
Information and Computation 269 (2019) 104441
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

A tale of two diagnoses in probabilistic systems

Nathalie Bertrand a,∗, Serge Haddad b,∗,1, Engel Lefaucheux a,b,∗∗
a Inria, Campus Universitaire de Beaulieu, Rennes, France
b LSV, ENS Paris-Saclay & CNRS & Inria, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 July 2016
Received in revised form 15 September 
2017
Accepted 4 February 2018
Available online 23 August 2019

Keywords:
Fault diagnosis
Partial observation
Probabilistic transition systems
Markov chains

Diagnosability of partially observable stochastic systems, i.e. the existence of a diagnoser, 
may be specified in different ways: exact diagnosability requires that faults are almost 
surely detected and that no fault is erroneously claimed; approximate diagnosability 
tolerates a small error probability when claiming a fault; last, accurate approximate 
diagnosability guarantees an arbitrarily small error probability. In this article, we first refine 
the specification of diagnosability by identifying three criteria: (1) detecting faulty runs or 
providing information for all runs (2) considering finite or infinite runs, and (3) requiring 
or not a uniform detection delay. We then give a complete picture of relations between 
the diagnosability specifications and establish characterisations for most of them. Based 
on these characterisations, we develop decision procedures, study their complexity and 
prove their optimality. We also design synthesis algorithms for diagnosers and analyse their 
memory requirements. Finally we establish undecidability of the diagnosability problems 
for which we provided no characterisation.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Diagnosis and diagnosability In computer science, diagnosis may refer to different kinds of activities. For instance, in artificial 
intelligence it can describe the process of identifying a disease from its symptoms, as performed by the expert system 
MYCIN [1]. In this work, we concentrate on diagnosis as studied in control of discrete event systems, where it is applied to 
partially observable systems prone to faults. In this context, it consists in designing fast automatic detection of malfunctions. 
Diagnosis raises two important issues: deciding whether the system is diagnosable and, in the positive case, synthesising a 
diagnoser possibly satisfying additional requirements about memory size, implementability, etc.

Diagnosis of discrete event systems One of the proposed approaches consists in modelling these systems by partially observ-
able labelled transition systems (LTS) [2]. In such a framework, diagnosability requires that the occurrence of unobservable 
faults can be deduced from the sequence of observable events occurring before and after the fault. Formally, an LTS is diag-
nosable if there exists a diagnoser that satisfies two properties: reactivity and correctness. Reactivity requires that whenever 
a fault occurred, the diagnoser eventually detects it. Correctness asks that the diagnoser only claims the existence of a 
fault when there actually was one. A polynomial time algorithm for diagnosability of LTS was provided [3], however the 
diagnoser itself can be of exponential size w.r.t. the size of the LTS. Diagnosis has been extended to numerous models (e.g.
Petri nets [4], pushdown systems [5], etc.) and settings (e.g. centralised, decentralised, distributed). It has had an impact 
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on important application areas, such as telecommunication network failure diagnosis. Also, several contributions, gathered 
under the generic name of active diagnosis, focus on enforcing the diagnosability of a system [6–10].

Diagnosis of stochastic systems Beyond LTS, diagnosis was also considered in a quantitative setting, and namely for proba-
bilistic labelled transition systems (pLTS) [11,12]. Probabilistic LTS can be seen as Markov chains in which the transitions 
are labelled with events, therefore, one can define a probability measure over their infinite runs. In that context, the specifi-
cation of the reactivity and correctness properties can be relaxed. More precisely, reactivity now asks to detect faults almost 
surely (i.e. with probability 1). This weaker reactivity constraint takes advantage of probabilities to rule out negligible be-
haviours. For what concerns correctness, three natural specifications can be considered. A first option, called A-diagnosability, 
is to stick to strong correctness and therefore ask the diagnoser to only claim fault occurrences when a fault is certain. In 
contrast, given an error threshold ε, ε-diagnosability tolerates small errors, allowing to claim a fault if the conditional 
probability that no fault occurred does not exceed the threshold. Last, so-called AA-diagnosability requires the pLTS to be 
ε-diagnosable for every ε, thus allowing the designer to tune the threshold according to the criticality of the system. The 
two notions of A-diagnosability and AA-diagnosability were introduced in [11].

Remaining issues A few semantical and algorithmical issues remained untouched in the above line of work. First, diagnos-
ability was only considered with respect to finite faulty runs. It seems to us as important to also consider diagnosability of 
correct runs, which requires to introduce the notion of ambiguity: a faulty (resp. correct) run is ambiguous if its observed 
sequence is identical to the one of a correct (resp. faulty) run. Second, we observed that reactivity can be strengthened 
by requiring that the probability that a run remains ambiguous after a fault occurrence does not depend on the precise 
run and rather decreases uniformly. This is motivated by the analogy with non probabilistic LTS, for which the detection 
delay is uniform. Last the decidability and the exact complexity of the different diagnosability problems and of the diag-
nosers synthesis were left open. In particular while A-diagnosability was claimed to be in PTIME [13], for what concerns 
approximate diagnosability (i.e. ε and AA-diagnosability), up to our knowledge, a (PTIME-checkable) sufficient condition for 
AA-diagnosability has been given [11], but no decidability result is known.

Contributions In this paper, we address the above mentioned gaps, and revisit diagnosability for probabilistic systems, from 
a semantical as well as a computational perspective.

• In order to give a solid semantical classification of diagnosability notions, we define criteria for diagnosability in prob-
abilistic systems, depending on (1) whether the diagnoser provides information for faulty runs only or for all runs, (2) 
whether ambiguity is defined at the level of infinite runs, or for longer and longer finite prefixes, and (3) whether the 
finite delay for fault detection is uniform or may depend on the faulty run. These three dimensions combined with 
approximate versus exact diagnosis yield several meaningful specifications of diagnosability. Under our terminology, 
A-diagnosability is renamed uniform FF-diagnosability, where the first F stands for finite prefixes and the second for 
faulty runs, and we make explicit the fact that the detection delay is uniform. Also, AA-diagnosability corresponds to 
uniform AFF-diagnosability, where A means approximate, and we call it uniform accurate approximate diagnosabil-
ity. Last, non uniform AFF-diagnosability corresponds to monitorability for hidden Markov chains, introduced in [14]
and further studied in [15], although the two notions first look very different. Beyond the formalisation of all these 
diagnosability notions, we establish the precise connections between them.

• For finite state probabilistic systems, we show that the notions of exact diagnosability can be characterised by a struc-
tural property of a synchronised product of the pLTS with a deterministic (finite or Büchi) automaton acting as an 
observer. We also characterise accurate approximate diagnosability as a separation property between labelled Markov 
chains (LMC), precisely a distance 1 between appropriate pairs of LMCs built from the pLTS.

• The previous characterisations yield PSPACE procedures for exact diagnosability and a PTIME algorithm for accurate 
approximate diagnosability thanks to some recent result [16], recovering the PTIME decidability result for monitorabil-
ity [15].

• Afterwards, we design algorithms for the synthesis of exact diagnosers and prove that their size 2�(n) (where n is the 
number of states of the pLTS model) is optimal. On the contrary, approximate diagnosers may require infinite memory.

• Finally we show that all approximate diagnosability problems except for AFF-diagnosability are undecidable. We also 
establish a matching complexity lower bound (PSPACE-hardness) for all exact diagnosability problems, disproving the 
polynomial time result for FF-diagnosability [13]. Note that the complexity of FF-diagnosability was also established 
in [14], where it corresponds to strong monitorability of an invariant property.

Coming back to the seminal works, while AA-diagnosability is a more intricate notion than A-diagnosability as witnessed 
by their decidability status (undecidable vs PSPACE), perhaps surprisingly their non uniform variants exhibit an opposite 
relation (PTIME vs PSPACE). However approximate diagnosers may require infinite memory in contrast to exact diagnosers. 
In a sense, our contributions highlight the surprises in the story about exact and approximate probabilistic diagnosis, hence 
the title.
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Organisation In Section 2, we introduce probabilistic LTS, define the possible diagnosability specifications and establish 
their connections. In Section 3, we provide characterisations for most of these specifications when pLTS are finite. In Sec-
tion 4, we establish decidability procedures for the diagnosability problem based on these characterisations and we study 
the complexity of these procedures. In Section 5, we design algorithms for synthesis of diagnosers with optimal size. In 
Section 6, we prove undecidability and hardness results. Finally, we conclude and give some perspectives to this work in 
Section 7. For readability concerns, the most technical proofs are deferred to the appendix.

This article extends two conference papers on fault diagnosis for probabilistic systems, respectively on exact diagnosabil-
ity [12] and approximate diagnosability [17].

2. Diagnosability specification

2.1. Probabilistic labelled transition systems

Our model of stochastic discrete event systems is a transition system labelled with events and where transitions outgoing 
a state are randomly chosen.

Definition 1. A probabilistic labelled transition system (pLTS) is a tuple A = 〈Q , q0, �, T , P〉 where:

• Q is a set of states with q0 ∈ Q the initial state;
• � is a finite set of events;
• T ⊆ Q × � × Q is a set of transitions;
• P is the transition matrix from T to Q>0 fulfilling for all q ∈ Q :∑

(q,a,q′)∈T P[q, a, q′] = 1.

Observe that a pLTS is a labelled transition system (LTS) equipped with transition probabilities. The transition relation of 
the underlying LTS is defined by: q a−→ q′ for (q, a, q′) ∈ T ; this transition is then said to be enabled in state q. By definition, in 
every state q of the pLTS at least one transition is enabled, i.e. a pLTS is live. We assume all pLTS we consider to be countably 
branching, i.e., in every state q, only countably many transitions are enabled, so that the summation 

∑
(q,a,q′)∈T P[q, a, q′] is 

well-defined.
Let us now introduce some important notions and notations that will be used throughout the paper. A run ρ of a pLTS 

A is a (finite or infinite) sequence ρ = q0a0q1 . . . such that for all i ≥ 0, qi ∈ Q , ai ∈ � and when qi+1 is defined, qi
ai−→ qi+1. 

The notion of run can be generalised, starting from an arbitrary state q. We write � for the set of all infinite runs starting 
from q0, assuming the pLTS A is clear from context. When it is finite, ρ ends in a state and its length, denoted by |ρ|, is the 
number of events occurring in it. Given a finite run ρ = q0a0q1 . . .qn and a (finite or infinite) run ρ ′ = qnanqn+1 . . . starting 
in the last state of ρ , we call concatenation of ρ and ρ ′ the run ρρ ′ = q0a0q1 . . .qnanqn+1 . . .Ṫhe run ρ is then a prefix of 
ρρ ′ , which we denote by ρ 
 ρρ ′ . The cylinder generated by a finite run ρ consists of all the infinite runs that extend ρ: 
Cyl(ρ) = {ρ ′ ∈ � | ρ 
 ρ ′}. The sequence associated with ρ = qa0q1 . . . is the word σρ = a0a1 . . ., and we write indifferently 
q ρ=⇒ or q 

σρ==⇒ (resp. q ρ=⇒ q′ or q 
σρ==⇒ q′) for an infinite (resp. finite) run ρ . A state q is reachable (from the initial state q0) if 

there exists a run ρ such that q0
ρ=⇒ q, which we alternatively write q0 =⇒ q. The language of pLTS A consists of all infinite 

words that label runs of A and is formally defined as Lω(A) = { σ ∈ �ω | ∃ q0
σ=⇒}.

Forgetting the labels and merging (and summing the probabilities of) the transitions with same source and target, a pLTS 
yields a discrete time Markov chain (DTMC). As usual for DTMC, the set of infinite runs of A is the support of a probability 
measure defined by Caratheodory’s extension theorem from the probabilities of the cylinders:

PA(Cyl(q0a0q1 . . .qn)) = P[q0,a0,q1] · · · P[qn−1,an−1,qn] .

When A is fixed, we may omit the subscript. To simplify, for ρ a finite run, we will sometimes abuse notation and write 
P (ρ) for P (Cyl(ρ)). If R is a (denumerable) set of finite runs such that no run is a prefix of another one, we write P (R)

for 
∑

ρ∈R P (ρ) which is consistent since all intersections of associated cylinders are empty.

2.2. Partial observation and ambiguity

In order to formalise problems related to fault diagnosis, we partition the set of events � into two disjoint sets �o and 
�u , the sets of observable and unobservable events, respectively. Moreover, we distinguish a special fault event f ∈ �u that is 
unobservable. For σ a finite word over �, its length is denoted by |σ |. The projection of words from �∗ onto the observable 
event alphabet �o is defined inductively by: π(ε) = ε; for a ∈ �o , π(σa) = π(σ )a; and for a /∈ �o , π(σa) = π(σ ). We write 
|σ |o for the observable length of σ , that is |π(σ )|. When σ is an infinite word over �, its projection is the limit of the 
projections of its finite prefixes, and by convention |σ |o = ∞. As usual the projection mapping π is extended to languages: 
for L ⊆ �∗ , π(L) = {π(σ ) | σ ∈ L}. With respect to the partition � = �o � �u , a pLTS A is said convergent if, from any 
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reachable state, there is no infinite sequence of unobservable events: Lω(A) ∩ �∗�ω
u = ∅. When A is convergent, for every 

σ ∈Lω(A), π(σ ) ∈ �ω
o . In the rest of the paper we assume that pLTS are convergent. We will use the terminology sequence

for a word σ ∈ �∗ ∪�ω , and an observed sequence for a word σ ∈ �∗
o ∪ �ω

o . The projection of a sequence onto �o is thus an 
observed sequence.

The observable length of a run ρ denoted by |ρ|o ∈ N ∪ {∞}, is the number of observable events that occur in it: 
|ρ|o = |σρ |o . A signalling run is a finite run q0a0q1 · · ·an−1qn such that an−1 is an observable event. Signalling runs are 
precisely the relevant runs w.r.t. partial observation issues since each observable event provides additional information about 
the execution to an external observer. In the sequel, SR denotes the set of signalling runs, and SRn the set of signalling 
runs of observable length n. Since we assume pLTS to be convergent, for every n > 0, SRn is equipped with a probability 
distribution defined by assigning measure P (ρ) to each ρ ∈ SRn . Given ρ a finite or infinite run, and 0 < n ≤ |ρ|o , ρ↓n

denotes the unique prefix of ρ that belongs to SRn . For convenience, the empty run q0 is defined as the single signalling 
run of null length. For an observed sequence σ ∈ �∗

o , we define its cylinder Cyl(σ ) = σ�ω
o and the associated probability 

P (Cyl(σ )) =P ({ρ ∈ � | π(ρ↓|σ |) = σ }) =P ({ρ ∈ SR|σ | | π(ρ) = σ }), often shortened as P (σ ).
Let us now classify runs depending on whether they contain a fault or not. A run ρ is faulty if its associated sequence 

σρ contains f, otherwise it is correct. For n ∈N , we write Fn (resp. Cn) for the set of infinite runs such that their signalling 
subrun of observable length n is faulty (resp. correct). We further define the sets of all finite faulty and correct signalling 
runs F and C and the sets of infinite faulty and correct runs F∞ and C∞ . A run ρ is a minimal faulty run if it is a faulty 
signalling run and there does not exist a prefix ρ ′ of ρ that is a faulty signalling run. We write for all n ∈N , minFn for the 
set of minimal faulty runs of length n and minF = ⋃

n∈N minFn for the set of all minimal faulty runs. W.l.o.g., by considering 
two copies of each state of the pLTS, we assume that the state space Q of A is partitioned into correct states and faulty 
states: Q = Q f � Q c such that faulty (resp. correct) states, i.e. states in Q f (resp. Q c) are only reachable by faulty (resp. 
correct) runs. An infinite (resp. finite) observed sequence σ ∈ �ω

o (resp. �∗
o ) is ambiguous if there exists a correct infinite 

(resp. signalling) run ρ and a faulty infinite (resp. signalling) run ρ ′ such that π(ρ) = π(ρ ′) = σ . Otherwise, it is either 
surely faulty, or surely correct depending on whether π−1(σ ) ∩ SR ⊆ F or π−1(σ ) ∩ SR ⊆ C. A run is ambiguous, surely 
correct or surely faulty if its observed sequence is ambiguous, surely correct or surely faulty respectively. We write Sf∞ for 
the set of infinite surely faulty runs. In addition Sfn is the set of infinite runs whose signalling subrun of observable length 
n is surely faulty.

2.3. Which diagnosis for pLTS?

For nonprobabilistic systems, diagnosis is defined by the existence of a diagnoser that presents three main features: 
verdict, correctness and reactivity. Verdict specifies the nature of the information the diagnoser provides along the run: it may 
only be related to detection of faults or may also assert that (some prefix of) the run does not include a fault. Correctness 
specifies that when the diagnoser outputs a verdict, this verdict holds. Reactivity asserts that after a fault occurred or a 
longer prefix of the run does not include fault, the diagnoser will detect it after a finite delay.

