
A Compositional Approach on Modal

Specifications for Timed Systems⋆

Nathalie Bertrand1, Axel Legay1,
Sophie Pinchinat2, and Jean-Baptiste Raclet3

1 INRIA Rennes, France
2 IRISA & Université Rennes 1, France

3 INRIA Rhône-Alpes, France

Abstract. On the one hand, modal specifications are classic, conve-
nient, and expressive mathematical objects to represent interfaces of
component-based systems. On the other hand, time is a crucial aspect of
systems for practical applications, e.g. in the area of embedded systems.
And yet, only few results exist on the design of timed component-based
systems. In this paper, we propose a timed extension of modal specifica-
tions, together with fundamental operations (conjunction, product, and
quotient) that enable to reason in a compositional way about timed sys-
tem. The specifications are given as modal event-clock automata, where
clock resets are easy to handle. We develop an entire theory that pro-
motes efficient incremental design techniques.

1 Introduction

Nowadays, systems are tremendously big and complex, resulting from the assem-
bling of several components. These many components are in general designed by
teams, working independently but with a common agreement on what the inter-
face of each component should be. As a consequence, mathematical foundations
that allow to reason at the abstract level of interfaces, in order to infer properties
of the global implementation, and to design or to advisedly (re)use components
is a very active research area, known as compositional reasoning [16]. In a logi-
cal interpretation, interfaces are specifications and components that implement
an interface are understood as models. Aiming at practical applications as the
final goal, the software engineering point of view naturally leads to the following
requirements for a good theory of interfaces.

1. Satisfiability/Consistency and Satisfaction. It should be decidable whether
a specification admits a model, and whether a given component implements
a given interface. Moreover, for the synthesis of components to be effective,
satisfiable interfaces should always have finitely presentable models.

⋆ This work was funded by the European project COMBEST, IST-STREP 215543.

2. Refinement and shared refinement. Refinement of specifications [20, 23] ex-
presses inclusion of sets of models, and therefore allows to compare interfaces.
Related to this implication-like concept, the intersection, or greatest lower
bound, is an optimal interface refining two given interfaces.

3. Compositionality of the abstraction. The interface theory should also provide
a combination operator on interfaces, reflecting the standard composition of
models by, e.g. parallel product.

4. Quotient. Last but not least, a quotienting operation, dual to composition
is crucial to perform incremental design. Intuitively, the quotient enables to
describe a part of a global specification assuming another part is already
realized by some component. Together with the composition ⊗ the quotient
operator ⊘ enjoys the following fundamental property at the component
level:

C2 |= S ⊘ S1 ⇔ ∀C1 [C1 |= S1 ⇒ C1 ⊗ C2 |= S] (⋆)

where S,Si are interfaces, C, Ci components, and |= is the satisfaction rela-
tion.

Building good interface theories is the subject of intensive studies which have
led to theories based on models such as interface automata [12, 14], modal au-
tomata or specifications [19, 22–24, 5], and their respective timed extension [13,
9]. Modal specifications are deterministic automata equipped with transitions of
the following two types: may and must . The components that implement such
interfaces are deterministic labeled transition systems; an alternative language-
based semantics can therefore be considered, as presented in [22, 23]. Informally,
a must transition is available in every component that implements the modal
specification, while a may transition needs not to be. Modal specifications are
interpreted as logical specifications matching the conjunctive nu-calculus frag-
ment of the mu-calculus [15]. As a corollary, but also proved directly in [22],
satisfaction and consistency of modal specifications are decidable, and the finite
model property holds. Refinement between modal specifications coincides with
a standard notion of alternating simulation. Since components can be seen as
specifications where all transitions are typed must (all possible implementation
choices have been made), satisfaction is also expressed via alternating simulation.
Shared refinement is effectively computed via a product-like construction. Com-
bination of modal specifications, handling synchronization products à la Arnold
and Nivat [6], and the dual quotient combinators can be efficiently handled in
this setting [23].

Recently, a timed extension of the theory of modal specifications has been in-
troduced [9], motivated by the fact that time can be a crucial parameter in prac-
tice, e.g. in embedded–system applications. In this piece of work, components
are timed automata as defined in [1], and naturally, an effective and expressive
region-based semantics allows to combine modalities and timing constraints.

2

In this paper, we build on this preliminary paper and develop a complete
compositional approach for modal specifications of timed systems. This frame-
work favors methodologies for an incremental design process: Assume a global
system implementing specification S has to be synthesized, and assume a com-
ponent implements interface S1. Computing S ⊘ S1 and synthesizing a model
of S ⊘ S1 yields a component that, in ⊗-combination with the component for
S1, will yield a model for the global interface S, thanks to property (⋆). As a
consequence, low complexity algorithms are needed for computing product and
quotient, as well as for the satisfiability decision procedure.

The synchronous product of timed objects requires a tight control on clocks
[1], and so should its dual quotient. Actually, developing the theory in the gen-
eral framework where components can reset their clocks in an arbitrary manner
is a difficult question. Indeed, computing the resets of clocks of a product or of
a quotient depends on how the control of clocks is distributed among the com-
ponents. This information has to be provided a priori, which requires an extra
formalism. We therefore restrict the presentation to the class of components de-
finable by event-clock automata [2]: in these timed automata, resets are fully
determined by the actions. Interfaces whose models are event-clock automata
are called modal event-clock specifications (mecs).

Inheriting from the region-based semantics of timed modal specifications [9],
we study the satisfiability as well as the consistency problems for mecs. Satis-
fiability is PSPACE-complete, hence no harder than traditional decision prob-
lems in the class of timed automata. Refinement serves as a theoretical basis to
develop the product and the quotient of mecs. We propose two equivalent char-
acterizations of these operations. Not surprisingly according to the semantics,
inefficient EXPTIME constructions via the region graphs of the mecs (seen as
untimed specifications) are provided. More interestingly, we present alternative
direct and efficient PTIME constructions.

The rest of the paper is organized as follows. In Section 2, we introduce the
timed modal specification setting, with preliminaries on untimed modal specifi-
cations and the definition of modal event-clock specifications. Section 3 focuses
on mecs and exposes effective techniques to compute the binary operations of
greatest lower bound, product, and quotient. In Section 4, we compare our frame-
work with the existing literature. Section 5 concludes the paper. A long version
of the current paper, including proofs is available as a research report [8].

