EXPRESS 2005 Preliminary Version

A short visit to the STS hierarchy *

Nathalie Bertrand ! and Philippe Schnoebelen 2

Lab. Spécification € Vérification, CNRS € ENS de Cachan,
61, av. Pdt. Wilson, 94235 Cachan Cedex France

Abstract

The hierarchy of Symbolic Transition Systems, introduced by Henzinger, Majum-
dar and Raskin, is an elegant classification tool for some families of infinite-state
operational models that support some variants of a symbolic “backward closure”
verification algorithm. It was first used and illustrated with families of hybrid sys-
tems.

In this paper we investigate whether the STS hierarchy can account for classical
families of infinite-state systems outside of timed or hybrid systems.

Key words: Symbolic transition systems, well-structured
transition systems, STS hierarchy.

1 Introduction

Verification of infinite-state systems is a very active field of research where one
studies how the algorithmic techniques that underly the successful technology
of model checking for finite-state systems can be extended to more expressive
computational models [BCMS01]. Many different models have been studied,
ranging from infinite-data models (like channel systems) to infinite-control
models (like process algebras), including timed automata and hybrid systems.
General undecidability results are worked around by discovering special re-
stricted subclasses where decidability can be recovered for specific verification
problems, and our understanding of the compromises between expressivity
and tractability improves regularly.

There have been some attempts at bringing some order inside the existing
plethora of scattered results. One way to do this is to discover conditions
that (1) support some generic verification algorithms, and (2) can account

! Email: bertrand@lsv.ens-cachan.fr
2 Email: phs@lsv.ens-cachan.fr
3 This research was supported by Persée, a project funded by the ACI Sécurité Informa-
tigue of the French Ministry for Scientific Research.
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs

BERTRAND AND SCHNOEBELEN

for a rich enough variety of models. The well-structured transition systems
(WSTS) of [ACJT00,FS01] are one such attempt, where the key notion is
the existence of a well-quasi-order between configurations that is compatible
with transitions. The WSTS idea applies widely, and instances exist in many
classes of models [FSO1].

The symbolic transition systems (STS) of [HMRO5] are another attempt.
Actually [HMRO5] defines a hierarchy of five different levels: STS1 to STS5.
All levels are defined in the same way: a system is STSk iff its set of con-
figurations yields a finite quotient modulo &, an equivalence relation that
relates states with similar “behavior”. The equivalences from =; to = are
coarser and coarser, and systems in the STSk class are also in STS(k + 1).
Additionally, five variants of a generic symbolic closure algorithm are given,
one for each class, allowing verification of properties ranging from p-calculus
model checking (for the class STS1) to reachability properties (for the class
STS5).

While the STS idea is illuminating, its weak point is that it is not widely
applicable. In [HMRO5], all the given examples of classes STS1 to STS5 are
some restricted families of hybrid systems. And no instance of STS4 systems
is given. As a consequence it is not clear whether the classification has any
impact beyond hybrid and timed systems.

Our contribution. We look at well-known families of models for which veri-
fication results exist, and that are not related to hybrid systems: Petri nets,
pushdown systems, and channel systems. In particular, we consider several
variants of lossy channel systems [AJ96,CFP96]. For these families, a natural
question is whether they give rise to systems sitting inside some level of the
STS hierarchy.

Here we are only considering semantical issues: we ask whether a given
system model with a given set of observable properties gives rise to STSk
transition systems. We are not concerned with algorithmic issues and symbolic
verification, even though the STS hierarchy meets its purpose when systems
can be equipped with a working region algebra [HMRO5].

A general outcome of our investigation is that only systems that are well-
structured in the sense of [FS01] can fit in the ST'S hierarchy, at level STS5 (or,
sometimes, STS4). Indeed, [HMRO5] uses the name “well-structured systems”
for its STS5. We argue that the close links between the two notions do not
provide a perfect fit.

