecessors of γ by some �-labeled step. This extends to sets of configura-

tions: Pre[�](V )
def= ⋃

γ∈V Pre[�](γ ) for V ⊆ Conf ; to sequences of labels (words in Σ∗):

Pre[�1 . . . �n](V )
def= Pre[�1](. . . (Pre[�n](V )) . . .), with Pre[ε](V )

def= V ; to languages

L ⊆ Σ∗ with Pre[L](V )
def= ⋃

w∈L Pre[w](V ). Finally, Pre∗ and Pre+, are shorthand for
Pre[Σ∗] and Pre[Σ+], and collect all the predecessors (resp., strict predecessors) of some
configurations.

The dual P̃re of Pre is defined by P̃re(V ) = Conf � Pre(Conf � V ), or ¬Pre(¬V ) in
more compact notation. Thus σ ∈ P̃re(V ) iff all 1-step successors of σ are in V (this in-
cludes the case where σ is a deadlock state with no successors). Observe that, seen as unary
operators on 2Conf , Pre and P̃re are monotonic. In fact, Pre is ∪-continuous for all transition
systems, and ∩-continuous for finitely branching ones (symmetrically for P̃re).

5.2 Monotonic counter systems

A first example of WSTS is given by monotonic counter systems. We start with general
Presburger counter systems before restricting to monotonic systems.

Informally, a counter is a storage location holding a natural number. Formally, a (Pres-
burger) counter system is a tuple S = (Q,Σ,d,�) where Q = {p,q, . . .} is a finite set of
locations, Σ is the set of labels, d ∈N is a dimension, and �⊆Q×Σ ×Pres(X∪X′)×Q

is a finite set of transition rules, or shortly “rules”. Here, X = {x1, x2, . . . , xd} is a set of d

variables for the d counters, while X′ = {x ′1, x ′2, . . . , x ′d} are primed copies, and Pres(X∪X′)
is the set of Presburger formulae with free variables in X ∪X′. The components of a rule
δ = (p, �,u, q) are a start- and an end-location p,q , a label �, and an update u(X,X′), i.e., a
Presburger formula describing how the current values of the counters change when firing δ.

The operational semantics is as expected. A configuration of S = (Q,Σ,d,�) is a pair
σ = (p,a) of a current location p ∈ Q and a current valuation a ∈ N

d of the counters.

Transitions between configurations are obtained from the rules: there is a transition (p,a)
�−→

(q,b) if � contains a rule δ = (p, �,u, q) such that u is satisfied when the values a and b
are assigned to X and X′, denoted |= u(a,b).

Example 22 (A simple counter system) Figure 1 depicts a simple (unlabeled) counter system
with d = 2 and Q= {r, s}. Its behavior in any given configuration is completely determin-
istic. Here is a run starting from (r,0,0):

(r,0,0)−→ (s,0,0)−→ (r,1,0)−→ (r,0,1)−→ (s,0,1)−→ (s,1,0)−→ (r,1,1)

−→ (r,0,2)−→ (s,0,2)−→ (s,1,1)−→ (s,2,0)−→ (r,2,1)−→ · · · .
It appears that all possible configurations will be visited exactly once.

2Called “strong compatibility” in [48]. There exist alternative definitions of well-structured transition systems
based on weaker notions of compatibility.
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Fig. 1 A simple counter system

Example 23 (Minsky Machines and Vector Addition Systems) Using arbitrary Presburger
formulae for updates is expressive and versatile. It generalizes many classical models like
Minsky Machines or Vector Addition Systems, etc., where only updates of a specific form
are allowed. For Vector Addition Systems, the updates have the form

u(v−,v+)

(
X,X′) def⇔

d∧

j=1

(
xj ≥ v−[j ] ∧ x ′j = xj − v−[j ] + v+[j ]) (18)

for some v+,v− ∈N
d , or equivalently, when seeing X and X′ as vectors,

u(v−,v+)

(
X,X′) def⇔ X ≥ v− ∧X′ =X− v− + v+. (19)

For Minsky Machines, the updates are zero tests, written “if xi = 0 then . . . ” in program-
ming notation, incrementations “xi := xi + 1”, and decrementations “if xi > 0 then xi

:= xi − 1”. This imperative notation is more compact but less explicit than their Presburger
formulation:

uzero?(xi )

(
X,X′) def⇔ xi = 0∧

d∧

j=1

xj = x ′j , (20)

uincr(xi )

(
X,X′) def⇔ x ′i = xi + 1∧

d∧

j=1
j �=i

xj = x ′j , (21)

udecr(xi )

(
X,X′) def⇔ xi = x ′i + 1∧

d∧

j=1
j �=i

xj = x ′j . (22)

Now to monotonicity. For this, we order the set Conf S

def= Q×N
d of configurations of

S with

(p,a)≤ (q,b)
def⇔ p = q ∧ a≤ b. (23)

This extends the product ordering on N
d (from Example 6) and turns Conf S into a WQO

since (Nd ,≤) is a WQO and Q is finite. For counter systems, a natural choice for symbolic
verification purposes is to use the algebra RSL(S) over Conf S of semilinear,3 or equivalently
Presburger-definable, regions of S.

3Semilinear subsets of Conf S =Q× N
d are all sets of the form

⋃
q∈Q{q} × Rq where each Rq ⊆N

d is

semilinear. Equivalently, they can be seen as semilinear subsets of N
d+1, or more precisely of {0,1,2, . . . ,

|Q| − 1} ×N
d , by identifying Q with its cardinal.
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Definition 24 A counter system is monotonic if the associated transition system TS
def=

(Conf S,Σ,→,≤) is well structured.

Observe that the question whether S = (Q,Σ,d,�) is monotonic can be expressed by a
Presburger formula,

∧

p,q∈Q
�∈Σ

[(

Y ≥X ∧
∨

(p,�,u,q)∈�

u
(
X,X′)

)

⇒
(

∃Y ′ : Y ′ ≥X′ ∧
∨

(p,�,u′,q)∈�

u′
(
Y,Y ′)

)]

, (24)

hence is decidable.

Example 25 (Some classes of monotonic counter systems)

1. Vector addition systems, or equivalently Petri nets, are monotonic as can be checked on
Eq. (18).

2. Many extensions of Petri nets allow richer sets of updates (on the same set of configura-
tions) and retain monotonicity. For example, Post-self-modifying nets [79], reset/transfer
nets [38] and broadcast protocols [40], or the more general affine nets [47]. These are
all special cases of Presburger counter systems since their updates can be defined with
Presburger formulae.

3. Lossy counter machines are monotonic: see Sect. 5.4.

Remark 26 Famously, Minsky machines are not monotonic because of their zero tests.

We now consider the monotonic region algebra RSL(S). The signature includes union,
intersection, C↑ and K↑, the Pre[�] operators (all monotonic operators), and some constants.
In terms of this region algebra, the defining property of monotonic counter systems entails

Pre[�](C↑R)= C↑
(
Pre[�](C↑R)

)
. (25)

We abuse terminology and say that a constant c is upward-closed if its interpretation �c�
is.