The aim of this section is to define appropriate verdict, correctness and reactivity requirements for probabilistic systems. 
So we start with informal explanations that also motivate the need of considering different versions of diagnosis.

In seminal works about probabilistic systems, the verdict is limited to fault detections and the reactivity is usually relaxed 
by requiring that when a fault occurs, a diagnoser almost surely detects it after a finite delay [11]. Let us look at the pLTS 
of Fig. 1. Considered as a LTS, one cannot detect that the run q0f( f1a)ω is faulty due to the correct run q0u(q1a)ω with 
same observed sequence aω . However with probability 1, a faulty run will produce a ‘b’ and thus faults are almost surely 
detected in this pLTS. On the other hand, one cannot provide any information about the single correct run q0u(q1a)ω since 
its observed sequence is ambiguous as well as any of its prefix.

In order to examine which information could be provided about correct runs, let us look at the pLTS of Fig. 2. A sequence 
an is ambiguous. However up to the n − 1th observation, all the runs that correspond this observed sequence were correct 
which is a useful information for instance to restart later the system from a correct state. Along the (surely correct) observed 
sequence aω , the observer can always deduce that longer and longer prefixes of the run were correct while never being able 
to assert that the current run is correct.

The correctness requirement may be specified in different ways. For an exact diagnosis, we ask that a fault can be 
claimed only when a fault surely happened (as it is the case in non probabilistic systems). However it may be necessary 
to weaken the correctness requirement as illustrated by the pLTS of Fig. 3. Since all observed sequences are ambiguous no 
exact diagnosis can be provided. However it is clear that when in an enough long observed sequence the ratio between 
occurrences of ‘b’ and ‘a’ is close to 3, the probability that the corresponding run is faulty is close to 1. Let us fix any ε > 0

q0 f1 f2q1
f au

a ba

Fig. 1. Detecting faults but not correct runs. When probabilities are not specified, we assume a uniform distribution.
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q0 q2 f1 f2q1
u f au

a bba

Fig. 2. Detecting correctness for longer and longer prefixes of correct runs.

q0 q fqc
f, 1

2u, 1
2

a, 1
4

b, 3
4

a, 3
4

b, 1
4

Fig. 3. When approximate diagnosis is necessary.

q0 q1 q fqc
u, 1

2 f, 15
16u, 1

2

a, 1
16

b,1

a, 3
4

b, 1
4

Fig. 4. When reactivity cannot be uniform.

and only require that the probability of the verdict is erroneous should be less than ε. Then using the strong law of large 
numbers, (approximate) fault detection is possible in this pLTS.

To formalise later the quality of an approximate diagnosis, with every observed sequence σ ∈ �∗
o we associate a correct-

ness proportion

CorP(σ ) = P ({ρ ∈ C ∩ SR|σ | | π(ρ) = σ })
P ({ρ ∈ SR|σ | | π(ρ) = σ }) ,

which is the conditional probability that a signalling run is correct given that its observed sequence is σ .
The standard way to specify reactivity in probabilistic systems for fault detection is to require that whatever the mini-

mal faulty run, almost surely the diagnoser will output its (faulty) verdict. We may also consider uniform reactivity which 
strengthens reactivity by requiring that the (random) delay is “reasonable” whatever the minimal faulty run. More formally, 
uniform reactivity ensures that given any positive probability threshold α > 0 there exists a delay nα independent of the 
minimal faulty run considered such that the probability to exceed this detection delay is bounded by α.

Let us illustrate these reactivity features with the pLTS of Fig. 4 for which only approximate diagnosis is possible. Fix 
some ε > 0 and consider the minimal faulty run q0uq1(aq1)

mfq f . After some occurrences of ‘b’ (say n), the correctness 
proportion of the observed sequence ambn is less than ε and thus the diagnoser can output its verdict. However due to the 
probabilities of an occurrence of ’a’ in correct and faulty runs respectively equal to 3/4 and 1/16, n must depend on m and 
so this reactivity cannot be uniform.

In order to formalise the different requirements discussed above, we first define several sets of runs related to ambiguity.

Definition 2 (Ambiguous runs). Let A be a pLTS, ε ≥ 0 and n ∈N>0. Then:

• FAmb∞ is the set of infinite faulty ambiguous runs of A;
• CAmb∞ is the set of infinite correct ambiguous runs of A;
• FAmbn is the set of infinite runs of A whose signalling subrun of observable length n is faulty and ambiguous;
• CAmbn is the set of infinite runs of A whose signalling subrun of observable length n is correct and ambiguous.
• FAmbε

n is the set of infinite faulty ambiguous runs of A whose observed sequence of length n, σ fulfils: CorP(σ ) > ε.

By definition, for all n ∈N , FAmb0
n = FAmbn . Observe that for all n ∈N, ε ≥ 0, CAmbn, FAmbn and FAmbε

n are open sets, 
thus measurable, and CAmb∞ and FAmb∞ are analytic, thus measurable for the complete measure. Moreover, we have the 
following link between the family {FAmbn}n∈N>0 and the set FAmb∞ .

Lemma 1. Let A be a pLTS. Then limn→∞P (FAmb∞ \ FAmbn) = 0. Moreover, if A is finitely branching, then limn→∞P (FAmbn \
FAmb∞) = 0.
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IF-diagnosis IA-diagnosis

FA-diagnosisFF-diagnosis

Infinite runs

Finite prefixes

All runsFaulty runs

Verdict

Reactivity

Fig. 5. Summarising the variants of exact diagnosis.

We propose five specifications of exact diagnosability for probabilistic systems based on three discriminating criteria: 
whether the unambiguity requirement holds for faulty runs only or for all runs, whether ambiguity is defined at the level 
of infinite runs or for longer and longer finite signalling prefixes, and whether the delay before detection of minimal faulty 
runs is uniform. Those notions are summarised in Fig. 5 except for uniformity delayed to next figure.

Definition 3 (Exact diagnosability). Let A be a pLTS.

• A is IF-diagnosable if P (FAmb∞) = 0.
• A is IA-diagnosable if P (FAmb∞ � CAmb∞) = 0.
• A is FF-diagnosable if lim supn→∞P (FAmbn) = 0.
• A is FA-diagnosable if lim supn→∞P (FAmbn � CAmbn) = 0.
• A is uniformly FF-diagnosable if for all α > 0 there exists nα ∈ N such that for all n ≥ nα and all minimal faulty run 

ρ ∈ minF

P ({ρ ′ ∈ FAmbn+|ρ|o | ρ 
 ρ ′}) ≤ α · P (ρ) .

Uniform and/or approximate diagnoses are defined for FF-diagnosis as it corresponds to the classical notion of diagnosis. 
Moreover there is no clear intuition on what would be the meaning of uniformity and approximation for the other variants. 
So we focus on uniformity and approximation for FF-diagnosis as summarised in Fig. 6. εFF-diagnosability allows the diag-
noser to claim a fault when the correctness proportion does not exceed ε, and accurate approximate diagnosability denoted 
by AFF-diagnosability ensures εFF-diagnosability for arbitrary ε > 0.

Definition 4 (Approximate diagnosability). Let A be a pLTS, and ε ≥ 0.

• A is εFF-diagnosable if for every minimal faulty run ρ ∈ minF and all α > 0 there exists nρ,α such that for all n ≥ nρ,α :

P (Cyl(ρ) ∩ FAmbε
n+|ρ|o ) ≤ α · P (ρ).

• A is uniformly εFF-diagnosable if for all α > 0 there exists nα such that for all minimal faulty run ρ ∈ minF and all 
n ≥ nα :

P (Cyl(ρ) ∩ FAmbε
n+|ρ|o ) ≤ α · P (ρ).

• A is (resp. uniformly) AFF-diagnosable if it is (resp. uniformly) εFF-diagnosable for all ε > 0.

Two variants of diagnosability for stochastic systems were introduced in the original article by Thorsley and 
Teneketzis [11]: so called A-diagnosability and AA-diagnosability. In finite pLTS, A-diagnosability corresponds to uniform
FF-diagnosability and AA-diagnosability corresponds to uniform AFF-diagnosability. The next theorem summarises the con-
nections between these definitions.
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εFF-diagnosis AFF-diagnosis

uniform
AFF-diagnosis

uniform
εFF-diagnosis FF-diagnosis

uniform

FF-diagnosisSimple

Uniform

Accurate approximateε approximate Exact

Correctness

Reactivity

Fig. 6. Summarising the approximate variants of FF-diagnosis.

Theorem 1. The diagnosability notions for pLTS are related according to the diagram below, where arrows represent implications. All 
implications, except the one from IF-diagnosability to FF-diagnosability hold for arbitrary infinite-state pLTS. The latter implication 
holds for finitely branching pLTS. Implications that are not depicted do not hold, already in the case of finite-state pLTS.

FA-diagnosable

IA-diagnosable

uniformly
FF-diagnosable

FF-diagnosable

IF-diagnosable

uniformly
AFF-diagnosable

uniformly
εFF-diagnosable

AFF-diagnosable εFF-diagnosable

0FF-diagnosablefor finitely
branching pLTS

for finite pLTS

for all ε > 0

for all ε > 0

Sketch of proof. Here we only provide the most interesting implications and nonimplications. The remaining proofs are 
given in appendix.
FF ⇔ 0FF. Let A be a 0FF-diagnosable pLTS and ε > 0. Since (Fn)n∈N is a nondecreasing sequence converging to F∞ , there 
exists n0 ∈ N such that for all n ≥ n0, P (Fn \ Fn0) < ε/2. By 0FF-diagnosability of A, for all ρ ∈ ⋃

k≤n0
minFk , there exists 

nρ such that for all n ≥ nρ

P (Cyl(ρ) ∩ FAmbn+|ρ|o ) ≤ ε

4
· P (ρ).

Notice that, because the pLTS may be infinitely branching, the set 
⋃

k≤n0
minFk may be infinite. We therefore define nmax

such that P ({ρ ∈ ⋃
k≤n0

minFk | nρ > nmax}) ≤ ε/4. Thus, only a small portion of runs ρ in 
⋃

k≤n0
minFk have nρ > nmax . Then 

for n ≥ n0 + nmax we have

P (FAmbn) ≤ P (FAmbn \ Fn0) + P (FAmbn ∩ Fn0)

≤ P (FAmbn \ Fn0) + P ({ρ ∈
⋃

k≤n0

minFk | nρ > nmax})

+ P ({ρ ′ ∈ FAmbn | ∃ρ ∈
⋃

k≤n0

minFk, ρ 
 ρ ′, nρ ≤ nmax})

≤ ε

2
+ ε

4
+ ε

4
P ({ρ ∈

⋃
k≤n0

minFk | nρ ≤ nmax}) ≤ ε .
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q0 q11

q21 q22

f1

.

.

.

a,1/4

a,1/8

a

f,1/2

b

b

a

Fig. 7. An infinitely branching pLTS that is IA-diagnosable but not FF-diagnosable.

Let A be a FF-diagnosable pLTS. Consider ρ ∈ minF and α > 0. There exists n0 ∈ N such that for all n ≥ n0, P (FAmbn) ≤
α ·P (ρ). Thus for all n ≥ n0:

P (Cyl(ρ) ∩ FAmbn+|ρ|o ) ≤ P (FAmbn+|ρ|o ) ≤ α · P (ρ).

IF � FF. Consider the infinitely branching pLTS of Fig. 7, where the probability of the transition from q0 to qi1 is 2−i−1. 
There is no infinite ambiguous sequence, so that it is IA-diagnosable, and thus IF-diagnosable. Yet, for all n ∈N , the observed 
sequence an is ambiguous and the signalling faulty run q0f f1a · · · f1 of observable length n has probability 1/2. Therefore, 
P (FAmbn) = 1/2, so that the pLTS it is not FF-diagnosable.
IA � FA. Consider the pLTS of Fig. 2. Any infinite faulty run contains a b-event, that cannot appear in a correct run, therefore 
FAmb∞ = ∅. Both infinite correct runs have aω as observed sequence, and aω cannot be observed during a faulty run, thus 
CAmb∞ = ∅. Thus this pLTS is IA-diagnosable. Consider now the infinite correct run ρ = q0uq1aq1 . . .. It has probability 1/2, 
and all its finite signalling subruns are ambiguous since their observed sequence is an , for some n ∈ N . Thus for all n ≥ 1, 
P (CAmbn) ≥ 1/2, so that this pLTS is not FA-diagnosable.
uniform AFF � IF. Consider the pLTS depicted in Fig. 3. All infinite faulty runs are ambiguous, and the probability of 
faulty runs is 1/2, thus this pLTS is not IF. Fix some ε > 0 and α. There are two minimal faulty runs ρa = q0fq f aq f and 
ρb = q0fq f bq f . Consider first ρa and let ρ be the random variable of a signalling run of length n that extends ρa . One can 
express the correctness proportion of ρ in terms of the number of a’s in its observed sequence, written |ρ|a:

CorP(ρ) = ( 3
4 )|ρ|a ( 1

4 )|ρ|−|ρ|a

( 3
4 )|ρ|a ( 1

4 )|ρ|−|ρ|a + ( 1
4 )|ρ|a ( 3

4 )|ρ|−|ρ|a

Simplifying this expression, we obtain: CorP(ρ) = 1
1+3|ρ|−2|ρ|a . Now, by the strong law of large numbers, for any η > 0, there 

exists nη such that for every n ≥ nη , P (|4|ρ|a − |ρ|| > η) < α. So with probability at least 1 − α, the correctness proportion 
of ρ is bounded by 1

1+3
η+|ρ|

2

. We can now fix η as a function of ε, so that P (CorP(ρ) ≤ ε) ≥ 1 − α.

A similar reasoning applies to ρb , and one can then take the maximum of the two integers nη to prove that the pLTS is 
uniformly AFF-diagnosable.
AFF � uniform εFF. Consider the pLTS of Fig. 4. Fix some 0 < ε < 3/4, 0 < α < 1 and nα . Consider the minimal faulty run 
ρ = q0uq1(aq1)

nα+1fq f bq f . Let ρ ′ be the signalling run of length 2nα + 2 such that ρ 
 ρ ′ . π(ρ ′) = anα+1bnα+1. Thus by 
examination of the pLTS, CorP(π(ρ ′)) ≥ 3/4. So

P (Cyl(ρ) ∩ FAmbε
2nα+2) = P (ρ) > α · P (ρ).

Thus the pLTS is not uniformly εFF-diagnosable.
Let ρ be a minimal faulty run. Then π(ρ) = an0 b for some n0. For all n, let ρn be the single signalling run of observable 
length |ρ| + n that extends ρ . It fulfils π(ρn) = an0 bn+1 and P (ρn) = P (ρ). The single correct signalling run ρ ′

n with 
π(ρ ′

n) = π(ρn) fulfils P (ρ ′
n) = 3n0

2·4n0+n+1 . Thus limn→∞ CorP(π(ρn)) = 0. So the pLTS is εFF-diagnosable for all ε > 0 and 
thus AFF-diagnosable. �
3. Characterisations of diagnosability

The goal of this section is to provide characterisations of the different diagnosability notions we introduced. Having algo-
rithmic developments in mind, we focus here on finite-state pLTS. As a consequence, FF-diagnosability and IF-diagnosability 
coincide, and we consider only IF-diagnosability in the sequel.

For all the exact diagnosability notions, the methodology is similar. We first construct an ad hoc deterministic automaton 
which gathers all the information needed for the diagnosis, by tracking possible correct and faulty executions. Second, we 
build the product of the original pLTS with this deterministic automaton, to recover the probabilistic behaviour. Diagnos-
ability can then be characterised on the product by graph-based properties.

As for approximate diagnosability, we show that the diagnosability notions can be characterised relying on the distance 1 
problem for labelled Markov chains. This problem, shown to be decidable in PTIME [16] asks for the existence of an event, 
that is almost sure in one input Markov chain, and has null measure in the other. Labelled Markov chains, the distance 1 
problem, and our characterisation are detailed in Subsection 3.2.
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3.1. Exact diagnosis

For each notion of exact diagnosability, we proceed similarly. First, given a pLTS A we design a deterministic automaton 
that accepts some (finite or infinite) observed sequences of A. Then we build the synchronised product of this automa-
ton with A, to obtain another pLTS with the same stochastic behaviour as A but augmented with additional information 
about the current run, that will be useful for diagnosis. Finally, we characterise diagnosability by graph properties on the 
synchronised product.