2 Timed modal specifications

In this section we recall the framework of modal specifications originaly defined
in [18] twenty years ago (see [5] for a survey), and its timed extension, recently
proposed in [9]: We discuss the semantic, the preorder refinement and the satis-
fiability problem for untimed and timed modal specifications.

3

2.1 Preliminaries on untimed specifications

A modal specification is an automaton equipped with two types of transitions:
must-transitions, that are required and may-transitions, that are allowed. We
fix Σ a finite set of actions.

Definition 2.1 (Modal specification). A modal specification (ms) is a tuple
R = (P⊥⊥, λ0, ∆m, ∆M) where P⊥⊥ = P∪ ⊥⊥ is a finite set of states with ⊥⊥ ∩P =
∅, λ0 ∈ P⊥⊥ is the unique initial state, and ∆M ⊆ ∆m ⊆ P × Σ × P⊥⊥. ∆M

and ∆m correspond respectively to must-transitions and may-transitions. We
additionally assume that ∆m is deterministic (hence so is ∆M) and complete,
that is, for every state p ∈ P and every action a ∈ Σ, there is exactly one state
λ ∈ P⊥⊥ such that (p, a, λ) ∈ ∆m.

We use p (resp. λ) as typical element of P (resp. P⊥⊥). Note that complete-
ness is not a restriction since from any incomplete specification, one can derive
a complete one by adding may-transitions to a possibly new state ⊥ ∈⊥⊥. Intu-
itively, in state p ∈ P a-may transition to some state λ ∈⊥⊥ labelled by action
a means that action a is forbidden in p. This interpretation will become clearer
when we define the set of models of a modal specification.

The condition ∆M ⊆ ∆m naturally imposes that every required transition is
also allowed; it guarantees the local consistency of the modal constraints. The set
of states ⊥⊥ denotes the “bad states” which carry local inconsistency. Elements
of ⊥⊥ are sink states with no outgoing transition since both ∆M and ∆m are
subsets of P ×Σ ×P⊥⊥. Global inconsistency can be derived as follows: we let I
be the set of inconsistent states that must lead (that is via a sequence of must -
transitions) to a local inconsistency; states in P⊥⊥\I are consistent. Formally I =
{λ0 | ∃n ≥ 0, ∃λ1 · · ·λn ∈ P⊥⊥ ∃a1 · · ·an ∈ Σ s.t. λn ∈⊥⊥ and (λi, ai+1, λi+1) ∈
∆M}. Notice that in particular ⊥⊥⊆ I. We say that the modal specification R
is consistent whenever its initial state is consistent, i.e. λ0 /∈ I; otherwise R is
inconsistent.

In the following, we write or draw p
a

−→ λ (resp. p
a

99K λ) to mean (p, a, λ) ∈
∆M (resp. (p, a, λ) ∈ ∆m \ ∆M); in other words, solid arrows denote required
transition, whereas dashed arrow represent allowed but not required transitions.

Example 2.2. Consider a client for a given resource available in a system. The
alphabet of actions includes: get when the resource is requested; grant in case
of access to the resource; and, extra which occurs when a privileged access with
extended time is requested.

In order to simplify the figures, states in ⊥⊥ are not represented (except if

they are necessary) and transitions of the form q
a

99K ⊥ are not depicted. Action
names may be preceded by some ”!” or ”?” when the occurrence of the actions
respectively stems from the designed component or by its environment.

4

0 1

!get

?grant

!extra

!get

!extra

(a) Client Cl

a b c

!get

?grant

!get

?grant

!extra

(b) Automaton M

Fig. 1. The modal specification Cl accepts the automaton M

The modal specification Cl for the client in Fig. 1(a) specifies that a get
request may be sent again. Moreover every get request must be granted. Addi-
tionally the client may request extended time at any moment.

Models of ms are deterministic automata4, with possibly infinitely many
states, which we shortly call automata in the sequel. An automaton is a struc-
ture of the form M = (M, m0, ∆) where M is a (possibly infinite) set of states,
m0 ∈ M is a unique initial state, and ∆ ⊆ M × Σ → M is a partial transition
function. The model relation |= defined below is a particular case of alternating
simulation [4] between the model and the consistent part, if any, of the specifi-
cation.

Definition 2.3 (Model Relation). Let R = (P⊥⊥, λ0, ∆m, ∆M) be a ms. An
automaton M = (M, m0, ∆) is a model of R, written M |= R, if there exists a
binary relation ρ ⊆ M×(P \I) such that (m0, λ0) ∈ ρ, and for all (m, p) ∈ ρ, the
following hold: (1) for every (p, a, λ) ∈ ∆M there is a transition (m, a, m′) ∈ ∆
with (m′, λ) ∈ ρ, and (2) for every (m, a, m′) ∈ ∆ there is a transition (p, a, λ) ∈
∆m with (m′, λ) ∈ ρ.

We denote by Mod(R), the set of models of an ms R = (P⊥⊥, λ0, ∆m, ∆M).

Remark in Definition 2.3 that inconsistent states of the specification cannot
appear in the relation ρ. Consequently, a transition of the form (p, a, λ) ∈ ∆m

where λ ∈ I is inconsistent interprets as: in any model, no a-transition from
a state in relation with p is allowed. Moreover, for λ0 ∈ I no ρ can exist and
actually we have:

Lemma 2.4. Let R be a ms. Mod(R) 6= ∅ if, and only if, R is consistent.

Example 2.5. The automaton M in Fig. 1(b) is a model of the ms Cl in Fig. 1(a)
as the binary relation ρ = {(a, 0), (b, 1), (c, 1)} witnesses.

The semantic preorder between ms relies on an extension of Definition 2.3.

4 also called deterministic labeled transition systems.

5

Definition 2.6 (Modal Refinement Preorder). Given two ms, R1 = (P⊥⊥
1 ,

λ0
1, ∆

m
1 , ∆M

1) and R2 = (P⊥⊥
2 , λ0

2, ∆
m
2 , ∆M

2), R1 is a refinement of R2, written
R1 � R2, whenever there exists a binary relation ρ ⊆ (I1×I2)∪(P⊥⊥

1 ×(P2\I2))
such that (λ0

1, λ
0
2) ∈ ρ, and for all (λ1, λ2) ∈ ρ ∩ ((P1 \ I1) × (P2 \ I2)):

(1) for every (λ2, a, λ′
2) ∈ ∆M

2 there exists (λ1, a, λ′
1) ∈ ∆M

1 with (λ′
1, λ

′
2) ∈ ρ

(2) for every (λ1, a, λ′
1) ∈ ∆m

1 there exists (λ2, a, λ′
2) ∈ ∆m

2 with (λ′
1, λ

′
2) ∈ ρ.

