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Abstract When treating Markov decision processes (MDPs) with large state spaces, using
explicit representations quickly becomes unfeasible. Lately, Wimmer et al. have proposed a
so-called symblicit algorithm for the synthesis of optimal strategies inMDPs, in the quantita-
tive setting of expectedmean-payoff. This algorithm, based on the strategy iteration algorithm
of Howard and Veinott, efficiently combines symbolic and explicit data structures, and uses
binary decision diagrams as symbolic representation. The aim of this paper is to show that
the new data structure of pseudo-antichains (an extension of antichains) provides another
interesting alternative, especially for the class of monotonic MDPs. We design efficient
pseudo-antichain based symblicit algorithms (with open source implementations) for two
quantitative settings: the expectedmean-payoff and the stochastic shortest path. For two prac-
tical applications coming from automated planning and LTL synthesis, we report promising
experimental results w.r.t. both the run time and the memory consumption. We also show
that a variant of pseudo-antichains allows to handle the infinite state spaces underlying the
qualitative verification of probabilistic lossy channel systems.

1 Introduction

Markov decision processes [4,41] (MDPs) are rich models that exhibit both nondeterministic
choices and stochastic transitions. Model-checking and synthesis algorithms for MDPs exist
for logical properties expressible in the logic PCTL [28], a stochastic extension of CTL
[18], and are implemented in tools like PRISM [35],MODEST [29],MRMC [33] …There
also exist algorithms for quantitative properties such as the long-run average reward (mean-
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payoff) or the stochastic shortest path, that have been implemented in tools likeQUASY [17]
and PRISM [45].

There are two main families of algorithms for MDPs. First, value iteration algorithms
assign values to states of the MDPs and refine locally those values by successive approxima-
tions. If a fixpoint is reached, the value at a state s represents a probability or an expectation
that can be achieved by an optimal strategy that resolves the choices present in the MDP
starting from s. This value can be, for example, the maximal probability to reach a set of goal
states. Second, strategy iteration algorithms start from an arbitrary strategy and iteratively
improve the current strategy by local changes up to the convergence to an optimal strategy.
Both methods have their advantages and disadvantages. Value iteration algorithms usually
lead to easy and efficient implementations, but in general the fixpoint is not guaranteed to
be reached in a finite number of iterations, and so only approximations are computed. On
the other hand, strategy iteration algorithms have better theoretical properties as convergence
towards an optimal strategy in a finite number of steps is usually ensured, but they often
require to solve systems of linear equations, and so they are more difficult to implement
efficiently.

When considering large MDPs, that are obtained from high-level descriptions or as the
product of several components, explicit methods often exhaust available memory and are
thus impractical. This is the manifestation of the well-known state explosion problem. In
non-probabilistic systems, symbolic data structures such as binary decision diagrams (BDDs)
have been investigated [16] to mitigate this phenomenon. For probabilistic systems, multi-
terminal BDDs (MTBDDs) are useful but they are usually limited to systems with around
106 or 107 states only. Also, as mentioned above, some algorithms for MDPs rely on solv-
ing linear systems, and there is no easy use of BDD-like structures for implementing such
algorithms.

Recently, Wimmer et al. [46] have proposed a method that mixes symbolic and explicit
representations to efficiently implement the Howard [31] and Veinott [43] strategy iteration
algorithm to synthesize optimal strategies formean-payoff objectives inMDPs. Their solution
is as follows. First, the MDP is represented and handled symbolically using MTBDDs.
Second, a strategy is fixed symbolically and the MDP is transformed into a Markov chain
(MC). To analyze this MC, a linear system needs to be constructed from its state space. As
this state space is potentially huge, the MC is first reduced by lumping [15,34] (bisimulation
reduction), and then a (hopefully) compact linear system can be constructed and solved.
Solutions to this linear system allow to show that the current strategy is optimal, or to obtain
sufficient information to improve it. A new iteration is then started. The main difference
between this method and the other methods proposed in the literature is its hybrid nature:
it is symbolic for handling the MDP and for computing the lumping, and it is explicit for
the analysis of the reduced MC. This is why the authors of [46] have coined their approach
symblicit.

Contributions. In this paper, we build on the symblicit approach described above. Our
contributions are threefold. First, we show that the symblicit approach and strategy iteration
can also be efficiently applied to the stochastic shortest path problem. We start from an
algorithm proposed by Bertsekas and Tsitsiklis [7] with a preliminary step of de Alfaro [19],
and we show how to cast it in the symblicit approach. Second, we show that alternative
data structures can be more efficient than BDDs or MTBDDs for implementing a symblicit
approach, both for mean-payoff and stochastic shortest path objectives. In particular, we
consider a natural class of MDPs with monotonic properties on which our alternative data
structure is more efficient. For such MDPs, as for subset constructions in automata theory
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[21,47], antichain-based data structures usually behave better than BDDs. The application
of antichains to monotonic MDPs requires nontrivial extensions: for instance, to handle the
lumping step, we need to generalize existing antichain-based data structures in order to be
closed under negation. To this end,we introduce a newdata structure called pseudo-antichain.
Third, we have implemented our algorithms and we show that they are more efficient than
existing solutions on natural examples of monotonic MDPs. We show that monotonic MDPs
naturally arise in probabilistic planning [9] andwhen optimizing controllers synthesized from
LTL specifications with mean-payoff objectives [12]. To show the variety of applications of
pseudo-antichains, we also propose a third completely different application in the context of
qualitative verification of probabilistic lossy channel systems [2].

Structure of the paper. In Sect. 2, we recall the useful definitions, and introduce the notion of
monotonic MDP. In Sect. 3, we recall strategy iteration algorithms for mean-payoff and sto-
chastic shortest path objectives, and we present the symblicit version of those algorithms.We
introduce the notion of pseudo-antichains in Sect. 5, and we describe our pseudo-antichain-
based symblicit algorithms in Sect. 6. In Sect. 7, we propose two applications of the symblicit
algorithms and give experimental results, we also give a third application in the context of
lossy channel systems. Finally in Sect. 8, we summarize our results. This paper is an extended
version of [13] with complete proofs, detailed algorithms, and the additional application in
the context of probabilistic lossy channel systems.

2 Preliminaries

In this section, we recall useful definitions and we introduce the notion of monotonicMarkov
decision processes. We also state the problems that we study.

2.1 Functions and probability distributions

For any (partial or total) function f , we denote by Dom( f ) the domain of definition of f .
For all sets A, B, we denote by Ftot(A, B) = { f : A → B | Dom( f ) = A} the set of
total functions from A to B. A probability distribution over a finite set A is a total function
π : A → [0, 1] such that

∑
a∈A π(a) = 1. Its support is the set Supp(π) = {a ∈ A |

π(a) > 0}. We denote by D(A) the set of probability distributions over A.

2.2 Stochastic models

A discrete-time Markov chain (MC) is a tuple (S, P) where S is a finite set of states and
P : S → D(S) is a stochastic transition matrix. For all s, s′ ∈ S, we often write P(s, s′) for
P(s)(s′). A path is an infinite sequence of states ρ = s0s1s2 . . . such that P(si , si+1) > 0 for
all i ≥ 0. Finite paths are defined similarly, and P is naturally extended to finite paths.

A Markov decision process (MDP) is a tuple (S,Σ, P) where S is a finite set of states,
Σ is a finite set of actions and P : S ×Σ → D(S) is a partial stochastic transition function.
We often write P(s, σ, s′) for P(s, σ )(s′). For each state s ∈ S, we denote by Σs ⊆ Σ the
set of enabled actions in s, where an action σ ∈ Σ is enabled in s if (s, σ ) ∈ Dom(P).
For all states s ∈ S, we require Σs �= ∅, and we thus say that the MDP is Σ-non-blocking.
For all actions σ ∈ Σ , we also introduce the notation Sσ for the set of states in which σ

is enabled. For s ∈ S and σ ∈ Σs , we denote by succ(s, σ ) = Supp(P(s, σ )) the set of
possible successors of s for the enabled action σ .
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2.3 Strategies

Let (S,Σ, P) be an MDP. A memoryless strategy is a total function λ : S → Σ mapping
each state s to an enabled action σ ∈ Σs . We denote by Λ the set of all memoryless
strategies. A memoryless strategy λ induces an MC (S, Pλ) such that for all s, s′ ∈ S,
Pλ(s, s′) = P(s, λ(s), s′).

2.4 Costs and value functions

Additionally to an MDP (S,Σ, P), we consider a partial cost function C : S×Σ → R with
Dom(C) = Dom(P) that associates a cost with a state s and an enabled action σ in s. A
memoryless strategy λ assigns a total cost function Cλ : S → R to the induced MC (S, Pλ),
such that Cλ(s) = C(s, λ(s)). Given a path ρ = s0s1s2 . . . in this MC, the mean-payoff of ρ

is MP(ρ) = lim supn→∞ 1
n

∑n−1
i=0 Cλ(si ). Given a subset G ⊆ S of goal states and a finite

path ρ reaching a state of G, the truncated sum up to G of ρ is TSG(ρ) = ∑n−1
i=0 Cλ(si )

where n is the first index such that sn ∈ G.
Given an MDP with a cost function C, and a memoryless strategy λ, we consider

two classical value functions of λ defined as follows. For all states s ∈ S, the expected
mean-payoff of λ is E

MP
λ (s) = limn→∞ 1

n

∑n−1
i=0 Pi

λCλ(s). Given a subset G ⊆ S, and
assuming that λ reaches G from state s with probability 1, the expected truncated sum
up to G of λ is E

TSG
λ (s) = ∑

ρ Pλ(ρ)TSG(ρ) where the sum is over all finite paths
ρ = s0s1 . . . sn such that s0 = s, sn ∈ G, and s0, . . . , sn−1 /∈ G. Let λ∗ be a memo-
ryless strategy. Given a value function E

·
λ ∈ {EMP

λ , E
TSG
λ }, we say that λ∗ is optimal if

E
·
λ∗(s) = infλ∈Λ E

·
λ(s) for all s ∈ S, and E

·
λ∗ is called the optimal value function.1 Note

that we might have considered other classes of strategies but it is known that for these value
functions, there always exists a memoryless strategy that minimizes the expected value of all
states [4,41].