Proposition 27 Let ϕ be a closed Lμ term that uses only Pre, union, intersection, upward-
closure, fixpoints and upward-closed constants. Then, for monotonic counter systems, �ϕ�
is upward-closed.

Proof We show that for any subformula ψ of ϕ, �ψ(X1, . . .)�env is upward-closed when
env(X1), . . . are upward-closed. The result will apply to ϕ without any restriction since it
has no free variable and �ϕ� does not depend on env.

The proof is by structural induction on ψ . We consider all cases in turn. If ψ is a
constant c, �c� is upward-closed by assumption. If ψ is a variable X, �X�env = env(X)

is upward-closed by assumption. If ψ is some ψ1 ∩ ψ2 or ψ1 ∪ ψ2, we know by in-
duction hypothesis that �ψ1 �env and �ψ2 �env are upward-closed, hence �ψ �env too since
the union or the intersection of two upward-closed sets is upward-closed. If ψ is some
Pre[�](ψ ′) we rely on the fact that �ψ ′�env is upward-closed (induction hypothesis), so
that �ψ �env = Pre[�](�ψ ′�env) = Pre[�](C↑�ψ ′�env) is upward-closed by Eq. (25). If ψ is
some μX.ψ ′, we first prove, by induction over i, that all the approximants (Mi)i∈N of
�μX.ψ ′�env, are upward-closed, relying on the induction hypothesis on ψ ′ to prove that
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Mi+1 = �ψ ′�env⊕[X �→Mi ] is upward-closed. Now, by Fact 1, the sequence of approximants
stabilize in finite time since they are increasing and upward-closed. Thus �ψ �env coincides
with some Mk , and it is upward-closed. The case where ψ is some νX.ψ ′ is similar. �

Let B(∃U,∃X,∧,∨) denote the fragment of CTL (the well-known temporal logic, see [39]
for notations and definitions) where only existential path quantification is allowed. Write
S,σ |= ϕ when configuration σ of S satisfies temporal formula ϕ, and SatS(ϕ) for {σ ∈
Conf S |S,σ |= ϕ}. Model checking is the problem of deciding whether S,σ |= ϕ for given
S, σ and ϕ.

Theorem 28 (Model-checking monotonic counter systems) For a monotonic counter sys-
tem S, and for a B(∃U,∃X,∧,∨) formula ϕ where atomic propositions are upward-closed,
the set SatS(ϕ) is an upward-closed set (hence a region in RSL(S)) that can be computed
from S and ϕ.

Proof By translating CTL as Lμ terms in the classical way [30], e.g., with

∃[ϕ1Uϕ2] is CTL notation for μX.ϕ2 ∪ ϕ1 ∩ Pre(X), (26)

we can apply Proposition 27 and deduce that all SatS(ϕ) are upward-closed. Therefore,
replacing any Pre(. . .) by Pre(C↑(. . .)) in the resulting Lμ terms does not change their
interpretation.

Now, since B(∃U,∃X,∧,∨) only uses least fixpoints, and all such fixpoints have the
bound variable under the scope of Pre as exemplified in Eq. (26), this gives us terms that are
upward-guarded. Thus they can be evaluated as a consequence of Theorem 12. �

Thus, model checking B(∃U,∃X,∧,∨) is decidable under the above assumptions. This
CTL fragment allows combining and nesting the constrained reachability properties that are
central to the verification of safety properties.

Remark 29 Theorem 28 cannot be extended to the whole of CTL. For example, the set
SatS(∀♦r) of all configurations from which one will inevitably reach a given control state
r ∈Q cannot be computed from S, even when S is a lossy counter system [77].

5.3 Regular simulation for monotonic counter systems

In process algebra, so-called “regular” equivalences and preorders are behavioral relations
between an arbitrary labeled transition system and a finite-state one (which is usually taken
as a specification of the other process) [58, 65].

We first consider regular simulation, i.e., the special case where one considers Milner’s
classic simulation preorder.4

Consider an arbitrary counter system S = (Q,Σ,d,�) and assume that F = (F,Σ,−→F )

is a finite-state transition system, i.e., F = {f1, . . . , fn} for some n. The simulation relation

4Regular simulation is known to be decidable for well-structured systems [6]. By contrast, outside of the
regular equivalence framework, all sensible behavioral relations between configurations of monotonic counter
systems are undecidable [56, 75].
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between S and F , is the largest relation "⊆ Conf S × F that satisfies the following transfer
property (see, e.g., [50]):

σ " f =⇒ for all σ
�−→ σ ′ there exists f

�−→F f ′ s.t. σ ′ " f ′. (27)

For f ∈ F , let Xf
def= {σ ∈ Conf S |σ " f }.

Theorem 30 (Decidability for regular simulation) If S is a monotonic counter system, the
sets (Xf )f∈F are downward-closed and can be computed effectively.

Proof Since F is finite, the coinductive definition of " translates into a finite system of
fixpoint equations for the Xf sets. Formally, Eq. (27) rewrites as

Xf1

ν=
⋂

�∈Σ

P̃re[�]
( ⋃

f1
�−→F f ′

Xf ′

)

, . . . , Xfn

ν=
⋂

�∈Σ

P̃re[�]
( ⋃

fn

�−→F f ′

Xf ′

)

. (28)

By duality, the complementary sets Yf
def= Conf S � Xf are given by the following system

of fixpoint equations:

Yf1

μ=
⋃

�∈Σ

Pre[�]
( ⋂

f1
�−→F f ′

Yf ′

)

, . . . , Yfn

μ=
⋃

�∈Σ

Pre[�]
( ⋂

fn

�−→F f ′

Yf ′

)

. (29)

With Proposition 27 we know that the solutions of Eq. (29) are upward-closed when S is
monotonic. Hence it is equivalent to define the (Yf )f∈F with:

Yf1

μ=
⋃

�∈Σ

Pre[�]
(

C↑
⋂

f1
�−→F f ′

Yf ′

)

, . . . , Yfn

μ=
⋃

�∈Σ

Pre[�]
(

C↑
⋂

fn

�−→F f ′

Yf ′

)

, (30)

which is guarded. Theorem 19 now applies and gives us computability. �

It is easy to extend Theorem 30 to (most variants of) weak simulation, where a special
label τ ∈Σ is a silent internal action [49]. This means replacing the existential quantification

“∃ f
�−→F f ′” in Eq. (27) with, e.g., “∃ f

τ∗�τ∗−−→F f ′” and leads to a variant of Eq. (28) that is
still guarded.

Remark 31 (Simulation of F by S) One cannot compute the simulation relation in the other
direction, i.e., of F by S. Let X′

f = {σ |f " σ }. The definition of simulation leads to a
system of fixpoint equations for the (X′

f )f∈F that is not guarded. From this we deduce
that each X′

q is (semilinear and) upward-closed, using Proposition 27. However, X′
f is not

computable5 from S and F since if F is just a single loop “f1 −→ f1”, X′
f1

is exactly the set
of configurations from which S has an infinite run, a set that cannot be computed even for
lossy counter machines [77].