2 The STS hierarchy

Henzinger, Majumdar and Raskin introduced symbolic transition systems
(STS) in [HMRO5]. These are labeled transition systems equipped with a
region algebra. However, since we do not consider algorithmic issues or sym-
bolic verification in this paper, we will work with a simplified definition.

2

BERTRAND AND SCHNOEBELEN

Definition 2.1 A labeled transition system (LTS) is a tuple S = (S, —, P)
where S is a (possibly infinite) set of states, — C S x S is a transition
relation, and P C 2% is a finite set of observable properties (or observables)
that covers the state space: S = Upepp.

An observation is a set of observables. The observation P(co) of a state o is
{pePloep}

Classically we write ¢ — o’ rather than (o, 0’) € —, and say that ¢’ is one
of the successors of o. ¢ is a deadlock state if it has no successors. A (finite)
path in § is a sequence of states oy, - , 0, such that for all i, o; — 0;11.

The STS hierarchy is based on well-known notions of simulations and traces
(see, e.g., [Gla01]).

We recall the definitions for simulations. Let S = (S, —, P) be a LTS. A
binary relation R C S x S is a simulation on S if o R entails:

(i) Vpe P,oep & 1€Ep,
(i) Yo — o', 31 — 7' s.t. o' RT'.

o and T are bisimilar —denoted by o 2 7 if there is a symmetric simulation

R such that o RT.

They are simulation-equivalent —denoted by o =5 7 if there are two sim-
ulations R and Rs such that o R;7 and 7Rs0.

It is well-known that bisimilarity and simulation-equivalence are equiva-
lence relations.

We now recall the definitions for traces. Let S = (S, —, P) be a LTS. A
trace from state o is the observation of a path originating from o. Formally it
is a sequence P, --- P, of observations such that there exists a path oy---0,
with oy = 0 and P; = P(o;) for i = 1,...,n. Any pin P,, the last observation
along the trace, is called a target of the trace and we write o - p when such
a trace exists.

Two states o and 7 are trace-equivalent —denoted by o =5 7— if every trace
from o is a trace from 7, and vice-versa.

They are distance-equivalent, —denoted by o 22§ 7 if for every trace from
o with length n and target p there is a trace from 7 of length n and target p,
and vice versa.

They are bounded-reach equivalent —denoted by o = 7— if for every trace
from o with length n and target p there is a trace from 7 with length at most
n and target p, and vice versa.

Clearly, trace equivalence, distance equivalence, and bounded-reach equiv-
alence are equivalence relations.

Definition 2.2 (The STS hierarchy) [HMRO05].
A labeled transition system S = (S,—, P) belongs to the class STSk (for
1 < k < 5) iff the relation =% has finite index (i.e., induces a finite number

3

BERTRAND AND SCHNOEBELEN

of equivalence classes in S).
Some immediate properties of STS classes are:
Hierarchy: If S is in STSk, it is in STS(k + 1).
Finite systems: If S = (S, —, P) has finite S, then S is in STSI.

Trivial observables: If S = (S, —, P) has P = {S}, then § is in STS5. If
no state is S is a deadlock state, then & is even in STSI1.

Monotonicity w.r.t. observables: If S = (S,—,P) and &' = (S, —,)
only differ by P’ C P (i.e., S has more observable properties than S’), and
S is in STSk, then S’ too is in STSk.

3 Well-structured transition systems and the STS hi-
erarchy

In [HMRO5] the class STS5 is said to coincide with well-structured transition
systems, a class of infinite-state transition systems supporting generic verifi-
cation algorithms [Fin87, ACJT00,FS01]. This claim is supported by an alter-
native characterization of STS5 systems, using well-quasi-orderings [HMRO5,
Theorem 5A]. However, the link with WSTS is not made more explicit.

In this section we show that WSTS are in STS5 and consider the converse
question: can any STS5 transition system be turned into a WSTS by equipping
it with a “compatible” well-quasi-ordering?