2.5 Studied problems

In this paper,we study algorithms for solvingMDPs for twoquantitative settings: the expected
mean-payoff and the stochastic shortest path. Let (S,Σ, P) be an MDP and C : S×Σ → R

be a cost function. (i) The expected mean-payoff (EMP) problem is to synthesize an optimal
strategy for the expectedmean-payoff value function. As explained above, such amemoryless
optimal strategy always exists, and the problem is solvable in polynomial time via linear
programming [23,41]. (ii) When C is restricted to strictly positive values in R>0, and a
subset G ⊆ S of goal states is given, the stochastic shortest path (SSP) problem is to
synthesize an optimal strategy for the expected truncated sum value function, among the set
of strategies that reach G with probability 1, provided such strategies exist. For all s ∈ S,
we denote by ΛP

s the set of proper strategies for s that are the strategies that lead from s
to G with probability 1. Solving the SSP problem consists in two steps. The first step is to
determine the set S P = {s ∈ S | ΛP

s �= ∅} of proper states, i.e. states having at least one
proper strategy. The second step consists in synthesizing an optimal strategy λ∗ such that
E
TSG
λ∗ (s) = infλ∈ΛP

s
E
TSG
λ (s) for all states of s ∈ S P . It is known that memoryless optimal

strategies exist for the SSP, and the problem can be solved in polynomial time through linear

1 An alternative objective might be to maximize the value function, in which case λ∗ is optimal if E ·
λ∗ (s) =

supλ∈Λ E
·
λ(s) for all s ∈ S.
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programming [7,8]. Note that the existence of at least one proper strategy for each state is
often stated as an assumption on the MDP. It that case, an algorithm for the SSP problem is
limited to the second step.

In [46], the authors present a BDD based symblicit algorithm for the EMP problem,
that is, an algorithm that efficiently combines symbolic and explicit representations. In
this paper, we are interested in proposing antichain-based (instead of BDD-based) sym-
blicit algorithms for both the EMP and SSP problems. Due to the use of antichains, our
algorithms apply on a particular, but natural, class of MDPs, called monotonic MDPs. We
first recall the definition of antichains and related notions. We then consider an example
to intuitively illustrate the notion of monotonic MDP and we conclude with its formal
definition.

2.6 Closed sets and antichains

Let S be a finite set equipped with a partial order � such that (S,�) is a semilattice, i.e. for
all s, s′ ∈ S, their greatest lower bound s � s′ always exists. A set L ⊆ S is closed for� if for
all s ∈ L and all s′ � s, we have s′ ∈ L . If L1, L2 ⊆ S are two closed sets, then L1 ∩ L2 and
L1 ∪ L2 are closed, but L1\L2 is not necessarily closed. The closure ↓L of a set L is the set
↓L = {s′ ∈ S | ∃s ∈ L ·s′ � s}. Note that↓L = L for all closed sets L . A set α is an antichain
if all its elements are pairwise incomparable with respect to �. For L ⊆ S, we denote by
�L� the set of its maximal elements, that is �L� = {s ∈ L | ∀s′ ∈ L · s � s′ ⇒ s = s′}.
This set �L� is an antichain. If L is closed, then ↓�L� = L , and �L� is called the canonical
representation of L . The interest of antichains is that they are compact representations of
closed sets.

Example 1 To illustrate the notion of monotonic MDP in the SSP context, we consider the
following example, inspired from [42], where a monkey tries to reach a hanging bunch of
bananas. There are several items strewn in the room that themonkey can get and use, individu-
ally or simultaneously. There is a box onwhich it can climb to get closer to the bananas, a stone
that can be thrown at the bananas, a stick to try to take the bananas down, and obviously the
bananas that the monkey wants to eventually obtain. Initially, the monkey possesses no item.
Themonkey canmake actions whose effects are to add and/or to remove items from its inven-
tory. We add stochastic aspects to the problem. For example, using the stick, the monkey has
probability 1

5 to obtain the bananas, while combining the box and the stick increases this prob-
ability to 1

2 . Additionally, we associate a (positive) costwith each action, representing the time
spent executing the action. For example, picking up the stone has a cost of 1, while getting the
box costs 5. The objective of themonkey is then tominimize the expected cost for reaching the
bananas.

This kind of specification naturally defines an MDP. The set S of states of the MDP is the
set of all the possible combinations of items. Initially the monkey is in the state with no item.
The available actions at each state s ∈ S depend on the items of s. For example, when the
monkey possesses the box and the stick, it can decide to try to reach the bananas by using
one of these two items, or the combination of both of them. If it decides to use the stick only,
it will reach the state s ∪ {bananas} with probability 1

5 whereas it will stay at state s with
probability 4

5 . This MDP is monotonic in the following sense. First, the set S is a closed set
equipped with the partial order⊇. Second, the action of trying to reach the bananas with the
stick is also available if the monkey possesses the stick together with other items. Moreover,
if it succeeds (with probability 1

5 ), it will reach a state with the bananas and all the items it
already had at its disposal. In other words, for all states s′ ∈ S such that s′ ⊇ s = {stick},
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Fig. 1 Illustration of the new definition of MDPs for a state s0 ∈ S and an action σ ∈ Σs0

we have that Σs ⊆ Σs′ , and t ′ ⊇ t = {bananas, stick} with t ′ the state reached from s′
with probability 1

5 . Finally, note that the set of goal states G = {s ∈ S | bananas ∈ s} is
closed.

2.7 New definition of MDPs

Toproperly define the notion ofmonotonicMDPs,we need a slightly different, but equivalent,
definition of MDPs which is based on a set T of stochastic actions. In this definition, anMDP
M is a tuple (S,Σ, T, E, D) where S is a finite set of states, Σ and T are two finite sets of
actions such that Σ ∩ T = ∅, E : S ×Σ → Ftot(T, S) is a partial successor function, and
D : S ×Σ → D(T ) is a partial stochastic function such that Dom(E) = Dom(D). Figure 1
intuitively illustrates the relationship between the two definitions.

Let us explain this relationshipmore precisely. Let us consider anMDP as given in the new
definition.We can then derive fromE andD the partial transition functionP : S×Σ → D(S)

such that for all s, s′ ∈ S and σ ∈ Σs ,

P(s, σ )(s′) =
∑

τ ∈ T
E(s, σ )(τ ) = s′

D(s, σ )(τ ).

Conversely, if we consider an MDP (S,Σ, P) as in the first definition, then we can choose a
set T of stochastic actions of size |S| and adequate functions E, D to get the second definition
(S,Σ, T, E, D) for this MDP (see Fig. 1).

In this new definition of MDPs, for all s ∈ S and all pair of actions (σ, τ ) ∈ Σ × T ,
there is at most one s′ ∈ S such that E(s, σ )(τ ) = s′. We thus say that M is deterministic.
Moreover, since for all pairs (s, σ ) ∈ Dom(E), E(s, σ ) is a total function mapping each
τ ∈ T to a state s ∈ S, we say that M is T -complete.

Notice that the notion of MC induced by a strategy can also be described in this new
formalism as follows. Given an MDP (S,Σ, T, E, D) and a memoryless strategy λ, we have
the induced MC (S, T, Eλ, Dλ) such that Eλ : S → D(T ) is the successor function with
Eλ(s) = E(s, λ(s)), for all s ∈ S, and Dλ : S → D(T ) is the stochastic function with
Dλ(s) = D(s, λ(s)), for all s ∈ S.

Depending on the context, we will use both definitions M = (S,Σ, T, E, D) and M =
(S,Σ, P) forMDPs, assuming thatP is always obtained from some set T and partial functions
E and D. We can now formally define the notion of monotonic MDP.

2.8 Monotonic MDPs

A monotonic MDP is an MDP M� = (S,Σ, T, E, D) such that:
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1. The set S is equipped with a partial order � such that (S,�) is a semilattice.
2. The partial order � is compatible with E, i.e. for all s, s′ ∈ S, if s � s′, then for all

σ ∈ Σ , τ ∈ T , for all t ′ ∈ S such that E(s′, σ )(τ ) = t ′, there exists t ∈ S such that
E(s, σ )(τ ) = t and t � t ′.

Note that since (S,�) is a semilattice, we have that S is closed for �. With this definition,
and in particular by compatibility of �, we have the next proposition.
Proposition 1 The following statements hold for a monotonic MDP M�:

– For all s, s′ ∈ S, if s � s′ then Σs′ ⊆ Σs

– For all σ ∈ Σ , Sσ is closed.

Remark 1 In this definition, by monotonic MDPs, we mean MDPs that are built on state
spaces already equipped with a natural partial order. For instance, this is the case for the
two classes of MDPs studied in Sects. 7.1 and 7.2. The same kind of approach has already
been proposed in [26].

Note that all MDPs can be seen monotonic. Indeed, let (S,Σ, T, E, D) be a given MDP
and let � be a partial order such that all states in S are pairwise incomparable with respect
to �. Let t /∈ S be an additional state such that (1) t � s for all s ∈ S, (2) E(s, σ )(τ ) �= t
for all s ∈ S, σ ∈ Σ, τ ∈ T , and (3) E(t, σ )(τ ) = t for all σ ∈ Σ, τ ∈ T . Then, we have
that (S ∪ {t},�) is a semilattice and � is compatible with E. However, such a partial order
would not lead to efficient algorithms in the sense studied in this paper.

3 Strategy iteration algorithms

In this section, we present strategy iteration algorithms for synthesizing optimal strategies
for the SSP and EMP problems. A strategy iteration algorithm [31] consists in generating a
sequence of monotonically improving strategies (along with their associated value functions)
until converging to an optimal one. Each iteration is composed of two phases: the strategy
evaluation phase in which the value function of the current strategy is computed, and the
strategy improvement phase in which the strategy is improved (if possible) at each state, by
using the preceding computed value function. The algorithm stops after a finite number of
iterations, as soon as no more improvement can be made, and returns the computed optimal
strategy.

We now describe two strategy iteration algorithms, for the SSP and the EMP. We follow
the presentation of those algorithms as given in [46].

3.1 Stochastic shortest path

We start with the strategy iteration algorithm for the SSP problem [7,31]. Let M = (S,Σ, P)

be an MDP, C : S × Σ → R>0 be a strictly positive cost function, and G ⊆ S be a set of
goal states. Recall from the previous section that the solution to the SSP problem is to first
compute the set of proper states which are the states having at least one proper strategy.

3.1.1 Computing proper states

An algorithm is proposed in [19] for computing in quadratic time the set S P = {s ∈ S |
ΛP

s �= ∅} of proper states. To present it, given two subsets X, Y ⊆ S, we define the predicate
APre(Y, X) such that for all s ∈ S,
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s |� APre(Y, X) ⇔ ∃σ ∈ Σs, (succ(s, σ ) ⊆ Y ∧ succ(s, σ ) ∩ X �= ∅).
Then, we can compute the set S P of proper states by the following μ-calculus expression:

S P = νY · μX · (APre(Y, X) ∨G),

where we denote byG a predicate that holds exactly for the states in G. The algorithm works
as follows. Initially, we have Y0 = S. At the end of the first iteration, we have Y1 = S\C0,
whereC0 is the set of states that reach G with probability 0. At the end of the second iteration,
we have Y2 = Y1\C1, where C1 is the set of states that cannot reach G without risking to
enter C0 (i.e. states in C1 have a strictly positive probability of entering C0). More generally,
at the end of iteration k > 0, we have Yk = Yk−1\Ck−1, where Ck−1 is the set of states that
cannot reach G without risking to enter

⋃k−2
i=0 Ci . The correctness and complexity results are

proved in [19].
Given an MDP M = (S,Σ, P) with a cost function C and a set G ⊆ S, one can restrict

M and C to the set S P of proper states. We obtain a new MDP M P = (S P ,Σ, PP ) with
cost function CP such that PP and CP are the restriction of P and C to S P . Moreover, for
all states s ∈ S P , we let Σ P

s = {σ ∈ Σs | succ(s, σ ) ⊆ S P } be the set of enabled actions
in s. Note that by construction of S P , we have Σ P

s �= ∅ for all s ∈ S P , showing that M P

is Σ-non-blocking. To avoid a change of notation, in the sequel of this subsection, we make
the assumption that each state of M is proper.

