
Science of Computer Programming 77 (2012) 1212–1234

Contents lists available at SciVerse ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Modal event-clock specifications for timed component-based design✩

Nathalie Bertrand a, Axel Legay a, Sophie Pinchinat a, Jean-Baptiste Raclet b,∗
a IRISA/INRIA Rennes Bretagne Atlantique, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France
b IRIT/CNRS, 118 Route de Narbonne, 31062 Toulouse, France

a r t i c l e i n f o

Article history:
Available online 3 March 2011

Keywords:
Component-based systems
Interface-based design
Timed modal specification
Conjunction
Product
Quotient

a b s t r a c t

Modal specifications are classic, convenient, and expressive mathematical objects to
represent interfaces of component-based systems. However, time is a crucial aspect of
systems for practical applications, e.g. in the area of embedded systems. And yet, only
few results exist on the design of timed component-based systems. In this paper, we
propose a timed extension of modal specifications, together with fundamental operations
(conjunction, product, and quotient) that enable reasoning in a compositional way about
timed system. The specifications are given as modal event-clock automata, where clock
resets are easy to handle. We develop an entire theory that promotes efficient incremental
design techniques.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, systems are tremendously large and complex, resulting from the assembling of several components. These
many components are in general designed by teams, working independently but with a common agreement on what
the interface of each component should be. As a consequence, the development of mathematical foundations that allow
one to reason at the abstract level of interfaces, in order to infer properties of the global implementation, and to design
or to advisedly (re)use components, is a very active research area, known as compositional reasoning [1,2]. In a logical
interpretation, interfaces are specifications and components that implement an interface are understood as models.
Aiming at practical applications as the final goal, the software engineering point of view naturally leads to the following
requirements for a good theory of interfaces.

1. Satisfiability/Consistency and Satisfaction. It should be decidable whether a specification admits a model, and whether a
given component implements a given interface. Moreover, for the synthesis of components to be effective, satisfiable
interfaces should always have finitely presentable models.

2. Refinement and shared refinement. Refinement of specifications [3,4] expresses inclusion of sets of models, and therefore
allows us to compare interfaces. Related to this implication-like concept, the intersection, or greatest lower bound, is an
optimal interface refining two given interfaces.

3. Compositionality of the abstraction. The interface theory should also provide combination operators on interfaces,
reflecting the standard compositions of models by, e.g. parallel product.

4. Quotient. Last but not least, a quotienting operation, dual to composition is crucial to perform incremental design.
Intuitively, the quotient enables us to describe a part of a global specification assuming another part is already realized by
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some component. Together with the composition⊗, the quotient operator⊘ enjoys the following fundamental property
at the component level:

C2 |= S ⊘ S1 ⇔ ∀C1 [C1 |= S1 ⇒ C1 ⊗ C2 |= S] (⋆)

where S, S1 are interfaces, Ci components, and |= is the satisfaction relation.

Building good interface theories is the subject of intensive studies which have led to theories based on models
such as interface automata [5,6], modal automata or specifications [7–11], and their respective timed extension [12,13].
Modal specifications are deterministic automata equipped with transitions of the following two types: may and must .
The components that implement such interfaces are deterministic automata; an alternative language-based semantics
can therefore be considered, as presented in [8,9]. Informally, a must-transition is available in every component that
implements the modal specification, while a may-transition need not be. Modal specifications are interpreted as logical
specificationsmatching the conjunctive nu-calculus fragment of themu-calculus [14]. As a corollary, but also proved directly
in [8], satisfaction and consistency of modal specifications are decidable, and the finite model property holds. Refinement
between modal specifications coincides with a standard notion of alternating simulation. Since components can be seen
as specifications where all transitions are typed must (all possible implementation choices have been made), satisfaction
is also expressed via alternating simulation. Shared refinement is effectively computed via a product-like construction.
Combination of modal specifications, handling synchronization products à la Arnold and Nivat [15], and the dual quotient
combinators can be efficiently handled in this setting [9].

Recently, a timed extension of the theory ofmodal specifications has been introduced [13],motivated by the fact that time
can be a crucial parameter in practice, e.g. in embedded-system applications. In this piece of work, components are timed
automata as defined in [16], and naturally, an effective and expressive region-based semantics enables the combination of
modalities and timing constraints.

In [17], we build on this preliminary paper and develop a complete compositional approach for modal specifications
of timed systems. This framework favors methodologies for an incremental design process and proposes low complexity
algorithms for computing product and quotient, as well as for the satisfiability decision procedure.

The synchronous product of timed objects requires a tight control on clocks [16], and so should its dual quotient. Actually,
developing the theory in the general frameworkwhere components can reset their clocks in an arbitrarymanner is a difficult
question. Indeed, computing the resets of clocks of a product or of a quotient depends on how the control of clocks is
distributed among the components. This information has to be provided a priori, which requires an extra formalism. We
therefore restrict in [17] the presentation to the class of components definable by event-clock automata [18]: in these timed
automata, resets are fully determined by the actions. Interfaces whose models are event-clock automata are called modal
event-clock specifications (mecs).

Inheriting from the region-based semantics of timed modal specifications [13], we study in [17] the satisfiability as well
as the consistency problems formecs. Satisfiability is PSPACE-complete, hence no harder than traditional decision problems
in the class of timed automata. Refinement serves as a theoretical basis to develop the product and the quotient of mecs.
We propose two equivalent characterizations of these operations. Not surprisingly according to the semantics, inefficient
EXPTIME constructions via the region graphs of themecs (seen as untimed specifications) are provided. More interestingly,
we present an alternative direct and efficient PTIME constructions.

The paper is organized as follows. In Section 2, we introduce the timedmodal specification setting, with preliminaries on
untimedmodal specifications and the definition ofmodal event-clock specifications. Section 3 focuses onmecs and presents
effective techniques to compute the binary operations of greatest lower bound, product, and quotient; it corresponds to the
heart of our contribution in [17]. In Section 4, we discuss two new extensions in order to lift some limitations of our previous
work. First, we assume in [17] that all interfaces and all implementations are defined over the same alphabet of actions. This
is not realistic as large systems are often composed of many subsystems possessing their own local alphabet. As a result in
Section 4.3 we extend the results of [17] to interfaces and implementations over dissimilar alphabets. These results rely on
alphabet equalization operations inwhichmodalities play a central role. Secondlywediscuss in Section 4.4 how to go beyond
mecs and how to extend our results in [17] to interfaces with arbitrary resets. In Section 5, we compare our framework with
the existing literature; this section has been enriched and updated since [17]. Section 6 concludes the paper.

In Sections 2 and 3, we fix Σ a finite set of actions.

2. Timed modal specifications

In this section we recall the framework of modal specifications defined in [19,20] and its timed extension, recently
proposed in [13]: We discuss the semantics, the preorder refinement and the satisfiability problem for untimed and timed
modal specifications.

The results introduced in the next subsection mostly come from [9]. Nevertheless they are revisited here introducing a
uniform way to handle both consistent and inconsistent states (as opposed to the original definition where the so-called
pseudo-specifications needed to be considered). This explains why proofs are detailed.
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(a) Client Cl. (b) Automaton M.

Fig. 1. The modal specification Cl accepts the automaton M.

2.1. Preliminaries on untimed specifications

A modal specification is an automaton equipped with two types of transitions: must-transitions, that are required and
may-transitions, that are allowed.

Definition 1 (Modal Specification). A modal specification (ms) is a tuple R = (P⊥⊥, λ0, ∆m, ∆M) where P⊥⊥
= P∪ ⊥⊥ is a

finite set of states with⊥⊥ ∩P = ∅, λ0
∈ P⊥⊥ is the unique initial state, and∆M

⊆ ∆m
⊆ P×Σ ×P⊥⊥.∆M and∆m correspond

respectively tomust-transitions andmay-transitions. We additionally assume that ∆m is deterministic (hence so is ∆M ) and
complete, that is, for every state p ∈ P and every action a ∈ Σ , there is exactly one state λ ∈ P⊥⊥ such that (p, a, λ) ∈ ∆m.

We use p (resp. λ) as typical element of P (resp. P⊥⊥). The condition ∆M
⊆ ∆m naturally imposes that every required

transition is also allowed. The set of states ⊥⊥ denotes the ‘‘bad states’’ which correspond to local inconsistency in the
specification. Elements of ⊥⊥ are sink states with no outgoing transition since both ∆M and ∆m are subsets of P × Σ × P⊥⊥.
Global inconsistency can be derived as follows: we let I be the set of inconsistent states that must lead (that is via a sequence
of must-transitions) to a local inconsistency; states in P⊥⊥

\ I are consistent. Formally I = {λ0 | ∃n ≥ 0, ∃λ1 · · · λn ∈

P⊥⊥
∃a1 · · · an ∈ Σ s.t. λn ∈⊥⊥ and (λi, ai+1, λi+1) ∈ ∆M

}. Notice that in particular⊥⊥⊆ I.We say that themodal specification
R is consistent whenever its initial state is consistent, i.e. λ0 /∈ I; otherwise R is inconsistent.

Note that completeness is not a restriction since from any incomplete specification, one can derive a complete one by
adding may-transitions to a possibly new state ⊥ ∈⊥⊥, while preserving consistency. Intuitively, in state p ∈ P a may-
transition to some state λ ∈⊥⊥ labeled by action a means that action a is forbidden in p. This interpretation will become
clearer when we define the set of models of a modal specification.

In the following, we write or draw p
a

−→ λ (resp. p
a
99K λ) to mean (p, a, λ) ∈ ∆M (resp. (p, a, λ) ∈ ∆m

\ ∆M ); in other
words, solid arrows denote required transitions, whereas dashed arrows represent allowed but not required transitions.
Finally we will write or draw p a

 λ to indicate either p
a
99K λ or p

a
−→ λ.

Example 1. Consider a client for a given resource available in a system. The alphabet of actions includes: ‘‘get ’’ when the
resource is requested; ‘‘grant ’’ in case of access to the resource; and, ‘‘extra’’ which occurs when a privileged access with
extended time is requested.

In order to simplify the figures, states in ⊥⊥ are not represented and transitions of the form q
a
99K ⊥ ∈⊥⊥ are not depicted.

Action names may be preceded by some ‘‘!’’ or ‘‘?’’ when the occurrence of the actions respectively stems from the designed
component or from its environment; this will enable us to underline the desired intent of a specification.

Themodal specification Cl for the client in Fig. 1(a) specifies that a ‘‘get ’’ request may be sent again. Moreover every ‘‘get ’’
requestmust be granted. Additionally the client may request extended time at any moment.

Models of ms are deterministic automata, with possibly infinitely many states, which we abbreviate to automata in what
follows. An automaton is a structure of the form M = (M,m0, ∆) where M is a (possibly infinite) set of states, m0

∈ M
is a unique initial state, and ∆ ⊆ M × Σ → M is a partial transition function. The model relation |= defined below is a
particular case of alternating simulation [4] between the model and the consistent part, if any, of the specification.

Definition 2 (Model Relation). LetR = (P⊥⊥, λ0, ∆m, ∆M) be ams. An automatonM = (M,m0, ∆) is a model ofR, written
M |= R, if there exists a binary relation ρ ⊆ M × (P \ I) such that (m0, λ0) ∈ ρ, and for all (m, p) ∈ ρ, the following hold:
(1) for every (p, a, λ) ∈ ∆M there is a transition (m, a,m′) ∈ ∆ with (m′, λ) ∈ ρ, and (2) for every (m, a,m′) ∈ ∆ there is
a transition (p, a, λ) ∈ ∆m with (m′, λ) ∈ ρ.

We denote byMod(R), the set of models of anms R. Remark in Definition 2 that inconsistent states of the specification
cannot appear in the relation ρ. Consequently, a transition of the form (p, a, λ) ∈ ∆m where λ ∈ I is inconsistent is
interpreted as: in any model, no a-transition from a state in relation with p is allowed. Moreover, for λ0

∈ I no ρ can exist
and actually we have:

Lemma 1. Let R be a ms. Mod(R) ≠ ∅ if, and only if, R is consistent.

Proof. (⇒)AssumeR is inconsistent, i.e.λ0
∈ I. For every automatonM = (M,m0, ∆), there cannot be any binary relation

ρ ⊆ M × (P \ I) with (m0, λ0) ∈ ρ, since λ0
∈ I. Hence R has no model.

(⇐)AssumeR is consistent. Intuitively, a finitemodel is obtained bymimicking themust-transitions of the specification.
Let p0 = λ0

∈ P , and consider the automaton M obtained as follows. We let m0 be the initial state of M, and we let m0



N. Bertrand et al. / Science of Computer Programming 77 (2012) 1212–1234 1215

be related to p0 by a binary relation ρ ⊆ M × (P \ I) which we incrementally construct: ρ is the least relation such that
for every (m, p) ∈ ρ, if (p, a, p′) ∈ ∆M for some p′

∈ P , then there is a target state m′ in M of a transition (m, a,m′) with
(m′, p′) ∈ ρ. It is not difficult to verify that by construction M |= R via the simulation ρ, which entails Mod(R) ≠ ∅. �

Example 2. The automaton M in Fig. 1(b) is a model of thems Cl in Fig. 1(a) as the binary relation ρ = {(a, 0), (b, 1), (c, 1)}
witnesses.

The semantic preorder between ms relies on an extension of Definition 2.

Definition 3 (Modal Refinement Preorder). Given two ms, R1 = (P⊥⊥

1 , λ0
1, ∆m

1 , ∆M
1 ) and R2 = (P⊥⊥

2 , λ0
2, ∆m

2 , ∆M
2 ), R1 is a

refinement of R2, written R1 ≼ R2, whenever there exists a binary relation ρ ⊆ (I1 × I2) ∪ (P⊥⊥

1 × (P2 \ I2)) such that
(λ0

1, λ
0
2) ∈ ρ, and for all (λ1, λ2) ∈ ρ ∩ ((P1 \ I1) × (P2 \ I2)):

(1) for every (λ2, a, λ′

2) ∈ ∆M
2 there exists (λ1, a, λ′

1) ∈ ∆M
1 with (λ′

1, λ
′

2) ∈ ρ
(2) for every (λ1, a, λ′

1) ∈ ∆m
1 there exists (λ2, a, λ′

2) ∈ ∆m
2 with (λ′

1, λ
′

2) ∈ ρ.