The deterministic automata we will build are variants of the deterministic Büchi automaton introduced in [18], that 
accepts the unambiguous observed sequences. The latter tracks the subsets of possible states reached by signalling runs 
associated with an observed sequence. It resembles the on-the-fly determinisation of A viewing unobserved events as 
silent transitions. However, in view of the forthcoming characterisations, the subsets of correct and faulty states are divided 
in three sets: U , V and W . A state q belongs to U , if there is a correct signalling run with the current observed sequence 
ending in q. A state q belongs to V ∪ W if there is a faulty signalling run with the current observed sequence ending in 
q. The partition between V and W ensures that for all q ∈ V , q′ ∈ W and ρ a faulty run ending in q, there exists a faulty 
run ρ ′ ending in q′ with an earlier fault than the first fault of ρ ′ . The decomposition between V and W reflects the fact 
that the automaton tries to resolve the ambiguity between U and W (when both are not empty), while V corresponds to 
a waiting room of states reached by faulty runs that will be examined when the current ambiguity is resolved. Note also 
that this construction only considers signalling runs. To simplify the definition of the deterministic automaton, given a set 
of states S and an observation a, we define E(a, S) = {ρ = qα0a1 . . .akqαk | ρ is a run of A, qα0 ∈ S, ∀i < k ai ∈ �u, ak = a}
the set of signalling runs starting in a state of S with observation a. We also define for two sets of states U and V and 
a set of paths E the set of state updatef aulty(U , V , E) = {q | ∃ρ = qα0a1 . . .akqαk run of E, qα0 ∈ V , qαk = q} ∪ {q | ∃ρ =
qα0a1 . . .akqαk faulty run of E, qα0 ∈ U , qαk = q} which contains the states reached by a path of E from V and those reached 
from U by a faulty run of E . Formally, the states and transitions of the deterministic Büchi automaton Obs(A) are inductively 
defined by:

• s0 = ({q0}, ∅, ∅) is the initial state of Obs(A);

• Given (U , V , W ) a state of Obs(A) and a ∈ �o , there is a transition (U , V , W ) a−→ (U ′, V ′, W ′) as soon as:
1. E(a, U ∪ V ∪ W ) �= ∅,
2. U ′ = {q | ∃ρ = qα0a1 . . .akqαk correct run of E(a, U ), qα0 ∈ U , qαk = q},
3. If W = ∅ then V ′ = ∅ and

W ′ = updatef aulty(U , V , E(a, U ∪ V )),
4. If W �= ∅ then W ′ = updatef aulty(∅, W , E(a, W )) and

V ′ = updatef aulty(U , V , E(a, U ∪ V )) \ W ′ .

The set F of accepting states consists of all triples (U , V , W ) with U = ∅ or W = ∅. When U = ∅, the current signalling 
run is surely faulty, since U tracks the possible states after a correct run. When W = ∅ the current signalling run may be 
ambiguous (if V �= ∅) but the “oldest” possible faulty runs under scrutiny have been discarded. Hence, any infinite observed 
sequence of A passing infinitely often through F is not ambiguous (either it is surely faulty, or ambiguities are resolved one 
after another).

The next proposition recalls the property of this automaton.

Proposition 1 ([18]). Let A be a finite pLTS. Then the deterministic Büchi automaton Obs(A) accepts the infinite unambiguous ob-
served sequences of A.

3.1.1. IF-diagnosability
As explained earlier, for each diagnosability notion, we will consider a variant of Obs(A). For IF-diagnosability, we can 

omit the faulty sets of states V and W . We write IF(A) for the resulting simplified automaton, obtained from Obs(A) by 
only considering the U -component of states.

Fig. 8 illustrates this construction on the pLTS of Fig. 2. This automaton reflects that, after observing at least one a, and 
as long as b is not observed, the current signalling run is surely correct leading to either q1 or q2 (state s1), and once b
happens, the current signalling run is surely faulty, thus the set of possible correct states is empty (state s2).

{q0}
s0

{q1,q2}
s1

∅
s2

a b

b

a,ba

Fig. 8. The IF-automaton of pLTS of Fig. 2.



10 N. Bertrand et al. / Information and Computation 269 (2019) 104441
q0, s0 q2, s0

q2, s1

f1, s0

f1, s1

f1, s2 f2, s1f2, s2

q1, s0

q1, s1

u f

f

a

a

b

b

a b

u

ba

b

a

a a

Fig. 9. The synchronised product of pLTS of Fig. 2 and its IF-automaton.

{q0},∅
s0

{q1,q2}, { f2}
s1

∅, { f1, f2}
s2

∅, { f1} s3

∅, { f2}s4

a b

a

b

a
b

b

b

a

Fig. 10. The FA-automaton of pLTS of Fig. 2.

To recover the stochastic behaviour of A which is not reflected in IF(A), we now define the pLTS AIF = A × IF(A) as 
the product of A and IF(A) synchronised over observed events. Since IF(A) is deterministic and complete, AIF is still a 
pLTS, with the same stochastic behaviour as A. In addition, the U -component of a state (q, U ) of AIF stores the relevant 
information w.r.t IF-diagnosability of the observed sequence so far.

Carrying on with the example pLTS of Fig. 2, Fig. 9 shows the resulting product pLTS. Observe that it has two bottom 
strongly connected components (BSCC), each consisting of one of the absorbing states (q1, s1) and ( f2, s2).

In finite DTMC every run almost surely ends in a BSCC, and IF-diagnosability is concerned with (faulty) ambiguous 
infinite runs. Unsurprisingly, our characterisation of IF-diagnosability is thus based on the BSCC of AIF .

Proposition 2. Let A be a finite pLTS. Then A is IF-diagnosable if and only if AIF has no BSCC containing a state (q, U ) with q ∈ Q f
and U �= ∅.

Proof. Suppose first that there exists a reachable BSCC C of AIF and a state s = (q, U ) in C such that q ∈ Q f and U �= ∅. Let 
ρ be a signalling run leading from the initial state s0 of AIF to s. Now, for every state s′ = (q′, U ′) ∈ C , necessarily q′ ∈ Q f
and U ′ �= ∅, because C is strongly connected. So for every signalling run ρ ′ that extends ρ , writing s′ = (q′, U ′) for the state 

ρ ′ leads to, there exists a correct signalling run ρ ′′ such that π(ρ ′′) = π(ρ ′) and q0
ρ ′′
−−→ q′′ with q′′ ∈ U ′ . As a consequence 

the observed sequence π(ρ ′′) is ambiguous, and for every n ≥ |ρ|o , P (FAmbn) ≥P (ρ), so that A is not IF-diagnosable.

Suppose now that for every state s = (q, U ) of a BSCC C , either q ∈ Q c , or U = ∅. This property is in fact uniform by BSCC: 
for every BSCC C , either for every state (q, U ) ∈ C , q ∈ Q c , or, for every state (q, U ) ∈ C , U = ∅. This is a straightforward 
consequence of C being strongly connected. Moreover, if a run ρ reaches a pair (q, U ) then q ∈ Q c implies U �= ∅. Indeed, let 
ρ ′ be the greatest signalling run prefix of ρ . ρ ′ ends in a pair (q′, U ′) where U ′ = U as π(ρ) = π(ρ ′). Moreover if q ∈ Q c , 
then q′ ∈ Q c , therefore q′ ∈ U implying that U �= ∅. Therefore in AIF the BSCC are partitioned in non-faulty ones, in case all 
q-components of states in C are non-faulty, and faulty ones, in case all U -components of states in C are empty ensuring 
unambiguity of faulty runs ending in a BSCC. Thus an infinite faulty ambiguous run must only visit transient states. Since 
almost surely runs leave the transient states and reach a BSCC, this implies that P (FAmb∞) = 0. �
3.1.2. FA-diagnosability

For FA-diagnosability, we again start from Obs(A) and gather the V and W components into a unique set, that we again 
call V . The resulting simplified automaton is denoted by FA(A).

Fig. 10 illustrates this construction on the pLTS of Fig. 2. As expected, the FA-automaton is a refinement of the
IF-automaton: the U -component of a state in FA(A) corresponds to a state in IF(A). For instance, state s2 of Fig. 8 is 
split here into s2, s3 and s4.
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q0, s0 q2, s0

q2, s1

f1, s0

f1, s1 f1, s2

f1, s3

f2, s1 f2, s2 f2, s4

q1, s0

q1, s1

u f

f

a

a

b

u b

b

a

a

a b b

b

b

a

a a

Fig. 11. The synchronised product of pLTS of Fig. 2 and its FA-automaton.

{q0},∅,∅
s0

{q1,q2},∅, { f2}
s1

{q1,q2}, { f2},∅s′
1

∅, { f1}, { f2}
s2

∅,∅, { f1, f2}
s′

2

∅,∅, { f1}
s3

∅,∅, { f2}
s4

∅, { f2},∅
s′

4
a b

b

a

b

a

a

bb

b

b

b

aa

Fig. 12. The IA-automaton of pLTS of Fig. 2.

We now define the pLTS AFA = A × FA(A) as the product of A and FA(A) synchronised over observed events. AFA is 
still a pLTS with same stochastic behaviour as A augmented with the relevant information of the observed sequence w.r.t
FA-diagnosability. Fig. 11 continues our example and shows the synchronised product for the pLTS of Fig. 2.

Again, FA-diagnosability is characterised through the BSCC of AFA .

Proposition 3. Let A be a finite pLTS. A is FA-diagnosable if and only if AFA has no BSCC that:

• either contains a state (q, U , V ) with q ∈ Q f and U �= ∅;
• or contains a state (q, U , V ) with q ∈ Q c and V �= ∅.

Note that the characterisation of FA-diagnosability is symmetric for correct states and V -component (resp. faulty states 
and U -component). This reflects that the definition of FA-diagnosability itself is symmetric.

3.1.3. IA-diagnosability
For IA-diagnosability, we use Obs(A) with no transformation, however, to stick to the presentation for the other diag-

nosability notions, we write here IA(A) for Obs(A).
Fig. 12 shows the IA-automaton of the pLTS depicted in Fig. 2, where accepting states for the Büchi condition are doubly 

framed. Observe that the state s1 of its FA-automaton (see Fig. 10) has been split into two states s1 and s′
1, and s′

1 is an 
accepting state for Obs(A). The infinite observed sequence aω , which is indeed unambiguous, is thus accepted.

As before, to come up with a characterisation, one builds AIA = A × IA(A), the product of A and IA(A) synchronised 
over observed events. Fig. 13 shows the synchronised product corresponding to the pLTS depicted in Fig. 2. Among the 
BSCC, all the faulty ones (i.e. the ones reached after a faulty event) have U = ∅, while {(q1, s1), (q1, s′

1)}, the single one that 
is reached by a correct run, has a state (q1, s′

1) with W = ∅.
Using Proposition 1 we get the following:

Proposition 4. Let A be a finite pLTS. A is IA-diagnosable if and only if AIA has no BSCC such that:

• either, all its states (q, U , V , W ) fulfil q ∈ Q f and U �= ∅;
• or all its states (q, U , V , W ) fulfil q ∈ Q c and W �= ∅.

3.2. Approximate diagnosis

We now turn to the characterisation of approximate diagnosis and particularly of AFF-diagnosability. The reason why 
we only consider AFF-diagnosability here will become clear in Subsection 6.1 where we show that all other approximate 
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Fig. 13. The synchronised product of pLTS of Fig. 2 and its IA-automaton.

diagnosability notions are undecidable. Our characterisation of AFF-diagnosability uses the notion of distance between two 
Markov chains with labels on the transitions. A labelled Markov chain (LMC) is a pLTS where every event is observable: 
� = �o . In order to exploit results of [16] on LMC in our context of pLTS, we introduce the mapping M that computes 
in polynomial time the probabilistic closure of a pLTS w.r.t. the unobservable events and produces an LMC. Informally, the 
probabilities of all paths of A from state q to state q′ with same observed sequence a ∈ �o are gathered to obtain the 
probability in M(A) to move from q to q′ with label a. The transformation is formally defined below. For sake of simplicity, 
we denote by Aq , the pLTS A where the initial state has been substituted by q.

Definition 5. Given a pLTS A = 〈Q , q0, �, T , P〉 with � = �o � �u , the labelled Markov chain M(A) = 〈Q , q0, �o, T ′, P′〉 is 
defined by:

• T ′ = {(q, a, q′) | ∃ρ ∈ SR1(Aq) ρ = q · · ·aq′} (and so a is observable).
• for every (q, a, q′) ∈ T ′, P′(q, a, q′) =P ({ρ ∈ SR1(Aq) | ρ = q · · ·aq′}).

Let E be an event of �ω
o (i.e. a measurable subset of �ω

o for the standard measure), we denote by PM(E) the probability 
that event E occurs in the LMC M. Given two LMC M1 and M2, the (probabilistic) distance between M1 and M2 gen-
eralises the concept of distance for distributions. Given an event E , |PM1 (E) −PM2 (E)| expresses the absolute difference 
between the probabilities that E occurs in M1 and in M1. The distance between M1 and M2 is defined as the supremum 
over the events:

Definition 6. Let M1 and M2 be two LMC over the same alphabet �o . Then d(M1, M2) the distance between M1 and M2

is:

d(M1,M2) = sup{|PM1(E) − PM2(E)| | E event of �ω
o } .

The distance 1 problem asks, given labelled Markov chains M1 and M2, whether d(M1, M2) = 1. The next proposition 
summarises the results by Chen and Kiefer on LMC, that we use later.

Proposition 5 ([16]).

• Given two LMC M1, M2 , there exists an event E such that:

d(M1,M2) = PM1(E) − PM2(E).

• The distance 1 problem for LMC is decidable in polynomial time.

Let us first explain how to characterise AFF-diagnosability on a subclass of pLTS called initial-fault pLTS. Informally, an 
initial-fault pLTS A consists of two disjoint pLTS A f and Ac and an initial state q0 with an outgoing unobservable correct 
transition leading to Ac and a transition labelled by f leading to A f (see Fig. 14). Moreover no faulty transitions occur in 
Ac .
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q0qc q f
f, 1

2u, 1
2Ac

(� \ {f})
A f

(�)

Fig. 14. Initial-fault pLTS.

Definition 7 (Initial-fault pLTS). A pLTS A = 〈Q , q0, �, T , P〉 is an initial fault pLTS if there exist two disjoint pLTS A f =
〈Q f , q f , �, T f , P f 〉 and Ac = 〈Q c, qc, � \ {f}, Tc, Pc〉 such that:

• Q = {q0} � Q f � Q c ;
• T = T f � Tc � {(q0, u, qc), (q0, f, q f )} with u ∈ �u ;
• for every t ∈ T f , P(t) = P f (t), for every t ∈ Tc , P(t) = Pc(t), and for every t ∈ T \ (Tc ∪ T f ) P(t) = 1/2.

We denote such a pLTS by A = 〈q0, A f , Ac〉.

The next lemma establishes a strong connection between distance of LMC and diagnosability of initial-fault pLTS.

Lemma 2. Let A = 〈q0, A f , Ac〉 be an initial-fault pLTS. Then A is AFF-diagnosable if and only if d(M(A f ), M(Ac)) = 1.

In order to understand why characterising AFF-diagnosability for general pLTS is more involved, consider again the pLTS 
A2 presented in Fig. 3, on page 5, where outgoing transitions of any state are uniform. Recall that A2 is AFF-diagnosable 
(and even uniformly AFF-diagnosable).

Let us look at the distance between pairs of a correct and a faulty state of A that can be reached by runs with the 
same observed sequence. On the one hand, d(M(Aq0 ), M(Aq f )) ≤ 1/2 since for any event E either (1) aω ∈ E implying 
P

M(Aq f )
(E) = 1 and PM(Aq0 )(E) ≥ 1/2 or (2) aω /∈ E implying PM(Aq f )

(E) = 0 and PM(Aq0 )(E) ≤ 1/2. On the other 
hand, d(M(Aqc ), M(Aq f )) = 1 since PM(Aq f )

(aω) = 1 and PM(Aqc )(aω) = 0.
We claim that the pair (q0, q f ) is irrelevant, since the correct state q0 does not belong to a bottom strongly connected 
component (BSCC) of the pLTS, while (qc, q f ) is relevant since qc belongs to a BSCC triggering a “recurrent” ambiguity. The 
next theorem characterises AFF-diagnosability, establishing the soundness of this intuition.

Theorem 2. Let A be a pLTS. Then, A is AFF-diagnosable if and only if for every correct state qc belonging to a BSCC and every faulty 
state q f reachable by a faulty run ρ f such that qc is reachable by a run with same observed sequence, d(M(Aqc ), M(Aq f )) = 1.