3.1.2 Strategy iteration algorithm

The strategy iteration algorithm for SSP, named SSP_StrategyIteration, is given in
Algorithm 1.2 This algorithm is applied under the typical assumption that all cycles in the
underlying graph of M have strictly positive cost [7]. This assumption holds in our case by
definition of the cost function C. The algorithm starts with an arbitrary proper strategy λ0,
that can be easily computed with the algorithm of [19], and improves it until an optimal
strategy is found. The expected truncated sum vn of the current strategy λn is computed by
solving the system of linear equations in line 3, and used to improve the strategy (if possible)
at each state. Note that the strategy λn is improved at a state s to an action σ ∈ Σs only if the
new expected truncated sum is strictly smaller than the expected truncated sum of the action
λn(s), i.e. only if λn(s) /∈ argminσ∈Σs

(C(s, σ )+∑
s′∈SP(s, σ, s′) · vn(s′)). If no improve-

ment is possible for any state, an optimal strategy is found and the algorithm terminates in
line 7. Otherwise, it restarts by solving the new equation system, tries to improve the strategy
using the new values computed, and so on.

3.2 Expected mean-payoff

We now consider the strategy iteration algorithm for the EMP problem [41,43] (see Algo-
rithm 23). More details can be found in [41]. The algorithm starts with an arbitrary strategy
λ0 (here any initial strategy is appropriate). By solving the equation system of line 3, we
obtain the gain value gn and bias value bn of the current strategy λn . The gain corresponds
to the expected mean-payoff, while the bias can be interpreted as the expected total differ-
ence between the cost and the expected mean-payoff. The computed gain value is then used

2 If the expected truncated sum has to be maximized, the cost function is restricted to the strictly negative real
numbers and argmin is replaced by argmax in line 4.
3 If the expected mean-payoff has to be maximized, one has to replace argmin by argmax in lines 4 and 7.
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Algorithm 1 SSP_StrategyIteration(MDP M , Strictly positive cost function C, Goal
states G)

1: n := 0, λn := InitialProperStrategy(M, G)

2: repeat
3: Obtain vn by solving

Cλn + (Pλn − I)vn = 0

4: Σ̂s := argmin
σ∈Σs

(C(s, σ )+ ∑

s′∈S
P(s, σ, s′) · vn(s′)), ∀s ∈ S

5: Choose λn+1 such that λn+1(s) ∈ Σ̂s ,∀s ∈ S, setting λn+1(s) := λn(s) if possible.
6: n := n + 1
7: until λn = λn−1
8: return (λn−1, vn−1)

Algorithm 2 EMP_StrategyIteration(MDP M , Cost function C)

1: n := 0, λn := InitialStrategy(M)

2: repeat
3: Obtain gn and bn by solving

⎧
⎪⎨

⎪⎩

(Pλn − I)gn = 0
Cλn − gn + (Pλn − I)bn = 0
P∗λn

bn = 0

4: Σ̂s := argmin
σ∈Σs

∑

s′∈S
P(s, σ, s′) · gn(s′), ∀s ∈ S

5: Choose λn+1 such that λn+1(s) ∈ Σ̂s ,∀s ∈ S, setting λn+1(s) := λn(s) if possible.
6: if λn+1 = λn then
7: Choose λn+1 such that λn+1(s) ∈ argmin

σ∈Σ̂s

(C(s, σ )+ ∑

s′∈S
P(s, σ, s′) · bn(s′)), ∀s ∈ S,

setting λn+1(s) = λn(s) if possible.
8: n := n + 1
9: until λn = λn−1
10: return (λn−1, gn−1)

to locally improve the strategy (lines 4–5). If such an improvement is not possible for any
state, the bias value is used to locally improve the strategy (lines 6–7). By improving the
strategy with the bias value, only actions that also optimize the gain can be considered (see
set Σ̂s). Finally, the algorithm stops at line 10 as soon as none of those improvements can be
made for any state, and returns the optimal strategy λn−1 along with its associated expected
mean-payoff.

4 Symblicit approach

Explicit-state representations of MDPs like sparse-matrices are often limited to the available
memory. When treating MDPs with large state spaces, using explicit representations quickly
becomes unfeasible. Moreover, the linear systems of largeMDPs are in general hard to solve.
Symbolic representations with (multi-terminal) binary decision diagrams [(MT)BDDs] are
then an alternative solution. A BDD [14] is a data structure that permits to compactly rep-
resent boolean functions of n boolean variables, i.e. {0, 1}n → {0, 1}. An MTBDD [27] is a
generalization of a BDD used to represent functions of n boolean variables, i.e. {0, 1}n → V ,
where V is a finite set. A symblicit algorithm for the EMP problem has been studied in [46]. It
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combines symbolic techniques based on (MT)BDDs with explicit representations and often
leads to a good trade-off between execution time and memory consumption.

In this section, we recall the symblicit algorithm proposed in [46] for solving the EMP
problem onMDPs. However, our description is more general to suit also for the SSP problem.
We first talk about bisimulation lumping, a technique used by this symblicit algorithm to
reduce the state space of the models it works on.

4.1 Bisimulation lumping

The bisimulation lumping technique [15,34,36] applies to Markov chains. It consists in
gathering certain states of an MC which behave equivalently according to the class of prop-
erties under consideration. For the expected truncated sum and the expected mean-payoff,
the following definition of equivalence of two states can be used. Let (S, P) be an MC and
C : S → R be a cost function on S. Let ∼ be an equivalence relation on S and S∼ be the
induced partition. We call any equivalence class of ∼ a block of S∼. We say that ∼ is a
bisimulation if for all s, t ∈ S such that s ∼ t , we have C(s) = C(t) and P(s, C) = P(t, C)

for all blocks C ∈ S∼, where P(s, C) = ∑
s′∈C P(s, s′).

Let (S, P) be anMCwith cost function C, and∼ be a bisimulation on S. The bisimulation
quotient is the MC (S∼, P∼) such that P∼(C, C ′) = P(s, C ′), where s ∈ C and C, C ′ ∈ S∼.
The cost functionC∼ : S∼ → R is transferred to the quotient such thatC∼(C) = C(s), where
s ∈ C and C ∈ S∼. The quotient is thus a minimized model equivalent to the original one
for our purpose, since it satisfies properties like expected truncated sum and expected mean-
payoff as the original model [5]. Usually, we are interested in the unique largest bisimulation,
denoted ∼L , which leads to the smallest bisimulation quotient (S∼L , P∼L ).

Algorithm Lump [20] (see Algorithm 3) describes how to compute the partition induced
by the largest bisimulation. This algorithm is based on Paige and Tarjan’s algorithm for
computing bisimilarity of labeled transition systems [39].

For a given MC M = (S, P) with cost function C, Algorithm Lump first computes the
initial partition P such that for all s, t ∈ S, s and t belong to the same block of P iff
C(s) = C(t). The algorithm holds a list L of potential splitters of P , where a splitter of
P is a set C ⊆ S such that ∃B ∈ P, ∃s, s′ ∈ B such that P(s, C) �= P(s′, C). Initially,
this list L contains the blocks of the initial partition P . Then, while L is non empty, the
algorithm takes a splitter C from L and refines each block of the partition according to C .
Algorithm SplitBlock splits a block B into non empty sub-blocks B1, . . . , Bk according to
the probability of reaching the splitter C , i.e. for all s, s′ ∈ B, we have s, s′ ∈ Bi for some
i iff P(s, C) = P(s′, C). The block B is then replaced in P by the computed sub-blocks

Algorithm 3 Lump(MC M , Cost function C)

1: P := InitialPartition(M, C)

2: L := P
3: while L �= ∅ do
4: C := Pop(L)

5: Pnew := ∅
6: for all B ∈ P do
7: {B1, . . . , Bk } := SplitBlock(B, C)

8: Pnew := Pnew ∪ {B1, . . . , Bk }
9: Bl := some block in {B1, . . . , Bk }
10: L := L ∪ {B1, . . . , Bk }\{Bl }
11: P := Pnew
12: return P

123



Symblicit algorithms for mean-payoff and shortest path in… 555

Algorithm 4 Symblicit(MDPM, [Strictly positive] cost function C[,Goal states G])
1: n := 0, λn := InitialStrategy(M[,G])
2: repeat
3: (Mλn , Cλn ) := InducedMCAndCost(M,C, λn)

4: (M′
λn

, C′λn
) := Lump(Mλn ,Cλn )

5: (M ′
λn

, C′λn
) := Explicit(M′

λn
, C′λn

)

6: xn := SolveLinearSystem(M ′
λn

, C′λn
)

7: Xn := Symbolic(xn)

8: λn+1 := ImproveStrategy(M, λn ,Xn)

9: n := n + 1
10: until λn = λn−1
11: return (λn−1, Xn−1)

B1, . . . , Bk . Finally, we add to L the sub-blocks B1, . . . , Bk , but one which can be omitted
since its power of splitting other blocks is maintained by the remaining sub-blocks [20]. In
general, we prefer to omit the largest sub-block since it might be the most costly to process
as potential splitter. The algorithm terminates when the list L is empty, which means that the
partition is refined w.r.t. all potential splitters, i.e. P is the partition induced by the largest
bisimulation ∼L .

4.2 Symblicit algorithm

The algorithmic basis of the symblicit approach is the strategy iteration algorithm (see Algo-
rithm 1 for the SSP and Algorithm 2 for the EMP). In addition, once a strategy λn is fixed for
the MDP, Algorithm Lump is applied on the induced MC in order to reduce its size and to
produce its bisimulation quotient. The system of linear equations is then solved for the quo-
tient, and the computed value functions are used to improve the strategy for each individual
state of the MDP.