Observe that this definition extends the notion of modal refinement first introduced in [19,20] as here possible inconsistent
states are taken into account.

Definition 3 requires some explanations. First, by definition of the domain of ρ, an inconsistent state of R2 can only be
refined as an inconsistent state in R1 whereas a consistent state in R2 can either be linked to a consistent or inconsistent
state inR1. Moreover, for pairs of consistent states, Condition (1) ensures that all required transition inR2 are also required
in R1, and Condition (2) guarantees that each possible transition in R1 is also allowed in R2.

Under our assumption that ms are deterministic, we can show that the preorder ≼ between ms matches the model
inclusion preorder (this does not hold is ms can be nondeterministic, see Remark 1). We first establish an intermediate
result that exploits the embedding of automata into modal specifications.

Definition 4 (Embedding in ms). An automaton M = (M,m0, ∆) can be interpreted as a modal specification M∗
=

(M ∪ {⊥∗},m0, ∆m
∗
, ∆M

∗
) where ∆ = ∆M

∗
⊆ ∆m

∗
, and (m, a, ⊥∗) ∈ ∆m

∗
\ ∆M

∗
when ∆(m, a) is undefined in M.

Lemma 2. Given an automaton M and a ms R, M |= R iff M∗
≼ R.

Proof. (⇒)Observe first that⊥∗ is the unique inconsistent state inM∗. Letρ be the simulation relation stating thatM |= R.
For (m, p) ∈ ρ and every (p, a, λ) ∈ ∆m with λ ∈ I, M has no transition fromm labeled by a. In M∗, in this situation, there
is by construction a transition fromm to ⊥∗ labeled by a. We then add (⊥∗, λ) in ρ. The obtained simulation relation allows
us to establish that M∗

≼ R.
(⇐) For the converse direction, the pairs (⊥∗, λ) with λ ∈ I characterized above are removed from the simulation

relation stating that M∗
≼ R in order to obtain the simulation relation for M |= R. �

Proposition 1. Let R1 and R2 be two ms, then:

R1 ≼ R2 if, and only if, Mod(R1) ⊆ Mod(R2).

Proof. (⇒) LetR1 ≼ R2 andM |= R1. Then, by Lemma 2,M∗
≼ R1. By transitivity of the refinement preorder, M∗

≼ R2,
and hence M |= R2.

(⇐) Suppose Mod(R1) ⊆ Mod(R2). If R1 is inconsistent, trivially R1 ≼ R2. Assume now that R1 is consistent. Then
so must be R2. We can write p01 (resp. p

0
2) for the initial state of R1 (resp. R2). As R1 and R2 are deterministic, a simulation

relation ρ stating that R1 is a refinement of R2, if it exists, is unique. We consider the binary relation ρ as the least relation
such that with (p01, p

0
2) ∈ ρ and for every (p1, p2) ∈ ρ∩((P1\I1)×(P2\I2)), we let (λ1, λ2) ∈ ρ whenever (p2, a, λ2) ∈ ∆M

2
and (p1, a, λ1) ∈ ∆M

1 , or (p1, a, λ1) ∈ ∆m
1 and (p2, a, λ2) ∈ ∆m

2 .
We show that ρ ⊆ (I1 × I2) ∪ (P⊥⊥

1 × (P2 \ I2)), which entails that ρ is a witness for R1 ≼ R2.

• if (p2, a, λ2) ∈ ∆M
2 then λ2 ∈ P2 \ I2 otherwise we would have p2 ∈ I2. Moreover every model M which has a state m

related to the state p2 of R2 necessarily has an a-transition leaving m. A weaker claim for p1 is not possible, otherwise
we would not have Mod(R1) ⊆ Mod(R2). As a result, (p1, a, λ1) ∈ ∆M

1 and (λ1, λ2) ∈ P⊥⊥

1 × (P2 \ I2).
• if (p1, a, λ1) ∈ ∆m

1 then (p2, a, λ2) ∈ ∆m
2 as R2 is complete. We now prove that (λ1, λ2) ∈ (I1 × I2) ∪ (P⊥⊥

1 × (P2 \ I2)):
– if λ1 ∈ P1 \ I1, we have to prove that λ2 ∈ P2 \ I2. As λ1 ∈ P1 \ I1, there exists M |= R1 having a transition from p1

labeled by a. AsMod(R1) ⊆ Mod(R2) then M should also be amodel of R2 and thus a transition a should be allowed
in p2. As a result, λ2 ∈ P2 \ I2;

– if λ1 ∈ I1 then for λ2 ∈ P⊥⊥

2 we have (λ1, λ2) ∈ ρ. �

Remark 1. The determinism of modal specifications is crucial for the Proposition 1. In the nondeterministic case, modal
refinement is not complete [3]: Mod(R1) ⊆ Mod(R2) does not necessarily imply R1 ≼ R2.

As a consequence of Definition 3, inconsistent ms refine any ms, and consistent ms can only refine consistent ms. In the
following, we write R1 ≡ R2, and say that R1 and R2 are equivalent, whenever R1 ≼ R2 and R2 ≼ R1. Remark that by
merging all states of I, every ms is equivalent to a ms where the set of inconsistent states is at most a singleton.
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2.2. Modal event-clock specifications

Let X be a finite set of clocks and let IR≥0 denote the set of non-negative reals. A clock valuation over X is a mapping
ν : X → IR≥0. The set of clock valuations over X is denoted V; in particular, 0 ∈ V is the clock valuation such that 0(x) = 0
for all x ∈ X. Given ν ∈ V and t ∈ IR≥0, we let (ν + t) ∈ V be the clock valuation obtained by letting t time units elapse
after ν, formally, (ν + t)(x) = ν(x)+ t for every x ∈ X. Moreover, given xa ∈ X and ν ∈ V , the valuation ν[0/xa] is defined
by ν[0/xa](xa) = 0 and ν[0/xa](y) = ν(y) for all y ≠ xa.

A guard over X is a finite conjunction of expressions of the form x ∼ c where x ∈ X, c ∈ IN is a constant, and
∼ ∈ {<, ≤, =, ≥, >}. We then denote by ξ [X] the set of all guards over X. For some fixed N ∈ IN, ξN [X] represents
the set of guards involving only constants equal to or smaller than N . The satisfaction relation |= ⊆ (V × ξ [X]) between
clock valuations and guards is defined in a natural way and we write ν |= g whenever ν satisfies g; we denote by false
the unsatisfiable formula (modulo logical equivalence). In the following, we will often abuse notation and write g to denote
the guard g as well as the set of valuations which satisfy g . Note that we only consider here diagonal-free guards as only
comparisons between clocks and constants are allowed.

Also, for any g ∈ ξ [X], we denote by g↓a the formula which semantics is the set {ν[0/xa] | ν |= g} and by g↑a the formula
whose semantics is the set of valuations ν such that ν[0/xa] |= g . Note that given a guard g , formulas for g↓a and g↑a can
be computed easily. We explain how to compute g↑a: assume g is in disjunctive normal form, that is g =


i


j gij where
each gij is of the form x ∼ c. Then consider the formula g ′

=


i(


j gij ∧ (xa = 0)) where each unsatisfiable conjunct
j gij ∧ (xa = 0) has been replaced by false. Obtain the formula g↑a by removing all constraints on xa in any satisfiable

conjunct of g ′; notice that since we do not have diagonal constraints, this removal affects only the constraints on xa.
Event-clock automata [18], form a subclass of timed automata where clock resets are not arbitrary: each action a comes

with a clock xa which is reset exactly when action a occurs. We consider event-clock automata with possibly infinitely many
locations.

Definition 5 (Event-Clock Automata). An event-clock automaton (eca) over Σ is a tuple C = (C, c0, δ) where C is a set of
states, c0 ∈ C is the initial state, and δ ⊆ C × ξN [XΣ ] × Σ × C is the transition relation (for some N ∈ N). The pair (Σ,N)
is the signature of C.

The semantics of an eca is similar to the one of a timed automaton [16], except that the set of clocks that are reset
by a transition is determined by the action of that transition: while firing a transition labeled by a, precisely clock xa is
reset. Event-clock automata do form a strict subclass of timed automata, but they enjoy good properties: they are closed
under union and intersection, and more interestingly they can be made deterministic (as opposed to the class of arbitrary
timed automata). The ability for event-clock automata to be made deterministic comes from the way clocks are reset and
this property significantly eases the definition of binary operators (such as lower bound, product and quotient) on modal
variants of event-clock automata.

For a fixed signature (Σ,N), a region is an equivalence class θ of clock valuations that satisfy the same guards in ξN [XΣ ].
We denote by ΘN , or simply Θ , the set of all regions. Given a region θ ∈ Θ , we write τ(θ) for the set of all regions that
can be obtained from θ by letting time elapse: τ(θ) = {θ ′′

| ∃ν ′′
∈ θ ′′

∃ν ∈ θ ∃t ∈ IR≥0 s.t. ν ′′
= ν + t}. The reset and

coreset operations are extended from guard to regions in the expected way; given a region θ , we thus write θ↓a and θ↑a for
respectively the region obtained by resetting clock xa or, respectively the union of regions obtained via the inverse operation.

Definition 6 (Region Automaton [16]). The region automaton associated to an eca C = (C, c0, δ) is the automaton R(C) =

(C × Θ, (c0, 0), ∆) over the alphabet Θ × Σ , where the set ∆ of transitions is defined as follows: for each c, c ′
∈ C ,

θ, θ ′, θ ′′
∈ Θ , and a ∈ Σ , ((c, θ), θ ′′, a, (c ′, θ ′)) ∈ ∆ whenever there exists (c, g, a, c ′) ∈ δ with θ ′′

⊆ τ(θ) ∩ g and
θ ′

= θ ′′

↓a (recall this is the region obtained from θ ′′ by resetting the clock xa).

Remark 2 (Embedding of Region Automata into Event-Clock Automata). Note that the region automata we consider extend
the ones introduced in [16] since their transition labels keep track of the intermediate region where the action is fired. As a
consequence, any automaton over the alphabet Θ × Σ uniquely defines an eca whose signature is of the form (Σ,NΘ),
with NΘ determined by the set of regions Θ . We denote by T the natural injection of region automata into eca; this
mapping enables us to distinguish between the two interpretations of the same syntactic object: R(C) is an automaton
whereas T (R(C)) is an eca. The mappings T and R form a Galois connection (see [21] for an introduction on this particular
correspondence).

Definition 7 (Modal Event-Clock Specification). Amodal event-clock specification (mecs) over the finite alphabet Σ is a tuple
S = (Q⊥⊥, λ0, δm, δM) where

• Q⊥⊥
:= Q ∪ ⊥⊥ is a finite set of locations, with ⊥⊥ ∩ Q = ∅, and the initial state is λ0

∈ Q⊥⊥.
• δM

⊆ δm
⊆ Q × ξ [XΣ ] × Σ × Q⊥⊥ are finite sets of respectively must- and may-transitions. Given a may-transition

(q, g, a, λ) ∈ δm, q is the source state, λ is the destination state, g ∈ ξ [XΣ ] is the guard that specifies the valuations for
which the transition can be taken, a ∈ Σ is the action labeling the transition—recall that the only clock that is then reset
is xa.
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(a) Client Cl. (b) Access controller Acc.

Fig. 2. Client Cl and access controller Acc.

Moreover we require that δm is deterministic (hence, so is δM ) and complete: for any state q ∈ Q , any action a ∈ Σ , and any
clock valuation ν ∈ V , there is exactly one transition (q, g, a, λ) ∈ δm such that ν |= g .

Example 3. As an example of a mecs, we consider in Fig. 2(a) a timed variant of the client Cl introduced earlier. The clock
corresponding to the action ‘‘get ’’ is xget .

In this example again, for simplification purposes, transitions of the form q
g,a
99K ⊥ are not depicted. Asmecs are complete,

these transitions can easily be recovered by taking g =


i(g̃i) where the gi’s are the guards appearing in the transitions of

the form q
gi,a
99K λ or q

gi,a
−→ λ, and each g̃i is the semantic negation of gi. When the guard of a transition is not indicated, it is

implicitly true.
The mecs Cl for the client in Fig. 2(a) specifies that a ‘‘get ’’ request may be sent again at most one time unit after the last

request.

In what follows, we generalize the graphical conventions already used for untimed objects by writing q
g,a
99K λ′ whenever

(q, g, a, λ′) ∈ (δm
\ δM), q

g,a
−→ λ′ whenever (q, g, a, λ′) ∈ δM and q g,a

 λ′ whenever either q
g,a
99K λ′ or q

g,a
−→ λ′.

Remark that a natural untimed object associated to a mecs S is its region modal automaton, obtained by generalizing
Definition 6 from event-clock automata to their modal extension. More precisely, R(S) reflects the modalities of S =

(Q⊥⊥, λ0, δm, δM) as done in [13], the initial state is (λ0, 0) and the set of locally inconsistent states in R(S) is ⊥⊥ S × Θ .
Nevertheless, global inconsistency in mecs is not trivial, as detailed in the next paragraph.

Global inconsistency in mecs. Obviously, we expect this notion to coincide with global inconsistency in untimed models
when the region automaton of the mecs is considered. Henceforth, inconsistency is not defined on locations but rather on
regions: using the inconsistent states (λ, θ) of R(S), we can gather the regions θ for a fixed λ and define it as I(λ) ∈ ξ [XΣ ].

Definition 8. Let S = (Q⊥⊥, λ0, δm, δM) be a mecs. For every λ ∈ Q⊥⊥, let I(λ) ∈ ξ [XΣ ] be such that for any region θ ,

θ ⊆ I(λ) if, and only if, (λ, θ) is globally inconsistent in R(S).

Lemma 3. The sets I(λ) are closed under timed predecessors: let θ ′
∈ τ(θ), then θ ′

∈ I(λ) implies θ ∈ I(λ).