Definition 2.6 requires some explanations. First, by definition of the domain
of ρ, an inconsistent state of R2 can only be refined as an inconsistent state
in R1 whereas a consistent state in R2 can either be linked to a consistent or
inconsistent state in R1. Moreover, for pairs of consistent states, Condition (1)
ensures that all required transition in R2 are also required in R1, and Condition
(2) guarantees that each possible transition in R1 is also allowed in R2.

Under our assumption that ms are deterministic, we can show that the pre-
order � between ms matches the model inclusion preorder. We establish an
intermediate result that exploits the embedding of automata into modal specifi-
cations.

Definition 2.7 (Embedding in ms). An automaton M = (M, m0, ∆) can
be interpreted as a modal specification M∗ = (M ∪ {⊥∗}, m0, ∆m

∗ , ∆M
∗) where

∆ = ∆M
∗ ⊆ ∆m

∗ , and (m, a,⊥∗) ∈ ∆m
∗ \ ∆M

∗ when ∆(m, a) is undefined in M.

Lemma 2.8. Given an automaton M and a ms R, M |= R iff M∗ � R.

Proposition 2.9. Let R1 and R2 be two ms, then:

R1 � R2 if, and only if, Mod(R1) ⊆ Mod(R2).

Note that the determinism of modal specifications is crucial for the Propo-
sition 2.9. In the nondeterministic case, modal refinement is not complete [20],
that is Mod(R1) ⊆ Mod(R2) does not imply R1 � R2 in general.

As a consequence of Definition 2.6, inconsistent ms refine any ms, and consis-
tent ms can only refine consistent ms. In the following, we write R1 ≡ R2, and
say that R1 and R2 are equivalent, whenever R1 � R2 and R2 � R1. Remark
that by merging all states of I, every ms is equivalent to a ms where the set of
inconsistent states is a singleton.

2.2 Modal event-clock specifications

Let X be a finite set of clocks and let IR≥0 denote the set of non-negative reals.
A clock valuation over X is a mapping ν : X → IR≥0. The set of clock valuations
over X is denoted V ; in particular, 0 ∈ V is the clock valuation such that 0(x) = 0

6

for all x ∈ X . Given ν ∈ V and t ∈ IR≥0, we let (ν+t) ∈ V be the clock-valuation
obtained by letting t time units elapse after ν, formally, (ν + t)(x) = ν(x)+ t for
every x ∈ X .

A guard over X is a finite conjunction of expressions of the form x ∼ c where
x ∈ X , c ∈ IN is a constant, and ∼ ∈ {<,≤, =,≥, >}. We then denote by ξ[X]
the set of all guards over X . For some fixed N ∈ IN, ξN [X] represents the set
of guards involving only constants equal to or smaller than N . The satisfaction
relation |=⊆ (V × ξ[X]) between clock valuations and guards is defined in a
natural way and we write ν |= g whenever ν satisfies g. In the following, we
will often abuse notation and write g to denote the guard g as well as the set of
valuations which satisfy g.

Event-clock automata [2], form a subclass of timed automata where clock
resets are not arbitrary: each action a comes with a clock xa which is reset
exactly when action a occurs. We consider event-clock automata with possibly
infinitely many locations.

Definition 2.10 (Event-clock automata). An event-clock automaton (eca)
over Σ is a tuple C = (C, c0, δ) where C is a set of states, c0 ∈ C is the initial
state, and δ ⊆ C × ξN [XΣ]×Σ ×C is the transition relation (for some N ∈ N).
The pair (Σ, N) is the signature of C.

The semantics of an eca is similar to the one of a timed automaton [1],
except that the set of clocks that are reset by a transition is determined by the
action of that transition: while firing a transition labeled by a, precisely clock
xa is reset. Event-clock automata do form a strict subclass of timed automata,
but they enjoy nice properties: they are closed under union and intersection, and
more interestingly they can be determinized (as opposed to the class of arbitrary
timed automata). The determinizability of event-clock automata comes from the
way clocks are reset and this property significantly eases the definition of binary
operators (such as lower bound, product and quotient) on modal variants of
event-clock automata.

For a fixed signature (Σ, N), a region is an equivalence class θ of clock-
valuations that satisfy the same guards in ξN [XΣ]. We denote by ΘN , or simply
Θ, the set of all regions. Given a region θ ∈ Θ, we write Succ(θ) for the union of
all regions that can be obtained from θ by letting time elapse: Succ(θ) = {θ′′ |
∃ν′′ ∈ θ′′ ∃ν ∈ θ ∃t ∈ IR≥0 s.t. ν′′ = ν + t}.

Definition 2.11 (Region automaton [1]). The region automaton associated
to an eca C = (C, c0, δ) is the automaton R(C) = (C × Θ, (c0, 0), ∆) over the
alphabet Θ × Σ, where the set ∆ of transitions is defined as follows: for each
c, c′ ∈ C, θ, θ′, θ′′ ∈ Θ, and a ∈ Σ, ((c, θ), θ′′, a, (c′, θ′)) ∈ ∆ whenever there
exists (c, g, a, c′) ∈ δ with θ′′ ⊆ Succ(θ) ∩ g, and θ′ = θ′′[xa = 0] is the region
obtained from θ′′ by resetting clock xa.

7

Note that the region automata we consider extend the ones introduced in [1]
since their transition labels keep track of the intermediate region where the action
is fired. As a consequence, any automaton over the alphabet Θ × Σ uniquely
defines an eca whose signature is of the form (Σ, NΘ), with NΘ determined by
the set of regions Θ. We denote by T the natural injection of region automata
into eca; this mapping enables us to distinguish between the two interpretations
of the same syntactic object: R(C) is an automaton whereas T (R(C)) is an eca.

Definition 2.12 (Modal event-clock specification). A modal event-clock
specification (mecs) over the finite alphabet Σ is a tuple S = (Q⊥⊥, λ0, δm, δM)
where

– Q⊥⊥ := Q ∪ ⊥⊥ is a finite set of locations, with ⊥⊥ ∩ Q = ∅, and the initial
state is λ0 ∈ Q⊥⊥.