The proof of Theorem 2 is given in appendix. Let us sketch the key ideas to establish the characterization of
AFF–diagnosability in terms of the distance 1 problem.
The left-to-right implication is the easiest one, and is proved by contraposition. Assume there exist two states in A, qc ∈ Q c

belonging to a BSCC and q f ∈ Q f reachable resp. by ρc and ρ f with π(ρc) = π(ρ f ), and with d(M(Aqc ), M(Aq f )) < 1. 
Applying Lemma 2 to the initial-fault pLTS A′ = 〈q′

0, Aq f , Aqc 〉, one deduces that A′ is not AFF–diagnosable. First we relate 
the probabilities of runs in A and A′ . Then we show that considering the additional faulty runs with same observed 
sequence as ρ f does not make A AFF–diagnosable.
The right-to-left implication is harder to establish. For ρ0 a faulty run, α > 0, ε > 0, σ0 = π(ρ0) and n0 = |σ0|, we start by 
extending the runs with observed sequences σ0 by nb observable events where nb is chosen in order to get a high probability 
that the runs end in a BSCC. For such an observed sequence σ ∈ �

nb
o , we partition the possible runs with observed sequence 

σ0σ into three sets: RF
σ is the subset of faulty runs; RC

σ (resp. RT
σ ) is the set of correct runs ending (resp. not ending) 

in a BSCC. At first, we do not take into account the “transient” runs in RT
σ . We apply Lemma 2 to obtain an integer nσ

such that from RF
σ and RC

σ we can diagnose with (appropriate) high probability and low correctness proportion after nσ

observations. Among the runs that trigger diagnosable observed sequences, some exceed the correctness proportion ε, when 
taking into account the runs from RT

σ . Yet, we show that the probability of such runs is small, when cumulated over all 
extensions σ , leading to the required upper bound α.

As an alternative to the proof of Theorem 2, one could mimic the approach by Kiefer and Sistla [15] for monitora-
bility. The idea would be, from a pLTS A to derive two hidden Markov chains, say Hc and H f representing respectively 
the observation sequences for correct and faulty runs of A. However, to establish that distinguishability of Hc and H f
corresponds to AFF-diagnosability essentially relies on the same arguments we used in the above proof (and so this al-
ternative approach would not simplify it). The difficulty lies in that the events one conditions by to obtain Hc and H f , 
namely always correct or eventually faulty, anticipate on the future behaviour of the system; in contrast, the correctness 
proportion appearing in the definition of AFF-diagnosability only speaks about the possible behaviours up to the last obser-
vation.
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4. Decidability results

We first consider exact diagnosability notions, and establish, thanks to the characterisations of the previous section, 
that they can all be solved in PSPACE. In all cases, to obtain the PSPACE upper-bound, we avoid building explicitly the 
exponential size product pLTS (that are used in the characterisations) and only explore it on-the-fly.

Proposition 6. The IF-diagnosability problem is decidable in PSPACE.

Proof. We use the characterisation of IF-diagnosability given in Proposition 2. To obtain a PSPACE algorithm, we avoid 
building explicitly the product pLTS AIF , which is exponential in the size of A. Given two states s, s′ of AIF , one can check 
in polynomial space in the size of A whether s′ can be reached from s. Using this procedure, we can check whether a state 
s is not in a BSCC by guessing another state s′ such that s′ is reachable from s but s is not reachable from s′ . Here we use 
Savitch’s theorem.
Thus the procedure that decides whether A is not IF-diagnosable consists in guessing a state s = (q, U ) with q ∈ Q f and 
U �= ∅, checking that it is reachable from s0 and whether s is in a BSCC (here again, we use Savitch’s theorem). �

We state below similar results for FA- and IA-diagnosability problems.

Proposition 7. The FA- and IA-diagnosability problems are decidable in PSPACE.

For approximate diagnosability, we concentrate on AFF-diagnosability and establish a complexity upper-bound, relying 
on the characterisation from the previous section.

Theorem 3. The AFF-diagnosability problem is decidable in PTIME for pLTS.

Proof. The decidability and complexity results rely on the characterisation of AFF-diagnosability, see Theorem 2. Reachabil-
ity of a pair of states with the same observed sequence is decidable in polynomial time by an appropriate “self-synchronised 
product” of the pLTS. Since there are at most a quadratic number of pairs to check, and given that the distance 1 prob-
lem can be decided in polynomial time due to Chen and Kiefer (as recalled in Proposition 5), the decidability and PTIME 
upper-bound follow. �
5. Diagnoser construction

In this section we focus on the synthesis of diagnosers. A diagnoser is a function D : �∗
o → {?, �, ⊥} assigning to every 

finite observed sequence a verdict. Informally when a diagnoser outputs ? it does not provide any information, while �
means that the diagnoser announces a fault and ⊥ that the diagnoser provides some information about correctness of the 
current run. We consider the natural partial order ≺ on these values defined by ? ≺ � and ? ≺ ⊥.

For implementation considerations, we introduce finite memory diagnosers. A finite memory diagnoser is given by a 
tuple (M, �, m0, up, Dfm) where M is a finite set of memory states, m0 ∈ M is the initial memory state, up : M × �o → M
is a memory update function, and finally Dfm : M → {?, �, ⊥} is a diagnoser function. The mapping up is extended into a 
function up : M ×�∗

o → M defined inductively by up(m, ε) = m and up(m, wa) = up(up(m, w), a). A finite memory diagnoser 
is not a diagnoser as defined above, yet it induces the diagnoser defined by D(w) = Dfm(up(m0, w)).

Diagnosers we define in the sequel will have two important properties: correctness and reactivity. Correctness ensures 
that the information provided is accurate and reactivity specifies which pieces of information the diagnoser must provide. 
The precise correctness and reactivity requirements will depend on the considered diagnosability notions. An exact diagnoser 
has an additional property, commitment, meaning that when it announces a fault it will announce a fault forever.

5.1. IF-diagnoser

We start with IF-diagnosers of pLTS. These diagnosers only provide information about faulty runs. In the sequel we fix 
A a finite pLTS. Given w ∈ �ω

o , w≤n denotes the prefix of w with length n.

Definition 8. An IF-diagnoser for A is a function D : �∗
o → {�, ?} such that:

commitment. For all w 
 w ′ ∈ �∗
o , if D(w) = � then D(w ′) = �.

correctness. For all w ∈ �∗
o , if D(w) = � then w is surely faulty.

reactivity. For every minimal finite faulty run ρ ,
P ({ρ ′ ∈ � | ρ 
 ρ ′ ∧ D(π(ρ ′)) =?}) = 0
where for w ∈ �ω

o , D(w) = limn→∞ D(w≤n).
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In the above definition, due to commitment the limit is well-defined.

Proposition 8. A finite pLTS is IF-diagnosable if and only if it admits an IF-diagnoser.

Proof. Let A be a pLTS, and assume there exists an IF-diagnoser D for A.
Let ε > 0. Using Lemma 1, first select n0 such that for all n ≥ n0

P (FAmbn�FAmb∞) < ε ,

where � stands for the symmetric difference.
So for n ≥ n0 one has P (FAmbn�FAmbn0) < 2ε, hence P (F Ambn \ F Ambn0) < 2ε.
Since D is correct, for any minimal faulty run ρ ∈ SRn0 , and for any n ≥ n0

{ρ ′ ∈ FAmbn | ρ 
 ρ ′} ⊆ {ρ ′ ∈ SRn | ρ 
 ρ ′ ∧ D(π(ρ ′)) =?} .

By the reactivity condition, D almost surely detects faults, and because the number of signalling runs of fixed observable 
length is finite (since A is convergent by hypothesis), there exists N ∈N such that for every n ≥ N + n0 and every minimal 
faulty run ρ ∈ ∪m≤n0 minFm ,

P ({ρ ′ ∈ SRn | ρ 
 ρ ′ ∧ D(π(ρ ′)) =?}) < ε · P (ρ) .

Thus for every n ≥ N + n0,

P (FAmbn ∩ FAmbn0) = P
( ⊎
ρ∈FAmbn0

{ρ ′ ∈ FAmbn,ρ 
 ρ ′}
)

=
∑

ρ∈∪m≤n0 minFm

P ({ρ ′ ∈ FAmbn,ρ 
 ρ ′}) < ε
∑

ρ∈∪m≤n0 minFm

P (ρ) = εP (Fn0) ≤ ε .

Thus P (FAmbn) < 3ε for every n ≥ N + n0, which proves that A is IF-diagnosable.

Assume that A is IF-diagnosable. We define the function D : �∗
o → {�, ?} by D(w) = � if and only if w is a surely faulty 

observed sequence. Let us check that D is an IF-diagnoser. By definition, D fulfils the commitment property. Since D(w) = �
iff w is a surely faulty sequence, D is correct. Now, let ρ be a minimal faulty run.

P ({ρ ′ ∈ � | ρ 
 ρ ′ ∧ D(π(ρ ′)) =?}) = lim
n→∞P ({ρ ′ ∈ FAmbn+|ρ|o | ρ 
 ρ ′}) .

For every n ∈ N , we have {ρ ′ ∈ FAmbn+|ρ|o | ρ 
 ρ ′} ⊆ FAmbn+|ρ|o and limn→∞P (FAmbn) = 0. Therefore P ({ρ ′ ∈ � | ρ 

ρ ′ ∧ D(π(ρ ′)) =?}) = 0 and D is reactive. �

We now study the size of IF-diagnosers.

Proposition 9. If A is an IF-diagnosable pLTS with n correct states, one can build an IF-diagnoser with at most 2n memory states 
where n = |Q c|.

Proof. For an IF-diagnosable pLTS A with IF(A) = (Q ∗, �o, T ∗, {q0}) its deterministic and complete IF-automaton, we de-
fine the finite memory diagnoser (M, �, up, m0, Dfm) with M = Q ∗ and m0 = {q0}, up(q, a) = T ∗(q, a) and Dfm(U ) = � iff 
U = ∅. Let us show that the induced diagnoser D is indeed an IF-diagnoser, and that it has at most 2n memory states, 
where n is the number of correct states of A.

commitment When U is empty it remains empty forever which implies commitment.
correctness When D outputs the verdict �, IF(A) is in the state associated with ∅. Thus the observed sequence is surely 

faulty.
reactivity If an infinite faulty run ρ is such that D(π(ρ)) =? then, by construction of IF(A) and definition of D , for 

every length n ∈ N , there exists a finite correct signalling run ρn ∈ SRn such that π(ρn) = π(ρ↓n). Using König’s 
lemma, since A is finitely branching, one can extract an infinite correct run ρ∞ such that π(ρ∞) = π(ρ), so 
that ρ ∈ FAmb∞ . Moreover P (FAmb∞) = 0 as A is IF-diagnosable. Putting everything together, for every minimal 
faulty run ρ , P ({ρ ′ ∈ � | ρ 
 ρ ′ ∧ D(π(ρ ′)) =?}) = 0.

size The memory states are states of IF(A), which are themselves subsets of correct states of A. Therefore, D uses at 
most 2n memory states, with n = |Q c|. �

We show that the size order of the previous IF-diagnoser is optimal.
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Fig. 15. An IF-diagnosable pLTS requiring an IF-diagnoser with exponential size.

Proposition 10. There is a family {An}n∈N of IF-diagnosable pLTS such that An has n + 1 correct states and it admits no IF-diagnoser 
with less than 2n states.

Proof. Consider the example of Fig. 15 where �o = {a, b, c} and the initial state is q0. Consider a finite faulty run including 
a c event. Its observed sequence belongs to L = {a, b}∗b{a, b}n−1c+ . Since any finite correct run has an observed sequence 
belonging to L′ = {a, b}∗ ∪ {a, b}∗a{a, b}n−1c+ and L ∩ L′ = ∅, FAmbn � CAmbn ⊆ {ρ | π(ρ) ∈ {a, b}n}. Since limn→∞P ({ρ |
π(ρ) ∈ {a, b}n}) = 0, the pLTS is FA-diagnosable and so IA-diagnosable and IF-diagnosable.
Intuitively, when a c is observed, any IF-diagnoser must have remembered the observable event that happened n steps 
earlier to know if the run is faulty or not. Thus, it must remember the last n observed events, in case a c event occurs.
More formally, assume there exists a diagnoser D = (M, �, m0, up, Dfm) with less than 2n memory states. Then there exist 
two distinct words w1 ∈ {a, b}n and w2 ∈ {a, b}n leading to the same memory state: up(m0, w1) = up(m0, w2). The words 
w1 and w2 differ at least from one letter say w1[i] = a and w2[i] = b. Consider for k ≥ 1, the signalling correct run ρ1,k

corresponding to observed sequence w1ai−1ck whose sequence of visited states is qi
0r1 . . . rk+1

n and the signalling faulty run 
ρ2,k corresponding to observed sequence w2ai−1ck whose sequence of visited states is qi

0l0l1 . . . lk+1
n . They also lead to the 

same memory state. By correctness, D(w1ai−1ck) =?. Thus for all suffix ρ of ρ2,1, D(ρ) =? contradicting the reactivity of 
D . �
5.2. FA-diagnoser

FA-diagnosability and IA-diagnosability not only consider the diagnosis of faults but also of correct runs. Contrary to
IF-diagnosers, FA- and IA-diagnosers have three possible verdicts �, related to faulty sequences, ⊥, linked with correctness, 
and ? when no information can be derived from the observation.

Definition 9. An FA-diagnoser for A is a function D : �∗
o → {�, ⊥, ?} such that:

commitment. For all w 
 w ′ ∈ �∗
o , if D(w) = � then D(w ′) = �.

correctness. For every w ∈ �∗
o ,

• if D(w) = � then w is surely faulty;
• if D(w) = ⊥ then w is surely correct.

reactivity. P ({ρ ∈ � | D inf(π(ρ)) =?}) = 0
where for w ∈ �ω

o , D inf(w) = lim infn→∞ D(w≤n).

Proposition 11. A finite pLTS A is FA-diagnosable if and only if it admits an FA-diagnoser. Furthermore when A is FA-diagnosable, 
one can build an FA-diagnoser with at most 2n memory states.

As the pLTS of Fig. 15 is FA-diagnosable, and since any FA-diagnoser is also an A-diagnoser, using Proposition 10 we 
obtain the following lower bound for the size of FA-diagnosers.

Proposition 12. There is a family {An}n∈N of FA-diagnosable pLTS such that An has 2n + 2 states and it admits no FA-diagnoser 
with less than 2n memory states.

5.3. IA-diagnoser

We now introduce IA-diagnosers, that mostly differ from FA-diagnosers on the correctness requirement. Intuitively,
IA-diagnosers provide a weaker information about correct runs than the one of FA-diagnosers.

Definition 10. An IA-diagnoser for A is a function D : �∗
o → {�, ⊥, ?} such that:

commitment. For all w 
 w ′ ∈ �∗
o , if D(w) = � then D(w ′) = �.

correctness. For all w ∈ �∗
o• if D(w) = �, then w is surely faulty;
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Fig. 16. A pLTS which is IA-diagnosable.

• if D(w) = ⊥, letting |D(w)|⊥ = |{0 < n ≤ |w| | D(w≤n) = ⊥}|, then for all signalling run ρ such that π(ρ) = w , 
ρ↓|D(w)|⊥ is correct.

reactivity. P ({ρ ∈ � | Dsup(π(ρ)) =?}) = 0
where for w ∈ �ω

o , Dsup(w) = lim supn→∞ D(w≤n).
(due to commitment, Dsup is well-defined.)

The interpretation of D(w) = ⊥ is that the diagnoser ensures that any signalling subrun of length |D(w)|⊥ ≤ |w| of 
a signalling run for w is correct. Of course it may deduce this information from the last |w| − |D(w)|⊥ observations. 
This is illustrated on the example of Fig. 16 for which we describe an IA-diagnoser. After observing any sequence wbaa, 
with w ∈ {a, b}∗ , the diagnoser knows a posteriori that two steps before, that is after the observation of wb, the run 
was necessarily correct. Indeed, observing the suffix aa is not possible after a fault, yet wba is not surely correct. Let D
be defined by: for w ∈ {a, b}∗(ab ∪ aa), D(w) = ⊥, for w ∈ {a, b, c}∗c, D(w) = � and otherwise D(w) =?. Then D is an
IA-diagnoser.

Proposition 13. A finite pLTS A is IA-diagnosable if and only if it admits an IA-diagnoser. Furthermore when A has nc correct states, 
n f faulty states and is IA-diagnosable, one can build an IA-diagnoser with at most 2nc 3n f states.

The following lower bound can be derived from the proof of Proposition 10, since the pLTS of Fig. 15 is IA-diagnosable, 
and because any IA-diagnoser is also an IF-diagnoser.

Proposition 14. There is a family {An}n∈N of IA-diagnosable pLTS such that An has 2n + 2 states and it admits no IA-diagnoser with 
less than 2n memory states.

5.4. εFF-diagnoser

Given a fixed threshold ε > 0, an εFF-diagnoser monitors the sequence of observed events w , computes the current 
correctness proportion, and outputs � if CorP(w) is below ε.

Definition 11. Let ε > 0. An εFF-diagnoser for A is a function D : �∗
o → {�, ?} such that:

correctness. For all w ∈ �∗
o , if D(w) = � then CorP(w) ≤ ε;

reactivity. limn→∞P ({ρ ∈ F ∩ SRn | D(π(ρ)) =?}) = 0.

Proposition 15. Let ε > 0. A finite pLTS A is εFF-diagnosable if and only if it admits an εFF-diagnoser.

Contrary to exact diagnosers, εFF-diagnosers may need infinite memory.