5However, it is decidable whether f " σ (given σ ) when S is finitely branching [6].
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5.4 Lossy counter machines

Lossy counter machines are a weak version of counter machines that is well structured
by construction. It is convenient to define them as standard counter machines with a new
operational semantics that defines their unreliability [68, 77]. Formally, given a Presburger
counter machine S, its lossy variant Slossy is obtained by replacing any update u(X,X′) in
the rules of S by a modified, “lossy”, version

ulossy

(
X,X′) def⇔ ∃Y,Y ′ :X ≥ Y ∧ u

(
Y,Y ′)∧ Y ′ ≥X′. (31)

The behavior of the resulting Slossy is the behavior of S except that one now assumes that the
counters are unreliable and can decrease nondeterministically before and after steps.

Equation (31) entails that Slossy is a monotonic system. In fact, lossy counter machines
satisfy a stronger property:

Pre[�](R)= Pre[�](C↑R)= C↑
(
Pre[�](C↑R)

)
,

P̃re[�](R)= P̃re[�](K↓R)=K↓
(
P̃re[�](K↓R)

)
.

(32)

This leads to a notable strengthening of Theorem 28: one can handle negation!

Theorem 32 Model checking B(∃U,∃X,∧,∨,¬) is decidable for lossy counter systems
(assuming that atomic propositions are semilinear). Furthermore, for every formula ϕ of
this fragment of CTL, the set SatS(ϕ) is semilinear and computable from S and ϕ.

Proof [Sketch] Using Eq. (32) the μ-calculus definitions of B(∃U,∃X,∧,∨,¬) formulae
directly lead to guarded terms. �

We are also in a position to deal with regular bisimulation. Write Zf
def= {σ ∈

Conf S |σ ∼ f } for the set of configurations of S that are bisimilar with a state f of F .
The natural coinductive definition of bisimulation does not lead to a guarded system for the
Zf ’s. However, for regular bisimulation, an alternative characterization leads to an induc-
tive definition as we now explain (see also [58, 65]). Recall the definition of the finite-depth
approximants ∼0 ⊇ ∼1 ⊇ ∼2 ⊇ · · · of bisimulation:

σ ∼n+1 f
def⇔

{
∀σ �−→ σ ′ : ∃f �−→F f ′ : σ ′ ∼n f ′, and

∀f �−→F f ′ : ∃σ �−→ σ ′ : σ ′ ∼n f ′,
(33)

where σ ∼0 f holds for all σ and f . Then, writing N for |F |, σ ∼ f iff

σ ∼N f and for all σ
∗−→ σ ′ there is a f ′ ∈ F s.t. σ ′ ∼N f ′. (34)

Using Eq. (32), the above characterization yields a guarded system for (Zq)q∈F :

Zf = ZN
f ∩ZF , ZF

ν=
( ⋃

f ′∈F

ZN
f ′ ∩

⋂

�∈Σ

P̃re[�](K↓ZF )

)

,

Z0
f = Conf S, Zn+1

f =
⋂

�∈Σ

( ⋂

f
�−→F f ′

Pre[�](Zn
f ′)∩ P̃re[�]

( ⋃

f
�−→F f ′

Zn
f ′

))

.
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Fig. 2 An integral relational
automaton

Corollary 33 (Decidability for regular bisimulation) For lossy counter systems, the sets
(Zf )f∈F are semilinear and can be computed effectively.

Remark 34 The above result does not extend to all monotonic systems. For example, even in
the simple case of VASS’s for which regular bisimulation is decidable [57], the sets (Zf )f∈F

are in general not semilinear.

5.5 Integral relational automata

Integral relational automata (IRA) [32] are counter systems where updates are restricted
to assignments guarded by comparisons. Using an imperative notation, the assignments
can have the form xi:=c for a counter xi and a constant c ∈ N, xi:=xj for two coun-
ters, and the special xi:=? that assigns nondeterministically any natural number (and yields
infinitely-branching transition systems). These updates are guarded by arbitrary Boolean
combinations of simple tests of the form xi < c (comparing a counter and a constant) and
xi < xj − c (comparing two counters, with gap-order constraints allowed). Since these up-
dates are Presburger-definable, IRA’s are a special case of counter systems.

Example 35 The IRA depicted on Fig. 2 nondeterministically picks two arbitrary values for
x1 and x2, compares them and stores the largest one in y.

IRA’s are not monotonic in the sense of Definition 24, however they are well structured
transition systems when one assumes a different ordering on configurations. Formally, for
a= (a1, . . . , ad) and b= (b1, . . . , bd) in N

d or in Z
d , we say that a is sparser than b, written

a≤sp b, when

for all 1≤ i, j ≤ d: (ai ≤ aj iff bi ≤ bj ) and |ai − aj | ≤ |bi − bj |. (35)

In other words, the ordering between any two elements of a is respected by the correspond-
ing elements in b, and their relative distance is not decreased.

Fact 36 (Nd ,≤sp) and (Zd ,≤sp) are WQO’s.

Indeed there are only a finite number Fd ≈ d!
2(log 2)d+1 of total preorders of d elements,6

and only d d−1
2 distinct differences between the d elements. Thus there exists an order-

embedding from (Zd ,≤sp) to (Fd × N
d d−1

2 ,≤). Furthermore, the d d−1
2 differences can

6The Fd ’s are known as the “Fubini numbers”, or the “ordered Bell numbers”, see A000670 in the Encyclo-
pedia of Integer Sequences.

http://A000670
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be generated with only the d − 1 differences between immediate neighbors since if, e.g.,
x < y < z then |x − z| = |x − y| + |y − z|. Thus (Zd ,≤sp) can even be embedded into
(Fd ×N

d−1,≤). Since the latter is a WQO (by Dickson’s Lemma), the former is too.
When C = {c1, . . . , ck} is a finite subset of Z (with c1 < c2 < · · ·< ck), we let

a≤C
sp b def⇔ (a1, . . . , ad, c1, . . . , ck)≤sp (b1, . . . , bd, c1, . . . , ck)

⇔ (a1, . . . , ad, c1, ck)≤sp (b1, . . . , bd, c1, ck). (36)

Then, for any C, (Zd ,≤C
sp) is a WQO that refines (Zd ,≤sp).

If we now let CS be the (finite) set of all constants that appear in a guard or an assignment

of S and order Conf S with (p,a)�S (q,b)
def⇔ p = q ∧ a ≤CS

sp b, we obtain a WQO w.r.t.
which the IRA S is well structured [6, 32].

Now to verification: IRA’s are counter systems, so we can use the algebra of semilinear
regions for symbolic verification, with Pre and Post being effective and region-preserving.
Configurations are well quasi-ordered with ≤CS

sp : since this WQO is Presburger-definable
(witness Eqs. (35) and (36)), the associated closure and interior operators are effective and
region-preserving. Finally, all the machinery described above for the symbolic verification
of monotonic counter machines still apply mutatis mutandis.

Theorem 37 Regular simulation and model-checking B(∃U,∃X,∧,∨) where atomic propo-
sitions are upward-closed (w.r.t. �S ) are decidable for IRA’s.7

Furthermore, for any B(∃U,∃X,∧,∨) formula ϕ, the set SatS(ϕ) is upward-closed and
computable, and for any state q of a finite F , the set Xq = {σ |σ " q} is downward-closed
and computable.