The symblicit algorithm is described in Algorithm Symblicit (see Algorithm 4). Note
that in line 1, the initial strategy λ0 is selected arbitrarily for the EMP, while it has to be a
proper strategy in case of SSP. It combines symbolic4 and explicit representations of data
manipulated by the underlying algorithm as follows. The MDP M, the cost function C, the
strategies λn , the induced MCs Mλn with cost functions Cλn , and the set G of goal states
for the SSP, are symbolically represented. Therefore, the lumping procedure is applied on
symbolic MCs and produces a symbolic representation of the bisimulation quotient M′

λn

and associated cost function C′λn
(line 4). However, since solving linear systems is more

efficient using an explicit representation of the transition matrix, the computed bisimulation
quotient is converted to a sparse matrix representation (line 5). The quotient being in general
much smaller than the original model, there are no memory issues by storing it explicitly.
The linear system is thus solved on the explicit quotient. The computed value functions xn

(corresponding to vn for the SPP, and gn and bn for the EMP) are then converted into symbolic
representations Xn , and transferred back to the original MDP (line 7). Finally, the update of
the strategy is performed symbolically.

In [46], the intermediate symbolic representations use (MT)BDDs. In the sequel, we
introduce a new data structure extended from antichains, called pseudo-antichains, and we
show how it can be used [instead of (MT)BBDs] to solve the SSP and EMP problems for
monotonic MDPs under well-chosen assumptions.

4 We use calligraphic style for symbols denoting a symbolic representation.
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5 Pseudo-antichains

In this section, we introduce the notion of pseudo-antichains.5 We start by recalling properties
of antichains [24].

Proposition 2 Let (S,�) be a semilattice. Let α1, α2 ⊆ S be two antichains and s ∈ S.
Then:

– s ∈ ↓α1 iff ∃a ∈ α1 · s � a,
– ↓α1 ∪ ↓α2 = ↓�α1 ∪ α2�,
– ↓α1 ∩ ↓α2 = ↓�α1 � α2�, where α1 � α2

def= {a1 � a2 | a1 ∈ α1, a2 ∈ α2},
– ↓α1 ⊆ ↓α2 iff ∀a1 ∈ α1 · ∃a2 ∈ α2 · a1 � a2.

For convenience, when α1 and α2 are antichains, we use notation α1 ∪̇ α2 (resp. α1 ∩̇ α2) for
the antichain �↓α1 ∪ ↓α2� (resp. �↓α1 ∩ ↓α2�).

Let L1, L2 ⊆ S be two closed sets. Unlike the union or intersection, the difference L1\L2

is not necessarily a closed set. There is thus a need for a new structure that “represents”
L1\L2 in a compact way, as antichains compactly represent closed sets. In this aim, in the
next two sections, we begin by introducing the notion of a pseudo-element, and we then
introduce the notion of a pseudo-antichain. We also describe some properties that can be
used in algorithms using pseudo-antichains.

5.1 Pseudo-elements and pseudo-closures

A pseudo-element is a couple (x, α) where x ∈ S and α ⊆ S is an antichain such that
x /∈ ↓α. The pseudo-closure of a pseudo-element (x, α), denoted by � (x, α), is the set
�(x, α) = {s ∈ S | s � x and s /∈ ↓α} = ↓{x}\↓α. Notice that �(x, α) is non empty since
x /∈ ↓α by definition of a pseudo-element. The following example illustrates the notion of
pseudo-closure of pseudo-elements.

Example 2 LetN2≤3 be the set of pairs of natural numbers in [0, 3] and let� be a partial order

on N
2≤3 such that (n1, n′1) � (n2, n′2) iff n1 ≤ n2 and n′1 ≤ n′2. Then, (N2≤3,�) is a complete

lattice with least upper bound � such that (n1, n′1)� (n2, n′2) = (max(n1, n2),max(n′1, n′2)),
and greatest lower bound � such that (n1, n′1)� (n2, n′2) = (min(n1, n2),min(n′1, n′2)). With
x = (3, 2) and α = {(2, 1), (0, 2)}, the pseudo-closure of the pseudo-element (x, α) is the
set �(x, α) = {(3, 2), (3, 1), (3, 0), (2, 2), (1, 2)} = ↓{x}\↓α (see Fig. 2).

There may exist two pseudo-elements (x, α) and (y, β) such that �(x, α) = �(y, β). We
say that the pseudo-element (x, α) is in canonical form if∀a ∈ α·a � x . The next proposition
and its corollary show that the canonical form is unique. Notice that for all pseudo-elements
(x, α), there exists a pseudo-element in canonical form (y, β) such that �(x, α) = �(y, β):
it is equal to (x, {x} ∩̇ α). We say that such a couple (y, β) is the canonical representation
of �(x, α).

Proposition 3 Let (x, α) and (y, β) be two pseudo-elements. Then �(x, α) ⊆ �(y, β) iff
x � y and ∀b ∈ β · b � x ∈ ↓α.

Proof We prove the two implications:

5 A data structure closely related to our pseudo-antichains has been proposed in [2] in the particular context
of probabilistic lossy channel systems. A comparison is given in Sect. 7.3.
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Fig. 2 Pseudo-closure of a pseudo-element over
(
N
2≤3,�

)
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•

•

•
•

•

Fig. 3 Inclusion of pseudo-closures of pseudo-elements

– ⇒: Suppose that �(x, α) ⊆ �(y, β) and let us prove that x � y and ∀b ∈ β · b � x ∈ ↓α.
As x ∈ �(x, α) ⊆ �(y, β), then x � y. Consider s = b � x for some b ∈ β. We have
s /∈ �(y, β) because s � b and thus s /∈ �(x, α). As s � x , it follows that s ∈ ↓α.

– ⇐: Suppose that x � y and ∀b ∈ β · b � x ∈ ↓α. Let us prove that ∀s ∈ �(x, α), we
have s ∈ �(y, β). As s � x , and x � y by hypothesis, we have s � y. Suppose that
s ∈ ↓β, that is s � b, for some b ∈ β. As s � x , we have s � b � x and thus s ∈ ↓α

by hypothesis. This is impossible since s ∈ �(x, α). Therefore, s /∈ ↓β, and thus s ∈
�(y, β). ��
The following example illustrates Proposition 3.

Example 3 Let (S,�) be a semilattice and let (x, {a}) and (y, {b1, b2}), with x, y, a, b1, b2 ∈
S, be two pseudo-elements as depicted in Fig. 3. The pseudo-closure of (x, {a}) is depicted
in dark gray, whereas the pseudo-closure of (y, {b1, b2}) is depicted in (light and dark) gray.
We have x � y, b1 � x = b1 ∈ ↓{a} and b2 � x = b2 ∈ ↓{a}. Therefore �(x, {a}) ⊆
�(y, {b1, b2}).

The next corollary is a direct consequence of the previous proposition.

Corollary 1 Let (x, α) and (y, β) be two pseudo-elements in canonical form. Then �(x, α)

= �(y, β) iff x = y and α = β.

Proof We only prove �(x, α) = �(y, β) ⇒ x = y and α = β, the other implication being
trivial.
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Since � (x, α) = � (y, β), we have � (x, α) ⊆ � (y, β) and � (y, β) ⊆ � (x, α). By
Proposition 3, from �(x, α) ⊆ �(y, β), we know that x � y and ∀b ∈ β · b � x ∈ ↓α, and
from �(y, β) ⊆ �(x, α), we know that y � x and ∀a ∈ α · a � y ∈ ↓β. As x � y and y � x ,
we thus have x = y.

Since x = y, by definition of canonical form of pseudo-elements, we have ∀b ∈ β ·b�x =
b � y = b ∈ ↓α and ∀a ∈ α · a � y = a ∈ ↓β. It follows by Proposition 2 that ↓α ⊆ ↓β

and ↓β ⊆ ↓α, i.e. ↓α = ↓β. Since antichains are canonical representations of closed sets,
we finally get α = β, which terminates the proof. ��
5.2 Pseudo-antichains

We are now ready to introduce the new structure of pseudo-antichains. A pseudo-antichain
A is a finite set of pseudo-elements, that is A = {(xi , αi ) | i ∈ I } with I finite. The pseudo-
closure �A of A is defined as the set �A = ⋃

i∈I �(xi , αi ). Let (xi , αi ), (x j , α j ) ∈ A. We
have the two following observations:

1. If xi = x j , then (xi , αi ) and (x j , α j ) can be replaced in A by the pseudo-element
(xi , αi ∩̇ α j ).

2. If �(xi , αi ) ⊆ �(x j , α j ), then (xi , αi ) can be removed from A.

From these observations, we say that a pseudo-antichain A = {(xi , αi ) | i ∈ I } is simplified
if ∀i · (xi , αi ) is in canonical form, and ∀i �= j · xi �= x j and �(xi , αi ) � �(x j , α j ). Notice
that two distinct pseudo-antichains A and B can have the same pseudo-closure �A = �B
even if they are simplified. We thus say that A is a PA-representation6 of �A (without saying
that it is a canonical representation), and that � A is PA-represented by A. For efficiency
purposes, our algorithms always work on simplified pseudo-antichains.

Any antichain α can be seen as the pseudo-antichain A = {(x,∅) | x ∈ α}. Furthermore,
notice that any set X can be represented by the pseudo-antichain A = {(x, αx ) | x ∈ X},
with αx = �{s ∈ S | s � x and s �= x}�. Indeed �(x, αx ) = {x} for all x , and thus X = �A.

The interest of pseudo-antichains is that given two antichains α and β, the difference
↓α\↓β is PA-represented by the pseudo-antichain {(x, β) | x ∈ α, x /∈ ↓β}.
Lemma 1 Let α, β ⊆ S be two antichains. Then ↓α\↓β = �{(x, β) | x ∈ α, x /∈ ↓β}.

The next proposition indicates how to compute pseudo-closures of pseudo-elements w.r.t.
the union, intersection and difference operations. Thismethod can be extended for computing
the union, intersection and difference of pseudo-closures of pseudo-antichains, by using the
classical properties from set theory like X\(Y∪Z) = X\Y∩X\Z . From the algorithmic point
of view, it is important to note that the computations only manipulate (pseudo-)antichains
instead of their (pseudo-)closure.

Proposition 4 Let (x, α), (y, β) be two pseudo-elements. Then:

– �(x, α) ∪ �(y, β) = �{(x, α), (y, β)},
– �(x, α) ∩ �(y, β) = �{(x � y, α ∪̇ β)},
– �(x, α) \ �(y, β) = �({(x, {y} ∪̇ α)} ∪ {(x � b, α) | b ∈ β}).
Notice that there is an abuse of notation in the previous proposition. Indeed, the definition

of a pseudo-element (x, α) requires that x /∈ ↓α, whereas this condition could not be satisfied
by couples like (x � y, α ∪̇ β), (x, {y} ∪̇ α) and (x � b, α) in the previous definition.7 When

6 “PA-representation” means pseudo-antichain-based representation.
7 This can be easily tested by Proposition 2.
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this happens, such a couple should not be added to the related pseudo-antichain. For instance,
�(x, α) ∩ �(y, β) is either equal to �{(x � y, α ∪̇ β)} or to �{}. Notice also that the pseudo-
antichains computed in the previous proposition are not necessarily simplified. However, our
algorithms implementing those operations always simplify the computed pseudo-antichains
for the sake of efficiency.