Proposition 16. There exists an AFF-diagnosable pLTS, thus εFF-diagnosable for every ε > 0, that admits no finite-memory diagnoser 
when 0 < ε ≤ 1/2.

Proof. Consider the AFF-diagnosable pLTS of Fig. 4 and assume there exists a εFF-diagnoser with m states for some thresh-
old 0 < ε ≤ 1/2. After any sequence an , it cannot claim a fault. So there exist 1 ≤ i < j ≤ m + 1 such that the diagnoser is in 
the same state after observing ai and a j .
Consider the faulty run ρ = q0uq1(aq1)

ifq f bq f . Due to the reactivity requirement, there must be a run ρρ ′ for which 
the diagnoser claims a fault. Thus for all n, the diagnoser claims a fault after ρn = q0uq1(aq1)

i+n( j−i)fq f bq f ρ
′ but 

limn→∞ CorP(π(ρn)) = 1, which contradicts the correctness requirement. �
Note that the definition of εFF-diagnosers differs from the one of monitors for distinguishability of hidden Markov 

chains [14,15]. Indeed, while monitors have a prediction power, diagnosers do not. Perhaps surprisingly, one can prove that 
the two notions though coincide for finite-state models.
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Fig. 17. From probabilistic automata to pLTS.

6. Hardness of diagnosis

We gave upper bounds on the complexity of diagnosability in Section 4. In this section, we provide lower bounds: on 
the one hand undecidability of the remaining approximate diagnosability notions, and on the other hand a matching lower 
bound for the exact diagnosis.

6.1. Undecidability results

After having previously proved that AFF-diagnosability can be solved in polynomial time, we now establish that all 
other specifications of approximate diagnosability are undecidable. This result could be expected for εFF-diagnosability and 
uniform εFF-diagnosability since it is often the case for problems mixing probabilities, partial observation and quantitative 
requirement (here represented by ε). On the contrary, the undecidability of the uniform AFF-diagnosability problem is at 
first sight surprising since it is a slight variation of the AFF-diagnosability problem. In fact the reduction for the latter 
problem is more intricate than the one for the former problems. In all cases, we reduce from the emptiness problem for 
probabilistic automata [19].

Theorem 4. For any rational 0 < ε < 1, the εFF-diagnosability and uniform εFF-diagnosability problems are undecidable for pLTS.

Proof. A probabilistic automaton (PA) A is defined by an alphabet �, a set of states Q including an initial state q0 and 
a subset of final states F , and for every a ∈ � a stochastic matrix, Pa , indexed by Q × Q . When Pa[q, q′] > 0, there is a 
transition from q to q′ labelled by a and Pa[q, q′]. Given a word w = a1 . . .an ∈ �∗ , the acceptance probability of w , PrA(w)

is defined by PrA(w) = ∑
q∈F Pw [q0, q] where Pw = Pa1 · · ·Pan . Given a rational threshold 0 < ε < 1, the language LA,ε is 

defined by LA,ε = {w ∈ �∗ | PrA(w) > ε}. Given a probabilistic automaton A and a threshold ε, the emptiness problem 
asks whether LA,ε = ∅. This problem is undecidable even for a fixed ε and when considering automata such that there is 
no word w with PrA(w) = 1 [19].

Let A be such a probabilistic automaton, with PrA(w) < 1 for every w ∈ �∗ . Define the pLTS A′ = 〈Q ′, q0, �′, T ′, P′〉 as 
follows.

• �′ = � � {
, f}, �′
u = {f};

• Q ′ = Q ∪ {q

c, q




f , f

};

• T ′ = {(q, a, q) | q, q′ ∈ Q , a ∈ �, Pa[q, q′] > 0}
∪ {(q, 
, q


c | q ∈ F } ∪ {(q, 
, q


f | q ∈ Q \ F }
∪ {q


c, 
, q


c} ∪ {q


f , f, f

} ∪ { f 
, 
, f 
}

• P′ is defined by:
– For all q ∈ Q and a ∈ �, P′(q, a, q′) = Pa[q,q′]

1+|�| ;

– For all q ∈ F , P′(q, 
, q

c) = 1

1+|�| ;

– For all q ∈ Q \ F , P′(q, 
, q


f ) = 1
1+|�| ;

– P′(q


f , f, f

) = P′( f 
, 
, f 
) = P′(q


c, 
, q


c) = 1.

This reduction is illustrated in Fig. 17. P′ fulfils the requirement for pLTS. For instance, let q ∈ F and a ∈ �, then ∑
q′∈Q Pa[q, q′] = 1, thus:

∑
(q,a,q′)∈T ′

P′(q,a,q′) =
∑
a∈�

∑
q′∈Q

Pa[q,q′]
1 + |�| + P′(q, 
,q


c) = |�|
1 + |�| + 1

1 + |�| = 1.

We claim that the following three assertions are equivalent:
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1. A′ is εFF-diagnosable;
2. A′ is uniformly εFF-diagnosable;
3. LA,ε = ∅.

Given that uniform εFF-diagnosability entails εFF-diagnosability, it suffices to prove that item 1 implies item 3, and item 3 
implies item 2. The first implication is proved by contraposition.

1 implies 3 Assume that there exists a word w ∈ �∗ such that PrA(w) > ε. Consider the set of signalling correct runs with 
observed sequence w
n+2. By construction, its probability is PrA(w)

(1+|�|)|w|+1 . Similarly, the set of signalling faulty runs 

with observed sequence w
n+2 has probability 1−PrA(w)

(1+|�|)|w|+1 . Thus CorP(w
n+2) = PrA(w) > ε. By assumption on 
A, PrA(w) < 1, so that the set of faulty runs with observed sequence w
n+2 is non empty. Pick ρ a minimal 
faulty run with observed sequence w

. Using the above probability values, for every n ≥ 0:

P ({ρ ′ ∈ SRn+|ρ|o | ρ 
 ρ ′ ∧ CorP(π(ρ ′)) > ε}) = P (ρ) .

Thus A′ is not εFF-diagnosable.
3 implies 2 Assume that for every word w ∈ �∗ , PrA(w) ≤ ε. Let ρ be a minimal faulty run of A′ . By construction, 

its observed sequence is of the form w
2 with w ∈ �∗ . Using the same reasoning as above, for every ρ 
 ρ ′: 
CorP(π(ρ ′)) = PrA(w), and thus CorP(π(ρ ′)) ≤ ε. Therefore, for any α > 0, choosing nα = 0, one gets:

P ({ρ ′ ∈ SRnα+|ρ| | ρ 
 ρ ′ ∧ CorP(π(ρ ′)) > ε}) = 0 .

So A′ is uniformly εFF-diagnosable.

This finishes the proof that εFF- and uniform εFF-diagnosability are undecidable. �
Uniform AFF-diagnosability is also shown to be undecidable by a reduction from the emptiness problem for probabilistic 

automata.

Theorem 5. The uniform AFF-diagnosability problem is undecidable for pLTS.

Sketch of proof. We proceed by a reduction from the emptiness problem of probabilistic automata where w.l.o.g. one as-
sumes that the acceptance probability of any word lies between 1/4 and 3/4. Given such a probabilistic automaton one 
builds a pLTS as follows.

• With probability 1/2 one enters one of the two copies of the automaton whose probabilities are modified in a similar 
way as in the previous proof.

• In a nonaccepting state (resp. accepting) state of the first (resp. second) copy, one may exit the automaton outputting a �
and enter a terminating block. In the second copy, a fault occurs before the �. In an accepting state (resp. nonaccepting) 
state of the first (resp. second) copy, one may “restart” the automaton outputting a 
.

• The terminating block of the first copy iteratively outputs with probability 1/2 
 or � while the terminating block of 
the second copy endlessly outputs �.

Due to the behaviour of the terminating blocks, the correctness proportion of a faulty run goes to 0 as its length increases. 
Thus the pLTS is AFF-diagnosable.

Observe that the language of observation sequences of minimal faulty runs is (�∗
)∗�∗�.
Assume there exists a word w with acceptance probability strictly greater than 1/2. Then in the pLTS, the correctness 
proportion of (w
)n� fulfils:
limn→∞ CorP((w
)n�) = 1. Due to this property (and the behaviours of the terminating blocks), the pLTS is not uniformly
AFF-diagnosable. If no such word exists, then for any w = w1
w2
 . . . wk�, CorP(w) ≤ 3/4. Due to this property (and the 
behaviours of the terminating blocks), the pLTS is uniformly AFF-diagnosable. �

As uniform AFF-diagnosability is equivalent to the notion of AA-diagnosability introduced in [11] which decidability was 
left open (only necessary conditions were given), this theorem solves this question.

6.2. PSPACE-hardness of exact diagnosis

In order to establish a lower bound for the complexity of exact diagnosability, we introduce a variant of language uni-
versality. A language L over an alphabet � is said eventually universal if there exists a word v ∈ �∗ such that v−1L = �∗ . 
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Fig. 18. A reduction for PSPACE-hardness of IF-, FA- and IA-diagnosability.

Recently, several variants of the universality problem were shown to be PSPACE-complete [20] but, to the best of our 
knowledge, eventual universality has not been considered.

Because of our diagnosis framework, we focus on live nondeterministic finite automata (NFA). Similarly to pLTS, an NFA 
is live if from every state there is at least one outgoing transition. The language of an NFA A, denoted L(A), is defined as 
the set of finite words that are accepted by A.

We reduce the universality problem for NFA, which is known to be PSPACE-complete [21] to the eventual universality 
problem.

Proposition 17. Let A be a live NFA where all states are terminal. Then deciding whether L(A) is eventually universal is PSPACE-hard.

Now that we established that universal eventuality is PSPACE-hard, we can use it to establish a complexity lower bound 
for the different exact diagnosability problems.

Proposition 18. The IF-diagnosability, FA-diagnosability and IA-diagnosability problem are PSPACE-hard.

Proof. The proof is done by reduction from the eventual universality problem. Let A be a live NFA over �, in which all 
states are final. One builds in polynomial time the initial-fault pLTS A′ as depicted in Fig. 18 where �o = � �{
}, �u = {u, f}, 
and in which all transitions outgoing a state have the same probability. We establish the following two implications:

• A′ is not FA-diagnosable implies A is eventually universal;
• A is eventually universal implies A′ is not IF-diagnosable.

Since FA-diagnosability implies IA-diagnosability implies IF-diagnosability, this will achieve the proof that all three notions 
are at least as hard as eventual universality.
• Assume that A′ is not FA-diagnosable. By Proposition 3, either A′

FA contains a reachable BSCC C with some state s =
(q, U , V ) ∈ C such that q ∈ Q f and U �= ∅ or A′

FA contains a reachable BSCC C with some state s = (q, U , V ) ∈ C such that 
q ∈ Q c and V �= ∅. The latter case is excluded since the only correct state belonging to a BSCC is q
 which is only reachable 
by a transition labelled by 
. As this observation cannot occur in a faulty run, q = q
 implies V = ∅. Consider the former 
case: obviously q = f0. Since C is a BSCC and f0 is a sink state in A′ , for every state s′ = (q′, U ′, V ′) ∈ C , one has q′ = f0
and U ′ �= ∅. Since in f0 all events of � are enabled, this implies that for all w ∈ �∗ , there is a correct run ρ1 in A′ starting 
from some state of q ∈ U with observed sequence w . Consider an observed sequence v ∈ �∗ labelling a run in A′

FA from 
the initial state to s. Then there is correct run in A′ from q′

0 to q with observed sequence v . So the run ρ = ρ0ρ1 has v w
as observed sequence. Since ρ = q′

0uρ ′ with ρ ′ a run of A starting from q0, v w ∈ L(A). This holds for any word w , thus 
v−1L(A) = �∗ and A is eventually universal.

• Assume that there exists a word v ∈ �∗ such that v−1L(A) = �∗ . Of course, any word extending v is also a witness 
that A is eventually universal. Let v ′ ∈ �∗ be such that, in A′

FA , a faulty run with observed sequence v v ′ ends in a BSCC 
C . Since (v v ′)−1L(A) = �∗ , all states of C are of the form ( f0, U ) with U �= ∅. Therefore, by Proposition 2, A′ is not
IF-diagnosable. �
7. Conclusion

In this work, we settled the foundations of diagnosability for partially observed stochastic systems. In particular, we in-
vestigated semantical issues and identified several relevant definitions for diagnosability in a probabilistic context, providing 
a complete picture of the relations between these notions. We have also established characterisations for all exact diagnosis 
specifications and for one approximate diagnosis specification. Based on these characterisations, we have designed decision 
procedures and diagnoser synthesis algorithms. For the remaining cases, we proved the decision problems to be undecid-
able. The current paper thus rewrites the tale of exact and approximate diagnoses, with some unexpected news, such as the 
undecidability of the AA-diagnosability of [11].

There are still interesting issues to be tackled, to continue our work on monitoring of stochastic systems. For example, 
prediction and prediagnosis, which are closely related to diagnosis and were analysed in the exact case in [12], should 
be studied in the approximate framework. Beyond diagnosability and its variants (predictability and prediagnosability), we 
wish to conduct a systematic study of other paradigms related to partial observability, such as opacity or detectability, in a 
probabilistic context. Second, we plan to move to more quantitative versions of diagnosis including optimisation issues. The 
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objective would be to minimise the observational capacities of the monitor, either spatially or timely, by restricting either 
the observable actions, or the observation time instants, while preserving diagnosability. Last, in [22], we recently studied 
exact diagnosis for infinite-state probabilistic systems. Such a work could be completed by an analysis of approximate 
diagnosis for infinite-state probabilistic systems.

We are very grateful to the reviewers for their valuable comments, and in particular for pointing the similarities between
AFF-diagnosability and monitorability.
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Appendix A

This appendix contains proofs that are omitted in section 2.

Lemma 1. Let A be a pLTS. Then limn→∞P (FAmb∞ \ FAmbn) = 0. Moreover, if A is finitely branching, then limn→∞P (FAmbn \
FAmb∞) = 0.

Proof. Observe that � admits the following partitions � = FAmb∞ � C∞ � Sf∞ and for all n ∈ N , � = FAmbn � Cn � Sfn . 
Thus, for all n ∈N ,

FAmb∞ \ FAmbn = (Cn � Sfn) ∩ FAmb∞
= (Cn � Sfn) \ (C∞ � Sf∞) ⊆ (Cn \ C∞) � (Sfn \ Sf∞).

Since for all n, Sfn ⊆ Sf∞ , one gets:

FAmb∞ \ FAmbn ⊆ Cn \ C∞ .

{Cn}n∈N is a nonincreasing family of sets and we claim that C∞ = ⋂
n∈N Cn . Indeed an infinite run ρ is correct if and only 

if f does not occur in it i.e. if and only if all its signalling subruns are correct. Thus,

lim
n→∞P (Cn \ C∞) = 0 implying lim

n→∞P (FAmb∞ \ FAmbn) = 0 .

Using again the two partitions we obtain:

FAmbn \ FAmb∞ = (C∞ � Sf∞) ∩ FAmbn

= (C∞ � Sf∞) \ (Cn � Sfn) ⊆ (C∞ \ Cn) � (Sf∞ \ Sfn).

Since for all n, C∞ ⊆ Cn , one gets:

FAmbn \ FAmb∞ ⊆ Sf∞ \ Sfn

Let us show that, under the assumption that A is finitely branching, Sf∞ ⊆ ⋃
n∈N Sfn . Let ρ /∈ ⋃

n∈N Sfn . We build a tree as 
follows:

• Nodes at level n correspond to the correct signalling runs whose observed sequence is π(ρ↓n);
• The node at level n + 1 associated with ρ ′ is a child of the node at level n associated with ρ ′′ if ρ ′′ 
 ρ ′ .

Since ρ /∈ ⋃
n∈N Sfn , for all n ∈N , there exists a correct run with observed sequence π(ρ↓n), so that the above-defined tree 

is infinite. Since the pLTS is finitely branching and convergent, the tree is also finitely branching. By König’s lemma, it must 
contain an infinite branch, thus there exists an infinite correct run whose observed sequence is π(ρ). As a consequence ρ
is not surely faulty: ρ /∈ Sf∞ . This establishes that Sf∞ ⊆ ⋃

n∈N Sfn . Thus:

lim
n→∞P (Sf∞ \ Sfn) = 0 implying lim

n→∞P (FAmbn \ FAmb∞) = 0

which concludes the proof. �
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Theorem 1. The diagnosability notions for pLTS are related according to the diagram below, where arrows represent implications. All 
implications, except the one from IF-diagnosability to FF-diagnosability hold for arbitrary infinite-state pLTS. The latter implication 
holds for finitely branching pLTS. Implications that are not depicted do not hold, already in the case of finite-state pLTS.