We recall that a well-quasi-ordering (wqo) is a reflexive and transitive
relation < (over some set S) such that for any infinite sequence g, xy,- - in
S, there exists indexes ¢ < j with z; < x;. As a consequence, a wqo is well-
founded and only admits finitely many minimal elements. (In the sequel we
often write, as we just did, that a set has finitely many minimal elements when
we really mean “finitely many distinct minimal elements up to the equivalence
induced by the wqo”. This nuance is not required when the wqo is a partial
ordering, i.e., is antisymmetric.)

Definition 3.1 (Well-Structured Transition Systems) [FSO01].

A Well-Structured Transition System is a transition system S = (S, —, <)
equipped with a relation < C S x S which is a well-quasi-ordering (upward-)
compatible with —, i.e., for all o1 < 71 and o1 — 09 there exists 7 — T with
09 < To.

This notion of compatibility is called strong compatibility in [FS01]. We say
S = (S, —, <) has reflezive compatibility if for all oy < 7 and 07 — 09, there
exists 7, > o9 with either 7, = 7 or 71 — 7» (which is denoted 7 % Ty In
the sequel). It is immediate that a given WSTS with strong compatibility has
also reflexive compatibility.

Petri nets with k places equipped with the partial order on N* are an
example of well-structured transition systems (with strong compatibility), see

4

BERTRAND AND SCHNOEBELEN

section 4.2. Another example is the class of lossy channel systems using the
subword ordering on channel contents, see section 4.3.

Definition 3.1 does not coincide with the definition used in Theorem 5A
of [HMRO5]. There, a well-structured system is a LTS that can be equipped
with a wqo < on the states such that for all observable properties p and d € N,
the set of states that can reach p in less than d steps is upward-closed (a set
S C S is upward-closed if 0 € " and o < 7 entail 7 € S’). This is shown to
coincide with STSH systems.

Let us consider a WSTS S = (S, —, <) and ask whether there is a set P
of observables that turn S into an STS5 system. Of course, setting P = {S}
works, but this does not exploit the fact that S is well-structured. It turns out
that any set P of upward-closed observables will work, and this holds even if
S has reflexive compatibility.

Theorem 3.2 Let S = (S, —, <) be a WSTS with reflexive compatibility, and
P be a finite set of upward-closed observables that covers S. Then (S, —, P),
denoted Sp, 1s in STS5.

Since [HMRO5] uses a different definition, our proof of Theorem 3.2 is not
a copy of the proof of [HMRO05, Theorem 5A]. Moreover it is also a more
direct proof since we do not deal with algorithmic aspects of predecessors
computation.

Proof. For an observable p € P, we let Orig(p) denote the set of pairs (o,n) €

S x N such that ¢ can reach p within n steps: Orig(p) = {(o,n) | o = p}.

The canonical product wqo on S x N is defined by

pa! (USTandngm).

(o,n) C (1,m)
Let MinOrig(p) be the set of minimal elements in Orig(p): MinOrig(p) is
finite since C is a wqo. We define ~ C S x .S with:

o~o & vpep, V(r,m) € MinOrig(p), <o <1 <0o (1)

and claim it is a bounded-reach equivalence of finite index. That = has finite
index comes from the finiteness of MinOrig(p). To see that it is a bounded-
reach equivalence, assume o ~ ¢’ and ¢ — p for some n € N and p € P.
Then (o,n) € Orig(p) and there is some (17, m) € MinOrig(p) with 7 < o and
m < n. From (1), we deduce 7 < ¢’.

Now pick a path 7 —- 7 — -+ — 7, with 7,,, € p. By induction on m,
and using the reflexive compatibility of S, we show that there exist states
o1 ---o,, such that o' o, o) AN AN o,and 7, < o) fori =1,...,m.

(Fig. 1 illustrates the proof.) Since p is upward-closed, 7, € p implies o/, € p.