Proof. If θ ′
∈ I(λ) then (λ, θ ′) is globally inconsistent in R(S) that is, there exists a must-transition from (λ, θ ′) to a state

(λ′, θ ′′) labeled by (θ ′′′, a) such that there is a sequence of must-transitions in R(S) from (λ′, θ ′′) to a local inconsistency.
By construction of the modal region automata, there is a transition λ

g,a
−→ λ′ in S and θ ′′′

⊆ τ(θ ′) ∩ g and θ ′′
= θ ′′′

↓a. As, by
assumption, θ ′

∈ τ(θ), we also have θ ′′′
∈ τ(θ) and thus θ ′′′

⊆ τ(θ) ∩ g . As a result, there is a must-transition in R(S) from
(λ, θ) to (λ′, θ ′′) labeled (θ ′′′, a) and (λ, θ) is globally inconsistent that is, θ ∈ I(λ). �

Notice that in general the sets I(λ) are not closed under timed successors, as letting time elapsemay invalidate the guards
responsible for the original inconsistency.

Definition 9. A mecs S is I-stable if for any state λ, the set I(λ) is closed under timed successors; formally,

τ(I(λ)) ⊆ I(λ)

Otherwise said, I-stability means that inconsistency cannot arise from letting time elapse. This is a mandatory requirement
to ensure optimal constructions, as stated in Theorem 4 in Section 3.

Example 4. The mecs S1 in Fig. 7(b) is not I-stable. Indeed I(λ1) is restricted to the valuation x = 0 and is not closed under
timed successors.

Interestingly, the computation of I(λ) does not require the computation of the region automaton, but can be done
following the lines of a construction in [22]: a backward analysis in the mecs from locations in ⊥⊥ enables us to synthesize
the clock formula I(λ). We proceed as follows.

Let E be the set of must-transitions in S that lead to a location in ⊥⊥, and let e = (λ, g, a, λ′) ∈ E (then λ′
∈⊥⊥).

Clearly g ⊆ I(λ) because in any state (λ, θ) of R(S) with θ ⊆ g , a discrete must-transition (labeled by a) is enabled
that leads to the inconsistent state (λ′, θ[0/xa]). Also, time elapsing needs to be considered: from (λ, θ) in R(S) where
θ ⊆ (∃t ∈ IR≥0)(g[xb + t/xb]b∈Σ ), it is possible to let time elapse to reach a state (λ, θ ′′) where θ ′′

⊆ g which shows a
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Fig. 3. An example of model for the mecs Cl of Fig. 2(a).

Fig. 4. Another client specification Cl′ refined by Cl of Fig. 2(a).

must-transition from (λ, θ) to (λ′, θ ′) (labeled by (a, θ ′′)) in R(S), yielding (λ, θ) is globally inconsistent in R(S). It is easy
to generalize the argument for arbitrary target locations λ′ that do not necessarily belong to ⊥⊥.

Clearly, discrete transitions and time elapsing ones as considered above cover all contexts (regions) in which a given
location becomes inconsistent, and they are the only ones. The formulas {I(λ)}λ∈Q⊥⊥ that characterize the regions in which
a given location is inconsistent are the least solutions (in the lattice (ξ [XΣ ], ⊆)) of the following finite system of equations:

I(λ) = true, ∀λ ∈⊥⊥

I(λ) =


(λ,g,a,λ′)∈δM

(∃t ∈ IR≥0)

g[xb + t/xb]b∈Σ ∧ I(λ′)[0/xa, {xb + t/xb}b≠a]


, ∀λ ∈ Q (1)

This least fixed point can be computed iteratively starting from I(λ) := true, for all λ ∈⊥⊥, and I(λ) := false, for
all λ ∈ Q , and by applying the formula monotonic transformer underlying the equation system, in a standard way, until
stabilization. Proofs of both correctness and stabilization of this computation can be found in [22,23].

A note on consistency. According to Lemma 1, checking whether an untimed specification has a model amounts to checking
its consistency, namely whether the set of states ⊥⊥ is unreachable from the initial state by a sequence of must-transitions.
The consistency problem is thus NLOGSPACE-complete for (untimed) modal specifications, since it can be rephrased as a
reachability problem. Consequently, it becomes PSPACE-complete in the timed case. Notice that the consistency of a mecs
reduces to deciding whether I(λ0) ∧ (


b∈Σ xb = 0) ≡ false.

Semantics ofmecs. We now turn to the set of models denoted by amecs. Recall that given amodal event-clock specification
S over signature (Σ,N), R(S) is a modal specification over the extended alphabet Σ × ΘN ; similarly, given an event-clock
automaton C, R(C) is an automaton over alphabet Σ × ΘN . Having this in mind, the model relation in the timed case is
inherited from the one in the untimed case via the region construction:

Definition 10 (Model Relation). An event-clock automaton C is a model of mecs S, written C |= S, if R(C) |= R(S).

Example 5. An example of model for the client specification of Fig. 2(a) is depicted in Fig. 3. Observe that must-transitions
of the specification are reflected in the model and the guards of may-transitions of the specification can be strengthened in
the model.

The set of models of a mecs S, is defined by Mod(S) := {C | C |= S}. Observing that given a mecs S, R(T (R(S))) and
R(S) are isomorphic, we obtain the following:

Lemma 4. Let S be a mecs. Then, Mod(T (R(S))) = Mod(S).

In the spirit of Definition 10 for the model relation, the modal refinement preorder between mecs also relies on a region-
based construction:

Definition 11 (Modal Refinement Preorder). Given two mecs S1 and S2, S1 refines S2, written S1 ≼ S2, whenever R(S1) ≼

R(S2).

Example 6. The client specification Cl refines the specification Cl′ represented in Fig. 4. Observe that in Cl′ a ‘‘get ’’ request
may be resent at most two units of time after the last request whereas in the refined version Cl the deadline is at most
one. Similarly, in Cl′ the ‘‘grant ’’ action is not guaranteed after more than one unit of time whereas in Cl every request is
eventually granted.

As a corollary of the analogous results in the untimed setting on ms, it is decidable whether a mecs refines another one.
Moreover, refinement and inclusion of models match:
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Corollary 1. Let S, S1 and S2 be mecs. Then,

• Mod(S) ≠ ∅ if, and only if S is consistent;
• S1 ≼ S2 if, and only if Mod(S1) ⊆ Mod(S2).

Proof. The first item is a consequence of the similar result for untimed specifications (see Lemma 1), as well as the
immediate observation that given an automatonM,M |= R(S) implies T (M) |= S. The second item is a trivial consequence
of Proposition 1 and Definition 11. �

The class of deterministic eca can be embedded into the one ofmecs; let C be an eca, we denote by C∗ themecs obtained
by typing with must every existing transition in C and by completing it by adding may-transitions to a state ⊥ in ⊥⊥.

Definition 12 (Embedding in mecs). An eca C = (C, c0, δ) can be interpreted as amecs C∗
= (C ∪ {⊥∗}, c0, δm

∗
, δM

∗
) where

δ = δM
∗

⊆ δm
∗
, and (λ, g, a, ⊥∗) ∈ ∆m

∗
\ ∆M

∗
with g =


i g̃i and where the g̃i’s are the negation of the guards gi’s appearing

in the transitions of the form (λ, gi, a, λ′) in δ.

Since event-clock are determinizable [18], assuming their determinism should not be regarded as a restriction. We then
have:

Corollary 2. Let C be an eca and S a mecs, C |= S if and only if C∗
≼ S.

Proof. This follows from Definition 10 which tells that C |= S whenever R(C) |= R(S). Moreover, by Definition 11, C∗
≼ S

if and only if, R(C∗) ≼ R(S). To conclude, it suffices to consider Corollary 1. �

3. Operations on specifications

In this section, we introduce operations on modal event-clock specifications, which enable compositional reasoning.
More precisely, we define the greatest lower bound, the product, and the quotient over mecs. For each of these operations,
we establish important theoretical properties.

3.1. Greatest lower bound of mecs

We study the concept of greatest lower bound, which corresponds to the conjunction of two modal specifications and
equivalently to their best shared refinement [24,10]. Greatest lower bound is worth computing to ensure that given several
specifications, each of them describing a particular requirement, we are able to check their compatibility.

We first recall the definition of the greatest lower bound in the untimed case. Let R1 = (P⊥⊥

1 , λ0
1, ∆m

1 , ∆M
1 ) and

R2 = (P⊥⊥

2 , λ0
2, ∆m

2 , ∆M
2 ) be two ms. The greatest lower bound of R1 and R2 is R1 ∧ R2 = (P⊥⊥, (λ0

1, λ
0
2), ∆m

∧
, ∆M

∧
) with

P := P1 × P2 and ⊥⊥:= (⊥⊥ 1 × P⊥⊥

2 ) ∪ (P⊥⊥

1 × ⊥⊥ 2); notice that local inconsistency of a compound state (membership of
(λ1, λ2) in ⊥⊥) is inherited from the local inconsistency of the components (membership of λ1 in ⊥⊥1 or membership of λ2
in ⊥⊥2). The transition relations are derived from the following rules.

λ1
a
99K λ′

1 and λ2
a
99K λ′

2

(λ1, λ2)
a
99K (λ′

1, λ
′

2)

(Glb1)
λ1

a
−→ λ′

1 and λ2
a
 λ′

2

(λ1, λ2)
a

−→ (λ′

1, λ
′

2)

(Glb2)
λ1

a
 λ′

1 and λ2
a

−→ λ′

2

(λ1, λ2)
a

−→ (λ′

1, λ
′

2)

(Glb3)

Remark in particular, that if in a state λ = (λ1, λ2), we have the contradictory requirements that a is required (λ1
a

−→ λ′

1 ∈

P1) and a should not happen (λ2
a
99K λ′

2 ∈ ⊥⊥2), then λ is inconsistent. This is indeed guaranteed by the definition of R1 ∧ R2
which imposes P1× ⊥⊥2 ⊆⊥⊥.

Also, since the Rules (Glb1)–(Glb3) uniformly consider consistent and inconsistent states, global inconsistency inR1∧R2
(membership of (λ1, λ2) in I) is inherited from local inconsistency of the components (membership of λ1 in I1 or
membership of λ2 in I2).

Greatest lower bound of mecs. The notion of greatest lower bound easily extends to mecs. Let S1, S2 be two mecs. The
modalities for the transitions in S1 ∧ S2 are derived from those induced in the untimed case (Rules (Glb1)–(Glb3)), and
the labels of the transitions are obtained by intersecting the guards for common actions. We therefore get the following
Rules (tGlb1), (tGlb2) and (tGlb3).

λ1
g1,a
99K λ′

1 and λ2
g2,a
99K λ′

2

(λ1, λ2)
g1∧g2,a
99K (λ′

1, λ
′

2)

(tGlb1)
λ1

g1,a
−→ λ′

1 and λ2
g2,a λ′

2

(λ1, λ2)
g1∧g2,a
−→ (λ′

1, λ
′

2)

(tGlb2)
λ1

g1,a λ′

1 and λ2
g2,a
−→ λ′

2

(λ1, λ2)
g1∧g2,a
−→ (λ′

1, λ
′

2)

(tGlb3)

Thanks to Lemma 4, the set of models of a mecs S matches the set of models of its region version T (R(S)). The following
proposition characterizes the greatest lower bound of two mecs via the region graphs.

Proposition 2. For any two mecs S1 and S2, R(S1 ∧ S2) ≡ R(S1) ∧ R(S2).
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Proof. Consider the binary relation R between states of R(S1 ∧ S2) and of R(S1) ∧ R(S2) defined by:

R =


(λ1, θ), (λ2, θ)


,

(λ1, λ2), θ


| λ1 ∈ Q⊥⊥

1 , λ2 ∈ Q⊥⊥

2


.

Notice that any reachable state in R(S1) ∧ R(S2) is of the form ((λ1, θ1), (λ2, θ2)) with θ1 = θ2. This can be easily proved
inductively since the greatest lower bound for R(S1) and R(S2) is computed on the extended alphabet Σ × Θ , where the
target region is completely determined by the later (since it contains the region when the transition is fired and the clock
to be reset).

Let λ1 ∈ Q⊥⊥

1 , λ2 ∈ Q⊥⊥

2 and θ ∈ Θ . We show that any required transition from ((λ1, θ), (λ2, θ)) in R(S1) ∧ R(S2) is also
mandatory from ((λ1, λ2), θ


in R(S1 ∧S2), and that any allowed transition from ((λ1, λ2), θ


in R(S1 ∧S2) is possible from

((λ1, θ), (λ2, θ)) in R(S1) ∧ R(S2).

Let ((λ1, λ2), θ))
θ ′′,a
99K ((λ′

1, λ
′

2), θ
′)) be a may-transition in R(S1 ∧ S2). By construction of the region graph, there exists

a may-transition (λ1, λ2)
g,a
99K (λ′

1, λ
′

2) with θ ′′
⊆ τ(θ) ∩ g in S1 ∧ S2. This transition can only be obtained by applying Rule

(tGlb1); hence there exist λ1
g1,a
99K λ′

1 in S1 and λ2
g2,a
99K λ′

2 in S2 with g = g1 ∧ g2. Since θ ′′
⊆ g1 ∩ g2 these transitions give

rise in R(S1) and R(S2) respectively to transitions (λ1, θ)
θ ′′,a
99K (λ′

1, θ
′) and (λ2, θ)

θ ′′,a
99K (λ′

2, θ
′). Hence, in the greatest lower

bound R(S1) ∧ R(S2), thanks to Rule (Glb1), there is a may-transition ((λ1, θ), (λ2, θ))
θ ′′,a
99K ((λ′

1, θ
′), (λ′

2, θ
′)).

Assume now ((λ1, θ), (λ2, θ))
θ ′′,a
−→ ((λ′

1, θ
′), (λ′

2, θ
′)) is a must-transition in R(S1)∧R(S2). According to the rules (Glb2)

and (Glb3) this transition comes from transitions in R(S1) and R(S2), one of which being a must-transition. W.l.o.g assume

(λ1, θ)
θ ′′,a
−→ (λ′

1, θ
′) and (λ2, θ)

θ ′′,a
99K (λ′

2, θ
′) (the latter transition could also be a must). By construction of the region graph,

there are transitions λ1
g1,a
−→ λ′

1 and λ2
g2,a
99K λ′

2 in S1 and S2 respectively, with θ ′′
⊆ τ(θ) ∩ g1 and also θ ′′

⊆ τθ ∩ g2. In

S1 ∧ S2 there is thus a transition (λ1, λ2)
g1∩g2,a
−→ (λ′

1, λ
′

2); this yields a transition ((λ1, λ2), θ))
θ ′′,a
−→ ((λ′

1, λ
′

2), θ
′)).