Proof (of Proposition 4) We prove the three statements:

– �(x, α) ∪ �(y, β) = �{(x, α), (y, β)}: This result comes directly from the definition of
pseudo-closure of pseudo-antichains.

– �(x, α) ∩ �(y, β) = �{(x � y, α ∪̇ β)}:

s ∈ �(x, α) ∩ �(y, β) ⇔ s � x, s /∈ ↓α and s � y, s /∈ ↓β
⇔ s � x � y and s /∈ ↓α ∪ ↓β = ↓(α ∪̇ β) (by Proposition 2)

⇔ s ∈ �{(x � y, α ∪̇ β)}

– �(x, α) \ �(y, β) =�({(x, {y} ∪̇ α)}∪{(x�b, α) | b ∈ β}):We prove the two inclusions:

1. ⊆: Let s ∈ �(x, α)\�(y, β), i.e. s ∈ �(x, α) and s /∈ �(y, β). Then, s � x , s /∈ ↓α

and (s � y or s ∈ ↓β). Thus, if s � y, then s ∈ �(x, {y} ∪̇ α). Otherwise, s ∈ ↓β,
i.e. ∃b ∈ β such that s � b. It follows that s ∈ �(x � b, α).

2. ⊇:Let s ∈�({(x, {y} ∪̇α)}∪{(x�b, α) | b ∈ β}). Supposefirst that s ∈�(x, {y} ∪̇α).
Then s � x , s � y and s /∈ ↓α. We thus have s ∈ �(x, α) and s /∈ �(y, β). Suppose
now that ∃b ∈ β · s ∈ �(x � b, α). We have s � x , s � b and s /∈ ↓α. It follows that
s ∈ �(x, α) and s ∈ ↓β, thus s /∈ �(y, β). ��

The following example illustrates the second and third statements of Proposition 4.

Example 4 Let (S,�) be a lower semilattice and let (x, {a}) and (y, {b}), with x, y, a, b ∈
S, be two pseudo-elements as depicted in Fig. 4. We have � (x, {a}) ∩ � (y, {b}) = �
(x � y, {a, b}). We also have � (x, {a})\� (y, {b}) = �{(x, {y}∪̇{a}), (x � b, {a})} = �
{(x, {y}), (b, {a})}. Note that (x, {y}) and (b, {a}) are not in canonical form. The canonical
representation of �(x, {y}) (resp. �(b, {a})) is given by (x, {x � y}) (resp. (b, {b � a})).

x

a

y

b

x�y

•
•

•

•

•

x

a

y

b

•

•

•

•

Fig. 4 Intersection (left) and difference (right) of two pseudo-closures of pseudo-elements
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6 Pseudo-antichain-based algorithms

In this section, we propose a pseudo-antichain-based version of the symblicit algorithm
described in Sect. 4 for solving the SSP and EMP problems for monotonic MDPs. In our
approach, equivalence relations and induced partitions are symbolically represented so that
each block is PA-represented. The efficiency of this approach is thus directly linked to the
number of blocks to represent, which explains why our algorithm always works with the
coarsest equivalence relations. It is also linked to the size of the pseudo-antichains represent-
ing the blocks of the partitions.

6.1 Operator Preσ,τ

We first present an operator denoted Preσ,τ that is useful for our algorithms. Let M� =
(S,Σ, T, E, D) be a monotonic MDP equipped with a cost function C : S×Σ → R. Given
L ⊆ S, σ ∈ Σ and τ ∈ T , we denote by Preσ,τ (L) the set of states that reach L by σ, τ in
M�, that is

Preσ,τ (L) = {s ∈ S | E(s, σ )(τ ) ∈ L}.
The elements ofPreσ,τ (L) are called predecessors of L for σ, τ in M�. The following lemma
is a direct consequence of the compatibility of �.
Lemma 2 For all closed sets L ⊆ S, and all actions σ ∈ Σ, τ ∈ T , Preσ,τ (L) is closed.

The next lemma indicates the behavior of the Preσ,τ operator under boolean operations.
The second and last properties follow from the fact that M� is deterministic.

Lemma 3 Let L1, L2 ⊆ S, σ ∈ Σ and τ ∈ T . Then,

– Preσ,τ (L1 ∪ L2) = Preσ,τ (L1) ∪ Preσ,τ (L2),
– Preσ,τ (L1 ∩ L2) = Preσ,τ (L1) ∩ Preσ,τ (L2),
– Preσ,τ (L1\L2) = Preσ,τ (L1)\Preσ,τ (L2).

Proof Thefirst property is immediate.Weonlyprove the secondproperty, since the arguments
are similar for the last one. Let s ∈ Preσ,τ (L1∩L2), i.e. ∃s′ ∈ L1∩L2 such thatE(s, σ )(τ ) =
s′. We thus have s ∈ Preσ,τ (L1) and s ∈ Preσ,τ (L2). Conversely let s ∈ Preσ,τ (L1) ∩
Preσ,τ (L2), i.e. ∃s1 ∈ L1 such thatE(s, σ )(τ ) = s1, and ∃s2 ∈ L2 such thatE(s, σ )(τ ) = s2.
As M� is deterministic, we have s1 = s2 and thus s ∈ Preσ,τ (L1 ∩ L2). ��

The next proposition indicates how to compute pseudo-antichains w.r.t. the Preσ,τ oper-
ator.

Proposition 5 Let (x, α) be a pseudo-element with x ∈ S and α ⊆ S. Let A = {(xi , αi ) | i ∈
I } be a pseudo-antichain with xi ∈ S and αi ⊆ S for all i ∈ I . Then, for all σ ∈ Σ and
τ ∈ T ,

– Preσ,τ (�(x, α)) = ⋃
x ′∈�Preσ,τ (↓{x})� �(x ′, �Preσ,τ (↓α)�),

– Preσ,τ (�A) = ⋃
i∈I Preσ,τ (�(xi , αi )).

Proof For the first statement, we have Preσ,τ (�(x, α)) = Preσ,τ (↓{x}\ ↓α) = Preσ,τ (↓
{x})\Preσ,τ (↓α) by definition of the pseudo-closure and by Lemma 3. The setsPreσ,τ (↓{x})
and Preσ,τ (↓α) are closed by Lemma 2 and thus respectively represented by the antichains
�Preσ,τ (↓{x})� and �Preσ,τ (↓α)�. By Lemma 1 we get the first statement.

The second statement is a direct consequence of Lemma 3. ��
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From Proposition 5, we can efficiently compute pseudo-antichains w.r.t. the Preσ,τ oper-
ator if we have an efficient algorithm to compute antichains w.r.t. Preσ,τ (see the first
statement). We make the following assumption that we can compute the predecessors of
a closed set by only considering the antichain of its maximal elements. Together with Propo-
sition 5, it implies that the computation of Preσ,τ (�A), for all pseudo-antichains A, does not
need to treat the whole pseudo-closure �A.

Assumption 1 There exists an algorithm taking any state x ∈ S as input and returning
�Preσ,τ (↓{x})� as output.
Remark 2 Assumption 1 is a realistic and natural assumption when considering partially
ordered state spaces. For instance, it holds for the two classes ofMDPs considered in Sects. 7.1
and 7.2 for which the given algorithm is straightforward. Assumptions in the same flavor are
made in ([26], see Definition 3.2).

6.2 Symbolic representations

Before giving a pseudo-antichain-based algorithm for the symblicit approach of Sect. 4 (see
Algorithm 4), we detail in this section the kind of symbolic representations based on pseudo-
antichains that we are going to use. Recall fromSect. 5 that PA-representations are not unique.
For efficiency reasons, it will be necessary to work with PA-representations as compact as
possible, as suggested in the sequel.

6.2.1 Representation of the stochastic models

We begin with symbolic representations for the monotonic MDP M� = (S,Σ, T, E, D) and
for the MC M�,λ = (S, T, Eλ, Dλ) induced by a strategy λ. For algorithmic purposes, in
addition to Assumption 1, we make the following assumption8 on M�.

Assumption 2 There exists an algorithm taking as input any state s ∈ S and actions σ ∈
Σs, τ ∈ T , and returning as output E(s, σ )(τ ) and D(s, σ )(τ ).

By definition of M�, the set S of states is closed for � and can thus be canonically
represented by the antichain �S�, and thus represented by the pseudo-antichain {(x,∅) | x ∈
�S�}. In this way, it follows by Assumption 2 that we have a PA-representation of M�, in the
sense that S is PA-represented and we can compute E(s, σ )(τ ) and D(s, σ )(τ ) on demand.

Let λ : S → Σ be a strategy on M� and M�,λ be the induced MC with cost function Cλ.
We denote by∼λ the equivalence relation on S such that s ∼λ s′ iff λ(s) = λ(s′). We denote
by S∼λ the induced partition of S. Given a block B ∈ S∼λ , we denote by λ(B) the unique
action λ(s), for all s ∈ B. As any set can be represented by a pseudo-antichain, each block of
S∼λ is PA-represented. Therefore by Assumption 2, we have a PA-representation of M�,λ.

6.2.2 Representation of a subset of goal states

Recall that a subset G ⊆ S of goal states is required for the SSP problem. Our algorithm
will manipulate G when computing the set of proper states. If G is closed, then we have a
compact representation of G as the one proposed above for S. Otherwise, we take for G any
PA-representation. Notice that G is closed for the two classes of monotonic MDPs studied
in Sects. 7.1 and 7.2.

8 Remark 2 also holds for Assumption 2.
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6.2.3 Representation for D and C

For the needs of our algorithm, we introduce symbolic representations for Dλ and Cλ. Simi-
larly to∼λ, let∼D,λ be the equivalence relation on S such that s ∼D,λ s′ iff Dλ(s) = Dλ(s′).
We denote by S∼D,λ

the induced partition of S. Given a block B ∈ S∼D,λ
, we denote by

Dλ(B) the unique probability distribution Dλ(s), for all s ∈ B. We use similar notations for
the equivalence relation ∼C,λ on S such that s ∼C,λ s′ iff Cλ(s) = Cλ(s′). As any set can
be represented by a pseudo-antichain, each block of S∼D,λ

and S∼C,λ
is PA-represented.

We will also need to use the next two equivalence relations. For each σ ∈ Σ , we introduce
the equivalence relation ∼D,σ on S such that s ∼D,σ s′ iff D(s, σ ) = D(s′, σ ). Similarly,
we introduce relation ∼C,σ such that s ∼C,σ s′ iff C(s, σ ) = C(s′, σ ). Recall that D and C
are partial functions, there may thus exist one block in their corresponding relation gathering
all states s such that σ /∈ Σs . Each block of the induced partitions S∼D,σ

and S∼C,σ
is

PA-represented.
For the two classes of MDPs studied in Sects. 7.1 and 7.2, both functions D and C are

independent of S. It follows that the previous equivalence relations have only one or two
blocks, leading to compact symbolic representations of these relations.