5.6 Incrementation errors

Counter automata with incrementation errors, called ICA’s for short, have recently been
introduced in connection with temporal logics and data logics [37, 44]. Seen as counter
systems, they are not monotonic, but “co-monotonic”, i.e, they satisfy an equation simi-
lar to Eq. (24) where Y ≥ X and Y ′ ≥ X′ are replaced with Y ≤ X and Y ′ ≤ X′. Equiva-
lently, the transition system obtained by reversing the direction of steps (running the sys-
tem backwards) is well structured. Thus, instead of Eq. (32), one relies on Post[�](R) =
C↑(Post[�](C↑R)) to prove, e.g., that for ICA’s Post∗(R) is a region and can be computed
effectively.

6 Lossy channel systems

Lossy channel systems (LCS’s) are another classic model for which WSTS theory provides
many positive results [9, 31]. In this section, we first recall the necessary notations, defini-
tions and classical results before considering the verification of game-theoretical and prob-
abilistic properties in Sects. 7–9.

For simplicity we consider unlabeled systems. A channel system is a tuple S =
(Q,C,M,�) consisting of a finite set Q= {q, q ′, . . .} of locations, a finite set C= {c, . . .}
of channels, a finite message alphabet M= {m, . . .} and a finite set �= {δ, . . .} of transition

7In the case of IRA’s, the optimal complexity is obtained with algorithms that are not WSTS-based [29].
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rules. Each transition rule has the form (q,op, q ′), written q
op−→ q ′, where op is an operation:

c!m (sending message m ∈M along channel cınC), c?m (receiving message m from channel
c), or

√
(an internal action to some process, no I/O-operation).

With a channel system S, we associate two operational semantics. We start with the
“reliable” semantics: A configuration of S is a pair (q,w) where q is a location of S and
w : C→M∗ is a mapping, called the channel valuation, that describes the channel contents.

Thus Conf S

def= Q× M∗C. When C = {c1, . . . , cd}, we often use M∗d instead of M∗C, and
write (q,u1, . . . , ud) instead of (q,w) (when ui = w(ci) for i = 1, . . . , d). Reliable, also
called “perfect”, steps are as expected. Formally, the effect of an operation op on the contents
w, denoted op(w), is the valuation w′ such that:8

if op= c!m: w′(c)=w(c).m and w′(c′
)=w

(
c′

)
for all c′ �= c,

if op= c?m: m.w′(c)=w(c) and w′(c′
)=w

(
c′

)
for all c′ �= c,

if op=√: w′(c)=w(c) for all c.

Then the perfect steps of S, denoted σ−→perfσ
′, are all (q,w)−→perf(q

′,w′) such that there is

a rule q
op−→ q ′ in � and w′ = op(w), in which case we say that the rule is enabled. We write

En(σ )⊆� for the set of rules enabled in σ .
Now to unreliability. Losing messages is formalized via the subword ordering, extended

from M∗ to Conf S in the natural way: (q,w) � (q ′,w′) if q = q ′ and w(c) � w′(c) for all
channels c ∈ C. Then the semantics of S consists of so-called “lossy” steps defined with

σ −→ τ
def⇔ σ−→perfτ

′ ∧ τ ′ � τ for some τ ′. (37)

In plain words, a step in the LCS can be seen as a perfect step followed by arbitrary message
losses.

Remark 38 (On defining lossy steps) With Eq. (37), we opt for a semantics where message
losses occur anywhere in the channels, right after a perfect step. In the literature, one often
considers more liberal definitions with arbitrary losses before and after a step [9], or more
restrictive definitions where messages can only be lost during the steps that (try to) send
them to a channel [33] or when they are in position to be read at the head of a channel [45].

There is usually no essential semantical difference between these definitions that package
the same atomic events into different single “steps”. The liberal definition is often techni-
cally smoother because (Conf S,−→liberal,�) is a WSTS. However, losing messages at the
start of a step is unnatural in situations where several adversarial processes compete, e.g.,
in the game-theoretical or probabilistic settings that we explore in Sects. 7–9. Hence our
choice of Eq. (37) for the definition of lossy steps.

One consequence of using Eq. (37) is that when σ � σ ′, the transition rules enabled in σ

are not necessarily enabled in σ ′. This motivates the introduction of the following relation:

σ "S σ ′ def⇔ σ � σ ′ ∧ En(σ )⊆ En
(
σ ′

)
. (38)

Lemma 39 (Conf S,"S) is a WQO and TS
def= (Conf S,−→,"S) is a WSTS.

8For “c?m” operations, op(w) is only defined if the contents of channel c starts with m.
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Proof "S is a WQO as the intersection of two WQO’s. For monotonicity of steps, assume
σ "S σ ′ and σ −→ τ , i.e., σ−→perfτ1 � τ where the perfect step is obtained by firing rule
δ ∈ �. From En(σ ) ⊆ En(σ ′) we conclude that there is a step σ ′−→perfτ

′
1 using δ. From

σ ′ � σ we get τ ′1 � τ1 hence τ ′1 � τ . Thus by letting τ ′ = τ , we have a step σ ′ −→ τ ′ with
τ "S τ ′. �

6.1 An effective region algebra for LCS’s

We adapt the algebra of regular regions (Example 4) to LCS’s. Formally, for an LCS S, a
recognizable region is any R ⊆ Conf S that can be written under the form R =⋃

i∈I {qi} ×
L1

i × · · · × Ld
i where I is a finite index set, where d = |C| is the number of channels in S,

and where, for i ∈ I , qi is some location ∈ Q, and each L
j

i for j = 1, . . . , d is a regular
language ∈ Reg(M). We denote with RRec(S) the monotonic region algebra that contains
exactly these recognizable regions. It is closed under Boolean operations.

Obviously, for any transition rule δ ∈�, the set of configurations in which δ is enabled
is a recognizable region. Thus, from the regularity of language closures w.r.t. the subword
ordering (see Example 5), we deduce the recognizability of the closures w.r.t. "S , denoted
C↑"S

R and C↓"S
R, or more simply C↑R and C↓R when S is understood, of any R ⊆ Conf S .

Consequently, the interiors w.r.t. "S , simply denoted K↑R and K↓R, are also recognizable
regions.

The set of operators we consider on regions includes C↑, C↓, K↑, K↓ (as required by
the definition), union and intersection, Pre and P̃re. These operators are monotonic, region-
preserving and effective.

Let us show that, even with our specific operational semantics, Pre(R) and P̃re(R) are
regions. First let Preperf(. . .) denote the set of 1-step predecessors by perfect steps. It is
easy to see that, when R is recognizable, Preperf(R) is recognizable too: it is obtained from
R by simple regularity-preserving operations like replacing the contents Li of channel ci

with m.Li when accounting for operation ci?m, and with the right-residual (Li)m
−1 def=

{x |xm ∈ Li} when accounting for ci !m. We conclude with Pre(R) = Preperf(C↑R) from
Eq. (37). Since C↑R is recognizable, Pre(R) is recognizable for any R.

Finally, RRec(S) is an effective region algebra where recognizable regions and the above-
mentioned operations, including Pre and P̃re, can be handled algorithmically, e.g., using
automata-based representations like QDD’s [21].