– δM ⊆ δm ⊆ Q × ξ[XΣ] × Σ × Q⊥⊥ are finite sets of respectively must- and
may-transitions. Given a may-transition (q, g, a, λ) ∈ δm, q is the source
state, λ is the destination state, g ∈ ξ[XΣ] is the guard that specifies the
valuations for which the transition can be taken, a ∈ Σ is the action labeling
the transition – recall that the only clock that is then reset is xa.

Moreover we require that δm is deterministic (hence, so is δM) and complete:
for any state q ∈ Q, any action a ∈ Σ, and any clock valuation ν ∈ V, there is
exactly one transition (q, g, a, λ) ∈ δm such that ν |= g.

Example 2.13. As an example of a mecs, we consider in Fig. 2(a) a timed variant
of the client Cl introduced earlier. The clock corresponding to the action get is
xget.

In this example again, for simplification purposes, transitions of the form

q
g,a
99K ⊥ are not depicted. As mecs are complete, these transitions can easily be

recovered by taking g = ¬(
∨

i gi) where the gi’s are the guards appearing in the

transitions of the form q
gi,a
99K λ or q

gi,a
−→ λ. When the guard of a transition is not

indicated, it is implicitly true.

The mecs Cl for the client in Fig. 2(a) specifies that a get request may be
sent again at most one time unit after the last request.

In the sequel, we generalize the graphical convention already used for untimed

objects by writing q
g,a
99K λ′ whenever (q, g, a, λ′) ∈ (δm \ δM) and q

g,a
−→ λ′

whenever (q, g, a, λ′) ∈ δM .

Remark that a natural untimed object associated to a mecs S is its region
modal automaton, obtained by generalizing Definition 2.11 from event-clock au-
tomata to their modal extension. More precisely, R(S) reflects the modalities of
S = (Q⊥⊥, λ0, δm, δM) as done in [9], the initial state is (λ0, 0) and the set of lo-
cally inconsistent states in R(S) is ⊥⊥ S ×Θ. A mecs S is said to be inconsistent

8

0 1

!get

?grant

!extra

!get
xget ≤ 1

!extra

(a) Client Cl

0′ 1′
?extra

?get

!grant
xget ≤ 2

?get

!grant
xget ≤ 4

(b) Access controller Acc

Fig. 2. Client Cl and access controller Acc

if R(S) is inconsistent; otherwise, it is consistent. Given a modal event-clock
specification S over signature (Σ, N), R(S) is a modal specification over the
extended alphabet Σ × ΘN ; similarly, given an event-clock automaton C, R(C)
is an automaton over alphabet Σ×ΘN . Having this in mind, the model relation
in the timed case is inherited from the one in the untimed case via the region
construction:

Definition 2.14 (Model relation). Let S be a mecs. An event-clock automa-
ton C is a model of S, written C |= S, if R(C) |= R(S).

The set of models of a mecs S, is defined by Mod(S) := {C | C |= S}.

Observing that given a mecs S, R(T (R(S))) and R(S) are isomorphic, we
obtain the following:

Lemma 2.15. Let S be a mecs. Then, Mod(T (R(S))) = Mod(S).

In the spirit of Def.2.14 for the model relation, the modal refinement preorder
between mecs also relies on a region-based construction:

Definition 2.16 (Modal refinement preorder). Given two mecs S1 and S2,
S1 refines S2, written S1 � S2, whenever R(S1) � R(S2).

As a corollary of the analogous results in the untimed setting on ms, it is de-
cidable whether a mecs refines another one. Moreover, refinement and inclusion
of models match:

Corollary 2.17. Let S, S1 and S2 be mecs. Then,

– Mod(S) 6= ∅ if, and only if S is consistent;

– S1 � S2 if, and only if Mod(S1) ⊆ Mod(S2).

9

About consistency We recall that a specification is consistent if, and only if, it
admits a model. According to Lemma 2.4, checking whether an untimed spec-
ification is consistent amounts to checking that the set of states ⊥⊥ cannot be
reached from its initial state by a sequence of must-transitions. The consistency
problem is thus NLOGSPACE-complete for modal specifications and PSPACE-
complete in the timed case.

3 Operations on specifications

In this section, we introduce operations on modal event-clock specifications,
which enable compositional reasoning. More precisely, we define the greatest
lower bound, the product, and the quotient over mecs. For each of these opera-
tions, we establish important theoretical properties.

3.1 Greatest lower bound of mecs

We study the concept of greatest lower bound , which corresponds to the con-
junction of two modal specifications and equivalently to their best shared refine-
ment. We first recall the definition of the greatest lower bound in the untimed
case. Let R1 = (P⊥⊥

1 , λ0
1, ∆

m
1 , ∆M

1) and R2 = (P⊥⊥
2 , λ0

2, ∆
m
2 , ∆M

2) be two ms. The
greatest lower bound of R1 and R2 is R1 ∧ R2 = (P⊥⊥, (λ0

1, λ
0
2), ∆

m
∧ , ∆M

∧) with
P := P1 × P2, ⊥⊥:= (⊥⊥1 × P⊥⊥

2) ∪ (P⊥⊥
1 × ⊥⊥2), and whose transition relations are

derived from the following rules:

λ1
a

99K λ′
1 and λ2

a
99K λ′

2

(λ1, λ2)
a

99K (λ′
1, λ

′
2)

(Glb1)
λ1

a
−→ λ′

1 and λ2
a

99K λ′
2

(λ1, λ2)
a

−→ (λ′
1, λ

′
2)

(Glb2)

λ1
a

99K λ′
1 and λ2

a
−→ λ′

2

(λ1, λ2)
a

−→ (λ′
1, λ

′
2)

(Glb3)
λ1

a
−→ λ′

1 and λ2
a

−→ λ′
2

(λ1, λ2)
a

−→ (λ′
1, λ

′
2)

(Glb4)

Remark in particular, that if in a state λ = (λ1, λ2), we have the contradictory

requirements that a is required (λ1
a

−→ λ′
1 ∈ P1) and a should not happen

(λ2
a

99K λ′
2 ∈⊥⊥2), then λ is inconsistent. This is indeed guaranteed by the

definition of R1 ∧R2 which imposes P1× ⊥⊥2 ⊆⊥⊥.