Thus we have found a path witnessing o’ 2= p for some m’ < m < n. Hence
~ is a bounded-reach equivalence and Sp is in STS5. O

5

BERTRAND AND SCHNOEBELEN

T

{ Jon

g ~ 0'/ 1 S 0‘1

) N | fon

IN
q\

} fon
PIT, < o

Fig. 1. = is a bounded reach equivalence

Note that, since reflexive compatibility is more general than strong compat-
ibility, Theorem 3.2 shows a more general connection between STSH systems
and WSTS’s.

A converse problem is to consider a LTS § = (S, —, P) in STS5, and try to
find a well-quasi-ordering < on S such that (S, —, <) is a WSTS. Since Finkel
and Schnoebelen showed that any (finitely branching) transition system could
be equipped with a well-quasi-ordering < to get a well-structured transition
system [FS01], this can always be done.

However we would appreciate if the wqo that turns § into a WSTS were
“compatible” with P. For example it would be nice if the observables in P
become upward-closed sets w.r.t. the wqo since this is how P is defined in the
proof of Theorem 3.2. We do not know if such a wqo can be defined for all S
in STS5 and must leave this question open for the moment.

Remark 3.3 Given S = (S, —, P) in STS5, [HMR05] proves that there exists

a wqo on S such that, for allp € P andd € N, the set {c | o = p} is upward-
closed. Hence in particular every p is upward-closed (pick d = 0). However,

the wqo they define is in general not compatible with transitions and hence
does not transform S into a WSTS in the sense of [FS01].

4 Looking at classical infinite-state models

All the examples of STS systems in [HMRO05] are hybrid systems: timed au-
tomata, two-dimensional rectangular automata, networks of timed automata,
etc. Here we study classical infinite-state systems such as pushdown automata,
Petri nets and lossy channel systems and consider whether they give rise to
systems in one of the STSk classes.

4.1 Pushdown automata

Pushdown automata are systems with finite control and a pushdown stack.
Formally, a pushdown automaton PD = (Q,[', A) is composed of a finite

set of locations (), a stack alphabet I" and a finite set of transition rules A. The

rules in A are of the form [2% I or | % [/ for [,1" locations and a € T'.

The operational semantics of PD is given as a transition system Spp where

6

BERTRAND AND SCHNOEBELEN

a state (or configuration) has the form o = (I, w) with [€ @ a location and
w € I'* a stack contents. We omit the obvious definition for the transitions
o — o’ (see for example [BEFT00]).

Pushdown automata are a family of infinite-state systems for which verifi-
cation is relatively easy in the sense that the iterated successor relation — is
recognizable and can be described by a finite transducer effectively derivable
from PD [Cau92]. Of course there exist questions, e.g., trace equivalence, that
are undecidable for these systems.

One obtains LTS’s from pushdown automata by equipping the transition
systems they induce with some sets of observables.
Assume PD = (Q,T', A) is a pushdown automaton. The simplest and most

natural observable properties are based on the locations: for each location

L €@, let p 2 {(l,Lw) | w € I'*} and P o {py |1 € QY. We write PD'

for the class of LTS’s obtained from pushdown automata with locations for
observable properties.
Another option is to look at the stack and distinguish the states depending

on the emptiness (or non-emptiness) of the stack. In this case there are two

observable properties: pempty det {{l,e) | I € Q} and prempty et g \ Pempty-

This gives rise to a class of LTS’s we denote PD®. Finally, we write PD"* for
the class of LT'S’s one obtains by considering both types of observables.

Theorem 4.1 The classes PD', PD® and PD"® give rise to LTS’s that are not
in STS5 in general.