To prove that relation R is a witness for R(S1 ∧ S2) ≼ R(S1) ∧ R(S2), it now suffices to observe that inconsistent states
in R(S1) ∧ R(S2) can only be linked in R to inconsistent states in R(S1 ∧ S2). This however is a consequence of the fact that
must-transition in R(S1) ∧ R(S2) are also required in R(S1 ∧ S2), together with the observation that bad states (states in ⊥⊥

on each side) are linked through R.
This ends the proof that R(S1 ∧ S2) refines R(S1) ∧ R(S2) through R. Following exactly the same lines, one can prove the

reverse refinement, namely: R(S1) ∧ R(S2) ≼ R(S1 ∧ S2). Hence the desired result: R(S1 ∧ S2) ≡ R(S1) ∧ R(S2). Note that
relation R establishes moreover an isomorphism between R(S1 ∧ S2) and R(S1) ∧ R(S2). �

Computing the conjunction of two ms via rules (Glb1)–(Glb3) is polynomial in the size of the arguments. Due to the
construction of the region graphs, starting from two mecs S1 and S2 computing R(S1) ∧ R(S2) is exponential. The direct
construction of the greatest lower bound by using the timed variants of (Glb1) to (Glb3) is polynomial and therefore worth
adopting for effective methods.

Corollary 3. For any two mecs S1 and S2, S1 ∧ S2 is the ≼-greatest lower bound of S1 and S2.

Proof. From the untimed case [9], we deduce: R(S1) ∧ R(S2) ≼ R(Si), for i = 1, 2. Thus by Proposition 2, we have:
R(S1 ∧ S2) ≼ R(Si). Finally as T is monotonic and because T (R(S)) ≡ S (Lemma 4 and Corollary 1): S1 ∧ S2 ≼ Si.

We now show it is the greatest element under S1 and S2. Assume that there exists S such that S ≼ Si. Therefore, by
definition of ≼, R(S) ≼ R(Si) which entails R(S) ≼ R(S1) ∧ R(S2). Now, we have S ≡ T (R(S)) ≼ T (R(S1 ∧ S2)) since T is
monotonic and by Proposition 2; We then conclude that S ≼ S1 ∧ S2. �

Finally, according to the above, one can establish that the greatest lower bound yields the intersection of the models.

Theorem 1. For any two mecs S1 and S2, Mod(S1 ∧ S2)=Mod(S1) ∩ Mod(S2).

Proof. From Corollary 3 we have S1 ∧ S2 ≼ Si. Then Corollary 1 entails, Mod(S1 ∧ S2) ⊆ Mod(Si). Thus Mod(S1 ∧ S2) ⊆

Mod(S1) ∩ Mod(S2).
Let C be a eca such that C ∈ Mod(S1) ∩ Mod(S2). By Corollary 2, C∗

≼ S1 and C∗
≼ S2. By Corollary 3, C∗

≼ S1 ∧ S2
and by Corollary 2, C |= S1 ∧ S2. As a result Mod(S1) ∩ Mod(S2) ⊆ Mod(S1 ∧ S2). �

3.2. Product of mecs

The product of mecs relates to the synchronous parallel composition of models, in the spirit of the synchronization
mechanism described in the CSP Process Algebra [25]. Forms, it generalizes the synchronized product of automataM1⊗M2
that denotes the intersection of their behaviors (languages).

We first recall the product of ms: Let R1 = (P⊥⊥

1 , λ0
1, ∆m

1 , ∆M
1 ) and R2 = (P⊥⊥

2 , λ0
2, ∆m

2 , ∆M
2 ) be two ms. The product of

R1 and R2, denoted by R1 ⊗ R2, is thems (P⊥⊥, (λ0
1, λ

0
2), ∆m

⊗
, ∆M

⊗
), where P := P1 × P2 and ⊥⊥:= (⊥⊥1 × P⊥⊥

2 ) ∪ (P⊥⊥

1 × ⊥⊥2);
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as for the greatest lower bound, local inconsistency is inherited from local inconsistency of the components. The transitions
are derived from the following rules.

λ1
a
99K λ′

1 and λ2
a
 λ′

2

(λ1, λ2)
a
99K (λ′

1, λ
′

2)

(Prod1)
λ1

a
 λ′

1 and λ2
a
99K λ′

2

(λ1, λ2)
a
99K (λ′

1, λ
′

2)

(Prod2)
λ1

a
−→ λ′

1 and λ2
a

−→ λ′

2

(λ1, λ2)
a

−→ (λ′

1, λ
′

2)

(Prod3)

Notice that Rules (Prod1)–(Prod3) uniformly consider consistent and inconsistent states. As for the greatest lower bound
operation, global inconsistency depends only on global inconsistency of the components.

Product ofmecs. The product ofmecs extends the synchronized product of ecawhich consists in synchronizing transitions
on action names and in taking the conjunction of the guards of the combined transitions.

Let S1, S2 be two mecs. The modalities for the transitions in S1 ⊗ S2 are derived from those proposed in the untimed
case, and the labels of the transitions are composed of the intersection of the guards together with the common action. We
therefore get the following Rules (tProd1), (tProd2) and (tProd3).

λ1
g1,a
99K λ′

1 and λ2
g2,a λ′

2

(λ1, λ2)
g1∧g2,a
99K (λ′

1, λ
′

2)

(tProd1)
λ1

g1,a λ′

1 and λ2
g2,a
99K λ′

2

(λ1, λ2)
g1∧g2,a
99K (λ′

1, λ
′

2)

(tProd2)
λ1

g1,a
−→ λ′

1 and λ2
g2,a
−→ λ′

2

(λ1, λ2)
g1∧g2,a
−→ (λ′

1, λ
′

2)

(tProd3)

Similarly to Proposition 2 for the greatest lower bound, the product of mecs can be alternatively computed by building
the product of the region graphs. This construction however causes an exponential blow-upwhereas the direct construction
is polynomial.

Proposition 3. For any two mecs S1 and S2, R(S1 ⊗ S2) ≡ R(S1) ⊗ R(S2).

Proof. Similarly to the proof of Proposition 2 the binary relation R defined as:

R =


(λ1, θ), (λ2, θ)


,

(λ1, λ2), θ


| λ1 ∈ Q⊥⊥

1 , λ2 ∈ Q⊥⊥

2


is a witness for R(S1 ⊗ S2) ≡ R(S1) ⊗ R(S2). �

In the untimed setting, it is known [9] that the product is monotonic with respect to refinement, and that a product of
models is a model of the product. Those properties extend to the timed case as stated in the following theorem.

Theorem 2 (Properties of the Product). For any mecs S1, S′

1, S2, S′

2, and any eca C1, C2,

(S1 ≼ S2 and S′

1 ≼ S′

2) =⇒ S1 ⊗ S′

1 ≼ S2 ⊗ S′

2; and

(C1 |= S1 and C2 |= S2) =⇒ C1 ⊗ C2 |= S1 ⊗ S2.

Proof. Given S1, S2, S′

1 and S′

2 mecs, such that: S1 ≼ S2 and S′

1 ≼ S′

2. By Definition 11 this is equivalent to: R(S1) ≼

R(S2) and R(S′

1) ≼ R(S′

2). As the product of simple modal specifications is monotonic for the modal refinement relation
(see [9] for a proof), we have: R(S1)⊗R(S′

1) ≼ R(S2)⊗R(S′

2). According to Proposition 3, this is equivalent to: R(S1 ⊗S′

1) ≼

R(S2 ⊗ S′

2). Thus, by Definition 11: S1 ⊗ S′

1 ≼ S2 ⊗ S′

2.
Let us now prove that given two eca C1, C2, we have: (C1 |= S1 and C2 |= S2) implies C1 ⊗ C2 |= S1 ⊗ S2. Suppose that

C1 |= S1 and C2 |= S2 then C∗

1 ≼ S1 and C∗

2 ≼ S2. By the first part of the theorem, we have C∗

1 ⊗ C∗

2 ≼ S1 ⊗ S2. Since
C∗

1 ⊗ C∗

2 and (C1 ⊗ C2)
∗ are isomorphic, we have C∗

1 ⊗ C∗

2 ≡ (C1 ⊗ C2)
∗, and we conclude that: C1 ⊗ C2 |= S1 ⊗ S2. �

As a consequence, the product operation satisfies the property of independent implementability, in the sense of [5]: an
implementation of a specification of the form S1 ⊗ S2 can be obtained by composing any two implementations of S1 and S2
respectively.

Example 7. Themecs Acc in Fig. 2(b) on page 1217 specifies the behavior of an access controller; the access to the resource
will be granted for 2 time units after the reception of a ‘‘get ’’ request. In case of a privileged access providing time, this
duration will be extended to 4 time units.

The product Cl ⊗ Acc is depicted in Fig. 5(a). In the resulting specification, ‘‘extra’’ can now only occur after a ‘‘get ’’
request. Timing constraints on the ‘‘grant ’’ action issued from the access controller are also propagated.

3.3. Quotient of mecs

In this section,wedefine the quotient operation. Intuitively, the quotient describes a part of a global specification assuming
another part will be realized by some component. We thus consider quotients of specifications which is different from the
constructions studied in [26] where at least one of the operands is a system.

Inconsistency occurrences in quotients are more complex than in the greatest lower bound and the product cases.
Inconsistency can arise from consistent components due to incompatible transition modalities: for example, if in state λ
of R an a-must-transition is required, but if at the same time in the corresponding state λ1 of R1 the a-transition is not
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(a) The product Cl ⊗ Acc. (b) A desired global behavior G.

Fig. 5. The global model Cl ⊗ Acc and its specified behavior G.

allowed, there is no reasonable way to build a model whose product with a model of R1 (in current state λ1) will enforce
an a-transition. This is reflected by Rule (inconsistency) below that we explain in detail later.

We start by recalling the quotient operation on untimed modal specifications, then extend it to mecs. Notice that for
the untimed case, we revise the definition originally proposed in [9] which indirectly handles inconsistency; originally, the
so-called pseudo-specifications needed being considered.

Formally, the quotient of the ms R = (P⊥⊥, λ0, ∆m, ∆M) by the ms R1 = (P⊥⊥

1 , λ0
1, ∆m

1 , ∆M
1 ) is the ms R ⊘ R1 =

(P ′⊥⊥, (λ0, λ0
1), ∆m

⊘
, ∆M

⊘
), with P ′

⊆ (P × P1) ∪ {⊤}, where ⊤ is a fresh element, and the set ⊥⊥
′ of locally inconsistent states

of R ⊘ R1 contains at least a fresh element ⊥
′.

The rules below achieve the description of the ms R ⊘ R1. We use I and I1 for the set of globally inconsistent states
of R and R1 respectively. Notation like λ

a
99K I therefore means that the a-may-transition from λ leads to an inconsistent

state of R. We also use notations λ
a
99K P \ I, λ

a
−→ I, and λ

a
−→ P \ I with the expected meanings, and λ

a
99K to express

that only an a-may-transition is specified from this λ, but no a-must-transition.
We first start with Rules (I ∧ ¬I1)-(top) which deal with cases where at least one of the local states is inconsistent.

λ ∈ I and λ1 /∈ I1

(λ, λ1) ∈ ⊥⊥
′

(I∧¬I1)
λ ∈ I and λ1 ∈ I1

(λ, λ1)
a
99K ⊤

(I∧I1)

I ∌ λ
a

−→ and λ1 ∈ I1

(λ, λ1)
a
99K ⊤

(¬Imust∧I1)
I ∌ λ

a
99K and λ1 ∈ I1

(λ, λ1)
a
99K ⊤

(¬Imay∧I1)

⊤
a
99K ⊤

(top)

In Rules (inconsistency)-(must) below, we now assume that both λ and λ1 are consistent, i.e., λ /∈ I and λ1 /∈ I1:

λ
a

−→ λ′ and λ1
a
99K λ′

1

(λ, λ1) ∈ ⊥⊥
′

(inconsistency)
λ

a
99K I and λ1

a
 P1 \ I1

(λ, λ1)
a
99K ⊥

′

(mustnot)

λ
a
99K and λ1

a
99K I1

(λ, λ1)
a
99K ⊤

(may1)
λ

a
99K λ′ /∈ I and λ1

a
 λ′

1 /∈ I1

(λ, λ1)
a
99K (λ′, λ′

1)

(may2)
λ

a
−→ λ′ and λ1

a
−→ λ′

1

(λ, λ1)
a

−→ (λ′, λ′

1)

(must)

Proposition 4. Let R and R1 be two ms.

R1 ⊗ R2 ≼ R ⇐⇒ R2 ≼ R ⊘ R1 (2)

Proof. (⇒) Consider the binary relation R between the states of R2 and of the states of R ⊘ R1 defined by:

R = {(λ2, (λ, λ1)) | ((λ1, λ2), λ) ∈ ρ} ∪ {(λ2, ⊤) | λ2 ∈ (P2 \ I2)}

where ρ denote the simulation relation allowing to establish that R1 ⊗ R2 ≼ R. We show that R is a modal refinement of
ms, in the sense of Definition 3. We first show that inconsistent states in R ⊘ R1 are only related to inconsistent states in
R2.

If (λ, λ1) is inconsistent in R ⊘ R1 then there is a must-path to ⊥⊥
′, of length n ≥ 0.

If n = 0 then (λ, λ1) ∈⊥⊥
′. We now analyze the rules that may have been applied.

Rule (I ∧ ¬I1) Suppose that λ ∈ I and λ1 /∈ I1. Since λ ∈ I, (λ1, λ2) is inconsistent inR1⊗R2 asR1⊗R2 ≼ R. Moreover,
asλ1 /∈ I1, we necessarily haveλ2 inconsistent to have (λ1, λ2) inconsistent, by definition of the product operation.