Now that the operator Preσ,τ and the symbolic representations have been introduced, we
come back to the different steps of the symblicit approach of Sect. 4 (see Algorithm 4) and
show how to derive a pseudo-antichain-based algorithm.We will use Propositions 2, 4 and 5,
and Assumptions 1 and 2, for which we know that boolean and Preσ,τ operations can be
performed efficiently on pseudo-closures of pseudo-antichains, by limiting the computations
to the related pseudo-antichains. Whenever possible, we will work with partitions with few
blocks whose PA-representation is compact. This aim will be reached for the two classes of
monotonic MDPs studied in Sects. 7.1 and 7.2.

6.3 Initial strategy

Algorithm 4 needs an initial strategy λ0 (line 1). This strategy can be selected arbitrarily
among the set of strategies for the EMP, while it has to be a proper strategy for the SSP. We
detail how to choose the initial strategy in these two quantitative settings.

6.3.1 Expected mean-payoff

For the EMP, we propose an arbitrary initial strategy λ0 with a compact PA-representation
for the induced MC M�,λ0 . We know that S is PA-represented by {(x,∅) | x ∈ �S�}, and
that for all s, s′ ∈ S such that s � s′, we have Σs′ ⊆ Σs (Proposition 1). This means that
for x ∈ �S� and σ ∈ Σx we could choose λ0(s) = σ for all s ∈↓{x}. However we must
be careful with states that belong to ↓{x} ∩ ↓{x ′} with x, x ′ ∈ �S�, x �= x ′. Therefore,
let us impose an arbitrary ordering on �S� = {x1, . . . , xn}, i.e. x1 < x2 < · · · < xn . We
then define λ0 arbitrarily on �S� such that λ0(xi ) = σi for some σi ∈ Σxi , and we extend
it to all s ∈ S by λ0(s) = λ0(x) with x = mini {xi | s � xi }. This makes sense in view of
the previous remarks. Notice that given σ ∈ Σ , the block B of the partition S∼λ0

such that
λ0(B) = σ is PA-represented by

⋃
i {(xi , αi ) | αi = {x1, . . . , xi−1}, λ0(xi ) = σ }.

6.3.2 Proper states

Before explaining how to compute an initial proper strategy λ0 for the SSP, we need to
propose a pseudo-antichain-based version of the algorithm of [19] for computing the set S P
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of proper states. Recall from Sect. 3.1 that this algorithm is required for solving the SSP
problem.

Let M� be a monotonic MDP and G be a set of goal states. Recall that S P is computed
as S P = νY · μX · (APre(Y, X) ∨G), such that for all states s,

s |� APre(Y, X) ⇔ ∃σ ∈ Σs, (succ(s, σ ) ⊆ Y ∧ succ(s, σ ) ∩ X �= ∅).
Our purpose is to define the set of states satisfyingAPre(Y, X) thanks to the operatorPreσ,τ .
The difficulty is to limit the computations to strictly positive probabilities as required by the
operator succ. In this aim, given the equivalence relation∼D,σ defined in Sect. 6.2, for each
σ ∈ Σ and τ ∈ T , we define D>0

σ,τ being the set of blocks {D ∈ S∼D,σ
| D(s, σ )(τ ) >

0 with s ∈ D}. For each D ∈ D>0
σ,τ , notice that σ ∈ Σs for all s ∈ D (since D(s, σ ) is

defined). Given two sets X, Y ⊆ S, the set of states satisfying APre(Y, X) is equal to:

R(Y, X) =
⋃

σ∈Σ

⋃

D∈S∼D,σ

⎛

⎜
⎜
⎜
⎝

⋂

τ∈T
D∈D>0

σ,τ

(
Preσ,τ (Y ) ∩ D

) ∩
⋃

τ∈T
D∈D>0

σ,τ

(
Preσ,τ (X) ∩ D

)

⎞

⎟
⎟
⎟
⎠

Lemma 4 For all X, Y ⊆ S and s ∈ S, s |� APre(Y, X) ⇔ s ∈ R(Y, X).

Proof Let s |� APre(Y, X). Then there exists σ ∈ Σs such that succ(s, σ ) ⊆ Y and
succ(s, σ ) ∩ X �= ∅. Let D ∈ S∼D,σ

be such that s ∈ D. Let us prove that s ∈⋂
τ∈T,D∈D>0

σ,τ
Preσ,τ (Y ) and s ∈ ⋃

τ∈T,D∈D>0
σ,τ

Preσ,τ (X). It will follow that s ∈ R(Y, X).
As succ(s, σ )∩ X �= ∅, there exists x ∈ X such that P(s, σ, x) > 0, that is, E(s, σ )(τ ) = x
andD(s, σ )(τ ) > 0 for some τ ∈ T . Thus s ∈ Preσ,τ (X) and D ∈ D>0

σ,τ . As succ(s, σ ) ⊆ Y ,
then for all s′ such that P(s, σ, s′) > 0, we have s′ ∈ Y , or equivalently, for all τ ∈ T such
that D(s, σ )(τ ) > 0, we have E(s, σ )(τ ) = s′ ∈ Y . Therefore, s ∈ Preσ,τ (Y ) for all τ such
that D ∈ D>0

σ,τ .
Suppose now that s ∈ R(Y, X). Then we have that there exists σ ∈ Σ and D ∈ S∼D,σ

such
that s ∈ ⋂

τ∈T,D∈D>0
σ,τ

Preσ,τ (Y ) and s ∈ ⋃
τ∈T,D∈D>0

σ,τ
Preσ,τ (X). With the same arguments

as above, we deduce that succ(s, σ ) ⊆ Y and succ(s, σ ) ∩ X �= ∅. Notice that we have
σ ∈ Σs . It follows that s |� APre(Y, X). ��

In the case of theMDPs treated in Sect. 7, G is closed andD>0
σ,τ is composed of at most one

block D that is closed. It follows that all the intermediate sets manipulated by the algorithm
computing S P are closed. We thus have an efficient algorithm since it can be based on
antichains only.

6.3.3 Stochastic shortest path

For the SSP, the initial strategy λ0 must be proper. In the previous paragraph, we have pre-
sented an algorithm for computing the set S P = νY ·μX ·(APre(Y, X)∨G) of proper states.
One can directly extract a PA-representation of a proper strategy from the execution of this
algorithm, as follows. During the greatest fix point computation, a sequence Y0, Y1, . . . , Yk

is computed such that Y0 = S and Yk−1 = Yk = S p . During the computation of Yk , a least
fix point computation is performed, leading to a sequence X0, X1, . . . , Xl such that X0 = G
and Xi = Xi−1 ∪ APre(S P , Xi−1) for all i , 1 ≤ i ≤ l, and Xl = Yk . We define a strategy
λ0 incrementally with each set Xi . Initially, λ0(s) is any σ ∈ Σs for each s ∈ X0 (since G is
reached).When Xi has been computed, then for each s ∈ Xi\Xi−1, λ0(s) is any σ ∈ Σs such
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Algorithm 5 Split(B, C, λ)

1: P[0] := B
2: for i in [1, m] do
3: Pnew := InitTable(P, τi )
4: for all (p, block) in P do
5: Pnew[p] := Pnew[p] ∪ (block\Preλ(C, τi ))
6: for all D ∈ S∼D,λ

do
7: Pnew[p + Dλ(D)(τi )] := Pnew[p + Dλ(D)(τi )] ∪ (block ∩ D ∩ Preλ(C, τi ))
8: P := RemoveEmptyBlocks(Pnew)

9: return P

that succ(s, σ ) ⊆ S P and succ(s, σ )∩ Xi−1 �= ∅. Doing so, each proper state is eventually
associated with an action by λ0. Note that this strategy is proper. Indeed, to simplify the argu-
ment, suppose G is absorbing.9 Then by construction of λ0, the bottom strongly connected
components of the MC induced by λ0 are all in G, and a classical result on MCs (see [4])
states that any infinite path will almost surely lead to one of those components. Finally, as
all sets Xi , Y j manipulated by the algorithm are PA-represented, we obtain a partition S∼λ0
such that each block B ∈ S∼λ0

is PA-represented.

6.4 Bisimulation lumping

We now consider the step of Algorithm 4 where Algorithm Lump is called to compute the
largest bisimulation∼L of an MC M�,λ induced by a strategy λ on M� (line 4 with λ = λn).
We here detail a pseudo-antichain-based version of Algorithm Lump (see Algorithm 3) when
M�,λ is PA-represented. Recall that if M� = (S,Σ, T, E, D), then M�,λ = (S, T, Eλ, Dλ).
Equivalently, using the usual definition of an MC, M�,λ = (S, Pλ) with Pλ derived from Eλ

and Dλ (see Sect. 2). Remember also the two equivalence relations ∼D,λ and ∼C,λ defined
in Sect. 6.2.

The initial partition P computed by Algorithm 3 (line 1) is such that for all s, s′ ∈ S, s
and s′ belong to the same block of P iff Cλ(s) = Cλ(s′). The initial partition P is thus S∼C,λ

.
Algorithm 3 needs to split blocks of partition P (line 7). This can be performed thanks to

Algorithm Split that we are going to describe (seeAlgorithm5). Given two blocks B, C ⊆ S,
this algorithm splits B into a partition P composed of sub-blocks B1, . . . , Bk according to
the probability of reaching C in M�,λ, i.e. for all s, s′ ∈ B, we have s, s′ ∈ Bl for some l iff
Pλ(s, C) = Pλ(s′, C).

Suppose that T = {τ1, . . . , τm}. This algorithm computes intermediate partitions P of B
such that at step i , B is split according to the probability of reaching C in M�,λ when T is
restricted to {τ1, . . . , τi }. To perform this task, it needs a new operator Preλ based on M�
and λ. Given L ⊆ S and τ ∈ T , we define

Preλ(L , τ ) = {s ∈ S | Eλ(s)(τ ) ∈ L}
as the set of states fromwhich L is reached by τ in M� under the selection made by λ. Notice
that when T is restricted to {τ1, . . . , τi } with i < m, it may happen that Dλ(s) is no longer a
probability distribution for some s ∈ S (when

∑
τ∈{τ1,...,τi } Dλ(s)(τ ) < 1).