Proof. We only prove the result for PD' since similar arguments work for PD®
(and PD'* is dealt with using monotonicity of observables).
Consider PDy, the pushdown automaton depicted in Fig. 2. Here from

pop a :
® a
a]

pop b
a
B

Fig. 2. PDg, a simple pushdown automaton

location /i, one must pop all a’s before a move to location [is allowed. Hence
two states (I, a™b) and (ly,a™b) are not bounded-reach equivalent unless n =
m (since from (l1,a"b) one can only reach target Iy in n + 1 steps). Therefore
bounded-reach equivalence does not have finite index, and the STS associated
with PDg in PD'is not in STS5. O

4.2 Petri nets

We do not recall here the definition of Petri nets (see [Esp98]). Let PN be
a Petri net with &k places. Its operational semantics is given by a transition

7

BERTRAND AND SCHNOEBELEN

system where the states (or markings) are tuples from N*. Markings are
partially ordered by the product ordering (N, <)*, or, formally

def
(1, re) W eue) S 1<y A Az < Y

That < is a wqo on N¥ is known as Dickson’s Lemma [Dic13]. For observables

we consider the set of all upward closures Tm < {m’ | m < m'} where m is

a marking in {0,1}*. Hence an observation sees whether a place is marked
or not, but does not see how many tokens are in a given place. Note that P
covers S since S = 1(0,...,0). We denote by PN the class of LTS’s obtained
from Petri nets with the observable properties defined above.

Theorem 4.2 The class PN gives rise to LTS’s that are in STS5 but not in
STS4 in general.

Proof. Petri nets with < are WSTS with strong compatibility (see [FS01] for
example). A direct consequence of Theorem 3.2 is that they are STS5.

To see that they are not in STS4 in general, consider the Petri net with a
single place and a single transition described in Fig. 3. Starting with n tokens,

&

Fig. 3. A simple Petri net

the longest trace has exactly length n. Hence two different markings cannot
be distance-equivalent and the distance equivalence does not have finite index
on this system. O

4.3 Lossy channel systems

Several different definitions for Lossy Channel Systems (LCS) can be found in
the literature: see, e.g., [Fin94,CFP96,AJ96]. In this paper we will follow the
approach of Abdulla and Jonsson [AJ96] which works smoothly and is more
commonly cited. For this model we introduce two variants (allowing idling or
not) and consider different cases for the observables.

Definition 4.3 (LCS’s).
A lossy channel system L = (Q, C, M, A) is composed of a finite set of locations
Q, a finite set of channels C, a finite alphabet M and a finite set of transition
rules A. The rules have the form q¢ 2 ¢ where ¢ and ¢' are locations, and op
is an operation of the form:

send: c!lm writing message m to channel c;
recetve: c!m reading message m from channel c;

internal action: \/ (no input/output operation).

8

BERTRAND AND SCHNOEBELEN

Operational semantics. The operational semantics of L = (Q,C,M,A) is
given by a transition system where a state (or a configuration) is a pair (g, w)
composed of a location ¢ and a mapping w : C — M* describing the channels
contents.

The effect of an operation op on a channel contents w, denoted op(w), is
the channel contents w’ such that:

op = c!m: then w'(c) = w(c).m and w'(¢') = w(c) for ¢ # ¢;
op = ¢?’m: then m.w'(c) = w(c) and w'(¢') = w(c) for ¢ # ¢;
op =/t then w'(c) = w(c) for all ¢ € C.
We observe that op(w) is not defined when op = ¢?m and w(c) does not start
with m.

The perfect steps between configurations are all pairs (g, w) —pert (¢, ')
such that there is a rule ¢ 2 ¢ in A with v’ = op(w).

Given two channels contents w and w’, we write w C w’ if w can be

obtained from w’ by deleting messages (whatever their place in w’). This is
extended to states as follows:

Q.

(g, w) C (¢, ") H y=¢d andwCw.

This is a wqo between states (by Higman’s Lemma [Hig52]).

What we are really interested in are the lossy steps, obtained from perfect
steps by preceding and following them by arbitrary message losses (possibly
none). Formally:

def
O —oss T do', 37 st. o 3o N o — perf 7 AT DT

Idling. Starting with this definition, a natural variant is to enable idling in
all configurations [BS03]. This assumption, which amounts to adding all pairs
o — o on top of lossy steps, is a way of getting rid of deadlock states.