Rule (inconsistency) Suppose that λ /∈ I, λ1 /∈ I1, λ
a

−→ λ′ and λ1
a
99K λ′

1. We reason by contradiction; suppose moreover
that λ2 is a consistent state. Then, asR1 ⊗R2 ≼ R, necessarily we have amust-transition from (λ1, λ2). However,
by definition of the product, this is impossible if λ1

a
99K λ′

1. As a result, λ2 is inconsistent.
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Now if n > 0, we show that every must-transition leading to a locally inconsistent state in R ⊘ R1 can be simulated in
R2. This must-transition inR⊘R1 was obtained by Rule (must)which indicates us that there is a must-transition inR and
thus also in R1 ⊗ R2 as R1 ⊗ R2 ≼ R. By construction, there is also a must-transition in R2. Hence, there is a must-path
of length n from λ2 in R2.

Next, the fact that, for consistent states related by R, every may-transition in R2 can be simulated by a may-transition
of R ⊘R1 and that every must-transition in R ⊘R1 can also be simulated by a must-transition of R2 are directly inherited
from the proof of a similar proposition in [9] for untimed modal specifications without inconsistent states.

(⇐) Consider now the binary relation R between the states of R1 ⊗ R2 and of the states of R defined by:

R = {((λ1, λ2), λ) | (λ2, (λ, λ1)) ∈ ρ}

where ρ denote the simulation relation allowing to establish that R2 ≼ R ⊘ R1. We show that R is a modal refinement
of ms, in the sense of Definition 3. We first show that inconsistent states in R are only related to inconsistent states in
R1 ⊗ calR2.

Suppose that λ is inconsistent in R, we prove that (λ1, λ2) is inconsistent, that is, by definition of the product operation,
λ1 or λ2 is inconsistent. Suppose that λ1 is consistent then by Rule (I∧¬I1), (λ, λ1) ∈⊥⊥

′ inR⊘R1. Thus, asR2 ≼ R⊘R1,
λ2 is inconsistent in R2.

Next, the fact that, for consistent states related by R, every may-transition in R1 ⊗ R2 can be simulated by a may-
transition of R and that every must-transition in R can also be simulated by a must-transition of R1 ⊗ R2 are directly
inherited from the proof of a similar proposition in [9] for untimed modal specifications without inconsistent states. �

Corollary 4. Let R and R1 be two ms, then for every automaton M2,

M2 |= R ⊘ R1 ⇐⇒ ∀M1. [M1 |= R1 ⇒ M1 ⊗ M2 |= R] (3)

We now give intuitive explanations for the rules above in particular with respect to Proposition 4. To do so, let Rλ be the
ms informally defined as the sub-specification ofRwith initial stateλ.When explaining a rule involving transitions outgoing
from λ in R and λ1 in R1 we will thus speak about models in Rλ, Rλ1

1 and Rλ
⊘ R

λ1
1 . Rλ and R

λ1
1 are just introduced in

order to be able to view the local models R and R1 from states λ and λ1. When, say λ ∈ I, we have Mod(Rλ) = ∅. Rule
(I∧¬I1) ensures that since there are nomodels forRλ and there aremodels forR

λ1
1 , there should not bemodels ofRλ

⊘R
λ1
1 ,

otherwisewewould not have the right to left implication of Eq. (2) in Proposition 4. For Rules (¬Imust∧I1) and (¬Imay∧I1)
(together with Rule (top)), since Mod(Rλ1

1 ) = ∅, the right hand side of Eq. (3) is trivially satisfied. Moreover the left hand
side of Eq. (3) is also guaranteed whatever the quotient is; we thus set the quotient to be universal, i.e. it accepts every
model. Rule (I ∧ I1) together with Rule (top), is the case where both Mod(Rλ) = ∅ and Mod(Rλ1

1 ) = ∅. In this case, the
universalms that accepts every model can be in the quotient, and this is what is chosen in order to get the greatest suchms,
as required by Eq. (2).

We now come to the set of rules where both λ and λ1 are consistent (λ /∈ I and λ1 /∈ I1), which by Lemma 1 amounts
to saying that Mod(Rλ) ≠ ∅ and Mod(Rλ1

1 ) ≠ ∅. Rule (inconsistency) corresponds to the inability of guaranteeing the
a-transition required in Rλ since it may not exist in some models of Rλ1 . Hence, only an inconsistentms can be considered
so that Eq. (3) holds. Rule (mustnot) deals with the case where a is forbidden in Rλ, but is authorized or even mandatory in
R

λ1
1 : it should be forbidden in the quotient. In Rule (may1), a is not possible from λ1, and a is not mandatory from λ: it can

therefore safely be authorized in the quotient. Rule (may2) is very straightforward, as models of the quotient may have an
a-transition irrespectively of what is required in R

λ1
1 . Finally, Rule (must) is the simple case of must requirements; notice

that we implicitly have λ′

1 /∈ I1, since by assumption λ1 /∈ I1.
One can easily verify that the conditions of the premises of Rules (I ∧ ¬I1)-(must) are exclusive, hence the quotient

construction yields a deterministic object. Note also that it is complete.

Quotient of mecs. We first consider the following example illustrating the use of quotient in the interface-based
development of a component.

Example 8. A desired global behavior G is depicted in Fig. 5(b) on page 1222. It specifies that any ‘‘get ’’ request must be
fulfilled; the access to the resource is granted for 2 time units and 5 time units in the privilegedmode. Amodel ofG/(Cl⊗Acc)
will act as a protocol converter between Cl and the access controller Acc ; the overall system thus obtained will satisfy G.

We fully make use of the quotient ofms by defining the quotient of twomecs as being the quotient of their modal region
automata, seen as a mecs (see Remark 2 on page 1216), that is T (R(S) ⊘ R(S1)).

Proposition 5. For any mecs S, S1 and S2,

S1 ⊗ S2 ≼ S ⇐⇒ S2 ≼ T (R(S) ⊘ R(S1)) (4)
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Proof. (⇒) Suppose that S1 ⊗ S2 ≼ S; then by definition of ≼, R(S1 ⊗ S2) ≼ R(S). By Proposition 3 this is equivalent
to R(S1) ⊗ R(S2) ≼ R(S). Thus by Proposition 4, R(S2) ≼ R(S) ⊘ R(S1). As T is monotonic with respect to ≼, we have:
T (R(S2)) ≼ T (R(S) ⊘ R(S1)). Thus, S2 ≼ T (R(S) ⊘ R(S1)).

(⇐) Suppose now that S2 ≼ T (R(S)⊘R(S1)). By Theorem 2, we have S1 ⊗S2 ≼ S1 ⊗ T (R(S)⊘R(S1)), and by Lemma 4,
this is equivalent to S1 ⊗ S2 ≼ T (R(S1)) ⊗ T (R(S) ⊘ R(S1)).

Additionally, one can easily show that T (R(S1))⊗T (R(S)⊘R(S1)) = T (R(S1)⊗

R(S)⊘R(S1)


), which entails S1 ⊗S2 ≼

T (R(S1)⊗

R(S)⊘R(S1)


). Finally, as R(S)⊘R(S1) ≼ R(S)⊘R(S1), we have by Proposition 4, R(S1)⊗


R(S)⊘R(S1)


≼ R(S).

As a result, S1 ⊗ S2 ≼ T (R(S)), that is S1 ⊗ S2 ≼ S. �

Corollary 5. For any mecs S, S1, S2, and any eca C2,

C2 |= T (R(S) ⊘ R(S1)) ⇐⇒ ∀C1. [C1 |= S1, C1 ⊗ C2 |= S] (5)

Proof. The proof here is similar to the one for Corollary 4 and relies on Proposition 5 (see [9]). �

From a practical point of view, the quotient operation enables incremental design: consider a desired global specification
S, and the specification S1 of a preexisting component. By computing T (R(S) ⊘ R(S1)) and by checking its consistency, one
can test whether a component implementing S1 can be reused in order to realize S, or not. Note that by (5) the specification
T (R(S) ⊘ R(S1)) is maximally permissive in the sense that it characterizes all the components C2 such that for any C1
implementing S1, the composed system C1 ⊗ C2 implements S.

However defining the quotient ofmecs at the level of theirmodal region automata yields an exponential time complexity
caused by the region automaton construction. We now propose an alternative polynomial construction for the quotient of
mecswhich will provide a correct solution for incremental design but not always the maximally permissive one.

The quotient of a mecs S = (Q⊥⊥, λ0, δm, δM) by a mecs S1 = (Q⊥⊥

1 , λ0
1, δ

m
1 , δM

1 ) is the mecs S ⊘ S1 = ((Q × Q1) ∪

{⊤} ∪ {⊥
′
}, (λ0, λ0

1), δ
m
⊘
, δM

⊘
), where transitions follow Rules (tI ∧ ¬I1)-(tmust) inspired from Rules (I ∧ ¬I1)-(must). The

transitions in the quotient carry the guards inherited from the components, but also additional guards that carefully reflect
consistency or inconsistency assumptions on their local source/target states.

Basically, we rephrase the rules for the untimed settingwhere premises expressing consistency/inconsistency of the local
states are transferred to the conclusion as guards like I(λ), I(λ′), or their negation. Typically, this is how Rules (I∧¬I1) and
(tI ∧ ¬I1) compare with each other: indeed, since for any region θ ⊆ I(λ) ∧ ¬I(λ′) (if any), the states (λ, θ) and (λ′, θ) of
R(S) are respectively inconsistent and consistent, Rule (I ∧ ¬I1) applies, as reflected by Rule (tI ∧ ¬I1).

We apply the principle to all remaining rules and as announced, we get Rules (tI ∧¬I1)-(tmust) for the quotient ofmecs.

(λ, λ1)
I(λ)∧¬I(λ1),a

−−−−−−−−→ ⊥
′

(tI∧¬I1)

(λ, λ1)
I(λ)∧I(λ1),a
9999999999999999K ⊤

(tI∧I1)

λ
g,a

−→

(λ, λ1)
¬I(λ)∧I(λ1)∧g,a
99999999999999999999K ⊤

(t¬Imust∧I1) λ
g,a
99K

(λ, λ1)
¬I(λ)∧I(λ1)∧g,a
99999999999999999999K ⊤

(t¬Imay∧I1)

⊤
true,a
99K ⊤

(ttop)

Wenowconsider rules for consistent situations. To lighten notationwewrite H = ¬I(λ)∧¬I(λ1) for the healthy situations
where only consistent regions are involved in both components of the quotient. This guard is systematically added to the
transition of the conclusion in every rule below. Also, in order to express that the target of a transition in a premise is
consistent, as for the state λ′

1 Rule (tmay1), we add the guard ¬I(λ′

1)
↑a (see on page 1216) in the conclusion to ensure that

the reached region does not generate inconsistency, in the same spirit as Eq. (1).

λ
g,a

−→ and λ1
g1,a
99K

(λ, λ1)
H∧g∧g1,a

−−−−−−→ ⊥
′

(tinconsistency)
λ

g,a
99K λ′ and λ1

g1,a λ′

1

(λ, λ1)
H∧g∧g1∧I(λ′)↑a∧¬I(λ′

1)
↑a,a

99999999999999999999999999999999K ⊥
′

(tmustnot)

λ
g,a
99K and λ1

g1,a
99K λ′

1

(λ, λ1)
H∧g∧g1∧I(λ′

1)
↑a,a

9999999999999999999999K ⊤

(tmay1)
λ

g,a
99K λ′ and λ1

g1,a λ′

1

(λ, λ1)
H∧g∧g1∧¬I(λ′)↑a∧¬I(λ′

1)
↑a,a

9999999999999999999999999999999999K (λ′, λ′

1)

(tmay2)

λ
g,a

−→ λ′ and λ1
g1,a
−→ λ′

1

(λ, λ1)
H∧g∧g1∧¬I(λ′)↑a∧¬I(λ′

1)
↑a,a

−−−−−−−−−−−−−−−−−−→ (λ′, λ′

1)

(tmust)

This quotient operation for mecs can be used on eca as the class of deterministic eca can be embedded into the one of
mecs; it suffices to type with must every existing transition in the eca, and to complete it by adding may-transitions to
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state ⊥
′. Assuming determinism of event-clock automata is not restrictive, since they are known to be determinizable [18].

Observe that the quotient of two event-clock automata embedded intomecs is not an event-clock automaton since e.g. Rule
(tmay1) introduces a may-transition for the top state.

Finally, the quotienting operation yields a deterministic and complete specification. Hence:
Lemma 5. Modal event-clock specifications are closed under quotient.
Proof. We prove that the may-transition relation δm of S ⊘ S1 is deterministic and complete, that is, for every state of the
quotient, every action a and every clock valuation ν, there is exactly one transition with the guard G such that ν |= G.

This is immediate for state ⊤ of the quotient as by construction the guard associated to each of its outgoing transitions
is true.

Now consider a state of the form (λ, λ1) in the quotient. Suppose first that ν |= H . As S and S1 are deterministic and
complete, there is exactly one transition (λ, g, a, λ′) with ν |= g in S, and one transition (λ1, g, a, λ′

1) with ν |= g1 in S1.
Thus ν |= g ∧ g1 and guards of the form g ∧ g1 are mutually exclusive. In conclusion, ν |= H ∧ g ∧ g1 and ν satisfies exactly
one of the guards in the conclusion of the Rules (tinconsistency), (tmustnot), (tmay1), (tmay2) or (tmust).

Now if ν |= ¬H then ν satisfies one of the guards G in the conclusion of Rules (tI ∧ ¬I1), (tI ∧ I1), (t¬Imust ∧ I1) or
(t¬Imay ∧ I1) as I(λ) ∧ ¬I(λ′), I(λ) ∧ I(λ′) and ¬I(λ) ∧ I(λ′) form a partition of ¬H . �

As for the product operation, the quotient operations in the timed and untimed settings relate via the region construction
as follows.
Proposition 6. For any two mecs S and S1, R(S ⊘ S1) ≼ R(S) ⊘ R(S1).
Proof. To ease notations,we simplywriteλλ1θ (resp.λθ ,λθλ1θ ) instead of ((λ, λ1), θ


(resp. (λ, θ), ((λ, θ), (λ1, θ))). when

it is clear from the context. Also, we adopt the convention of writing I and I1 for the inconsistent states of R(S) and R(S1)
respectively.