FA-diagnosable

IA-diagnosable

uniformly
FF-diagnosable

FF-diagnosable

IF-diagnosable

uniformly
AFF-diagnosable

uniformly
εFF-diagnosable

AFF-diagnosable εFF-diagnosable

0FF-diagnosablefor finitely
branching pLTS

for finite pLTS

for all ε > 0

for all ε > 0

The remainder of this section is devoted to the proof of Theorem 1. When the probabilities are omitted in examples of 
pLTS, we implicitly assume uniform distributions on outgoing edges for all state.

Implication We start by proving all implications.

FA ⇒ FF. Immediate since for all n, FAmbn ⊆ FAmbn � CAmbn .
IA ⇒ IF. Immediate since FAmb∞ ⊆ FAmb∞ � CAmb∞ .
FF ⇒ IF. This implication is a consequence of Lemma 1.
IF ⇒ FF assuming finite branching.

This implication is a consequence of Lemma 1.
for all ε > 0, uniform AFF ⇒ uniform εFF.

By definition of uniform AFF-diagnosability.
for all ε > 0, AFF ⇒ εFF.

By definition of AFF-diagnosability.
for all ε ≥ 0, uniform εFF ⇒ εFF.

Let A be a uniform εFF-diagnosable pLTS, ε ≥ 0, α > 0 and ρ ∈ minF. By definition of uniform εFF-diagnosability, 
there exists nα such that

P (Cyl(ρ) ∩ FAmbε
n+|ρ|o ) ≤ α · P (ρ).

Thus A is εFF-diagnosable.
uniform AFF ⇒ AFF.

For all ε > 0, uniform AFF ⇒ uniform εFF and uniform εFF ⇒ εFF. Thus uniform AFF-diagnosability implies
AFF-diagnosability

uniform FF ⇒ FF.
By definition, uniform FF-diagnosability is uniform 0FF-diagnosability. Since uniform 0FF-diagnosability implies
0FF-diagnosability which has been shown to be equivalent to FF-diagnosability, one gets the result.

FF ⇒ uniform FF assuming finite pLTS. See Proposition A.
FA ⇒ IA.

For all n ∈ N , define CAmbn,∞ the set of correct ambiguous runs that admit an observationally equivalent 
run which is faulty before its nth observable event. Observe that the sequence of sets {CAmbn,∞}n∈N is 
nondecreasing and that CAmb∞ = ⋃

n∈N CAmbn,∞ . Moreover, by definition, CAmbn,∞ ⊆ CAmbn . Assume that 
lim supn→∞P (FAmbn � CAmbn) = 0. By Lemma 1, P (FAmb∞) = 0. For all ε > 0, there exists n1 ∈ N such that 
for all n ≥ n1, P (CAmbn) < ε and thus P (CAmbn,∞) < ε. On the other hand, there exists n2 ∈ N such that for 
all n ≥ n2, P (CAmb∞) − P (CAmbn,∞) < ε. Combining these two inequalities for n = max(n1, n2), one obtains 
P (CAmb∞) < 2ε. As ε is arbitrary, P (CAmb∞) = 0.

FF ⇒ AFF.
FF-diagnosability has been shown to be equivalent to 0FF-diagnosability. By definition, for all ε′ ≥ ε, εFF-diag-
nosability implies ε′FF-diagnosability. Thus fixing ε = 0 and letting ε′ arbitrary, one obtains that FF-diagnosability 
implies AFF-diagnosability.
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Fig. A.19. An infinite FA-diagnosable pLTS that is not uniformly εFF-diagnosable.
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Fig. A.20. A uniform 1/2FF-diagnosable pLTS, that is not AFF-diagnosable.

uniform FF ⇒ uniform AFF.
By definition uniform FF-diagnosability is uniform 0FF-diagnosability and for all ε′ ≥ ε, uniform εFF-diagnosability 
implies uniform ε′FF-diagnosability. Thus fixing ε = 0 and letting ε′ arbitrary, one obtains that uniform
FF-diagnosability implies uniform AFF-diagnosability.

Non-implications We now provide counter-examples for the implications that do not hold.

FF � FA.
Consider the pLTS from Fig. 1 where �u = {u, f} is the set of unobservable events, represented by dashed tran-
sitions. Any faulty run will almost surely contain a b-event that cannot occur in the single infinite correct run. 
Thus the probability of faulty signalling ambiguous runs with observable length n converges to 0 when n goes 
to ∞. Thus this pLTS is FF-diagnosable. The infinite correct run ρ = q0uq1aq1 . . . has probability 1/2 and its 
observed sequence aω is ambiguous. Therefore this pLTS is not IA-diagnosable. Since FA-diagnosability implies
IA-diagnosability, it is not FA-diagnosable.

IF � IA.
Consider again the not IA-diagnosable and FF-diagnosable pLTS of Fig. 1. Since FF-diagnosability implies
IF-diagnosability, it is IF-diagnosable.

FA � uniform εFF when considering infinite pLTS.
Let us consider the pLTS of Fig. A.19. It is FA-diagnosable as almost surely an infinite faulty (resp. correct) run 
contains a b (resp. c) that can not be mimicked by a correct (resp. faulty) run. We claim that it is not uniformly 
εFF-diagnosable for all ε such that 0 < ε < 1/2. Remark that for all n ∈ N , CorP(an) ≥ 1/2. Fix some 0 < α < 1
and nα ∈ N . Consider the minimal faulty run ρ = q0u f1af2 . . .afnα f f ′

nα
. The shortest extension of ρ that is not 

ambiguous (i.e. contains a b) contains nα + 1 observable events more than ρ . Therefore, P ({ρ ′ ∈ FAmbε
nα+|ρ|o | ρ 


ρ ′}) =P (ρ) > α ·P (ρ).
uniform εFF � AFF.

Consider the pLTS of Fig. A.20. There is a single signalling minimal faulty run q0fq f aq f . Any observed sequence 
of length at least 1 is ambiguous and corresponds with equal probability to a signalling correct or a faulty run. 
Consequently it is not AFF-diagnosable, yet it is uniformly εFF-diagnosable for ε = 1/2.

Appendix B

This appendix contains proofs that are omitted in section 3.
Relying on the characterisations, we are now in a position to establish an implication that was claimed in Theorem 1.

Proposition A. Let A be a finite pLTS. If A is FF-diagnosable, then it is uniformly FF-diagnosable.

Proof. Let A be an FF-diagnosable pLTS. For a run ρ of A, we let ρIF be its associated run in AIF: ρIF extends the states 
appearing along ρ by subsets of possible correct states after the corresponding prefix of the observed sequence π(ρ). We 
let SBSCC denote the set of states of AIF that belong to a BSCC. Last, for every state (q, U ) of AIF and every n ∈ N , we 
denote by SRq,U

n the set of signalling runs of length n starting at (q, U ).
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Let α > 0. Our objective is to define nα such that for every n ≥ nα and every minimal faulty run ρ ∈ minF:

P ({ρ ′ ∈ SRn+|ρ|o | ρ 
 ρ ′ ∧ CorP(π(ρ)) > 0}) ≤ α · P (ρ) .

We first exploit the almost sure convergence towards BSCC in AIF . For every state (q, U ) of AIF , the measure of runs 
starting in (q, U ) and avoiding all BSCC during n steps tends to 0, when n goes to infinity. Thus, given α, for every reachable 
(q, U ), there exists nq,U ∈ N such that for every n ≥ nq,U , P ({ρ ′

IF ∈ SRq,U
n | last(ρ ′

IF) /∈ SBSCC}) ≤ α. We define nα as the 
maximum of nq,U over all states (q, U ).

Now let ρ be a minimal faulty run of A, and define (q, U ) = last(ρIF). Since nα ≥ nq,U , P ({ρ ′
IF ∈ SRq,U

nα
| last(ρ ′

IF) /∈
SBSCC}) ≤ α. Therefore, as A and AIF have the same probabilistic behaviour,

P ({ρ ′ ∈ SRnα+|ρ|o | ρ 
 ρ ′ ∧ last(ρ ′
IF) /∈ SBSCC}) ≤ α · P (ρ).

Thanks to the characterisation of Proposition 2, all states in BSCC reachable from (q, U ) in AIF necessarily are of the form 
(q′, ∅). Therefore, if a finite run ρ ′

IF reaches such a BSCC, ρ ′
IF admits no correct run with same observed sequence, and hence 

CorP(π(ρ ′
IF)) = 0. Equivalently, CorP(π(ρ ′)) > 0 implies last(ρ ′

IF) /∈ SBSCC . Thus

P ({ρ ′ ∈ SRnα+|ρ|o | ρ 
 ρ ′ ∧ CorP(π(ρ ′)) > 0}) ≤ α · P (ρ)

which shows that A is uniformly FF-diagnosable. �
Proposition 3. Let A be a finite pLTS. A is FA-diagnosable if and only if AFA has no BSCC that:

• either contains a state (q, U , V ) with q ∈ Q f and U �= ∅;
• or contains a state (q, U , V ) with q ∈ Q c and V �= ∅.

Proof. To prove the left-to-right implication, we proceed by contraposition. If one assumes the first item holds, the same 
argument as in the proof of Proposition 2 apply. Precisely, suppose that there exists a reachable BSCC C of AFA and a state 
s = (q, U , V ) in C such that q ∈ Q f and U �= ∅. Let ρ be a signalling run leading from the initial state s0 of AFA to s. Now, 
for every state s′ = (q′, U ′, V ′) ∈ C , necessarily q′ ∈ Q f and U ′ �= ∅, because C is strongly connected. So for every signalling 
run ρ ′ that extends ρ , writing s′ = (q′, U ′, V ′) for the state ρ ′ leads to, there exists a correct signalling run ρ ′′ such that 

π(ρ ′′) = π(ρ ′) and q0
ρ ′′
−−→ q′′ with q′′ ∈ U ′ . As a consequence the observed sequence π(ρ ′′) is ambiguous, and for every 

n ≥ |ρ|o , P (FAmbn) ≥P (ρ), so that A is not FA-diagnosable.
Suppose now that there exists a reachable BSCC C of AFA and a state s = (q, U , V ) in C such that q ∈ Q c and V �= ∅. Since 
the pair (U , V ) is unchanged by unobservable transitions, w.l.o.g. we assume that s is the successor of some state of C by 
an observable event and we denote C ′ the set of such states.
Observe that a signalling run that reaches s is ambiguous. Denote πi(s′) the probability that a random path visits a state 
s′ at instant i. In a finite DTMC, for every state s′ of a BSCC the Cesaro-limit π∞(s′) = limn→∞ 1/(n + 1) 

∑n
i=0 πi(s′)

exists and is greater than 0. For s′ ∈ C ′ denote by ps′,s the probability of an observable transition from s′ to s. Then 
0 <

∑
s′∈C ′ π∞(s′)ps′,s ≤ lim infn→∞ 1/(n + 1) 

∑n
i=0 αi(s) where αi(s) is the probability that a random path at time i is a 

signalling run visiting s. From time 0 to time n, a run can be a signalling run at most n + 1 times. Thus:

1

n + 1

n∑
i=0

αi(s) ≤ 1

n + 1

n∑
i=0

P (CAmbi)

which implies that

0 < lim inf
n→∞

1

n + 1

n∑
i=0

P (CAmbi) ≤ lim sup
n→∞

P (CAmbn) .

In this case also, we conclude that A is not FA-diagnosable.

The proof of Proposition 2 has established that a signalling run reaching a BSCC C where for every state s = (q, U , V ) q
is faulty and U = ∅ is surely faulty. Similarly a signalling run that reaches a BSCC where for every state s = (q, U , V ), q is 
correct and V = ∅, is surely correct. Thus an ambiguous signalling run must only visit transient states. Since runs almost 
surely leave the transient states and reach a BSCC, this implies that:

lim sup
n→∞

P (FAmbn) + P (CAmbn) = 0 ,

and therefore, the pLTS is FA-diagnosable. �
Proposition 4. Let A be a finite pLTS. A is IA-diagnosable if and only if AIA has no BSCC such that:
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• either, all its states (q, U , V , W ) fulfil q ∈ Q f and U �= ∅;
• or all its states (q, U , V , W ) fulfil q ∈ Q c and W �= ∅.

Proof. Assume first that AIA has a BSCC with (at least) some state (q, U , V , W ) with q ∈ Q f and U �= ∅. Using Proposition 2, 
A is not IF-diagnosable and thus not IA-diagnosable either.
If now some BSCC C of AIA has all its states (q, U , V , W ) with q ∈ Q c and W �= ∅. In particular none of these states are 
accepting for the deterministic Büchi automaton IA(A). Let ρ be a finite signalling run that hits C . By Proposition 1, any 
infinite run ρ ′ that extends ρ is ambiguous. From q ∈ Q c we deduce that P (CAmb∞) ≥ P (ρ) > 0. Therefore A is not
IA-diagnosable.

Assume now AIA has no BSCC such that either, all its states (q, U , V , W ) fulfil q ∈ Q f and U �= ∅, or all its states 
(q, U , V , W ) fulfil q ∈ Q c and W �= ∅. First observe that in case some BSCC of AIA contains some state (q, U , V , W ) with 
q ∈ Q f and U �= ∅, then all its states satisfy the same constraints. Moreover, if some state (q, U , V , W ) of a BSCC has q ∈ Q c , 
then all states of this BSCC have their q-component in Q c . Therefore, the condition can be reformulated as follows: all BSCC 
C of AIA satisfy:

• either all states (q, U , V , W ) of C fulfil q ∈ Q f and U = ∅;
• or all states (q, U , V , W ) of C fulfil q ∈ Q c and some state (q, U , V , W ) of C fulfils W = ∅.

Whatever the case, all contain (at least) an accepting state for the Büchi condition of IA(A). Since all runs almost surely 
end in a BSCC and visit each of its states infinitely often, using Proposition 1, almost all runs of AIA are unambiguous. This 
proves that A is IA-diagnosable. �
Lemma 2. Let A = 〈q0, A f , Ac〉 be an initial-fault pLTS. Then A is AFF-diagnosable if and only if d(M(A f ), M(Ac)) = 1.

Proof. We write P , P f and Pc for the probability measures of pLTS A, A f and Ac . By construction of M(A f ) and M(Ac), 
for every observed sequence σ , PM(A f )(σ ) = P f (σ ) and similarly PM(Ac)(σ ) = Pc(σ ). In words, the mapping M leaves 
unchanged the probability of occurrence of an observed sequence.

Let us now prove the equivalence, starting with the left-to-right implication.

• Assume A is AFF-diagnosable. Then, for every ε > 0 and every minimal faulty run ρ:

lim
n→∞P ({ρ ′ ∈ SRn+|ρ|o | ρ 
 ρ ′ ∧ CorP(π(ρ ′)) > ε}) = 0. (B.1)

Pick some 0 < ε < 1. Applying Equation (B.1) on the minimal faulty run ρ f = q0fq f with |π(ρ f )| = 0, there exists some 
n ∈N such that:

P ({ρ ∈ SRn | ρ f 
 ρ ∧ CorP(π(ρ)) > ε}) ≤ ε .

Let S be the set of observed sequences of faulty runs with length n and correctness proportion not exceeding threshold ε:

S = {σ ∈ �n
o | ∃ρ ∈ SRn,π(ρ) = σ ∧ ρ f 
 ρ ∧ CorP(σ ) ≤ ε} .

We define E = Cyl(S) to be the event consisting of the infinite suffixes of those sequences. Let us show that Pc(E) ≤
ε/(1 − ε) and P f (E) ≥ 1 − 2ε.

P f (E) = 1 − 2 P ({ρ ∈ SRn | ρ f 
 ρ ∧ CorP(π(ρ)) > ε}) ≥ 1 − 2ε .

The factor 2 comes from the probability 1/2 in A to enter A f that P f does not take into account contrary to P .

Moreover, for every observed sequence σ ∈ S, there exists a faulty run ρ such that π(ρ) = σ . Thus, CorP(σ ) ≤ ε. Using 
the definition of CorP:

CorP(σ ) = P ({ρ ∈ C ∩ SRn | π(ρ) = σ })
P ({ρ ∈ SRn | π(ρ) = σ }) = Pc(σ )

Pc(σ ) + P f (σ )
≤ ε.

Thus, Pc(σ ) ≤ ε
1−εP f (σ ). Hence:

Pc(E) =
∑
σ∈S

Pc(σ ) ≤
∑
σ∈S

ε

1 − ε
P f (σ ) = ε

1 − ε
P f (E) ≤ ε

1 − ε
.

Therefore d(M(Ac), M(A f )) ≥ P f (E) −Pc(E) ≥ 1 − ε(2 + 1
1−ε ). Since ε was arbitrary, taking the limit when ε goes to 0, 

we obtain the desired result: d(M(Ac), M(A f )) = 1.