Remark 40 (Lossy channel systems with guards) Guards are additional conditions that re-
strict the firability of rules and are useful in many situations, e.g., for modeling priorities
between rules. They can be simple conditions like the emptiness of a channel, or more com-
plex ones like the (non-)occurrence tests used in [27, 28].

It turns out that our approach can handle all guards defined by recognizable regions. If we

write q
G:op−−→ q ′ for rule q

op−→ q ′ guarded by G, a formal definition of the semantics would

give Pre[q G:op−→ q ′](R)=G ∩ Pre[q op−→ q ′](R) which is easily accommodated by our region
algebra. We will not pursue this direction in more depth, and just remark that all our results
on lossy channel systems extend directly to a setting with recognizable guards.

6.2 Verification of lossy channel systems

Theorem 12 has numerous applications for LCS’s, as we describe now and in the next three
sections. In order to ensure guardedness of terms, we rely on the following two key equalities

Pre(R)= Pre(C↑R), P̃re(R)= P̃re(K↓R). (39)
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These are direct consequences of Eqs. (37) and (38) (recall that C↑ and K↓ refer to "S ).
Using Eq. (39), Pre∗(R) can be expressed by a guarded term:

Pre∗(R)= μX.R ∪ Pre(X)= μX.R ∪ Pre(C↑X). (40)

Corollary 41 For recognizable R ⊆ Conf , Pre∗(R) is recognizable and effectively com-
putable.

More generally, model checking B(∃U,∃X,∧,∨,¬) is decidable for lossy channel sys-
tems (assuming that atomic propositions are recognizable), as are regular simulation and
bisimulation: everything we illustrated for lossy counter machines in Sect. 5.4 extends to
LCS’s.

Remark 42 (Beyond safety) Inevitability properties, and recurrent reachability can be stated
in Lμ [30]. With temporal logic notation, this yields

Sat(∀♦R) = μX.R ∪ (
Pre(Conf )∩ P̃re(X)

)
(Inev),

Sat(∃�♦R) = νX.μY.
([

R ∪ Pre(Y )
]∩ Pre(X)

)
(RecReach).

These two Lμ terms are not guarded and Eq. (39) is of no help here. This is to be expected:
first, σ |= ∃�♦R is undecidable for lossy channel systems or even lossy counter systems [8,
77]; second, and while σ |= ∀♦R is decidable for lossy channel systems, the map R �→
Sat(∀♦R) is not computable [68, 77].

7 Solving games on lossy channel systems

Theorem 12 is useful when solving games on LCS’s, as we show in this section and in
Sect. 9 for stochastic games.

From now on, all the situations we consider have game-theoretical aspects and we shall
always explicit who has control over message losses: it can be one the players in this section,
or the environment in the last two sections with probabilistic message losses. Therefore, Pre
and P̃re will always refer to perfect steps, i.e., they are what was written Preperf and P̃reperf

earlier. For the same reasons, we order configurations with � rather than with "S , and the
closure and interior operators refer to �.

In general, we consider two players A and B using a channel system S = (Q,C,M,�)

as their arena. Formally, the set of locations is partitioned into two sets Q=QA ∪QB , one

for each player (we do not consider concurrent games). We then let Conf A

def= QA ×M∗C

and Conf B

def= QB ×M∗C be the recognizable regions where it is A’s turn (resp., B’s turn)
to play.

Goals for the players combine reachability and invariance properties, denoted as above
with ♦ and, respectively, �. For a goal G, following ATL-like notations [11], we write 〈〈A〉〉G
and 〈〈B〉〉G for the sets of configurations where, respectively, A and B have a winning strategy
to ensure goal G.

In this section, we restrict our attention to turn-based games with strict alternation (oth-
erwise we lose decidability, see Remark 43). This means that for all rules q

op−→ q ′ in �,
q ∈ QA iff q ′ ∈ QB . Thus a single step from some σ ∈ Conf A can only lead to config-
urations in Conf B , and reciprocally. In this setting, the following equalities—valid in all
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strictly-alternating games—are our main tool for transforming unguarded Lμ terms into
equivalent guarded ones:

Conf A ∩ Pre(U)= Pre(U ∩Conf B),

Conf A ∩ P̃re(U)= Conf A ∩ P̃re(U ∩Conf B).
(41)

We omit the symmetrical equalities that allow simplifying for Conf B ∩ Pre(U) etc. For
simplicity—and w.l.o.g., see [19]—we assume that players can never be in a deadlock situ-
ation where no move is possible, i.e., P̃re(∅)= ∅.

Remark 43 (Alternation is needed) The strictly-alternating setting adopted in this section
is more or less necessary for the decidability results we give below. Indeed, games with no
assumption on alternation between players would allow to express temporal model-checking
problems, e.g., the CTL formula ∃�R, for which the support set is not computable.

We could handle a slightly weaker form of alternation, namely games where there exists
a uniform bound M on the number of consecutive moves from a same player. The situation
is different when the message losses are probabilistic and the stochastic games in Sect. 9 are
not required to be strictly alternating.

7.1 Asymmetric games on lossy channel systems

We first consider asymmetric games where one player, B , controls the message losses for
both sides, as well as his perfect moves, while the other player, A, can only perform per-
fect steps. This setting was previously considered in [5]. It can be used, e.g., to model all
the situations where the channel system (player A) must reach some objective against an
adversarial environment (player B) responsible for message losses.

B-Reachability games, A-invariance games These are games where player B attempts to
reach (visit at least once) a region R, no matter how A behaves. It is known that such games
are determined [51]. In our setting, the configurations from which B can achieve the goal
♦R can be characterized with:

〈〈B〉〉♦R =WB
def= μX.R ∪ (

Conf B ∩ Pre(C↑X)
)∪ (

Conf A ∩ P̃re(C↑X)
)
. (42)

Here WB is defined with a guarded term, hence is computable. One way to understand
Eq. (42) is to consider a configuration σ ∈WB . If σ ∈ ConfA � R: it is A’s turn to play but,
since σ ∈ P̃re(C↑WB), A can only choose among perfect steps reaching C↑WB . Now, and
since he controls message losses, B can make sure the play ends up in WB .

We may also consider a different asymmetric setting, where B only controls the message
losses for his moves while A plays perfect steps where no losses can occur. Then 〈〈B〉〉♦R is
characterized with

〈〈B〉〉♦R =WB
def= μX.R ∪ (

Conf B ∩ Pre(C↑X)
)∪ (

Conf A ∩ P̃re(X)
)
. (43)

Here we use Eq. (6), i.e., unfoldings, to deal with the second, unguarded, occurrence of X.
This gives

WB = μX.
(
R ∪ (

Conf B ∩ Pre(C↑X)
)

∪ (
Conf A ∩ P̃re

[
R ∪ (

Conf B ∩ Pre(C↑X)
)∪ (

Conf A ∩ P̃re(X)
)]))
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which we now simplify using Eq. (41) and Conf A ∩Conf B = ∅,

= μX.R ∪ (
Conf B ∩ Pre(C↑X)

)∪ (
Conf A ∩ P̃re

(
Conf B ∩

(
R ∪ Pre(C↑X)

)))

= μX.R ∪ (
Conf B ∩ Pre(C↑X)

)∪ (
Conf A ∩ P̃re

(
R ∪ Pre(C↑X)

))
,

and we have a guarded term for WB . As can be seen, unfolding the recursive definition
of WB exposes terms where the alternation between A and B leads to simplification. This
technique is used repeatedly in the rest of this section.