Consider the binary relation R between the states of R(S ⊘ S1) and of the states R(S) ⊘ R(S1) defined by:
R = {(λλ1θ, λθλ1θ) | λ ∈ Q , λ1 ∈ Q1, θ ∈ Θ} ∪ {(λλ1θ, ⊤) | λ ∈ Q , λ1 ∈ Q1, θ ∈ Θ}

∪ {(⊥′θ, ⊤) | θ ∈ Θ} ∪ {(⊤θ, ⊤) | θ ∈ Θ} ∪ {(⊥′θ, ⊥′) | θ ∈ Θ}

Note that in the definition of R, we have used the same symbols ⊥
′ and ⊤ to denote the particular locations of S ⊘ S1

and the particular states of R(S) ⊘ R(S1).
We show that R is a modal refinement of ms, in the sense of Definition 3 by proceeding in the following order.

1. We show that inconsistent states in R(S) ⊘ R(S1) are only related to inconsistent states in R(S ⊘ S1).
2. We show that must-transitions in R(S) ⊘ R(S1) are simulated in R(S ⊘ S1).
3. We show that may-transitions in R(S ⊘ S1) are simulated in R(S) ⊘ R(S1).

We now detail the proofs.
1. If λθλ1θ is inconsistent, then there is a must-path to ⊥⊥

′, of length n ≥ 0. We reason by induction over n to show that
this path is simulated by a must-path from λλ1θ to ⊥

′θ ′ (for some θ ′) of length n + 1.
If n = 0, it is then sufficient to show that for any λθλ1θ ∈⊥⊥

′ there is a transition λλ1θ −→ ⊥
′θ ′ (for some region

θ ′). We now analyze the rules that may have been applied.
Rule (I ∧ ¬I1) Then λθ ∈ I and λ1θ ∉ I1, which can be rephrased as θ ∈ I(λ) ∧ ¬I(λ1). Applying Rule (tI ∧ ¬I1) yields

λλ1θ
θ,a

−→ ⊥
′θ↓a, which concludes the proof.

Rule (inconsistency) Then λθ
θ ′′,a
−→ λ′θ ′′

↓a, λ1θ
θ ′′,a
99K λ′

1θ
′′

↓a, λθ ∉ I , and λ1θ ∉ I1; all in all θ ⊆ H . These transitions

are justified by some timed transitions λ
g,a

−→ λ′ and λ1
g1,a
99K λ′

1 in S ⊘ S1 with θ ′′
⊆ g ∧ g1. By Lemma 3, since

by assumption θ ⊆ H , we also have θ ′′
⊆ H . Rule (tinconsistency) does apply and yields λλ1θ

θ ′′,a
−→ ⊥

′θ ′′

↓a, which
concludes the proof.

If n > 0, then Rule (must) is applied at the first step yielding λθλ1θ
θ ′′,a
−→ λ′θ ′′

↓aλ
′

1θ
′′

↓a, with the hypothesis that λθ ∉ I ,

and λ1θ ∉ I1, i.e. θ ∈ H . Moreover, there are transitions λθ
θ ′′,a
−→ λ′θ ′′

↓a and λ1θ
θ ′′,a
−→ λ′

1θ
′′

↓a, which arise from two timed

transitions λ
g,a

−→ λ′ and λ1
g1,a
−→ λ′

1; then θ ′′
⊆ g ∧ g1. By Lemma 3, θ ′′

⊆ H . We can then apply Rule (tmust) to λλ1θ

to get λλ1θ
θ ′′,a
−→ λ′λ′

1θ
′′

↓a, where (λ′λ′

1θ
′′

↓a, λ
′θ ′′

↓aλ
′

1θ
′′

↓a) ∈ R. Since λ′θ ′′

↓aλ
′

1θ
′′

↓a has a path to ⊥⊥
′ of length n − 1, by the

induction hypothesis, λ′λ′

1θ
′′

↓a has a path of length n to ⊥
′θ ′ for some θ ′, and we are done.

2. Without loss of generality, we can assume that λθλ1θ is consistent (by the above), and since we consider a must-
transition from λθλ1θ , only Rule (must) can apply in which case we necessarily assume λθ /∈ I and λ1θ /∈ I1, that

is θ ⊆ H . Moreover, the must-transition from λθλ1θ is of the form λθλ1θ
θ ′′,a
−→ λ′θ ′λ′

1θ
′

1, with λ′θ ′λ′

1θ
′

1 consistent.

Therefore λθ
θ ′′,a
−→ λ′θ ′ and λ1θ

θ ′′,a
−→ λ′

1θ
′

1, which shows that θ ′
= θ ′

1 = θ ′′

↓a. There must exist λ
g,a

−→ λ′ in S and

λ1
g1,a
−→ λ′

1 in S1, such that θ ′′
⊆ g ∧ g1.

Since θ ⊆ H , by Lemma 3, so is θ ′′ which shows that Rule (tmust) applies to λλ1θ to obtain λλ1θ
θ ′′,a
−→ λ′λ′

1θ
′′

↓a, and
we are done.
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3. We now considermay-transitions fromλλ1θ . They can arise fromRules (tI∧I1), (t¬Imust∧I1), (t¬Imay∧I1), (tmustnot),
(tmay1), (tmay2), or (tmust) (as it is also a may-transition). We analyze each case.

Rule (tI ∧ I1) Then the may-transition is λλ1θ
θ ′′,a
99K ⊤θ ′′

↓a where θ ′′
⊆ I(λ) ∧ I(λ1). By Lemma 3, we also have

θ ⊆ I(λ) ∧ I(λ1) so that Rule (I ∧ I1) applies to λθλ1θ , yielding λθλ1θ
θ ′′,a
99K ⊤. This concludes the proof.

Rule (t¬Imust ∧ I1) Then the may-transition is λλ1θ
θ ′′,a
99K ⊤θ ′′

↓a where θ ′′
⊆ ¬I(λ) ∧ I(λ1). By Lemma 3, we also have

θ ⊆ I1(λ). If θ ⊆ ¬I(λ), then Rule (¬Imust ∧ I1) applies to λθλ1θ and we are done. Otherwise θ ⊆ I(λ), and Rule
(I ∧ I1) applies, which concludes as well since ⊤ in R(S) ⊘ R(S1) simulates everything.

Rule (t¬Imay ∧ I1) The reasoning is similar to the previous case.

Rule (tmustnot) Then the may-transition is λλ1θ
θ ′′,a
99K ⊥

′θ ′′

↓a with some λ
g,a
99K λ′ in S and λ1

g1,a λ′

1 in S1, and

θ ′′
⊆ H ∧ g ∧ g1 ∧ I(λ′)↑a ∧¬I(λ′

1)
↑a. Therefore λθ

θ ′′,a
99K λ′θ ′′

↓a, λ1θ
θ ′′,a
 λ′

1θ
′′

↓a, λ
′θ ′′

↓a ∈ I , and λ′

1θ
′′

↓a /∈ I1. If θ /∈ I(λ) and

θ /∈ I(λ1), that is λθ /∈ I and λ1θ /∈ I1, we can apply Rule (mustnot) to λθλ1θ and obtain λθλ1θ
θ ′′,a
99K ⊥

′ to conclude.
Otherwise one of the rules (I ∧ I1), (¬Imust ∧ I1), or (¬Imay ∧ I1) applies, leading λθλ1θ to ⊤ which also concludes
the proof.

Rule (tmay1) Then the may-transition is λλ1θ
θ ′′,a
99K ⊤θ ′′

↓a with λ
g,a
99K in S, λ1

g1,a
99K λ′

1 in S1, and θ ′′
⊆ H ∧ g ∧ g1 ∧ I(λ′

1)
↑a.

In particular, θ ′′

↓a /∈ I(λ1). If θ /∈ I(λ) and θ /∈ I(λ1), we can apply Rule (may1) to λθλ1θ , and we conclude. Otherwise
one of the rules (I ∧ I1), (¬Imust ∧ I1), or (¬Imay ∧ I1) applies, leading λθλ1θ to ⊤ which also concludes the proof.

Rule (tmay2) Then the transition is λλ1θ
θ ′′,a
99K λ′λ′

1θ
′′

↓a. A reasoning very close to the case (tmay1) applies. We leave it to
the reader.

Rule (tmust) Then the transition is λλ1θ
θ ′′,a
−→ λ′λ′

1θ
′′

↓a with λ
g,a

−→ λ′, λ1
g1,a
−→ λ′

1, and θ ′′
⊆ H ∧g ∧g1. Again, if θ /∈ I(λ)

and θ /∈ I(λ1), we can apply Rule (must) to λθλ1θ , yielding λθλ1θ
θ ′′,a
−→ λ′θ ′′

↓aλ
′

1θ
′′

↓a and which concludes. Otherwise,
one of the rules (I∧ I1), (¬Imust ∧ I1), or (¬Imay∧ I1) applies, leading λθλ1θ to⊤which also concludes the proof. �

The correctness of the quotient construction is stated by the following.

Theorem 3 (Correctness of the Quotient). For any mecs S and S1,

S1 ⊗ (S ⊘ S1) ≼ S. (6)

Proof. From Proposition 6, we have R(S ⊘S1) ≼ R(S)⊘R(S1). By Proposition 4, we then deduce R(S1)⊗R(S ⊘S1) ≼ R(S).
Then by Proposition 3, this implies that R(S1 ⊗ (S ⊘ S1)) ≼ R(S). Thus, by definition of ≼, we have S1 ⊗ (S ⊘ S1) ≼ S. �

Corollary 6 (Properties of the Quotient). For any mecs S, S1 and S2,

S2 ≼ S ⊘ S1 =⇒ S1 ⊗ S2 ≼ S. (7)

For any mecs S, S1, S2, and any eca C2,

C2 |= S ⊘ S1 =⇒ ∀C1. [C1 |= S1, C1 ⊗ C2 |= S] (8)

Proof. ByDefinition 11,S2 ≼ S⊘S1 if and only if R(S2) ≼ R(S⊘S1). By Proposition 6, this implies that R(S2) ≼ R(S)⊘R(S1).
The latter is equivalent to R(S1)⊗R(S2) ≼ R(S) by Eq. (2), or equivalently R(S1 ⊗S2) ≼ R(S) by Proposition 3, which finally
is equivalent to S1 ⊗ S2 ≼ S by Definition 11.

Suppose thatC2 |= S ⊘S1, by Corollary 2, this is equivalent toC∗

2 ≼ S ⊘S1. Then by Proposition 6, we haveC∗

2 ⊗S1 ≼ S.
Similarly if C1 |= S1 then C∗

1 ≼ S1. By Theorem 2 we then have C∗

1 ⊗ C∗

2 ≼ S1 ⊗ C∗

2 . By transitivity of ≼ we deduce that
C∗

1 ⊗ C∗

2 ≼ S, that is C1 ⊗ C2 |= S. �

Example 9. We now reconsider Example 8. Themecs G⊘ (Cl⊗Acc) is represented in Fig. 6. Not surprisingly, the state c/11′

is inconsistent. This is because, in the state 11′ in Fig. 5(a), the resource is granted for 4 units of time whereas in the state c
of the desired behavior G in Fig. 5(b), it must be granted for 5 units of time. To avoid this inconsistency, the transition ‘‘extra’’
from state b/10′ to c/11′ will not be implemented in anymodel of G⊘ (Cl⊗Acc). Thus, the protocol converter will disallow
the privileged mode.

Consider themecs in Fig. 7, this counter-example shows that the inverse refinement of Proposition 6 is not true in general:
for the twomecs S and S1 of Fig. 7, we have R(S ⊘S1) � R(S)⊘R(S1). As a consequence, S ⊘S1 is not the maximal solution
SX of the equation S1 ⊗ SX ≼ S.

Observe that S1 in Fig. 7(b) has a very special form: by letting time elapse from λ1, the transition leading to a locally
inconsistent state may not be firable. By imposing I-stability (see page 1217), our quotient construction is the ≼-maximal
solution of the equation S1 ⊗ X ≼ S, hence it is complete in the following sense.
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Fig. 6. The quotient G ⊘ (Cl ⊗ Acc).

(a) The mecs S. (b) The mecs S1 . (c) S ⊘ S1 . (d) R(S) ⊘ R(S1). (e) R(S ⊘ S1).

Fig. 7. Example showing that R(S ⊘ S1) � R(S) ⊘ R(S1) in general.

Theorem 4 (Completeness of the Quotient Construction). For any mecs S, S1 and S2 such that S and S1 are I-stable,

S1 ⊗ S2 ≼ S =⇒ S2 ≼ S ⊘ S1 (9)

The rest of the section is dedicated to the proof of Theorem 4. We fix two I-stable mecs S and S1.
We first need the following lemma that expresseswhat is gained by assuming I-stablemecs; notations are inherited from

Proposition 6.

Lemma 6. For any region θ ∈ Θ , θ ∈ I(λλ1) if, and only if, λθλ1θ is globally inconsistent in R(S ⊘ S1).

Proof. Notice that the direction ⇐) always holds and is already proved in Point 1 of Proposition 6. To prove the reverse
direction ⇒) we need the I-stability assumption. Let θ ∈ I(λλ1). Then there exists a must-path from λλ1θ to ⊥

′θ ′ for some
θ ′ and this must-path has length at least 1 according to our way of constructing the quotient. We show by induction over
the length k ≥ 1 of this path that there exists a must-path of length k − 1 from λθλ1θ to y′.

If k = 1, that is λλ1θ
θ ′′,a
−→ ⊥

′θ ′′

↓a for some θ ′′
∈ τ(θ), we must consider two cases depending on which of the

Rules (tI ∧ ¬I1) and (tinconsistency) has been applied.

Rule (tI ∧ ¬I1) Then θ ′′
∈ I(λ) ∧ ¬I(λ1) ∧ τ(θ). By definition of I(λ), θ ′′

∈ I(λ) implies θ ∈ I(λ). Moreover, because S1
is I-stable, θ ′′ /∈ I(λ1) implies θ /∈ I(λ1). Therefore λθ ∈ I and λ1θ /∈ I1 and we can apply Rule (I ∧ ¬I1), yielding
λθλ1θ ∈ y′. Which concludes the proof.