Observables. Natural observable properties for LCS’s are associated with
the locations (exactly as with pushdown automata) and we let St (“I” for
“locations”) denote the LTS associated in such a way with LCS L.

One may prefer to observe the contents of the channels but this requires
some care in order to obtain upward-closed observables. A simple solution
is to only consider upward-closed and [location-independent properties, i.e.,
properties p such that for all ¢,¢’ € @ and all w C w', (¢,w) € p implies
(¢',w") € p. For every ¢ € C, one such property is p,. o {{q,w) | w(c) # €},
that allows to observe (non-)emptiness of ¢. One obtains a set of observables
that covers S by letting P = {p. | ¢ € C} U {S} and we write S§ (“c¢” for
“channels”) for the resulting LTS. One can also mix the two approaches and
observe both locations and channels, giving rise to LTS’s denoted S}:’C.

9

BERTRAND AND SCHNOEBELEN

Finally, we write Ski (4" for “idling”) and, respectively, S¢', or S};’C’i, for
the variant STS’s obtained by considering idling steps in the transition rela-
tion. For a nonempty «a C {i, c,1}, we write LCS® for the class of all S¢.

Observe that all variants of Lossy Channel Systems are WSTS’s with
strong compatibility when equipped with C as a wqo between states. There-
fore they are in STS5 by Theorem 3.2.

In the next theorem we give tight results for all variants of lossy channel
systems. When idling is allowed, LCS’s are in STS4, otherwise they are in
STS5, whatever the observable properties.

Theorem 4.4 * The class LCS' gives rise to LTS’s that are in STS5 but not
in STS4 in general.

e The class LCS™ gives rise to LTS’s that are in STS4 but not in STS3 in
general.

Proof.

LCS": Let us give a counter-example to show that LCS’s with locations as ob-
servable properties are not in STS4 in general. Consider the simple LCS L,

in the left of Fig. 4 with only one rule [Ky (the name of the single channel
is irrelevant). Starting from a configuration with n a’s in the channel, a

O Ly (D7)

Fig. 4. Two simple LCS’s

trace of length n is possible but no longer trace is. As a consequence, trace
equivalence does not have finite index and S} is not in STS4.

LCS™: We first show that LCS’s with idling are in STS4. To see this we
consider the ~ relation defined in the proof of Theorem 3.2: in the case of
LCS™, the proof that ~ is a bounded-reach equivalence can be continued
and, using idling steps, one shows that it is a distance equivalence.

For showing that in general LCS™ does not give rise to systems in STS3,
we consider the LCS Ly in the right of Fig. 4. Starting from (I, a") there
is a trace py, pr, pi, prr, - - - of length n but no such trace longer than n (that
is, longer traces must use idling steps and cannot alternate between p; and
pr). Hence trace equivalence does not have finite index and SILI2 is not in
STS3.

([

Theorem 4.5 ¢ The class LCS® gives rise to LTS’s that are in STS5 but not
in STS4 in general.

e The class LCS™ gives rise to LTS’s that are in STS4 but not in STS3 in
general.

10

BERTRAND AND SCHNOEBELEN

e« The class LCS™® gives rise to LTS’s that are in STS5 but not in STS4 in
general.

o The class LCSYC gives rise to LTS’s that are in STS4 but not in STS3 in
general.

The proofs for these assertions (both positive parts and counter-examples)
are very similar to the proof of Theorem 4.4 and are left to the reader.

5 Concluding remarks

We considered the STS hierarchy as a potential classification tool for various
families of infinite-state models of systems. Given a class SC of systems (with
its operational semantics), it is natural to ask the question of where the sys-
tems in SC fit in the STS hierarchy. This is a semantical question that can
be answered independently of whether some region algebra and the associated
algorithmics are available for class SC.

All previously known examples for levels STS1 to STS5 were some classes of
hybrid or timed systems [HMRO05]. We considered classical families of systems
outside the world of timed/hybrid systems (Petri nets, pushdown systems,
lossy channel systems) that support verification techniques. It turns out that
only well-structured systems can fit in the STS hierarchy, and at the weakest
levels (i.e., STS4 and STS5). As a side effect, we clarified the links between
level ST'S5 and the well-structured systems of [FS01].