Greatest lower bound of mecs. The notion of greatest lower bound easily extends
to mecs. Let S1,S2 be two mecs. The modalities for the transitions in S1 ∧ S2

are derived from those induced in the untimed case (Rules (Glb1) to (Glb4)), and
the labels of the transitions are obtained by intersecting the guards for common
actions. As an example, Rule (Glb1) becomes (tGlb1) as follows.

λ1
g1,a
99K λ′

1 and λ2
g2,a
99K λ′

2

(λ1, λ2)
g1∧g2,a
99K (λ′

1, λ
′
2)

(tGlb1)

10

Thanks to Lemma 2.15, the set of models of a mecs S matches the set of
models of its region version T (R(S)). The following proposition characterizes
the greatest lower bound of two mecs via the region graphs.

Proposition 3.1. For any two mecs S1 and S2, R(S1 ∧ S2) ≡ R(S1) ∧ R(S2).

In Proposition 3.1, operator ∧ is overloaded: on the right hand side, it cor-
responds to the greatest lower bound of ms whereas on the left hand side, it
corresponds to the greatest lower bound of mecs.

Computing the conjunction of two ms via rules (Gbl1) to (Gbl4) is polynomial
in the size of the arguments. Due to the construction of the region graphs,
starting from two mecs S1 and S2 computing R(S1) ∧ R(S2) is exponential.
The direct construction of the greatest lower bound by using the timed variants
of (Gbl1) to (Gbl4) is polynomial and therefore worth adopting for effective
methods.

Finally, according to the above, one can establish that the greatest lower
bound yields the intersection of the models.

Theorem 3.2. For any two mecs S1 and S2, Mod(S1∧S2)=Mod(S1)∩Mod(S2).

Application of the greatest lower bound is the following: in the design of a
component one gives several specifications, each of them describing a particular
requirement. The greatest lower bound of these specifications enables to check
the compatibility of these requirements, by deciding consistency.

3.2 Product of mecs

The product of mecs relates to the synchronous parallel composition of models.
For ms, it generalizes the synchronized product of automata M1 ⊗ M2 that
denotes the intersection of their behaviors (languages).

We first recall the product of ms: Let R1 = (P⊥⊥
1 , λ0

1, ∆
m
1 , ∆M

1) and R2 =
(P⊥⊥

2 , λ0
2, ∆

m
2 , ∆M

2) be two ms over the same alphabet Σ. The product of R1 and
R2, denoted by R1 ⊗R2, is the ms (P⊥⊥, (λ0

1, λ
0
2), ∆

m
⊗ , ∆M

⊗), with P := P1 ×P2,
⊥⊥:= (⊥⊥1×P⊥⊥

2)∪(P⊥⊥
1 × ⊥⊥2), and whose transitions are derived from the following

rules:

λ1
a

99K λ′
1 and λ2

a
99K λ′

2

(λ1, λ2)
a

99K (λ′
1, λ

′
2)

(Prod1)
λ1

a
−→ λ′

1 and λ2
a

99K λ′
2

(λ1, λ2)
a

99K (λ′
1, λ

′
2)

(Prod2)

λ1
a

99K λ′
1 and λ2

a
−→ λ′

2

(λ1, λ2)
a

99K (λ′
1, λ

′
2)

(Prod3)
λ1

a
−→ λ′

1 and λ2
a

−→ λ′
2

(λ1, λ2)
a

−→ (λ′
1, λ

′
2)

(Prod4)

Notice that Rules (Prod1) to (Prod4) uniformly consider consistent and
inconsistent states.

11

Product of mecs. The product of mecs extends the synchronized product of
eca which consists in synchronizing transitions on action names and in taking
the conjunction of the guards of the combined transitions.

Let S1,S2 be two mecs. The modalities for the transitions in S1 ⊗ S2 are
derived from those proposed in the untimed case, and the labels of the transitions
are composed of the intersection of the guards together with the common action.
For example, the timed version of (Prod1) becomes (tProd1) as follows.

λ1
g1,a
99K λ′

1 and λ2
g2,a
99K λ′

2

(λ1, λ2)
g1∧g2,a
99K (λ′

1, λ
′
2)

(tProd1)

Similarly to Proposition 3.1 for the greatest lower bound, the product of mecs

can be alternatively computed by building the product of the region graphs.
This construction however causes an exponential blow-up whereas the direct
construction is polynomial. Notice that operator ⊗ is overloaded to ease the
presentation.

Proposition 3.3. R(S1 ⊗ S2) ≡ R(S1) ⊗ R(S2).

In the untimed setting, it is known [23] that the product is monotonic with
respect to the refinement, and that a product of models is a model of the product.
Those properties extend to the timed case as stated in the following theorem.

Theorem 3.4 (Properties of the product). For any mecs S1,S′
1,S2,S′

2,
and any eca C1, C2,

(S1 � S2 and S′
1 � S′

2) =⇒ S1 ⊗ S′
1 � S2 ⊗ S′

2; and
(C1 |= S1 and C2 |= S2) =⇒ C1 ⊗ C2 |= S1 ⊗ S2.

As a consequence, the product operation satisfies the property of independent
implementability, in the sense of [12]: an implementation of a specification of the
form S1 ⊗ S2 can be obtained by composing any two independent implementa-
tions of S1 and S2 respectively.

Example 3.5. The mecs Acc in Fig. 2(b) page 9 specifies the behavior of an
access controller; the access to the resource will be granted for 2 time units after
the reception of a get request. In case of a privileged access with an extra time,
this duration will be extended to 4 time units.

The product Cl ⊗Acc is depicted in Fig. 3(a). In the resulting specification,
extra can now only occur after a get request. Timing constraints on the grant
action issued from the access controller are also propagated.

12

00′ 10′

01′ 11′

get

grant

xget ≤ 2

grant

xget ≤ 4

get
extra

get
xget ≤ 1

get
xget ≤ 1

(a) The product Cl ⊗ Acc

a b

c

get

grant
xget < 2

extra

grant
xget < 5

(b) A desired behavior G

Fig. 3. The global model Cl ⊗ Acc and its specified behavior G

3.3 Quotient of mecs

In this section, we define the quotient operation. Intuitively, the quotient de-
scribes a part of a global specification assuming another part will be realized
by some component. We thus consider quotient of specifications which is dif-
ferent from the constructions studied in [17] where at least one of the operand
is a system. We start by recalling the quotient operation on untimed modal
specifications, then extend it to mecs.