Initially, T is restricted to ∅, and the partition P is composed of one block B (see line 1).
At step i with i ≥ 1, each block Bl of the partition computed at step i − 1 is split into several
sub-blocks according to its intersection with Preλ(C, τi ) and each D ∈ S∼D,λ

. We take into
account intersections with D ∈ S∼D,λ

in a way to know which stochastic function Dλ(D)

9 for all s ∈ G and σ ∈ Σs ,
∑

s′∈G P(s, σ, s′) = 1.
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Bl

D1

D2

Preλ(C, τi)

p

p

p + Dλ(D1)(τi)

p + Dλ(D2)(τi)

Fig. 5 Step i of Algorithm 5 on a block Bl

is associated with the states we are considering. Suppose that at step i − 1 the probability
for any state of block Bl of reaching C is p. Then at step i , it is equal to p + Dλ(D)(τi )

if this state belongs to D ∩ Preλ(C, τi ), with D ∈ S∼D,λ
, and to p if it does not belong to

Preλ(C, τi ) (lines 5–7). See Fig. 5 for intuition. Notice that some newly created sub-blocks
could have the same probability, they are therefore merged.

The intermediate partitions P (or Pnew) manipulated by the algorithm are represented
by hash tables: each entry (p, block) is stored as P[p] = block such that block is the
set of states that reach C with probability p. The use of hash tables permits to efficiently
gather sub-blocks of states having the same probability of reaching C , and thus to keep
minimal the number of blocks in the partition. Algorithm InitTable is used to initialize a
new partition Pnew from a previous partition P and symbol τi : the new hash table is initialized
with Pnew[p] := ∅ and Pnew[p+Dλ(D)(τi )] := ∅, for all D ∈ S∼D,λ

and all (p, block) in P .
Algorithm RemoveEmptyBlocks(P) removes from the hash table P each pair (p, block)

such that block = ∅.
Theorem 1 Let λ be a strategy on M� and M�,λ = (S,Pλ) be the induced MC. Let B, C ⊆ S
be two blocks. Then the output of Split(B, C, λ) is a partition {B1, . . . , Bk} of B such that
for all s, s′ ∈ B, s, s′ ∈ Bl for some l iff Pλ(s, C) = Pλ(s′, C).

Proof The correctness of Algorithm Split is based on the following invariant. At step i ,
0 ≤ i ≤ m, with T restricted to {τ1, . . . , τi }, we have:
– P is a partition of B,
– ∀s ∈ B, if s ∈ P[p], then Pλ(s, C) = p.

Let us first prove that P is a partition. Note that the use of algorithm RemoveEmpty-

Blocks ensures that P never contains an empty block. Recall that S∼D,λ
is a partition of S.

Initially, when i = 0, P is composed of the unique block B. Let i ≥ 1 and sup-
pose that P = {B1, . . . , Bk} is a partition of B at step i − 1, and let us prove that
Pnew is a partition of B (see line 7 of the algorithm). Each Bl ∈ P is partitioned as
{Bl\Preλ(C, τi )} ∪ {Bl ∩ D ∩ Preλ(C, τi ) | D ∈ S∼D,λ

}. This leads to the finer parti-
tion P ′ = {Bl\Preλ(C, τi ) | Bl ∈ P} ∪ {Bl ∩ D ∩ Preλ(C, τi ) | Bl ∈ P, D ∈ S∼D,λ

} of P .
Some blocks of P ′ are gathered by the algorithm to get Pnew which is thus a partition.

Let us now prove that at each step i , with T restricted to {τ1, . . . , τi }, we have: ∀s ∈ B,
if s ∈ P[p], then Pλ(s, C) = p.

Initially,when i = 0, T is restricted to∅, and thusPλ(s, C) = 0 for all s ∈ B. Let i ≥ 1 and
supposewe have that∀s ∈ B, if s ∈ P[p] for some p, thenPλ(s, C) = p, when T is restricted
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to {τ1, . . . , τi−1}. Let us prove that if s ∈ Pnew[p] for some p, then Pλ(s, C) = p, when T is
restricted to {τ1, . . . , τi }. Let s ∈ B be such that s ∈ Pnew[p], we identify two cases: either
(i) s ∈ P[p] and s /∈ Preλ(C, τi ), or (ii) s ∈ P[p − Dλ(D)(τi )] and s ∈ D ∩ Preλ(C, τi ),
for some D ∈ S∼D,λ

. In case (i), by induction hypothesis, we know that Pλ(s, C) = p,
when T = {τ1, . . . , τi−1}, and since s /∈ Preλ(C, τi ), adding τi to T does not change the
probability of reaching C from s, i.e. Pλ(s, C) = p when T = {τ1, . . . , τi }. In case (ii), by
induction hypothesis, we know that Pλ(s, C) = p − Dλ(D)(τi ), when T = {τ1, . . . , τi−1}.
Moreover, since s ∈ D ∩ Preλ(C, τi ), we have Pλ(s, C) = Dλ(D)(τi ), when T = {τi }. It
follows that Pλ(s, C) = p − Dλ(D)(τi )+ Dλ(D)(τi ) = p, when T = {τ1, . . . , τi }.

Finally, after step i = m, we get the statement of Theorem 1 since P is the final partition
of B and for all s ∈ B, s ∈ P[p] iff Pλ(s, C) = p.10 ��

Notice that we have a pseudo-antichain version of Algorithm Lump as soon as the given
blocks B and C are PA-represented. Indeed, this algorithm uses boolean operations and the
Preλ operator. This operator can be computed as follows:

Preλ(C, τ ) =
⋃{

Preσ,τ (C) ∩ B | σ ∈ Σ, B ∈ S∼λ , λ(B) = σ
}
.

Intuitively, let us fix σ ∈ Σ and B ∈ S∼λ such that λ(B) = σ . Then Preσ,τ (C) ∩ B is the
set of states of S ∩ B that reach C in the MDP M� with σ followed by τ . Finally the union
gives the set of states that reach C with τ under the selection made by λ. All these operations
can be performed thanks to Propositions 4, 5, and Assumptions 1, 2.

6.5 Solving linear systems

Assume that we have computed the largest bisimulation ∼L for the MC M�,λ = (S, Pλ).
Let us now detail lines 5–7 of Algorithm 4 concerning the system of linear equations that
has to be solved. We build the Markov chain that is the bisimulation quotient (S∼L , Pλ,∼L ).
We then explicitly solve the linear system of Algorithm 1 for the SSP (resp. Algorithm 2 for
the EMP) (line 3). We thus obtain the expected truncated sum v (resp. the gain value g and
bias value b) of the strategy λ, for each block B ∈ S∼L . By definition of ∼L , we have that
for all s, s′ ∈ S, if s ∼L s′, then v(s) = v(s′) (resp. g(s) = g(s′) and b(s) = b(s′)). Given a
block B ∈ S∼L , we denote by v(B) the unique expected truncated sum v(s) (resp. by g(B)

the unique gain value g(s) and by b(B) the unique bias value b(s)), for all s ∈ B.

6.6 Improving strategies

Given an MDP M� with cost function C and the MC M�,λ induced by a strategy λ, we
finally present a pseudo-antichain-based algorithm to improve strategy λ for the SSP, with the
expected truncated sum v obtained by solving the linear system (see line 8 of Algorithm 4,
and Algorithm 1).11 Starting from the largest bisimulation ∼L of M�,λ and the induced
partition S∼L (as computed before), we are going to define a new equivalence relation that
will allow us to improve strategy λ at the level of each block of this relation.

Recall (see Algorithm 1) that for all s ∈ S, we compute the set Σ̂s of actions σ ∈ Σs that
minimize the expression

lσ (s) = C(s, σ )+
∑

s′∈S

P(s, σ, s′) · v(s′),

10 The “iff” holds since probabilities p are pairwise distinct.
11 The improvement of a strategy for the EMP, with the gain g or the bias b values (see Algorithm 2), is
similar and is thus not detailed.
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and then we improve the strategy based on the computed Σ̂s . We give hereafter an approach
based on pseudo-antichains which requires the next two steps. The first step consists in
computing, for all σ ∈ Σ , an equivalence relation ∼lσ such that the value lσ (s) is constant
on each block of the relation. The second step uses the relations∼lσ , with σ ∈ Σ , to improve
the strategy.

6.6.1 Computing value

lσ . Let σ ∈ Σ be a fixed action. We are looking for an equivalence relation ∼lσ on the set
Sσ of states where action σ is enabled, such that

∀s, s′ ∈ Sσ : s ∼lσ s′ ⇒ lσ (s) = lσ (s′).

Given ∼L and the induced partition S∼L , we have for each s ∈ Sσ

lσ (s) = C(s, σ )+
∑

C∈S∼L

P(s, σ, C) · v(C)

since the value v is constant on each block C . Therefore to get relation ∼lσ , it is enough to
have s ∼lσ s′ ⇒ C(s, σ ) = C(s′, σ ) and P(s, σ, C) = P(s′, σ, C),∀C ∈ S∼L . We proceed
by defining the following equivalence relations on Sσ . For the cost part, we use relation∼C,σ

defined in Sect. 6.2. For the probabilities part, for each block C of S∼L , we define relation
∼P,σ,C such that s ∼P,σ,C s′ iff P(s, σ, C) = P(s′, σ, C). The required relation∼lσ on Sσ is
then defined as the relation

∼lσ = ∼C,σ ∩
⋂

C∈S∼L

∼P,σ,C = ∼C,σ ∩ ∼P,σ

Let us explain how to compute ∼lσ with a pseudo-antichain-based approach. Firstly, M�
being T -complete, the set Sσ is obtained as Sσ = Preσ,τ (S) where τ is an arbitrary action of
T . Secondly, each relation ∼P,σ,C is the output obtained by a call to Split(Sσ , C, λ) where
λ is defined on Sσ by λ(s) = σ for all s ∈ Sσ

12 (see Algorithm 5). Thirdly, we detail a way
to compute ∼P,σ from ∼P,σ,C , for all C ∈ S∼L . Let S∼P,σ,C = {BC,1, BC,2, . . . , BC,kC } be
the partition of Sσ induced by ∼P,σ,C . For each BC,i ∈ S∼P,σ,C , we denote by P(BC,i , σ, C)

the unique value P(s, σ, C), for all s ∈ BC,i . Then, computing a block D of ∼P,σ consists
in picking, for all C ∈ S∼L , one block DC among BC,1, BC,2, . . . , BC,kC , such that the
intersection D = ⋂

C∈S∼L
DC is non empty. Recall that, by definition of the MDP M�, we

have
∑

s′∈S P(s, σ, s′) = 1. Therefore, if D is non empty, then
∑

C∈S∼L
P(DC , σ, C) = 1.

Finally, ∼lσ is obtained as the intersection between ∼C,σ and ∼P,σ .
Relation ∼lσ induces a partition of Sσ that we denote (Sσ )∼lσ

. For each block D ∈
(Sσ )∼lσ

, we denote by lσ (D) the unique value lσ (s), for s ∈ D.

6.6.2 Improving the strategy

We now propose a pseudo-antichain-based algorithm for improving strategy λ by using
relations ∼L , ∼λ, and ∼lσ , ∀σ ∈ Σ (see Algorithm 6).