Theorem 44 (Decidability for asymmetric LCS games) For asymmetric LCS games and
recognizable regions R, the sets 〈〈B〉〉♦R and, dually, 〈〈A〉〉�R are (effective) recognizable
regions.

We have just reproved a result originally from [5]. Note that one can choose whether A

steps are lossy (under B’s control) or not.

7.2 Symmetric games

We now turn to symmetric games on LCS’s, where A and B play in turn, choosing the next
configuration. Here both players choose a transition rule to fire and messages to lose after
their step.

Reachability games We consider the game where player A tries to reach a set of configu-
rations R whatever the adversarial behavior of B . The set of winning configurations for A

is naturally characterized by the following term:

〈〈A〉〉♦R =WA
def= μX.R ∪ [

Conf A ∩ Pre(C↑X)
]∪ [

Conf B ∩ P̃re(K↓X)
]
.

The change from P̃re(C↑X)—previously, in Eq. (42)—or P̃re(X)—in Eq. (43)—to
P̃re(K↓X) above reflects the change between an adversary who could choose a firable rule
but not his message losses to an opponent who also chooses his message losses. When in
P̃re(K↓X), the adversary (B now) is forced to choose a rule and message losses that will
end up in X =WA.

Now, to obtain a guarded term for WA, we use unfolding and Eq. (41), exactly as we did
for asymmetric games:

WA = μX.R ∪ [
Conf A ∩ Pre(C↑X)

]∪ [
Conf B ∩ P̃re

(
K↓

(
R ∪ Pre(C↑X)

))]
. (44)

Repeated reachability and persistence games In a repeated reachability game, A’s goal is
to visit region R infinitely many times, whatever the choices of B . (In a persistence game,
A aims at remaining inside R from some moment on, no matter how B behaves. Dually,
this is a repeated reachability game for B .) In the repeated reachability game, the winning
configurations for A are given by

〈〈A〉〉�♦R =WA
def= νY.〈〈A〉〉♦(

HA(Y )
)
, with

HA(Y )
def= R ∩ [(

Conf A ∩ Pre(C↑Y )
)∪ (

Conf B ∩ P̃re(K↓Y )
)]

, (45)

and where we see 〈〈A〉〉♦(. . .) as a unary region-preserving operator given by Eq. (44). Note
that 〈〈A〉〉�♦R and 〈〈A〉〉�(〈〈A〉〉♦R) do not coincide.
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The term in Eq. (45) is not guarded. Furthermore there does not seem to be an easy and
direct way to derive an equivalent but guarded term for WA with unfoldings and simplifica-
tions based on Eq. (41). This is because the outermost operator 〈〈A〉〉♦ in WA makes unfolding
harder to manage.

In this situation, we prefer providing alternative definitions for WA. This can be done by
modifying HA(Y ), e.g., WA = νY.〈〈A〉〉♦H ′

A(Y )= νY.〈〈A〉〉♦H ′′
A(Y ) for

H ′
A(Y )

def= R ∩ [(
Conf A ∩ Pre

(
C↑P̃re(K↓Y )

))∪ (
Conf B ∩ P̃re(K↓Y )

)]
,

H ′′
A(Y )

def= Conf B ∩
[(

R ∩ P̃re(K↓Y )
)∪ (

P̃re(R ∩K↓Y )
)]

.

These alternative characterizations rely on the strict alternation of player turns and the fact
that the objective, here �♦R, is prefix-independent.

We now have guarded-term definitions and conclude that reachability, invariance, re-
peated reachability, and persistence symmetric LCS games are decidable.

Theorem 45 (Decidability for symmetric LCS games) For symmetric LCS games and rec-
ognizable R, the four sets 〈〈A〉〉♦R, 〈〈A〉〉�R, 〈〈A〉〉♦�R, and 〈〈A〉〉�♦R, are (effective) recogniz-
able regions.

Parity games Parity games on lossy channel systems are briefly mentioned in [5], where it
is stated that they can be reduced to a game on a finite arena, namely the one constituted of
configurations with empty channels. In fact, this reduction only holds when colors are put on
control states (i.e., all configurations with a same given location are colored the same) since
then both players are always better off if they systematically empty the channels after their
moves. However, this reasoning is not valid when colors are not uniform in control states.

Let us show how to handle the general situation: we consider an arbitrary coloring func-
tion c : Conf → {1, . . . , k} for some k ∈ N, that assigns a color in {1, . . . , k} with each
configuration. We let colori ⊆ Conf denote the set of configurations colored with color i.
Classically, player A wins the game if during the play, the highest color which is visited
infinitely often is even. The set WA of configurations where player A has a winning strategy
(against any choices by B) can be characterized in the following way:

WA
def= λkXk . . . νX2.μX1.

([

Conf A ∩ Pre

(

C↑
k⋃

i=1

(colori ∩Xi)

)]

∪
[

Conf B ∩ P̃re

(

K↓
k⋃

i=1

(colori ∩Xi)

)])

,

where λk is either μ or ν depending on the parity of k.
The above characterization of winning regions holds on any arena [12, Sect. 4.3]. Un-

fortunately the Lμ term defining WA is not guarded. However, in the particular case of
symmetric LCS games with strict alternation, an alternative characterization is possible:

WA = λkXk . . . νX2.μX1.

([

Conf A ∩ Pre

(

C↑P̃re

(

K↓
k⋃

i=1

(colori ∩Xi)

))]

∪
[

Conf B ∩ P̃re

(

K↓Pre

(

C↑
k⋃

i=1

(colori ∩Xi)

))])

.
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Since WA can be defined with a guarded term, we conclude that symmetric parity games are
decidable on LCS’s.

Theorem 46 (Decidability for symmetric parity games) For symmetric parity games on
LCS’s and recognizable regions (colori )1≤i≤k , the set of winning configurations for player A

is an (effective) recognizable region.

8 Probabilistic lossy channel systems

Our general finite convergence theorem has applications to qualitative probabilistic model-
checking problems for well-structured transition systems. As in the previous section about
(non-probabilistic) games, lossy channel systems are the prominent example in the litera-
ture [1, 3, 15, 16, 71].

We consider here a Markov decision process (MDP) semantics for lossy channel systems
where the choice between actions is non-deterministic whereas the losses follow a proba-
bilistic distribution. This model is called NPLCS, for Non-deterministic and Probabilistic
LCS.

8.1 The MDP semantics of NPLCS’s

We assume familiarity with the basic concepts of MDP’s and the algorithmic verification of
probabilistic systems. A good introductory exposition is available in [17, Chap. 10].