In the untimed setting, we aim at defining an operation dual to the product
of Section 3.2 in the following sense. Given two ms R = (P⊥⊥, λ0, ∆m, ∆M) and
R1 = (P⊥⊥

1 , λ0
1, ∆

m
1 , ∆M

1), we want the quotient of R by R1 to be the ms written
R⊘R1 which satisfies the following properties.

Proposition 3.6. For every automaton M2,

M2 |= R⊘R1 ⇐⇒ ∀M1. [M1 |= R1 ⇒ M1 ⊗M2 |= R] (1)

and R⊘R1 is the greatest such one, namely

R1 ⊗R2 � R ⇐⇒ R2 � R⊘R1 (2)

The definition of the quotient follows [23], but it is here revisited with a
uniform way to handle both consistent and inconsistent states, as opposed to the
original definition where so-called pseudo-specifications needed being considered.

Formally, the quotient of R = (P⊥⊥, λ0, ∆m, ∆M) by R1 = (P⊥⊥
1 , λ0

1, ∆
m
1 , ∆M

1)
is the ms R⊘R1 = (P ′⊥⊥, (λ0, λ0

1), ∆
m
⊘ , ∆M

⊘), with P ′ ⊆ (P ×P1)∪{⊤}, where ⊤
is fresh element, and the set ⊥⊥′ of locally inconsistent states of R⊘R1 contains
at least an element ⊥′ but also other elements: the rules below describe these
elements as well as the set of transitions. Notation λ

a
99K I means that the a-

may-transition from λ leads to an inconsistent state in I. We also use notations

13

λ
a

99K P \ I, λ
a

−→ I, and λ
a

−→ P \ I with the expected meaning, and λ
a

99K

whenever there is no a-must-transition from state λ.

λ ∈ I and λ1 /∈ I1

(λ, λ1) ∈⊥⊥′
(I∧¬I1)

λ ∈ I and λ1 ∈ I1

(λ, λ1)
a

99K ⊤
(I∧I1)

I 6∋ λ
a

99K and λ1 ∈ I1

(λ, λ1) ∈⊥⊥′
(¬Imust∧I1)

I 6∋ λ
a

99K and λ1 ∈ I1

(λ, λ1)
a

99K ⊤
(¬Imay∧I1)

⊤
a

99K ⊤
(top)

Assume now that both λ and λ1 are consistent, i.e., λ /∈ I and λ1 /∈ I1:

λ
a

99K I and (λ1
a

99K P1 \ I1 or λ1
a

−→ P1 \ I1)

(λ, λ1)
a

99K ⊥′

(maynot)

λ
a

99K and λ1
a

99K I1

(λ, λ1)
a

99K ⊤
(may1)

λ
a

99K λ′ /∈ I and (λ1
a

99K λ′
1 /∈ I1 or λ1

a
−→ λ′

1 /∈ I1)

(λ, λ1)
a

99K (λ′, λ′
1)

(may2)

λ
a

−→ λ′ and λ1
a

99K λ′
1

(λ, λ1) ∈⊥⊥′
(inconsistency)

λ
a

−→ λ′ and λ1
a

−→ λ′
1

(λ, λ1)
a

−→ (λ′, λ′
1)

(must)

We now give intuitive explanations for the rules above in particular with
respect to the first requirement of Proposition 3.6. To do so, let Rλ be the
ms informally defined as the sub-specification of R with initial state λ. When
explaining a rule involving transitions outgoing λ in R and λ1 in R1 we will thus
speak about models in Rλ, Rλ1

1 and Rλ ⊘Rλ1

1 . Rλ and Rλ1

1 are just introduced
in order to be able to regard local models of R and R1 from states λ and λ1.
When, say λ ∈ I, we have Mod(Rλ) = ∅.

Rule (I ∧ ¬I1) ensures that since there are no models for Rλ and there are
models for Rλ1

1 , there should not be models of Rλ ⊘ Rλ1

1 , otherwise we would
not have the right to left implication of Equation (1) in Proposition 3.6.

For Rules (¬Imust∧ I1) and (¬Imay ∧ I1) (together with Rule (top)), since
Mod(Rλ1

1) = ∅, the right hand side of Equation (1) is trivially satisfied. There-
fore in (¬Imust ∧ I1), the a-transition required from λ cannot be guaranteed;
hence the quotient is not consistent. On the other hand for Rule (¬Imay ∧ I1),

14

since nothing particular is required from λ for the a-transition, nothing either
needs being required for models of the quotient; to guarantee Equation (2) of
Proposition 3.6 (which states the maximality of the quotient) we set the quotient
to be universal, i.e. it accepts every model.

Rule (I ∧ I1) together with Rule (top), is the case where both Mod(Rλ) = ∅
and Mod(Rλ1

1) = ∅. In this case, the universal ms that accepts every model can
be in the quotient, and this is what is chosen in order to get the greatest such
ms, as required by Equation (2).

We now come to the set of rules where both λ and λ1 are consistent (λ /∈ I
and λ1 /∈ I1), which by Lemma 2.4 amounts to say that Mod(Rλ) 6= ∅ and
Mod(Rλ1

1) 6= ∅.

In Rule (may1), a is not possible from λ1, and a is not mandatory from λ, it
can therefore safely be authorized in the quotient. Rule (maynot) deals with the
case where a is forbidden in Rλ, but is authorized or even mandatory in Rλ1

1 : it
should be forbidden in the quotient.

Rule (may2) is very straightforward, as models of the quotient may have an
a-transition irrespectively of what is required in Rλ1

1 .

Finally, Rules (inconsistency) and (must) consider the case where we have
must transitions in Rλ. Rule (inconsistency) corresponds to the inability of
guaranteeing the a-transition required in Rλ since it may not exist in some
models of Rλ1 . Hence only an inconsistent ms can be considered so that Equa-
tion (1) holds. Rule (must) is the simple case of must requirements; notice that
we implicitly have λ′

1 /∈ I1, since by assumption λ1 /∈ I1.

One can easily verify that the conditions of the premises of Rules from
(I ∧ ¬I1) to (must) are exclusive, hence the quotient construction yields a de-
terministic object. Also, the quotient ms is complete.