Rule (tinconsistency) Then θ ′′
∈ H ∧ g ∧ g1. By I-stability of both S and S1, θ ′′

∈ H guarantees that θ ∈ H as well; therefore
λθ /∈ I and λ1θ /∈ I1. Now, one easily show that Rule (inconsistency) applies to λθλ1θ so that λθλ1θ ∈ y, which
concludes the proof.

Otherwise the must-path from λλ1θ to ⊥
′θ ′ is k > 1. Necessarily this path is justified by the application of Rule (tmust)

in its first step: λλ1θ
θ ′′,a
−→ λ′λ′

1θ
′′

↓a for some θ ′′
∈ τ(θ)∧H∧g∧g1∧¬I(λ′)↑a∧¬I(λ′

1)
↑a. Again, by I-stability of S and S1, we

infer that θ ∈ H so that λθ /∈ I and λ1θ /∈ I1, and because θ ′′
∈ ¬I(λ′)↑a ∧ ¬I(λ′

1)
↑a, the reached states λ′θ ′′

↓a and λ′

1θ
′′

↓a are

also consistent. Rule (mustapplies) and yields λθλ1θ
θ ′′,a
−→ λ′θ ′′

↓aλ
′

1θ
′′

↓a. Because by assumption there is a must-path of length
k − 1 from λ′λ′

1θ
′′

↓a to ⊥
′θ ′, we use the induction hypothesis to exhibit a must-path of length k − 2 from λ′θ ′′

↓aλ
′

1θ
′′

↓a to y′

which together with the step λθλ1θ
θ ′′,a
−→ λ′θ ′′

↓aλ
′

1θ
′′

↓a shows a must-path of length (k − 1) from λθλ1θ to y′. This concludes
the proof of the induction step. �

The exact characterization of inconsistent states of the quotient given by Lemma 6 is one of the key points to prove the
following.

Proposition 7. For any two I-stable mecs S and S1, R(S) ⊘ R(S1) ≼ R(S ⊘ S1).
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Before establishing Proposition 7, we explain how to exploit it to derive the result of Theorem 4: Assume S1 ⊗ S2 ≼ S.
Then by Definition 11, R(S1 ⊗ S2) ≼ R(S). According to Proposition 3, this is equivalent to R(S1) ⊗ R(S2) ≼ R(S). By
Proposition 4 Eq. (2), this is equivalent to R(S2) ≼ R(S) ⊘ R(S1). Thanks to the to-be-proved Proposition 7 above and
Proposition 6, we know that R(S) ⊘ R(S1) ≡ R(S ⊘ S1). By Definition 11, from R(S2) ≼ R(S ⊘ S1), we conclude that
S2 ≼ S ⊘ S1.

We now show Proposition 7 by exhibiting a modal refinement of thems R(S ⊘ S1) by thems R(S) ⊘ R(S1). Consider the
following binary relation R between the states of R(S) ⊘ R(S1) and the states of R(S ⊘ S1):

R = {(λθλ1θ, λλ1θ) | λ ∈ Q , λ1 ∈ Q1, θ ∈ Θ} ∪ {(⊤, ⊤θ) | θ ∈ Θ} ∪ {(⊥′, ⊥′θ) | θ ∈ Θ}

According to Definition 3, R is a modal refinement whenever the following properties hold.
1. Inconsistent states in R(S ⊘ S1) are only related to inconsistent states in R(S) ⊘ R(S1).
2. Must-transitions in R(S ⊘ S1) are simulated R(S) ⊘ R(S1).
3. May-transitions in R(S) ⊘ R(S1) are simulated in R(S ⊘ S1).

Point 1 is immediate by Lemma 6.

Regarding Point 2, assume a must-transition λλ1θ
θ ′′,a
−→ λ′λ′

1θ
′′

↓a in R(S ⊘ S1), where θ ′′
∈ τ(θ). As in the proof of

Proposition 6, we can assume without loss of generality that λλ1θ is consistent – otherwise apply Point 1. This must-
transition arises from applying Rule (tmust) which requires that θ ′′

∈ H ∧ g ∧ g1 ∧ ¬I(λ′)↑a ∧ ¬I(λ′

1)
↑a. By I-stability, we

also have θ ∈ H and henceforth, λθ and λ1θ are consistent, as the states λ′θ ′′

↓a and λ′

1θ
′′

↓a since θ ′′
∈ ¬I(λ′)↑a ∧ ¬I(λ′

1)
↑a.

We can therefore apply Rule (must) to λθλ1θ , to obtain the good candidate must-transition λθλ1θ
θ ′′,a
−→ λ′θ ′′

↓aλ
′

1θ
′′

↓a.
We finally focus onmay-transitions in R(S)⊘R(S1) and simulate them in R(S⊘S1). The proof is routine with a recurrent

use of the I-stability assumption to ensure that if a time-successor θ ′′ of θ is inH , so is θ ; we omit this tedious but easy proof.
This concludes the proof of Proposition 7.

Notice that our direct construction for the quotient has nice properties: it is in essence based on a cartesian product,
hence it yields a polynomial-time algorithm, as opposed to the exponential blow-up caused by the original definition relying
on an indirect construction via the region graphs. Additionally, remark that quotienting mecs, while abstracting from a
particular choice of implementations, amounts to quotienting logical statements denoted by the verymecs. In the untimed
setting, the quotient operation is a particular case of the exponential construction introduced in [27] for arbitrary mu-
calculus statements. However, in our setting we can take advantage of the restricted fragment of the logic captured by the
modal specifications, namely the conjunctive nu-calculus as shown in [14], in order to design an ad hoc polynomial-time
construction. The present contribution suggests a similar situation for a timed extension of the mu-calculus.

4. Discussion

In this sectionwe address several directions for short andmedium term futurework.We first complete a discussion about
the complexity of the constructions we have considered. Then we analyze the impact of the I-stability assumption and we
consider two extensions of the presented work that overcome some of the current limitations: we first consider the support
of local alphabets; modal event-clock specifications are no longer supposed to be defined over a unique alphabet global to
the system, but on local alphabets. Secondly, we consider specifications that are more expressive than modal event-clock
specifications and investigate how to generalize the theory to specifications with arbitrary resets.

4.1. Complexity issues

For each of the three operations we have considered, namely the greatest lower bound (Section 3.1), the product
(Section 3.2), and the quotient (Section 3.3), we established polytime constructions in the size of the state space. Actually,
a closer look at this result exhibits a worst-case exponential blow-up in the number of transitions: the subtlety lies in the
way the formulas of the form I(λ), which denote the sets of inconsistent regions, are handled. In particular, the quotient
construction raises up the need to compute guards of the form I(λ′)↑a, as in, e.g. Rule (tmustnot). This computation is
polytime whenever the set I(λ) is given in a disjunctive normal form (dnf ). Maintaining formulas I(λ) in dnf has a cost
as we explain in detail here.

The direct computation of the formulas I(−)’s yields formulas in dnf by construction (see Eq. (1)), provided the guards of
themecs are conjuncts of atomic formulas. This is an issue for the quotient construction as discussed below. Notice that for
the cases of the greatest lower bound and the product, computing the formulas I(−) from scratch can be avoided: indeed,
one easily verifies that for every states λ1 and λ2 of some mecs S1 and S2 respectively, the formula I((λ1, λ2)) is equal to
I(λ1) ∨ I(λ2), where (λ1, λ2) is the compound state in either S1 ∧ S2 or S1 ⊗ S2. The dnf assumption therefore propagates
for free in these cases.

Regarding the quotient construction, as stated by Lemma6, there is no obvious and cheapway to obtain the new formulas
I(−) from the local formulas; they therefore need being computed from scratch from Eq. (1). However, the guards of the
resulting mecs, as described by Rules (tI ∧ I1)-(tmust), are not conjuncts of atomic formulas anymore (as opposed to the
cases of the greatest lower bound and the product). In order to run the algorithm yielded by Eq. (1), one must first convert
the guards into dnf, and this is where worst-case exponential blow-up may occur.
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4.2. About the I-stability assumption

The efficient quotient construction described by the Rules (tI ∧ I1)-(tmust) is a key aspect of the theory. As explained
by Theorem 4, this correct construction (Theorem 3) is exact as long as the involved mecs are I-stable. Ensuring I-stability
is therefore an issue, and it is important to determine its closure properties with respect to operators we use over mecs.
Concerning the binary operations of greatest lower bound (Section 3.1) and product (Section 3.2), it is immediate to see
that I-stability is preserved. Indeed, whenever S1 and S2 are I-stable, so are S1 ∧ S2 and S1 ⊗ S2. Indeed, since the set of
inconsistent regions of a compound state (λ1, λ2) is the union of the sets of the inconsistent regions for each the local states,
assuming I(λ1) and I(λ2) closed under time elapsing, entails that it is also the case for I((λ1, λ2)). Regarding the quotient,
the situation is different as exemplified by the I-stablemecs Cl⊗Acc and G of Fig. 5(b), whose quotient in Fig. 6 is not I-stable
because I(c/11′) = (4 < xget < 5) is not closed under time elapsing.

This is unfortunate in our attempt to developing an adequate theory for the incremental design of component-based
systems, as iterative quotienting is central. An interesting perspective would be to find away to ‘‘I-stabilize’’mecs by under-
approximation, say by defining and computing efficiently, if it exists, the greatest I-stable refinement. Importantly, this
under-approximation would need being compared to the under-approximation obtained by quotienting non-I-stablemecs
(see Theorem 3).

4.3. Dissimilar alphabets

In Section 2 we fixed a finite set Σ of actions and then supposed that every modal event-clock specification was
defined over Σ . This assumption can be unrealistic when designing a system. Indeed large systems are composed of many
subsystems, each of them described via an interface possessing its own local alphabet of actions. Moreover it is usual to
enrich a refined specification by enlarging its alphabet, entailing ultimately implementations defined over a superset of
the actions of their initial interface. In order to handle these two scenarios we develop an approach relying on an alphabet
equalization operation in which modalities play a central role.

Two natural kinds of alphabet equalization operations formecs can be defined:weak and strong extensionswhich consist
in adding to every state may- or must-self loops, respectively, labeled by the extra actions.

Definition 13 (Weak and Strong Extensions). Let S = (Q⊥⊥, λ0, δm, δM) be a mecs over the alphabet Σ and let Σ ′
⊇ Σ:

1. The weak extension of S to Σ ′ is the mecs S⇑Σ ′ = (Q⊥⊥, λ0, δm′, δM) such that δm
⊆ δm′ and for all a ∈ Σ ′

\ Σ and
q ∈ Q⊥⊥, (q, true, a, q) ∈ δm′;

2. The strong extension of S toΣ ′ is themecs S↑Σ ′ = (Q⊥⊥, λ0, δm′, δM ′
) such that δm

⊆ δm′, δM
⊆ δM ′ and for all a ∈ Σ ′

\Σ

and q ∈ Q⊥⊥, (q, true, a, q) ∈ δm′
∩ δM ′.

Weak and strong model/refinement relations, allowing for alphabet enlargement through refinement, can now be
defined:

Definition 14 (Weak and Strong Model/Refinement Relations). Let S be a mecs over Σ and C an eca over Σ ′ with Σ ′
⊇ Σ:

1. C is a weak implementation of S, written C |=w S, if R(C) |= R(S⇑Σ ′);
2. C is a strong implementation of S, written C |=s S, if R(C) |= R(S↑Σ ′).

Now let S1 and S2 be mecs over Σ1 and Σ2 respectively with Σ1 ⊇ Σ2:

1. S1 is a weak refinement of S2, written S1 ≼w S2, if R(S1) ≼ R(S⇑Σ1);
2. S1 is a strong refinement of S2, written S1 ≼s S2, if R(S1) ≼ R(S↑Σ1).

Next we define conjunction, product and quotient for mecs over dissimilar alphabets. These operations are performed
by, first, equalizing alphabets and then, applying the operators already defined for the case of equal alphabets. The first step
requires to use either weak or strong extension depending on the operation. Indeed alphabet equalization should be neutral;
it should not constrainwhat other specificationsmaywant to require regarding these extra actions. For conjunction, observe
that, by Section 3.1:

q1
g,a
 λ′

∧ q2
true,a
99K q2 ⇒ (q1, q2)

g,a
 (λ′, q2)

For product, following Section 3.2:

q1
g,a
 λ′

⊗ q2
true,a
−→ q2 ⇒ (q1, q2)

g,a
 (λ′, q2)

These observations intuitively reveal our solution: for conjunction, weak extension must be used for alphabet equalization;
whereas strong extension is needed for product.
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Fig. 8. A desired global behavior not expressible by mecs.

Definition 15 (Operations). Let S, S1 and S2 be mecs respectively defined over Σ , Σ1 and Σ2:

S1 ∧ S2 = S1⇑(Σ1∪Σ2) ∧ S2⇑(Σ1∪Σ2)

S1 ⊗ S2 = S1↑(Σ1∪Σ2) ⊗ S2↑(Σ1∪Σ2)

S ⊘ S1 = S⇑(Σ∪Σ1) ⊘ S1↑(Σ∪Σ1)

The operations enjoy the following properties which generalize the results presented in Sections 2 and 3:

Proposition 8. 1. Weak and strong implementation / refinement relations are related as follows:

|=s ⊆ |=w and ≼s ⊆ ≼w

2. Weak and strong modal refinements are both sound and complete:

S1 ≼w S2 ⇔ {C | C |=w S1} ⊆ {C | C |=w S2}

S1 ≼s S2 ⇔ {C | C |=s S1} ⊆ {C | C |=s S2}

3. For any mecs S1, S2 respectively defined over Σ1 and Σ2 and any eca C defined over Σ ⊇ Σ1 ∪ Σ2:

C |=w S1 ∧ S2 ⇔ C |=w S1 and C |=w S2

4. For any mecs S′

1, S
′

2 respectively defined over Σ ′

1 and Σ ′

2, any S1 and any eca C1 defined over Σ1 ⊇ Σ ′

1 and any S2 and any
eca C2 defined over Σ2 ⊇ Σ ′

2

(S1 ≼s S′

1 and S2 ≼s S′

2) =⇒ S1 ⊗ S2 ≼s S′

1 ⊗ S′

2; and
(C1 |=s S′

1 and C2 |=s S′

2) =⇒ C1 ⊗ C2 |=s S′

1 ⊗ S′

2.