We view message losses as probabilistic events. Formally, and given a channel system
S = (Q,C,M,�), we assume a fixed loss rate 0 < λ < 1 so that any message waiting in-
side the channels can be lost with probability λ during the current unit of time, which for
simplicity is assumed to coincide with a step of S. Each message is lost or not lost indepen-
dently of the others. Thus, and given two channel contents w,w′ : C→M∗, the probability
ploss(w,w′) that w becomes w′ in one step via message losses is given by ploss(w,w′) =
#(w′,w)λ|w|−|w′ |(1− λ)|w′| where #(w′,w) is the number of ways w′ can be obtained from
w by erasing some symbols, or equivalently, the number of different embeddings of w′ into
w (see [3, Sect. 5] for details). In particular, ploss(w,w′) �= 0 iff w′ �w. These probabilistic
losses are lifted to configurations: ploss(σ,σ ′)= ploss(w,w′) if σ = (q,w) and σ ′ = (q,w′)
for some q ∈Q, and ploss(σ,σ ′) = 0 otherwise. This can be seen as a family of probabil-
ity distributions: for each σ ∈ Conf S , we let loss(σ ) ∈ Dist(Conf S) be the distribution on

Conf S given by loss(σ )(σ ′) def= ploss(σ,σ ′).
We may now let the MDP associated with S and λ be MS

def= (Conf S,−→mdp) where
−→mdp ⊆ Conf S ×Dist(Conf S) is given by

σ−→mdploss(τ )
def⇔ σ−→perfτ is a perfect step of S (see Sect. 6).

In other words, the role of the scheduler in MS is to choose which transition rule to fire,
before subsequent losses are decided following the probabilistic distribution. Clearly, when
the probabilities are abstracted away from MS , the resulting steps are exactly the lossy steps
given by Eq. (37).
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8.2 Qualitative verification of NPLCS’s

Natural verification questions for this MDP model are the following: given a linear-time
property ϕ and a starting configuration σ

is there a scheduler U such that PU (σ |= ϕ)= 1?, or (almost surely)
is there a scheduler U such that PU (σ |= ϕ) > 0? (positive probability)

This is called qualitative verification because one only compares PU (σ |= ϕ) with the ex-
tremal values 0 and 1. It turns out that, for NPLCS’s, these qualitative properties do not
depend on the specific value of the loss rate λ.

On NPLCS’s, these problems are undecidable for general LTL formulas, see [3, 15]. In
the sequel, we use Theorem 12 to derive decidability for specific subclasses of formulas.

Theorem 47 (Decidability of qualitative model-checking problems for NPLCS [15]) Given
a NPLCS S, an initial configuration σ and a recognizable region R, it is decidable whether
there exists a scheduler U such that:

(a.1) PU (σ |= ♦R)= 0, or (b.1) PU (σ |=�♦R)= 1, or
(a.2) PU (σ |= ♦R) < 1, or (b.2) PU (σ |=�♦R) < 1, or

(a.3) PU (σ |= ♦R)= 1, or (b.3) PU (σ |=�♦R)= 0.

Furthermore, the sets of configurations from which any of (a.1) to (b.3) holds are recogniz-
able regions effectively computable from R and S.

To prove Theorem 47, we show that the sets of configurations from which any of (a.1)
to (b.3) holds can be expressed by a guarded term in Lμ. By Theorem 12, these sets are
computable (assuming that R is a region) and in particular one may decide whether they
contain a given initial configuration.

To shorten notations, and given a linear-time property ϕ, we write 〈〈 〉〉=1ϕ (resp., 〈〈 〉〉>0ϕ)
for the set of configurations where there is a scheduler such that ϕ holds almost surely (resp.,
with positive probability).

Let us start with (a.1). 〈〈 〉〉=1�R can be expressed by a guarded term:

〈〈 〉〉=1�R =W
def= νX.R ∩ Pre(K↓X). (46)

Equation (46) is easy to establish and is not specific to NPLCS’s. Note that from 〈〈 〉〉=1�R

there even exists a memoryless scheduler which ensures that all executions satisfy �R. With
Eq. (46) and Theorem 12 we conclude that if R is a recognizable region, then 〈〈 〉〉=1�R is an
(effective) recognizable region, which coincides with (a.1).

The remaining properties, (a.2) to (b.3), also lead to guarded Lμ terms, as witnessed by
the following equalities:

〈〈 〉〉>0�R = μX.
(〈〈 〉〉=1�R

)∪ (
Pre(C↑X)∩R

)
, (47)

〈〈 〉〉=1♦R = νX.μY.R ∪ Pre(C↑Y ∩K↓X), (48)

〈〈 〉〉=1�♦R = νX.μY.Pre
(
C↑(Y ∪R)∩K↓X

)
, (49)

〈〈 〉〉>0♦�R = μX.
(〈〈 〉〉=1�¬R

)∪ Pre(C↑X), (50)

〈〈 〉〉=1♦�R = 〈〈 〉〉=1♦
(〈〈 〉〉=1�¬R

)
, (51)
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and also taking 〈〈 〉〉=1�(. . .)—defined by Eq. (46)—and 〈〈 〉〉=1♦(. . .)—defined by Eq. (48)—as
additional unary operators. Since all the terms on the left-hand side are defined with guarded
terms, their computability is immediate with Theorem 12.

The proof that Eqs. (47)–(51) are correct—see [15]—is not the topic of this article. Here
we just want to observe that, in contrast with Eq. (46), their correctness relies in an essential
way on a specific property of the Markov decision processes induced by LCS’s, namely,
the finite attractor property: given a scheduler for MS there exists a finite set of configu-
rations that is almost-surely visited infinitely often. Moreover, this finite set can be chosen
independently from the scheduler:

Lemma 48 (Finite attractor property [13, 76]) Let E = {(q, ε) |q ∈ Q} be the finite set
of configurations where the channels of S are empty. Then PU (σ |= �♦E) = 1 for every
scheduler U and starting configuration σ ∈ Conf S .

The finite attractor property will be used explicitly in the upcoming section.

9 Two-player stochastic games

The NPLCS framework can be seen as a stochastic game where a single player, the sched-
uler, is playing against the probabilistic environment, i.e., against the probabilistic message
losses.

It is of course possible to consider 2-player stochastic games on arenas generated by
probabilistic LCS’s: this question was studied first in [14] and later in [2, 19]. We proceed as
in Sect. 7: the two players are called A and B and Conf S is partitioned as Conf A ∪ Conf B .
However, we do not assume anymore that the game is strictly alternating, and therefore
Conf A and Conf B can be arbitrary regions, but the game is stochastic: once a player has
chosen a firable rule, the perfect step is followed by stochastic message losses as in Sect. 8.1.

9.1 Reachability objectives

Let us first consider reachability, or dually invariance, objectives.
Assume A tries to reach region R (goal ♦R) with probability 1 no matter how B behaves.

The set 〈〈A〉〉=1♦R of states in which A has an almost-sure winning strategy is given by a
guarded term:

〈〈A〉〉=1♦R =WA
def= νY.μX.