• Conversely assume that d(M(A f ), M(Ac)) = 1. Thanks to Proposition 5, there exists an event E ⊆ �ω
o such that P f (E) =

1 and Pc(E) = 0.
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For every n ∈N , let Sn be the set of prefixes of length n of the observed sequences of E: Sn = {σ ∈ �n
o | ∃σ ′ ∈ E, σ 


σ ′}. For every ε > 0, we also define Sε
n as the subset of Sn consisting of sequences whose correctness proportion exceeds 

threshold ε: Sε
n = {σ ∈ Sn | CorP(σ ) > ε}.

From 
⋂

n∈N Cyl(Sn) = E , we derive that limn→∞Pc(Sn) =Pc(E) = 0. Thus limn→∞Pc(S
ε
n) = 0.

On the other hand, for every n ∈N ,

Pc(S
ε
n) =

∑
σ∈Sε

n

Pc(σ ) >
∑

σ∈Sε
n

ε

1 − ε
P f (σ ) = ε

1 − ε
P f (S

ε
n) .

Since ε is fixed, P f (S
ε
n) < 1−ε

ε Pc(S
ε
n) and limn→∞Pc(S

ε
n) = 0 imply that limn→∞P f (S

ε
n) = 0.

Let ρ be a minimal faulty run and α > 0. There exists nα ≥ |ρ|o = 1 such that for all n ≥ nα , P f (S
ε
n) ≤ α. Let n ≥ nα , 

and S̃n be the set of observed sequences of length n triggered by a run with prefix ρ and whose correctness proportion 
exceeds ε:

S̃n = {σ ∈ �n
o | ∃ρ ′ ∈ SRn,ρ 
 ρ ′ ∧ π(ρ ′) = σ ∧ CorP(σ ) > ε} .

Let us prove that P (S̃n) ≤ α. On the one hand, since P f (Sn) ≥ P f (E) = 1, P f (S̃n ∩ (�n
o \ Sn)) = 0. On the other hand, 

since P f (S
ε
n) ≤ α, P f (S̃n ∩ Sn) ≤ P f (S

ε
n) ≤ α. Thus, P f (S̃n) = P f (S̃n ∩ Sn) + P f (S̃n ∩ (�n

o \ Sn)) ≤ α. Because α was 
taken arbitrary, we obtain that limn→∞P f (S̃n) = 0.

Observe now that P ({ρ ′ ∈ SRn | ρ 
 ρ ′ ∧ CorP(π(ρ ′)) > ε}) = 1
2P f (S̃n).

Therefore, limn→∞P ({ρ ′ ∈ SRn | ρ 
 ρ ′ ∧ CorP(π(ρ ′)) > ε}) = 0. In conclusion A is AFF-diagnosable. �
The characterisation from Theorem 2 follows from Lemmas A and B given below, that state each one implication of the 

equivalence.

Lemma A. Let A be a pLTS with qc ∈ Q c belonging to a BSCC, q f ∈ Q f , d(M(Aq f ), M(Aqc )) < 1 and runs q0
ρc=⇒ qc and q0

ρ f==⇒ q f
such that ρ f ∈ F and π(ρc) = π(ρ f ). Then A is not AFF-diagnosable.

Proof. Let us introduce some notations:

σ0 = π(ρ f ) = π(ρc), p f = P (ρ f ), pc = P (ρc) .

Let pg (≥ p f ) be the probability of the faulty runs with projection σ0:

pg = P ({ρ ∈ SR|σ | | π(ρ) = σ0, and ρ is faulty}) .

For all n ≥ |σ |, let Sn be the set of observed sequences of length n “extending” ρ f :

Sn = {σ ∈ �n
o | ∃ρ ∈ SRn,ρ f 
 ρ ∧ π(ρ) = σ } .

Given σ ∈ Sn , we “decompose” p f , pc and pg as follows.

• pσ
f =P ({ρ ∈ SRn | ρ f 
 ρ ∧ π(ρ) = σ });

• pσ
c =P ({ρ ∈ SRn | ρc 
 ρ ∧ π(ρ) = σ });

• pσ
g =P ({ρ ∈ SRn | ρ is faulty and π(ρ) = σ }).

We introduce the initial-fault pLTS A′ = 〈q′
0, Aq f , Aqc 〉. It is well-defined since qc belongs to a BSCC so that Aqc does not 

trigger faults. We write P ′ for the probability measure in A′ . Since d(M(Aq f ), M(Aqc )) < 1, due to Lemma 2, there exist 
positive reals α′, ε′ ≤ 1 such that for all n0 ∈N there exists n ≥ n0:

P ′{ρ ∈ SRn | q′
0fq f 
 ρ ∧ CorP(π(ρ)) > ε} > α′ .

This entails the following inequality for A:

P ({ρ ∈ SRn | ρ f 
 ρ ∧ pπ(ρ)
c

pπ(ρ)
c + pc

p f
pπ(ρ)

f

> ε′}) > 2p f α
′ .

Indeed in A′ , the probability of a faulty (resp. correct) run with observed sequence π(ρ) is 
pπ(ρ)

f
2p f

(resp. pπ(ρ)
c
2pc

). Finally 
the 2p f factor of the lower bound takes into account the fact that the probability of reaching q f is 1/2 while in A the 
probability of ρ is p f .
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Observe that pπ(ρ)
c

pπ(ρ)
c + pc

p f
pπ(ρ)

f

> ε′ is equivalent to pπ(ρ)
c

pπ(ρ)
c +pπ(ρ)

f

>
ε′ pc

ε′ pc+(1−ε′)p f
. So defining ε̃ = ε′ pc

ε′ pc+(1−ε′)p f
≤ 1 and α̃ =

2p f α
′ ≤ 2, the previous inequality can be rewritten:

P ({ρ ∈ SRn | ρ f 
 ρ ∧ pπ(ρ)
c

pπ(ρ)
c + pπ(ρ)

f

> ε̃}) > α̃ .

Let S′
n be the subset of observed sequences of Sn whose correctness proportion is greater than ε̃ when only considering 

extensions of ρ f , but smaller than ε∗ = α̃ε̃
4 when considering all faulty runs:

S′
n = {σ ∈Sn | pσ

c

pσ
c + pσ

f

> ε̃ ∧ pσ
c

pσ
c + pσ

g
≤ ε∗}.

Let σ ∈S′
n , pσ

f < 1−ε̃
ε̃

pσ
c and pσ

c ≤ ε∗
1−ε∗ pσ

g . Therefore pσ
f <

(1−ε̃)ε∗
(1−ε∗)ε̃

pσ
g .

Summing over all sequences of S′
n: 

∑
σ∈S′

n
pσ

f <
(1−ε̃)ε∗
(1−ε∗)ε̃

pg .

Since pg ≤ 1: 
∑

σ∈S′
n

pσ
f ≤ (1−ε̃)α̃

4(1− α̃ε̃
4 )

≤ α̃
2 .

Thus,

P ({ρ ∈ SRn | ρ f 
 ρ ∧ pπ(ρ)
c

pπ(ρ)
c + pπ(ρ)

g

> ε∗}) ≥

P ({ρ ∈ SRn | ρ f 
 ρ ∧ pπ(ρ)
c

pπ(ρ)
c + pπ(ρ)

f

> ε̃}) −
∑

σ ′∈S′
n

pσ ′
f > α̃ − α̃

2
= α̃

2
.

Observe that given σ ∈ Sn , CorP(σ ) ≥ pσ
c

pσ ′
c +pσ

g
since we ignore correct runs ρ with π(ρ) = σ that do no extend ρc . So 

defining ε = ε∗ and α = α̃/2, for all n0 ∈N there exists n ≥ n0:

P ({ρ ∈ SRn | ρ f 
 ρ ∧ pπ(ρ)
c

pπ(ρ)
c + pπ(ρ)

g

> ε}) > α .

Let ρ0 be the minimal faulty run such that ρ0 
 ρ f . We observe that Cyl(ρ f ) ⊆ Cyl(ρ0), so that

P ({ρ ∈ SRn | ρ0 
 ρ ∧ pπ(ρ)
c

pπ(ρ)
c + pπ(ρ)

g

> ε}) > α

which establishes that A is not AFF-diagnosable. �
Lemma B. Let A be a pLTS such that for all q0

ρc=⇒ qc and q0
ρ f==⇒ q f with ρ f ∈ F, π(ρc) = π(ρ f ), q f ∈ Q f and qc ∈ Q c belonging 

to a BSCC, d(M(Aqc ), M(Aq f ) = 1. Then A is AFF-diagnosable.

Proof. Let ρ0 be a minimal faulty run, α > 0, ε > 0, σ0 = π(ρ0) and n0 = |σ0|.
Before developing the proof, we sketch its structure and illustrate it in Fig. B.21. First, we extend the runs with observed 

sequences σ0 by nb observable events where nb is chosen in order to get a high probability that the runs end in a BSCC.
Let σ ∈ �

nb
o be such an observed sequence. We partition the possible runs with observed sequence σ0σ into three sets RF

σ , 
RC

σ ′ and RT
σ . RF

σ is the subset of faulty runs while RC
σ (resp. RT

σ ) is the set of correct runs ending (resp. not ending) in a 
BSCC. At first, we do not take into account the runs in RT

σ . We apply Lemma 2 to obtain an integer nσ such that from RF
σ

and RC
σ , we can diagnose with (appropriate) high probability and low correctness proportion after nσ observations. Among 

the runs that trigger diagnosable observed sequences, some will exceed the correctness proportion, ε, when taking into 
account the runs from RT

σ . Yet we will show that the probability of such runs is small when cumulated over all extensions 
σ leading to the required upper bound α.

Let ε, α be positive reals. Since almost surely a random run ends in a BSCC, there exists nb such that for η = αε
4

P {ρ ∈ SRn0+nb | σ0 
 π(ρ) ∧ last(ρ) does not belong to a BSCC} < η .

Let S = {σ ∈ �
nb
o | ∃ρ ∈ SRn0+n ρ0 
 ρ ∧ π(ρ) = σ0σ }. Pick some σ ∈S and define:
b
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Fig. B.21. Illustration of the proof of Lemma B.

• RF
σ = {ρ ∈ SRn0+nb | π(ρ) = σ0σ ∧ last(ρ) ∈ Q f };

• RC
σ = {ρ ∈ SRn0+nb | π(ρ) = σ0σ ∧ last(ρ) ∈ Q c and belongs to a BSCC};

• RT
σ = {ρ ∈ SRn0+nb | π(ρ) = σ0σ ∧ last(ρ) ∈ Q c and does not belong

to a BSCC}.

Let Q σ
c = {last(ρ) | ρ ∈ RC

σ } and Q σ
f = {last(ρ) | ρ ∈ RF

σ }. For every pair (q f , qc) ∈ Q σ
f × Q σ

c , consider the initial-fault pLTS 
A′ = 〈q′

0, Aq f , Aqc 〉 and denote P ′ its associated probability measure. Due to Lemma 2, for all α′ > 0, ε′ > 0, there exists 
nq f ,qc such that for all n ≥ nq f ,qc :

P ′{ρ ∈ SRn | q′
0fq f 
 ρ ∧ p′π(ρ)

c

p′π(ρ)
c + p′π(ρ)

f

> ε′} ≤ α′

where p′π(ρ)
c (resp. p′π(ρ)

f ) is the probability in A′ of a correct (resp. faulty) run with observed sequence π(ρ).

Define in A, pπ(ρ)
c (resp. pπ(ρ)

f ) to be the probability of a correct (resp. faulty) run with observed sequence π(ρ), 

p f = min(P (ρ) | ρ ∈ RF
σ ) and pc = ∑

ρ∈RF
σ
P (ρ). By a worst-case reasoning, one gets p′π(ρ)

c ≥ 2
pc

pσ0σπ(ρ)
c and p′π(ρ)

f ≤
2

p f
pσ0σπ(ρ)

f . Thus for all n ≥ n0 + nb + max(nq f ,qc ):

P {ρ ∈ SRn | ∃ρ ′ ∈ R F
σ ∧ ρ ′ 
 ρ ∧ pπ(ρ)

c

pπ(ρ)
c + pc

p f
pπ(ρ)

f

> ε′} ≤ 2α′

where the factor 2 takes into account the first transition in A′ .
Choosing ε′ = εp f

εp f +(2−ε)pc
and α′ = α

4|S| , after algebraic operations the previous inequality can be rewritten:

P {ρ ∈ SRn | ∃ρ ′ ∈ R F
σ ∧ ρ ′ 
 ρ ∧ pπ(ρ)

c

pπ(ρ)
c + pπ(ρ)

f

>
ε

2
} ≤ α

2|S| .

Let nσ = n0 + nb + max(nq f ,qc | (q f , qc) ∈ Q σ
f × Q σ

c ) and n1 = max(nσ | σ ∈S) and consider n ≥ n1.

We now take into account the runs of RT
σ . Let ρ ∈ {ρ ∈ SRn | ∃ρ ′ ∈ RF

σ ∧ρ ′ 
 ρ}. Define pπ(ρ)
t to be the probability of runs 

(1) with observed sequence π(ρ) and (2) extending runs of RT
σ . Since a correct run with observed sequence π(ρ) must 

have a prefix in RT
σ or in RC

σ :

CorP(π(ρ)) ≤ pπ(ρ)
c + pπ(ρ)

t

pπ(ρ)
c + pπ(ρ) + pπ(ρ)

.

t f
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Consider the following set of runs:

R̃n
σ = {ρ ∈ SRn | ∃ρ ′ ∈ RF

σ ∧ ρ ′ 
 ρ ∧ pπ(ρ)
c +pπ(ρ)

t

pπ(ρ)
c +pπ(ρ)

t +pπ(ρ)

f

> ε ∧ pπ(ρ)
c

pπ(ρ)
t +pπ(ρ)

f

≤ ε
2 } For ρ ∈ R̃n

σ , one gets by algebraic operations, 

2pπ(ρ)
t
ε > pπ(ρ)

f .

Thus P (R̃n
σ ) < 2P (RT

σ )

ε and 
∑

σ∈SP (R̃n
σ ) < 2

∑
σ∈S P (RT

σ )

ε .

Due to the choice of nb , 
∑

σ∈SP (RT
σ ) < η, and we derive 

∑
σ∈SP (R̃n

σ ) < 2η
ε = α

2 .

Summarising for all n ≥ n1:

P {ρ ∈ SRn | ρ0 
 ρ ∧ CorP(π(ρ)) > ε}
=

∑
σ∈S

P {ρ ∈ SRn | ρ0 
 ρ ∧ σ0σ 
 π(ρ) ∧ CorP(π(ρ)) > ε}

≤
∑
σ∈S

P {ρ ∈ SRn | ∃ρ ′ ∈RF
σ ∧ ρ ′ 
 ρ ∧ pπ(ρ)

c

pπ(ρ)
c + pπ(ρ)

f

>
ε

2
}

+P {ρ ∈ SRn | ∃ρ ′ ∈RF
σ ∧ ρ ′ 
 ρ ∧ pπ(ρ)

c

pπ(ρ)
c + pπ(ρ)

f

≤ ε

2
∧ pπ(ρ)

c + pπ(ρ)
t

pπ(ρ)
c + pπ(ρ)

t + pπ(ρ)

f

> ε}

≤|S| α

2|S| + α

2
= α

which establishes the AFF-diagnosability of A. �
Appendix C

This appendix contains proofs that are omitted in section 4.

Proposition 7. The FA- and IA-diagnosability problems are decidable in PSPACE.

Proof. Similarly to the proof of Proposition 6, we use the characterisation of FA-diagnosability given in Proposition 3 with-
out explicitly building the product pLTS AFA . Here also, we heavily use Savitch’s theorem. First given a state (q, U , V ) of 
AFA we can check in polynomial space whether it belongs to a BSCC (as in the proof of Proposition 6). We can also check 
in polynomial space whether it can be reached from some state (q′, U ′, V ′) with U ′ = ∅ or V ′ = ∅ by guessing such a state. 
Combining the two, this provides a polynomial space algorithm to check whether (q, U , V ) belongs to a BSCC in which no 
state (q′, U ′, V ′) fulfils U ′ �= ∅ and V ′ �= ∅.
Thus the procedure that decides whether A is not FA-diagnosable consists in guessing a state s = (q, U , V ), checking that it 
is reachable from s0 and belongs to a BSCC where all states (q′, U ′, V ′) of the BSCC fulfil U ′ �= ∅ and V ′ �= ∅.

We use the characterisation of IA-diagnosability given in Proposition 4 without building explicitly the product pLTS AIA , 
which is exponential in the size of A. First, given a state (q, U , V , W ) of AIA , we can check in polynomial space that it 
belongs to a BSCC (as in the proof of Proposition 6). We can also check in polynomial space whether it is coreachable from 
a state (q′, U ′, V ′, W ′) that fulfils U ′ = ∅ or W ′ = ∅ by guessing such a state (we use Savitch theorem here). Combining the 
two procedures, we can check in polynomial space whether (q, U , V , W ) belongs to a BSCC where all states (q′, U ′, V ′, W ′)
of the BSCC fulfil U ′ �= ∅ and W ′ �= ∅.
Thus the procedure that decides whether A is not IA-diagnosable consists in guessing a state s = (q, U , V , W ), checking 
that it is reachable from s0 and belongs to a BSCC where all states (q′, U ′, V ′, W ′) of the BSCC fulfil U ′ �= ∅ and W ′ �= ∅. �
Appendix D

This appendix contains proofs that are omitted in section 5.