Quotient of mecs. The quotient of a mecs S = (Q⊥⊥, λ0, δm, δM) by a mecs

S1 = (Q⊥⊥
1 , λ0

1, δ
m
1 , δM

1) is the mecs S ⊘ S1 = (Q′⊥⊥, (λ0, λ0
1), δ

m
⊘ , δM

⊘), where
Q′ ⊆ (Q × Q1) ∪ {⊤} and where the set of locally inconsistent states and the
transition modalities follow the rules (I ∧ ¬I1) to (must) of the untimed case;
the guard of a transition is the conjunction of the local guards of S and S1. For
example, the untimed rule (must) becomes (tmust) as follows.

λ
g,a
−→ λ′ and λ1

g1,a
−→ λ′

1

(λ, λ1)
g∧g1,a
−→ (λ′, λ′

1)
(tmust)

Besides, the rule (ttop) is the following:

⊤
true,a
99K ⊤

(ttop)

This quotient operation for mecs can be used on eca as the class of deterministic
eca can be embedded into the one of mecs; it suffices to type with must every

15

existing transitions in the eca, and to complete it by adding transitions typed
by may to a state in ⊥⊥. Assuming determinacy of event-clock automata is not
restrictive, since they are known to be determinizable [2]. Observe that then the
quotient of two event-clock automata is not an event-clock automaton since e.g.
Rule (¬Imay ∧ I1) introduces a may transition to the top state.

Finally, the quotienting operation yields a deterministic and complete speci-
fication. Hence:

Lemma 3.7. Modal event-clock specifications are closed under quotient.

As for the product operation, the quotient operation in the timed and un-
timed settings relate via the region construction (for the extended alphabet) as
follows.

Proposition 3.8. R(S ⊘ S1) ≡ R(S) ⊘ R(S1).

The correctness of the quotient construction is stated by the following.

Theorem 3.9 (Properties of the quotient). For any mecs S,S1,S2, and
any eca C2,

C2 |= S ⊘ S1 ⇐⇒ ∀C1. [C1 |= S1 ⇒ C1 ⊗ C2 |= S]; and (3)

S1 ⊗ S2 � S ⇐⇒ S2 � S ⊘ S1. (4)

From a practical point of view, the quotient operation enables incremental
design: consider a desired global specification S, and the specification S1 of a
preexisting component. By computing S⊘S1 and by checking its consistency, one
can test whether a component implementing S1 can be reused in order to realize
S, or not. Note that by (4) the specification S⊘S1 is maximally permissive in the
sense that it characterizes all components C2 such that for any C1 implementing
S1, the composed system C1 ⊗ C2 implements S.

Example 3.10. A desired global behavior G is depicted in Fig. 3(b), page 13.
It specifies that any get request must be fulfilled; the access to the resource is
granted for 2 time units and 5 time units in the privileged mode.

A model of G/(Cl ⊗ Acc) will act as a protocol converter between Cl and
the access controller Acc ; the overall obtained system will satisfy G. The mecs

G/(Cl ⊗Acc) is represented in Fig. 4. Not surprisingly, the state c/11′ is incon-
sistent. This is because, in the state 11′ in Fig. 3(a), the resource is granted for 4
units of time whereas in the state c of the desired behavior G in Fig. 3(b), it must
be granted for 5 units of time. To avoid this inconsistency, the transition extra
from state b/10′ to c/11′ will not be implemented in any model of G/(Cl ⊗Acc).
Thus, the protocol converter will disallow the privileged mode.

16

a/00′ b/10′ c/11′ a/01′ b/11′

⊤

⊥′

get

xget < 2
grant

extra

xget ≤ 4

grant

get

xget < 4
grant

4 < xget < 5
grant

get, grant, extra

grant, extra

get, xget > 1
grant

get, xget > 1

extra
grant

extra
get, xget>1

grant, xget>4

extra

Fig. 4. The quotient G/(Cl ⊗ Acc)

The quotient operation we gave has nice properties: its construction is in
essence a cartesian product, thus yielding a polynomial time complexity, as op-
posed to the exponential blow-up caused by the region graph construction of
Proposition 3.8. Also the quotient, defined at the level of specifications and ab-
stracting from a particular choice of implementations, amounts to quotienting
logical statements denoted by specifications. In the untimed setting, the quotient
operation is a particular case of the exponential construction introduced by [7]
for arbitrary mu-calculus statements. However, we take here advantage of the
restricted logical fragment covered by the modal specifications, namely the con-
junction nu-calculus [15], to get an ad-hoc polynomial-time complexity of this
quotient construction. The present contribution suggests a similar situation for
a timed extension of the mu-calculus.

4 Related work

Regarding a theory of interfaces, we compare our approach with the following
settings: Interface automata of [12], timed interfaces of [13], and a timed exten-
sions of modal specifications of [10].

Interface automata. In interface automata [13], an interface is represented by
an input/output automaton [21], i.e., an automaton whose transitions are typed
with input and output rather than must and may modalities. The semantics of
such an automaton is given by a two-player game: the input player represents the
environment, and the output player represents the component itself. As explained
[24], interfaces and modalities are in essence orthogonal to each other. Moreover,
interface automata do not encompass any notion of model, and thus neither
the model relation nor the consistency, because one cannot distinguish between

17

interfaces and components. Alternatively, properties of interfaces are described
in game-based logics, e.g., ATL [3], with a high-cost complexity. Refinement
between interface automata corresponds to the alternating refinement relation
between games [4], i.e., an interface refines another one if its environment is
more permissive whereas its component is more restrictive. There is no notion
of component reuse and shared refinement is defined in an ad-hoc manner [14].
Composition of interface automata differs from the one over modal specifications.
Indeed, in interface automata, the game-based approach offers an optimistic
treatment of composition: two interfaces can be composed if there exists at least
one environment in which they can interact together in a safe way. In [19],
Larsen et al. proposed modal interfaces that are modal specifications composed
in a game-based manner. This work suggests that modal specifications subsume
interface automata.

Timed interfaces. In [13], de Alfaro et al. proposed timed interfaces which extend
timed automata just as interface automata extend automata. The composition of
timed interfaces has only been partially studied, because of the underlying timed
games semantics: in particular, an extra feature needs being incorporated to
prevent players from winning by using Zeno strategies. Moreover, no refinement
relation is defined. Recently, Chatain et al. [11] proposed a notion of alternating
timed refinement between timed automata, implemented in the UPPAAL toolset
[25]. In all cases, operations between specifications have not been investigated
in a systematic way, and to our knowledge, no quotient construction has been
addressed.