(
R ∪ [

Conf A ∩ Pre(C↑X ∩K↓Y )
]

∪ [
Conf B ∩ P̃re(C↑X ∩K↓Y )

])
. (52)

Justifying Eq. (52) is outside the scope of this article, but we can try to give an intuition of
why it works: the inner fixpoint “μX.R ∪ · · · ” define the largest set from which A has a
strategy to reach R no matter what B does if the message losses are favorable. This may fail
if the losses are contrary. However, whatever messages are lost, A’s strategy also guarantees
that the system will remain in WA, from which it will be possible to retry the strategy for
♦R as many times as necessary. This will eventually succeed almost surely thanks to the
finite-attractor property.

Expressions like WA in Eq. (52) are easier to understand once we introduce a variant of
the Pre operator that better captures the game-theoretical aspects at hand. Define

Pre⊗A(X)
def= (

Conf A ∩ Pre(X)
)∪ (

Conf B ∩ P̃re(X)
)
, (53)
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Pre⊗B (X)
def= (

Conf A ∩ P̃re(X)
)∪ (

Conf B ∩ Pre(X)
)
, (54)

allowing the reformulation of Eq. (52) as

〈〈A〉〉=1♦R =WA
def= νY.μX.R ∪ Pre⊗A(C↑X ∩K↓Y ). (52′)

We note that, since (Conf A,Conf B) is a partition of Conf , Pre⊗A and Pre⊗B are dual.
Consider now 〈〈A〉〉>0♦R, where A wants to achieve a reachability objective with positive

probability. Dually B wants to achieve an invariance objective almost-surely, since these
games are determined. Writing R′ for ¬R, the winning set for B is given by:

〈〈B〉〉=1�R′ =WB
def= νX.R′ ∩ Pre⊗B (K↓X). (55)

In Eq. (55), the Conf B ∩ Pre(K↓X) component of the Pre⊗B (K↓X) accounts for states in
which B can choose a perfect move that will end up in K↓X, i.e., that can be followed by
any adversarial message losses and still remain in X. The Conf A ∩ P̃re(K↓X) component
accounts for states in which A cannot avoid going to X, even with favorable message losses.

Equations (52) and (55) give guarded terms for 〈〈A〉〉=1♦R and 〈〈B〉〉=1�R′, so we conclude:

Theorem 49 (Decidability of simple stochastic games on LCS’s) For stochastic LCS-games
and recognizable regions R, the sets 〈〈A〉〉=1♦R, 〈〈A〉〉>0♦R, 〈〈A〉〉>0�R and 〈〈A〉〉=1�R are (ef-
fective) recognizable regions.

9.2 Büchi objectives

To date, the main positive result concerning stochastic games on lossy channel systems
is the computability of 〈〈A〉〉=1�♦R, and 〈〈A〉〉=1 ∧m

i=1 �♦Ri , where player A can satisfy a
(generalized) Büchi objective, i.e., visit infinitely often a goal region R, or several goal
regions R1, . . . ,Rm, almost-surely.

We start with Büchi games. The set 〈〈A〉〉=1�♦R of states from which A has an almost-
sure winning strategy can be characterized by the following term:

〈〈A〉〉=1�♦R =WA
def= νY.μX.

[
Y ∩ Pre⊗A

(
K↓Y ∩C↑(R ∪X)

)]
. (56)

(See [19] for a justification.) The characterization of the winning region does not provide
us with a guarded term: witness the first bound occurrence of Y . However we can replace it
with an equivalent guarded term by purely lattice-theoretical reasoning: applying Eq. (9) on
WA gives:

〈〈A〉〉=1�♦R =W ′
A

def= νY.μX.Pre⊗A
(
K↓Y ∩C↑(R ∪X)

)
. (57)

Theorem 50 (Decidability of stochastic Büchi games on LCS) Almost-sure Büchi games
on stochastic LCS are pure-memoryless determined. Furthermore, if R, Conf A and Conf B

are recognizable, then the sets of winning positions are (effective) regions too.

For generalized Büchi games, a similar characterization is possible [19]:

〈〈A〉〉=1
m∧

i=1

�♦R =WA
def= νY.

m⋂

i=1

μX.
[
Y ∩ Pre⊗A

(
K↓Y ∩C↑(Ri ∪X)

)]
. (58)
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As in Eq. (56), the WA term is not guarded. Unfortunately, we do not have at hand a gen-
eralization of Eq. (9) that would get rid of the m unguarded occurrences of Y . The solution
adopted in [19] is to validate a slightly more complex characterization, this times with a
guarded term:

WA =W ′
A

def= νY.Pre⊗A

(

K↓
m⋂

i=1

μX.
[
Y ∩ Pre⊗A

(
K↓Y ∩C↑(Ri ∪X)

)]
)

. (59)

Theorem 51 (Decidability of stochastic generalized Büchi games on LCS) Almost-sure
generalized Büchi games on stochastic LCS are determined. Furthermore, if R1, . . . ,Rm,
Conf A and Conf B are recognizable, then the sets of winning positions are (effective) regions
too.

10 Conclusion

We developed a generic criterion, called “upward-guardedness”, that guarantees the finite-
time convergence of fixpoint equations defining subsets of a well-quasi-ordered set. Our
motivations originate in the verification of well-structured transition systems, where the
well-known backward-reachability algorithm—see Eq. (2)—is the paradigmatic fixpoint
computation that is guaranteed to converge in finite-time. Researchers who extended this
technique to more complex and nested fixpoint expressions, where the approximants are not
upward- or downward-closed, had to struggle to prove convergence. We hope that the rich
sequence of examples given in Sects. 5–9 have convincingly demonstrated the usefulness of
our technique for such situations.

So far we did not touch on complexity issues. It is widely believed in the verification
community that termination arguments based on WQO theory are not constructive and do
not come with complexity bounds. However, the truth is that it is possible to bound the
number of steps after which an increasing sequence V0 ⊆ V1 ⊆ V2 ⊆ · · · of upward-closed
subsets must stabilize. This only needs information on the structure of the underlying WQO
and a bound on the rate of growth of the sequence of Vi ’s, often deduced from the complexity
of the process that generates it. We refer to [43, 74] for more details: the results there directly
apply to our Theorem 12. The complexity upper-bounds one obtains with such WQO-based
analysis are often very high, far above the PSPACE, EXPTIME, and nonelementary upper
bounds often met in algorithmic verification. Furthermore, these enormous upper bounds are
optimal for many WSTS models: this is the case, e.g., for reset/transfer nets, lossy counter
machines and lossy channel systems, timed-arc Petri nets and data nets [33, 54, 78] (but not
for, e.g., integral relational automata and vector addition systems [29, 41]).

However, these worst-case complexity results are not the real issue in practical appli-
cations, for which we believe our results have some significance. Symbolic algorithms di-
rectly based on the Finite-Time Convergence Property have been implemented in model
checking tools, and the main problem one faces there is not the possibility of terrible time-
to-convergence values. Instead, state explosion is caused by the need to store and handle
“large” Vi sets. Here, dramatic improvements have been obtained by designing improved
data-structures, or “symbolic representations”, that make better use of symmetries in the
data, that are better at sharing common substructures, at caching and recalling instead of
recomputing, and that allow more efficient implementations of the required basic operations
on upward-closed sets: unions, comparisons, Pre and/or Post. See, e.g., [36] for (Nk,≤),
[67] for Presburger-definable regions, and [7] for (Σ∗,�) and channel contents.
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