These implications are false if weak refinement or implementation are used instead of the strong forms.
5. Let S, S1 and S2 be mecs respectively defined over Σ , Σ1 and Σ2 such that Σ2 ⊇ Σ ⊇ Σ1:

S2 ≼s S ⊘ S1 =⇒ S1 ⊗ S2 ≼s S.

Now let C2 be an eca defined over Σ2:

C2 |=s S ⊘ S1 =⇒ ∀C1.[C1 |=s S1 ⇒ C1 ⊗ C2 |=s S].

4.4. Beyond event-clock automata

One may wonder why we restricted our framework to event-clock timed automata, and did not deal with general
timed automata. Surprisingly, we do not exploit the determinizability of event-clock automata, even if we require modal
specifications to be deterministic: indeed starting fromdeterministicmodal event-clock specifications, one can show that all
operations preserve determinacy.We are rather interested in the very specific treatment of resets for event-clock automata.

Example 10. A modified version of the desired global behavior for our running example is represented on Fig. 8. This
specification ensures that the grant will come at most 2 time units after the first request to the resource. Several requests
can be made because of the may-loop on state b, and thus modeling this behavior by amecswhere clocks are always resets
on their corresponding action is not possible.

In order to go beyond the class of event-clock timed automata, we need to clarify what the meaning of timed modal
specifications should be. In particular when we build a quotient of two specifications, we should decide on what this
operation means, and hence what we allow for the specifications. In the context of event-recording modal specifications,
the alphabet determines the clock set, hence there is no doubt that all specifications share a common set of clocks. Outside
of this class, it is no longer clear what the requirements for the sets of clocks should be. When building the product of
two specifications, it is natural to consider the disjoint union of the sets of clocks (of both specifications). This could be
simplified in the case of event-clock timed modal specifications since the action determines the clock to be reset. Hence,
when synchronizing two specifications on an action, exactly the same clock is reset in both specifications.
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We choose here to decide that when quotienting a timed modal specification S by some other S1, the obtained
specification also has as its set of clocks the disjoint union of sets of clocks of the two components. An alternative would be
to require inclusion of the set of clocks of S1 in the set of clocks of S.

Let us present the generalization of the theory presented so far for mecs. We detail the operations of greatest lower
bound, product and quotient for timed modal specification. Let S1 = (Q⊥⊥

1 , λ0
1, X1, δ

m
1 , δM

1 ) and S2 = (Q⊥⊥

2 , λ0
2, X2, δ

m
2 , δM

2 )

be two modal timed automata over the same alphabet1 Σ . The conjunction S1 ∧ S2, the product S1 ⊗ S2 and the quotient
S1 ⊘ S2, are timed modal specifications over the same alphabet Σ and with set of clocks X1 ∪ X2.

Definition 16 (Timed Modal Specification). A timed modal specification (tms) S is a tuple (Q⊥⊥, λ0, X, δm, δM) where

• Q⊥⊥
:= Q ∪ ⊥⊥ is a finite set of locations, with ⊥⊥ ∩ Q = ∅, and the initial state is λ0

∈ Q⊥⊥.
• X is a finite set of clocks.
• δM

⊆ δm
⊆ Q × ξ [X] × Σ × 2X

× Q⊥⊥ are finite sets of respectivelymust- andmay-transitions, δm being deterministic.

Refinement. As we did in the case of mecs, we define the refinement relation for timed modal specifications only if they
share the same set of clocks. Thus, in order to be able to compare two arbitrary tms S1 and S2 over X1 and X2 respectively,
we first need to augment their sets of clocks to X1 ∪X2. Given S a timedmodal specification over X, and X′ a set of clocks,
we denote by SX′

the specification obtained by setting the set of clocks of S to X ∪ X′. For S1 and S2 two timed modal
specifications, over X1 and X2 respectively, we say that S1 refines S2, denoted S1 ≼ S2 if and only if R(SX2

1 ) ≼ R(SX1
2 ).

Operations. As for modal specifications, we explain here how to compute the greatest lower bound, the product and the
quotient of two timed modal specifications. In all constructions, the resulting specification is over the same alphabet and
with set of clocks the disjoint union of the sets of clocks of the two components. The rules are derived from the ones for
modal event-clock specifications, the only difference resides in the resets (whichwere implicit formecs) where the resulting
reset is the union of reset sets.

As an example, we detail below one rule for each operation, for the greatest lower bound, the product, and the quotient,
respectively.

λ1
g1,a,Y1
−→ λ′

1 and λ2
g2,a,Y2
99K λ′

2

(λ1, λ2)
g1∧g2,a,Y1∪Y2

−→ (λ′

1, λ
′

2)

(TGlb2)
λ1

g1,a,Y1
−→ λ′

1 and λ2
g2,a,Y2
99K λ′

2

(λ1, λ2)
g1∧g2,a,Y1∪Y2
99K (λ′

1, λ
′

2)

(TProd2)
λ

g,a,Y
99K and λ1

g1,a,Y1
99K λ′

1

(λ, λ1)
H∧g∧g1∧I(λ′

1)[0/xa],a,Y∪Y1
99K ⊤

(Tmay1)

Asmecs equippedwith their operations, general deterministic timedmodal specifications enjoy a series of nice properties
making them a good candidate for a theory of interfaces for real-time systems.

Proposition 9. For any timed modal specification S, S1 and S2 over sets of clocks X, X1 and X2 respectively:
1. via the region construction, operators are equivalent to their untimed version

R(S1 ∧ S2) ≡ R(SX2
1 ) ∧ R(SX1

2 ) R(S1 ⊗ S2) ≡ R(SX2
1 ) ⊗ R(SX1

2 ) R(S ⊘ S1) ≼ R(SX1) ⊘ R(SX
1 )

2. property of the greatest lower bound: S1 ∧ S2 is the greatest lower bound of SX2
1 and S

X1
2

3. property of the product: S1 ≼ S2 and S′

1 ≼ S′

2 implies S1 ⊗ S′

1 ≼ S2 ⊗ S′

2
4. property of the quotient: SX∪X1

2 ≼ (S ⊘ S1)
X2 =⇒ (S1 ⊗ S2)

X
≼ SX1∪X2

Comparison with modal event-clock specifications. At a first glance, the way we propose to deal with general timed modal
specifications is not a conservative extension of the theory we developed for the particular case of modal event-clock
specifications. Still, we explain here how mecs can be naturally embedded into tms, and how the operations on mecs can
be seen as operations on general tms as just defined above. Trivially, any modal event-clock specification S on alphabet Σ

can be seen as a timed modal specification S̃ with set of clocks XΣ (formed of one clock xa for each action a) such that each
transition g,a

 in S is transformed into a transition g,a,{xa}
 in S̃. Of course the reverse transformation, from tms tomecs, is only

possible if each action is paired with a clock (or possibly a set of clocks—as we will use later) which is reset exactly when
the action takes place.

Let us now detail the embedding of the operations onmecs into operations on timed modal specifications. The apparent
difference between mecs and tms for all operations is that for tms we require the set of clocks to be disjoint, which is not
the case for mecs. However computing the greatest lower bound, the product or the quotient of two mecs can be seen
as a particular case of the same operations on tms by letting: in Si the clocks associated with actions are annotated by
superscript i. When building the greatest lower bound, the product or the quotient as in tms, one obtains a tms over set of
clocks X1

Σ ∪ X2
Σ . However, this resulting tms enjoys the property that whenever action a labels a transition, the reset set

is exactly {x1a, x
2
a}. Renaming these two clocks into a common clock xa we recover a tms which can be seen as a mecs. Note

that this series of operations is equivalent to taking the greatest lower bound, the product or the quotient directly onmecs.
In particular, when equating clocks x1a and x2a to xa, regarding guards, it corresponds to taking the conjunction of guards on
the same clock, which is what is done for mecs.

1 We assume here that all timed modal specifications are defined over the same global alphabet Σ . The treatment of dissimilar alphabets follows the
same line as for mecs in Section 4.3.
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Further possible improvements. A different point of view would consist in favoring the semantics of our models rather than
the syntax. It would thus make sense to consider the refinement of timed modal specifications as a timed alternating
simulation between the two specifications, without requiring that they share a common set of clocks. This view point
has been explored for input/output timed automata by David et al. [28] and we plan to see how far the methods they
develop for their model extend to timed modal automata. Doing this, we would be able to quotient any pair of timed modal
specifications, getting rid of requirements over their respective sets of clocks.

5. Related work

Regarding a theory of interfaces, we compare our approach with the following settings: Interface automata of [5], timed
interfaces of [12], and a timed extension of modal specifications of [29].

Interface automata. In interface automata [5], an interface is represented by an input/output automaton [30], i.e., an
automatonwhose transitions are typedwith input and output rather thanmust andmaymodalities. The semantics of such an
automaton is given by a two-player game: the input player represents the environment, and the output player represents the
component itself. As explained in [10], interfaces andmodalities are in essence orthogonal to each other.Moreover, interface
automata do not encompass any notion of model, and thus neither the model relation nor the consistency, because one
cannot distinguish between interfaces and components. Alternatively, properties of interfaces are described in game-based
logics, e.g., ATL [31], with a high-cost complexity. Refinement between interface automata corresponds to the alternating
refinement relation between games [4], i.e., an interface refines another one if its environment is more permissive whereas
its component is more restrictive. As for modal automata, the quotient operator is defined for the deterministic case
only [32]. Moreover, shared refinement is defined in an ad hoc manner [6] for the very particular and restricted class of
synchronous interfaces [33]. Composition of interface automata differs from the one over modal specifications. Indeed,
in interface automata, the game-based approach offers an optimistic treatment of composition: two interfaces can be
composed if there exists at least one environment in which they can interact together in a safe way. In [7], Larsen et al.
proposedmodal interfaces that are modal specifications composed in a game-based manner. This work suggests that modal
interfaces subsume interface automata.

There are many other works that study interface theories and component-based design. Among them, one find a series
of very practical works that do not study quotient and conjunction, but rather focus on richer composition operations and
specificmodels of computation for interconnection and software design [34–36].While our theory is certainlymore general,
it would be of interest to learn from those models in order to generalize our composition operation.

In a series of [37,38], Cattani andWinskel have proposed a categorial axiomatic for bisimulation that is a congruence for
general process languages such as CCS. Since our notion of refinement share similarities with classical notions of simulation
and bisimulation, it could be of interest to see whether modal automata can be captured by Cattani’s framework. This may
enrich the refinement relation with new preservation properties.

Timed interfaces. In [12], de Alfaro et al. proposed timed interfaceswhich extend timed automata just as interface automata
extend automata. The syntax of a timed interface is thus similar to the one of a timed input/output automaton [39], but the
semantics is given by a game. The composition operator defined for timed interfaces allows to capture the timing dimension
between interfaces: ‘‘what are the temporal ordering constraints on communication events between components?’’.
Compared to timed modal specifications, the work in [12] lacks a notion of implementation and of refinement; Moreover,
neither shared refinement nor quotient are studied.

In a very recent work [28], David et al. proposed a new version of timed interfaces. The major differences in comparison
with the results in [12] are (1) a clear definition of the concept of implementation, (2) the definition of shared refinement
and quotient operations, (3) the definition of a game-based refinement operator, which extends the one proposed in [40],
and (4) an implementation within the UPPAAL-TIGA toolset [41]. In [28], timed interfaces are assumed to be deterministic
and input-enabled. This makes it impossible to reach an immediate error state, where a component proposes an output that
cannot be captured by the other component. Input-enabledness shall not be seen as a way to avoid error states. Indeed,
such error states can be designated by the designer as states which do not warrant desirable temporal properties. It is worth
mentioning that it is much easier to define a notion of implementation for timed interfaces than for untimed interfaces.
Indeed, one can simply distinguish implementations from specifications by adding constraints on their timing behaviors. As
an example, in [28], the authors assume that an implementation is a specification where outputs are urgent and where the
environment should not be responsible for the progress of time.

Timed modal specifications differ from timed input/output automata already in nature since they consider orthogonal
features: input/output or may/must modalities. In comparison to [28], our work (1) allows one to combine and
compare specifications that share clock variables, (2) is based on region and not on the continuous-time semantics and
(3) encompasses the possibility of dissimilar alphabets.

Timed extension ofmodal specifications. A timed extension ofmodal specifications appeared in [29] in a process algebra style.
The formalism proposed is a variant of CCS whose semantics relies on the configuration graph rather than on the region
graph, as done here. No logical characterization is developed, nor any notion of model relation (satisfaction) or consistency
(satisfiability). Moreover, the quotient has not been considered at all.
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6. Conclusion and future work

Modal specifications offer a well-adapted algebraic framework for compositional reasoning on component-based
systems, that enables incremental design aswell as reuse of components. In this paper, we have presented a timed extension
of modal specifications using event-clock timed automata. All essential features expected from a theory of interface (such
as refinement, conjunction, satisfiability, product, and quotient) are fully addressed. They are all efficiently treated in this
framework except for refinement which relies on the region graph construction. A symbolic definition of this relation that
is sound, albeit possibly not complete, can be noted as an open issue.

In addition to implementation, several research directions still need to be investigated in the future.We aim at continuing
the work initiated in Section 4.4 and study timed modal specifications in a broader framework than the one of mecs, since
event-clock automata are strictly less expressive than timed automata. Another topic concerns a logical characterization of
modal event-clock specifications (or evenmore general timedmodal specifications), in the spirit of [14] who established the
correspondence between simple modal specifications and conjunctive nu-calculus. Such a characterization brings insight
into the expressiveness of the specification formalism. One should also introduce stochastic aspects in the model. Finally,
in [42,3], one has proposed a model which combines advantages of both interface automata and modal specifications. One
should follow a similar direction and combine our model with the one of timed interfaces proposed in [28].
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