We are left with the conclusion that, at the moment, the STS hierarchy
does not appear very enlightening outside the world of timed/hybrid systems
or well-structured systems.

Acknowledgments

We thanks the anonymous referees for their many useful remarks and sugges-
tions.

References

[ACJTO00] P. A. Abdulla, K. Cerans, B. Jonsson, and Yih-Kuen Tsay. Algorithmic
analysis of programs with well quasi-ordered domains. Information and
Computation, 160(1/2):109-127, 2000.

[AJ96] P. A. Abdulla and B. Jonsson. Verifying programs with unreliable
channels. Information and Computation, 127(2):91-101, 1996.

[BCMSO01] O. Bukart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite
structures. In J. A. Bergstra, A. Ponse, and S. A. Smolka, editors,
Handbook of Process Algebra, chapter 9, pages 545-623. Elsevier Science,
2001.

11

BERTRAND AND SCHNOEBELEN

[BEFT00] A. Bouajjani, J. Esparza, A. Finkel, O. Maler, P. Rossmanith,
B. Willems, and P. Wolper. An efficient automata approach to some

problems on context-free grammars. Information Processing Letters,
74(5-6):221-227, 2000.

[BS03] N. Bertrand and Ph. Schnoebelen. Model checking lossy channels
systems is probably decidable. In Proc. 6th Int. Conf. Foundations
of Software Science and Computation Structures (FOSSACS 2003),
Warsaw, Poland, Apr. 20083, volume 2620 of Lecture Notes in Computer
Science, pages 120-135. Springer, 2003.

[Cau92] D. Caucal. On the regular structure of prefix rewriting. Theoretical
Computer Science, 106(1):61-86, 1992.

[CFP96] G. Cécé, A. Finkel, and S. Purushothaman Iyer. Unreliable channels are
easier to verify than perfect channels. Information and Computation,
124(1):20-31, 1996.

[Dic13] L. E. Dickson. Finiteness of the odd perfect and primitive abundant
numbers with r distinct prime factors. Amer. Journal Math., 35:413—
422, 1913.

[Esp98] J. Esparza. Decidability and complexity of Petri net problems — an
introduction. In Advances in Petri Nets 1998, volume 1491 of Lecture
Notes in Computer Science, pages 374—428. Springer, 1998.

[Fin87] A. Finkel. A generalization of the procedure of Karp and Miller to
well structured transition systems. In Proc. 14th Int. Coll. Automata,
Languages, and Programming (ICALP ’87), Karlsruhe, FRG, July 1987,
volume 267 of Lecture Notes in Computer Science, pages 499-508.
Springer, 1987.

[Fin94] Alain Finkel. Decidability of the termination problem for completely
specified protocols. Distributed Computing, 7(3):129-135, 1994.

[FS01] A. Finkel and Ph. Schnoebelen. Well-structured transition systems
everywhere! Theoretical Computer Science, 256(1-2):63-92, 2001.

[Gla01] R. J. van Glabbeek. The linear time — branching time spectrum I. In
J. A. Bergstra, A. Ponse, and S. A. Smolka, editors, Handbook of Process
Algebra, chapter 1, pages 3-99. Elsevier Science, 2001.

[High2] G. Higman. Ordering by divisibility in abstract algebras. Proc. London
Math. Soc. (3), 2(7):326-336, 1952.

[HMRO5] T. A. Henzinger, R. Majumdar, and J.-F. Raskin. A classification of
symbolic transition systems. ACM Trans. Computational Logic, 6(1):1-
32, 2005.

12

	Introduction
	The STS hierarchy
	Well-structured transition systems and the STS hierarchy
	Looking at classical infinite-state models
	Pushdown automata
	Petri nets
	Lossy channel systems

	Concluding remarks
	References