A timed extension of modal specifications. A timed extension of modal speci-
fications appeared in [10] in a process algebra style. The formalism proposed
is a variant of CCS whose semantics relies on the configuration graph rather
than on the region graph, as done here. No logical characterization is developed,
neither any notion of model relation (satisfaction) or consistency (satisfiability).
Moreover, the quotient has not been considered at all.

5 Conclusion

Modal specifications offer a well-adapted algebraic framework for compositional
reasoning on component-based systems, that enables incremental design as well
as reuse of component. In this paper, we have presented a timed extension of
modal specifications using event-clock timed automata. All essential features
expected from a theory of interface (such as refinement, conjunction, satisfia-
bility, product, and quotient) are fully addressed and efficiently treated in this
framework.

Several research directions still need being investigated in the future. We
aim at studying timed modal specifications in a broader framework than the one

18

of mecs, since event-clock automata are strictly less expressive than timed au-
tomata. However, a generalization to arbitrary timed modal specifications raises
complex issues on how different sets of clocks can be combined in the quotient.
Another topic concerns a logical characterization of modal event-clock specifica-
tions (or even more general timed modal specifications), in the spirit of [15] who
established the correspondence between simple modal specifications and con-
junctive ν-calculus. Such characterization brings insight on the expressiveness of
the specification formalism.

Acknowledgment We are very thankful to the reviewers for relevant comments
that helped us improving the paper.

References

1. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

2. Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata: A
determinizable class of timed automata. Theoretical Computer Science, 211:1–13,
1999.

3. Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time tem-
poral logic. Journal of the ACM, 49(5):672–713, 2002.

4. Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. Alter-
nating refinement relations. In Proceedings of the 9th International Conference on
Concurrency Theory (CONCUR’98), volume 1466 of Lecture Notes in Computer
Science, pages 163–178. Springer, 1998.

5. Adam Antonik, Michael Huth, Kim G. Larsen, Ulrik Nyman, and Andrzej Wa-
sowski. 20 years of modal and mixed specifications. Bulletin of European Associ-
ation of Theoretical Computer Science, 1(94), 2008.

6. André Arnold and Maurice Nivat. Metric interpretations of infinite trees and
semantics of non deterministic recursive programs. Theoretical Computer Science,
11:181–205, 1980.

7. André Arnold, Aymeric Vincent, and Igor Walukiewicz. Games for synthesis of
controllers with partial observation. Theoretical Computer Science, 303(1):7–34,
2003.

8. Nathalie Bertrand, Axel Legay, Sophie Pinchinat, and Jean-Baptiste Raclet. A
compositional approach on modal specifications for timed systems. INRIA Re-
search report.

9. Nathalie Bertrand, Sophie Pinchinat, and Jean-Baptiste Raclet. Refinement and
consistency of timed modal specifications. In Proceedings of the 3rd International
Conference on Language and Automata Theory and Applications (LATA’09), vol-
ume 5457 of Lecture Notes in Computer Science, pages 152–163. Springer, 2009.

10. Kārlis Čerāns, Jens Chr. Godskesen, and Kim G. Larsen. Timed modal specifi-
cation - theory and tools. In Proceedings of the 5th International Conference on
Computer Aided Verification (CAV’93), volume 697 of Lecture Notes in Computer
Science, pages 253–267. Springer, 1993.

11. Thomas Chatain, Alexandre David, and Kim G. Larsen. Playing games with timed
games. In Proceedings of the 3rd IFAC Conference on Analysis and Design of
Hybrid Systems (ADHS’09), 2009. To appear.

19

12. Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proceedings
of the 9th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE’01), pages 109–120, 2001.

13. Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga. Timed interfaces.
In Proceedings of the 2nd International Workshop on Embedded Software (EM-
SOFT’02), volume 2491 of Lecture Notes in Computer Science, pages 108–122.
Springer, 2002.

14. Laurent Doyen, Thomas A. Henzinger, Barbara Jobstmann, and Tatjana Petrov.
Interface theories with component reuse. In Proceedings of the 8th International
Conference on Embedded Software (EMSOFT’08), pages 79–88. ACM Press, 2008.

15. Guillaume Feuillade and Sophie Pinchinat. Modal specifications for the control
theory of discrete-event systems. Discrete Event Dynamic Systems, 17(2):181–205,
2007.

16. Thomas A. Henzinger and Joseph Sifakis. The embedded systems design challenge.
In Proceedings of the 14th International Symposium on Formal Methods (FM’06),
volume 4085 of Lecture Notes in Computer Science, pages 1–15. Springer, 2006.

17. Bengt Jonsson and Kim G. Larsen. On the complexity of equation solving in
process algebra. In Proceedings of the International Joint Conference on Theory
and Practice of Software Development (TAPSOFT’91), pages 381–396. Springer,
1991.

18. Kim G. Larsen. Modal specifications. In Proceedings of the International Workshop
on Automatic Verification Methods for Finite State Systems, volume 407 of Lecture
Notes in Computer Science, pages 232–246. Springer, 1989.

19. Kim G. Larsen, Ulrik Nyman, and Andrzej Wasowski. Modal i/o automata for
interface and product line theories. In Proceedings of the 16th European Symposium
on Programming (ESOP’07), volume 4421 of Lecture Notes in Computer Science,
pages 64–79. Springer, 2007.

20. Kim G. Larsen, Ulrik Nyman, and Andrzej Wasowski. On modal refinement and
consistency. In Proceedings of the 18th International Conference on Concurrency
Theory (CONCUR’07), volume 4703 of Lecture Notes in Computer Science, pages
105–119. Springer, 2007.

21. Nancy Lynch and Mark R. Tuttle. An introduction to Input/Output automata.
CWI-quarterly, 2(3), 1989.

22. Jean-Baptiste Raclet. Quotient de spécifications pour la réutilisation de com-
posants. PhD thesis, Université de Rennes I, december 2007. (In French).

23. Jean-Baptiste Raclet. Residual for component specifications. In Proceedings of the
4th International Workshop on Formal Aspects of Component Software (FACS’07),
2007.

24. Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benoit Caillaud, and
Roberto Passerone. Why are modalities good for interface theories? In Proceed-
ings of the 9th International Conference on Application of Concurrency to System
Design (ACSD’09), pages 199–127. IEEE Computer Society Press, 2009.

25. The UPPAAL tool. Available at http://www.uppaal.com/.

20