Proposition 11. A finite pLTS A is FA-diagnosable if and only if it admits an FA-diagnoser. Furthermore when A is FA-diagnosable, 
one can build an FA-diagnoser with at most 2n memory states.

Proof. Assume first that there exists an FA-diagnoser D for A. For every n ∈ N , we define FDn = {ρ ∈ � | ∀m ≥
n, D(π(ρ↓m)) = �} the set of runs that are diagnosed faulty after n observed events, and symmetrically CDn = {ρ ∈ � |
∀m ≥ n, D(π(ρ↓m)) = ⊥} the set of runs that are persistently diagnosed correct after n observed events. The sequences 
(CDn)n∈N and (FDn)n∈N are non-decreasing. As ? ≺ ⊥ and ? ≺ �, for every run ρ ∈ �, D inf(π(ρ)) =? is equivalent to 
ρ /∈ ⋃

n(FDn ∪ CDn). Thus 
⋃

n∈N(FDn ∪ CDn) = {ρ ∈ � | D inf(π(ρ)) �=?}. Since D is reactive, P ({ρ ∈ � | D inf(π(ρ)) �=?}) = 1. 
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Moreover, since D is correct, for every n ∈N , FDn ⊆ Sfn and CDn ⊆ Cn \CAmbn . Thus for every n ∈N , P (FAmbn ∪CAmbn) =
1 − P (Sfn ∪ Cn \ CAmbn) ≤ 1 − P (FDn ∪ CDn) and limn−→∞P (FAmbn ∪ CAmbn) ≤ 1 − lim infn−→∞P ({ρ ∈ SRn | D(π(ρ)) �=
?}) = 0. This shows that A is FA-diagnosable.

Assume now that A is FA-diagnosable. From FA(A) = (Q ∗, �o, T ∗, ({q0}, ∅)) the FA-automaton of A, we define D =
(M, �, m0, up, Dfm) the finite memory diagnoser where M = Q ∗ , m0 = ({q0}, ∅), up(m, a) = T ∗(m, a), Dfm((U , V )) = � iff 
U = ∅ and Dfm((U , V )) = ⊥ iff V = ∅. Let us check that D is an FA-diagnoser, and that its size is at most 2n if n denotes 
the number of states of A.

commitment When U is empty it remains empty forever which implies commitment.
correctness Let w ∈ �∗

o be an observed sequence. If (U , V ) is the state in FA(A) reached after reading w , then recall that 
U (resp. V ) is the set of states in A that can be reached by correct (resp. faulty) signalling runs labelled by w . By 
construction, if D(w) = � then w is surely faulty, and if D(w) = ⊥ then w is surely correct.

reactivity Let ρ be a signalling run such that D(π(ρ)) =?. Due to the characterisation of Proposition 3, the SCC of 
AFA that ρ has reached cannot be a BSCC. So given some n, P ({ρ ∈ � | ∃m ≥ n D(π(ρ↓m) =?}) ≤ P ({ρ ∈ � |
ρ↓n does not reach a BSCC}). Thus P ({ρ ∈ � | D inf(π(ρ)) =?}) = limn→∞P ({ρ ∈ � | ∃m ≥ n D(π(ρ↓m) =?}) ≤
lim supn→∞P ({ρ ∈ � | ρ↓n does not reach a BSCC}) = 0.

size D has at most 2n memory states because every state of FA(A) consists of a pair (U , V ) with U ⊆ Q c and V ⊆
Q f . �

Proposition 13. A finite pLTS A is IA-diagnosable if and only if it admits an IA-diagnoser. Furthermore when A has nc correct states, 
n f faulty states and is IA-diagnosable, one can build an IA-diagnoser with at most 2nc 3n f states.

Proof. Assume first that there exists an IA-diagnoser D for A, and let ρ be an infinite run. By reactivity, almost surely 
Dsup(π(ρ)) ∈ {�, ⊥}. If Dsup(π(ρ)) = � then there exists some n such that D(π(ρ↓n)) = �. By correctness, ρ↓n is surely 
faulty and thus ρ is surely faulty. If Dsup(π(ρ)) = ⊥, we claim that ρ is surely correct. Observe that the diagnoser infinitely 
often outputs ⊥, so by correctness, for all n, π(ρ↓n) is surely correct and thus in particular ρ↓n is correct. Assume there 
exists an infinite faulty run ρ ′ with π(ρ ′) = π(ρ). There exists a n such that for all m ≥ n, ρ ′↓n is faulty. Thus by correctness 
there can be no more n ⊥ verdicts for π(ρ) contradicting the fact that Dsup(π(ρ)) = ⊥. Thus with probability 1, an infinite 
run is unambiguous.

Assume now that A is IA-diagnosable, and denote IA(A) its IA-automaton. For any word w ∈ �∗
o , we denote by 

(U w , V w , W w) the state in IA(A) reached after reading w . For every finite signalling run ρ of A, we denote by 
(Uρ, Vρ, Wρ) = (Uπ(ρ), Vπ(ρ), Wπ(ρ)). The function D is then defined as follows: D(w) = � iff U w = ∅, D(w) = ⊥ iff 
W w = ∅ and U w �= ∅, and in all other cases D(w) =?. Let us prove that D is indeed an IA-diagnoser for A.

commitment. When U w is empty it remains empty forever which implies commitment.
correctness. For any word w , if U w = ∅, by construction of IA(A), w is surely faulty. Assume now that W w = ∅ and 

U w �= ∅. Let w ′ the greatest proper prefix of w such that W w ′ = ∅. Let ρ be any signalling run with π(ρ) = w . 
Assume that ρ↓|w ′ | is faulty. Thus the states visited by ρ↓n for |w ′| < n ≤ |w| were always in Wρ↓n . Since W w = ∅, 
this not possible and so ρ↓|w ′ | is correct. Thus every time a state with W = ∅, the length of the greatest prefix, 
for which all signalling subruns corresponding to this prefix are correct, is increased. This establishes correctness.

reactivity. Let ρ be an infinite run such that Dsup(π(ρ)) =?. Due to the characterisation of Proposition 4, either (1) the 
SCC of AIA that ρ infinitely often visits is not a BSCC or (2) ρ does not visit infinitely often all the states of this 
SCC. The probability of such runs is null which establishes the reactivity. �

Proposition 15. Let ε > 0. A finite pLTS A is εFF-diagnosable if and only if it admits an εFF-diagnoser.

Proof. Let A be a pLTS. Assume that A is εFF-diagnosable. Let D be the diagnoser defined by: for all w ∈ �∗
o , D(w) = �

iff CorP(w) ≤ ε. Such an εFF-diagnoser is correct by definition. Let α > 0. Since (Fn)n∈N is a non-decreasing sequence 
converging to F∞ , there exists n0 ∈ N such that for all n ≥ n0, P (Fn \ Fn0) < α/2. By εFF-diagnosability of A, for all 
ρ ∈ ⋃

k≤n0
minFk , there exists nρ such that for all n ≥ nρ

P (Cyl(ρ) ∩ FAmbε
n+|ρ|o ) ≤ α

2
· P (ρ).

Define nmax = maxρ∈⋃
n≤n0

minFn nρ . Then for n ≥ n0 + nmax we have

P (FAmbε
n) ≤ P (FAmbε

n ∩ Fn0) + P (FAmbε
n \ Fn0)

≤
∑

ρ∈⋃
k≤n minFk

P (Cyl(ρ) ∩ FAmbε
n) + P (Fn \ Fn0)
0
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≤
∑

ρ∈⋃
k≤n0

minFk

α

2
· P (ρ) + α

2
≤ α

So we have established that limn→∞P (FAmbε
n) = 0.

By definition of D , FAmbε
n = {ρ ∈ Fn | D(π(ρ)) =?}. Thus D is reactive.

Conversely assume that there exists an εFF-diagnoser D for A.
Let ρ be a minimal faulty run and α > 0.
Since D is reactive, limn→∞P ({ρ ′ ∈ Fn | D(π(ρ ′)) =?}) = 0.
So there exists nρ,α ∈N such that for all n ≥ nρ,α ,

P ({ρ ′ ∈ Fn | D(π(ρ ′)) =?}) ≤ α · P (ρ) .

Thus for all n ≥ nρ,α :

P ({ρ ′ ∈ SRn+|ρ|o | D(π(ρ ′)) =? ∧ ρ 
 ρ ′}) ≤ P ({ρ ′ ∈ Fn+|ρ|o | D(π(ρ ′)) =?})
≤ α · P (ρ) .

Since D is correct,
Cyl(ρ) ∩ FAmbε

n+|ρ|o ⊆ Cyl({ρ ′ ∈ SRn+|ρ|o | D(π(ρ ′)) =? ∧ ρ 
 ρ ′}). This establishes that A is εFF-diagnosable. �
Appendix E

This appendix contains proofs that are omitted in section 6.

Theorem 5. The uniform AFF-diagnosability problem is undecidable for pLTS.

Proof. Here we consider a probabilistic automaton with an initial distribution I. Observe that the emptiness is unde-
cidable even when for every word w , 1/4 ≤ PrA(w) ≤ 3/4. Let A be such a probabilistic automaton. Define the pLTS 
A′ = 〈Q ′, q0, �′, T ′, P′〉 as follows.

• �′ = � � {
, �, f, u}, �′
uo = {u, f};

• Q ′ = {qu, q f | q ∈ Q } ∪ {q0, bu, b f };
• T ′ = {(q0, u, qu), (q0, u, q f ) | q ∈ Q , I[q] > 0}

∪ {(qu, a, q′u), (q f , a, q′ f ) | q, q′ ∈ Q , a ∈ �, Pa[q, q′] > 0}
∪ {(qu, 
, q′u) | q ∈ F , q′ ∈ Q , I[q′] > 0}
∪ {(q f , 
, q′ f ) | q ∈ Q \ F , q′ ∈ Q , I[q′] > 0}
∪ {(qu, �, bu) | q ∈ Q \ F } ∪ {(q f , f, b f ) | q ∈ F }
∪ {bu, 
, bu} ∪ {bu, �, bu} ∪ {b f , �, b f }

• P′ is defined by:
– For all (q0, u, qu), (q0, u, q f ) ∈ T ′ , P′(q0, u, qu) = P′(q0, u, q f ) = I[q]

2 ;

– For all (qu, a, q′u) ∈ T ′ , P′(qu, a, q′u) = Pa[q,q′]
1+|�| ;

– For all (q f , a, q′ f ) ∈ T ′ , P′(q f , a, q′ f ) = Pa[q,q′]
1+|�| ;

– For all (qu, 
, q′u) ∈ T ′ , P′(qu, 
, q′u) = I[q′]
1+|�| ;

– For all (q f , 
, q′ f ) ∈ T ′ , P′(q f , 
, q′ f ) = I[q′]
1+|�| ;

– For all (qu, �, bu) ∈ T ′ , P′(qu, �, bu) = 1
1+|�| ;

– For all (q f , f, b f ) ∈ T ′ , P′(q f , f, b f ) = 1
1+|�| ;

– P′(bu, �, bu) = P′(bu, 
, bu) = 1
2 , P′(b f , �, b f ) = 1.

This reduction is illustrated in Fig. E.22. P′ fulfils the requirement for pLTS. For instance, let q ∈ Q ,

∑
(q f ,a,q′)∈T ′

P′(q f ,a,q′) =
∑
a∈�

∑
q′∈Q

Pa[q,q′]
1 + |�| +

∑
q′∈Q

I[q′]
1 + |�| = |�|

1 + |�| + 1

1 + |�| = 1.

We claim that A′ is uniformly AFF-diagnosable if and only if LA,1/2 = ∅.
Observe first that for all q ∈ Q , Lω(A′

q f ) ⊆Lω(A′
qu ) so that all faulty runs are ambiguous.

• Assume that there exists a word w ∈ �∗ such that PrA(w) > 1/2. We will prove that A′ is not uniformly 1
2 FF-diagnosable. 

So we pick arbitrary 0 < α < 1 and nα .
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q0

qu
1 qu

2

bu

u,
I[q1]

2

u,
I[q2]

2

a,
Pa [q1,q2]

1+|�|

a,
Pa [q2,q1]

1+|�|


,
I[q1]

1+|�|


,
I[q2]

1+|�|

�, 1
2


, 1
2

�, 1
1+|�|

q f
1 q f

2

b f

u,
I[q2]

2

u,
I[q1]

2

a,
Pa [q1,q2]

1+|�|

a,
Pa [q2,q1]

1+|�|


,
I[q2]

1+|�|


,
I[q1]

1+|�|

�,1

f, 1
1+|�|

Fig. E.22. From probabilistic automata to pLTS: rectangles surround the two copies of Q .

Consider the observed sequence σn = (w
)n� for some n to be fixed later. Due to our hypothesis on A, it is ambiguous. Let

γn = P ({ρ ′ ∈ C | π(ρ ′) = σn})
P ({ρ ′ ∈ F | π(ρ ′) = σn})

Since PrA(w) > 1/2, γn fulfils limn→∞ γn = ∞.
Let ρn be a minimal faulty run with π(ρn) = σn . Let ρ be a signalling run extending ρn with |ρ|o = |ρn|o + nα . Then 
π(ρ) = σnσ�nα . By a straightforward examination of A′ one gets:

P ({ρ ′ ∈ C | π(ρ ′) = π(ρn)�
nα })

P ({ρ ′ ∈ F | π(ρ ′) = π(ρn)�nα }) = γn2−nα

1 + γn2−nα
.

Choosing n such that γn2−nα > 1, one gets: CorP(ρ) > 1/2. So:

P ({ρ ∈ SRnα+|ρn|o | ρn 
 ρ ∧ CorP(π(ρ)) >
1

2
}) = P (ρ) > αP (ρ) .

Thus A′ is not uniformly 1/2FF-diagnosable.

• Conversely assume that for every word w ∈ �∗ , PrA(w) ≤ 1/2. Combining this assumption with the hypothesis that in A, 
PrA(w) ≥ 1/4, one deduces that for every observed sequence σ ∈ (� ∪ {
})∗�, CorP(σ ) ≤ 3/4. On the other hand, for every 
minimal faulty run ρ , π(ρ) ∈ (� ∪ {
})∗�.
Pick any positive ε, α and consider an arbitrary minimal faulty run ρ . The observed sequence σ ′ of a faulty run ρ ′ that 
extends ρ fulfils σ ′ = π(ρ)�n for some n. After a new occurrence of � the fraction between the probability of correct runs 
with observed sequence σ ′� over the probability of faulty runs with observed sequence σ ′� is halved. Thus choosing nα

such that 3·2−nα

1+3·2−nα ≤ ε, for all n ≥ nα :

P ({ρ ′ ∈ SRn+|ρ|o | ρ 
 ρ ′ ∧ CorP(π(ρ)) ≤ ε) = P (ρ) ≥ (1 − α)P (ρ) .

Thus A′ is uniformly εFF-diagnosable and since ε was arbitrarily chosen A′ is uniformly AFF-diagnosable. �
Proposition 17. Let A be a live NFA where all states are terminal. Then deciding whether L(A) is eventually universal is PSPACE-hard.

Proof. Let A = (Q , �, T , q0, F ) be an NFA. Starting from A, one builds in polynomial time the NFA A′ = (Q ′, �′, T ′, q0, Q ′)
where �′ = � � {
}, Q ′ = Q � {s}, and

T ′ = T ∪ {(q, 
,q0) | q ∈ F } ∪ {(s,a, s) | a ∈ �} ∪ {(q,a, s) | a ∈ �, q �→A} .

• Assume that L(A) = �∗ . Any word w over the alphabet �′ can be decomposed into w = w1
w2
 . . . 
wn with wi ∈ �∗ . 
For each factor wi , since A is universal, there exists a run ρi on w ending in some terminal state qi in A. Therefore w is 
accepted in A′ by the run ρ1
ρ2
 . . . 
ρn . Hence A′ is universal, and thus eventually universal: ε−1L(A′) = �′∗ .

• Conversely assume that A′ is eventually universal and let v ∈ �′∗ be such that v−1L(A′) = �′∗ . Let ρ be a run ending 
in an accepting state with observation v . Given w ∈ �∗ , we consider the word w ′ = v
w
. Since A′ is eventually universal 
with witness v , w ′ ∈ L(A′) and there exists an accepting run that can be decomposed as: ρ
ρ ′
q0 where run ρ ′ which 
corresponds to word w has q0 as initial state, ends in a final state of A, and only uses transitions of A. So ρ ′ is a run of A
that accepts w . Therefore w ∈L(A), and A is universal. �
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