We first compute for all σ ∈ Σ , the equivalence relation∼lσ∧L =∼lσ ∩ ∼L on Sσ . Given
B ∈ (Sσ )∼lσ ∧L , we denote by lσ (B) the unique value lσ (s) and by v(B) the unique value

12 As Algorithm Split only works on Sσ , it is not a problem if λ is not defined on S\Sσ .
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Algorithm 6 ImproveStrategy(L, S∼λ )

1: for C ∈ L do
2: S∼λ′ := ∅
3: for B ∈ S∼λ do
4: if B ∩ C �= ∅ then
5: S∼λ′ := S∼λ′ ∪ {B ∩ C, B\C}
6: else
7: S∼λ′ := S∼λ′ ∪ B
8: S∼λ := S∼λ′
9: return S∼λ′

v(s), for all s ∈ B. Let σ ∈ Σ , we denote by (Sσ )<∼lσ ∧L
⊆ (Sσ )∼lσ ∧L the set of blocks C for

which the value v(C) is improved by setting λ(C) = σ , that is

(Sσ )<∼lσ ∧L
= {C ∈ (Sσ )∼lσ ∧L | lσ (C) < v(C)}.

We then compute an ordered global list L made of the blocks of all sets (Sσ )<∼lσ ∧L
, for all

σ ∈ Σ . It is ordered according to the decreasing value lσ (C). In this way, when traversing
L, we have more and more promising blocks to decrease v.

From input L and∼λ, Algorithm 6 outputs an equivalence relation∼λ′ for a new strategy
λ′ that improves λ. Given C ∈ L, suppose that C comes from the relation ∼lσ∧L (σ is
considered). Then for each B ∈ S∼λ such that B ∩ C �= ∅ (line 4), we improve the strategy
by setting λ′(B ∩ C) = σ , while the strategy λ′ is kept unchanged for B\C . Algorithm 6
outputs a partition S∼λ′ such that s ∼λ′ s′ ⇒ λ′(s) = λ′(s′) for the improved strategy λ′. If
necessary, for efficiency reasons, we can compute a coarser relation for the new strategy λ′
by gathering blocks B1, B2 of S∼λ′ , for all B1, B2 such that λ′(B1) = λ′(B2).

The correctness of Algorithm 6 is due to the list L, which is sorted according to the
decreasing value lσ (C). It ensures that the strategy is updated at each state s to an action
σ ∈ Σ̂s , i.e. an action σ that minimizes the expression C(s, σ ) +∑

s′∈SP(s, σ, s′) · vn(s′)
(cf. line 4 of Algorithm 1).

7 Experiments

In this section, we present two application scenarios of the pseudo-antichain-based symblicit
algorithmof the previous section, one for the SSP problem and the other for the EMPproblem.
In both cases, we first show the reduction to monotonic MDPs that satisfy Assumptions 1
and 2, and we then present some experimental results. We also give a different application
of pseudo-antichains to the qualitative analysis of probabilistic lossy channel systems, based
on results of [2]. This third application scenario shows that one can manage infinite (rather
than finite) MDPs that appear in this context, and illustrates the variety of applications of
pseudo-antichains. All our experiments were performed on a Linux platform with a 3.2 GHz
CPU (Intel Core i7) and 4 GB of memory. Note that our implementations are single-threaded
and thus use only one core. For all those experiments, the timeout is set to 10 h and is denoted
by TO, and when an execution runs out of memory, we denote it by MO.

7.1 Stochastic shortest path on STRIPSs

We consider the following application of the pseudo-antichain-based symblicit algorithm
for the SSP problem. In the field of planning, a class of problems called planning from
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STRIPSs [22] operate with states represented by valuations of propositional variables. Infor-
mally, a STRIPS is defined by an initial state representing the initial configuration of the
system and a set of operators that transform a state into another state. The problem of plan-
ning from STRIPSs then asks, given a valuation of propositional variables representing a set
of goal states, to find a sequence of operators that lead from the initial state to a goal one.
Let us first formally define the notion of STRIPS and show that each STRIPS can be made
monotonic.Wewill then add stochastic aspects and show how to construct a monotonicMDP
from a monotonic stochastic STRIPS.

7.1.1 STRIPSs

A STRIPS [22] is a tuple (P, I, (M, N ), O)where P is a finite set of conditions (i.e. proposi-
tional variables), I ⊆ P is a subset of conditions that are initially true (all others are assumed
to be false), (M, N ), with M, N ⊆ P and M ∩ N = ∅, specifies which conditions are true
and false, respectively, in order for a state to be considered a goal state, and O is a finite set
of operators. An operator o ∈ O is a pair ((γ, θ), (α, δ)) such that (γ, θ) is the guard of o,
that is, γ ⊆ P (resp. θ ⊆ P) is the set of conditions that must be true (resp. false) for o to be
executable, and (α, δ) is the effect of o, that is, α ⊆ P (resp. δ ⊆ P) is the set of conditions
that are made true (resp. false) by the execution of o. For all ((γ, θ), (α, δ)) ∈ O , we have
that γ ∩ θ = ∅ and α ∩ δ = ∅.

From a STRIPS, we derive a transition system as follows. The set of states is 2P , that is,
a state is represented by the set of conditions that are true in it. The initial state is I . The
set of goal states are states Q such that Q ⊇ M and Q ∩ N = ∅. There is a transition from
state Q to state Q′ under operator o = ((γ, θ), (α, δ)) if Q ⊇ γ , Q ∩ θ = ∅ (the guard is
satisfied) and Q′ = (Q ∪ α)\δ (the effect is applied). A standard problem is to ask whether
or not there exists a path from the initial state to a goal state.

7.1.2 Monotonic STRIPSs

Amonotonic STRIPS (MS) is a tuple (P, I, M, O)where P and I are defined as for STRIPSs,
M ⊆ P specifies which conditions must be true in a goal state, and O is a finite set of
operators. In the MS definition, an operator o ∈ O is a pair (γ, (α, δ)) where γ ⊆ P is the
guard of o, that is, the set of conditions that must be true for o to be executable, and (α, δ)

is the effect of o as in the STRIPS definition. MSs thus differ from STRIPS in the sense that
guards only apply on conditions that are true in states, and goal states are only specified by
true conditions. The monotonicity will appear more clearly when we will derive hereafter
monotonic MDPs from MSs.

Each STRIPS S = (P, I, (M, N ), O) can be made monotonic by duplicating the set
of conditions, in the following way. We denote by P the set {p | p ∈ P} containing a new
condition p for each p ∈ P such that p represents the negation of the propositional variable p.
We construct fromS anMSS ′ = (P ′, I ′, M ′, O ′) such that P ′ = P∪P , I ′ = I∪P\I ⊆ P ′,
M ′ = M ∪ N ⊆ P ′ and O ′ = {(γ ∪ θ, (α ∪ δ, δ ∪ α)) | ((γ, θ), (α, δ)) ∈ O}. It is easy to
check that S and S ′ are equivalent (a state Q in S has its counterpart Q ∪ P\Q in S ′). In the
following, we thus only consider MSs.

Example 5 To illustrate the notion of MS, let us consider the following example of
the monkey trying to reach a bunch of bananas (cf. Example 1). Let (P, I, M, O)

be an MS such that P = {box, stick, bananas}, I = ∅, M = {bananas}, and
O = {takebox, takestick, takebananas} where takebox = (∅, ({box},∅)), takestick =
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(∅, ({stick},∅)) and takebananas = ({box, stick}, ({bananas},∅)). In this MS, a condition
p ∈ P is true when the monkey possesses the item corresponding to p. At the beginning, the
monkey possesses no item, i.e. I is the empty set, and its goal is to get the bananas, i.e. to
reach a state s ⊇ {bananas}. This can be done by first executing the operators takebox and
takestick to respectively get the box and the stick, and then executing takebananas, whose
guard is {box, stick}.

7.1.3 Monotonic stochastic STRIPSs

MSs can be extended with stochastic aspects as follows [9]. Each operator o = (γ, π) ∈ O
now consists of a guard γ as before, and an effect given as a probability distribution π :
2P × 2P → [0, 1] on the set of pairs (α, δ). An MS extended with such stochastic aspects is
called a monotonic stochastic STRIPS (MSS).

Additionally, we associate with an MSS (P, I, M, O) a cost function C : O → R>0 that
associates a strictly positive cost with each operator. The problem of planning from MSSs is
then to minimize the expected truncated sum up to the set of goal states from the initial state,
i.e. this is a version of the SSP problem.

Example 6 We extend the MS of Example 5 with stochastic aspects to illustrate the notion
of MSS. Let (P, I, M, O) be an MSS such that P , I and M are defined as in Example 5, and
O = {takebox, takestick, takebananaswithbox, takebananaswithstick, takebananaswithboth}
where

– takebox = (∅, (1 : ({box},∅))),
– takestick = (∅, (1 : ({stick},∅))),
– takebananaswithbox = ({box}, ( 14 : ({bananas},∅), 3

4 : (∅,∅)
))
,

– takebananaswithstick = ({stick}, ( 15 : ({bananas},∅), 4
5 : (∅,∅)

))
, and

– takebananaswithboth = ({box, stick}, ( 12 : ({bananas},∅), 1
2 : (∅,∅)

))
.

In this MSS, the monkey has a strictly positive probability to fail reaching the bananas,
whatever the items it uses. However, the probability of success increases when it has both
the box and the stick.

In the following, we show that MSSs naturally define monotonic MDPs on which the
pseudo-antichain-based symblicit algorithm of Sect. 6 can be applied.

7.1.4 From MSSs to monotonic MDPs

Let S = (P, I, M, O) be an MSS. We can derive from S an MDP MS = (S,Σ, T, E, D)

together with a set of goal states G and a cost function C such that:

– S = 2P ,
– G = {s ∈ S | s ⊇ M},
– Σ = O , and for all s ∈ S, Σs = {(γ, π) ∈ Σ | s ⊇ γ },
– T = {(α, δ) ∈ 2P × 2P | ∃(γ, π) ∈ O, (α, δ) ∈ Supp(π)},
– E, D and C are defined for all s ∈ S and σ = (γ, π) ∈ Σs , such that:

– for all τ = (α, δ) ∈ T , E(s, σ )(τ ) = (s ∪ α)\δ,
– for all τ ∈ T , D(s, σ )(τ ) = π(τ), and
– C(s, σ ) = C(σ ).
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Note that we might have that MS is not Σ-non-blocking, if no operator can be applied on
some state of S. In this case, we get a Σ-non-blocking MDP from MS by eliminating states
s with Σs = ∅ as long as it is necessary.

Lemma 5 The MDP MS is monotonic, G is closed, and functions D,C are independent
from S.

Proof First, S is equipped with the partial order ⊇ and (S,⊇) is a semilattice. Second, S
is closed for ⊇ by definition. Thirdly, we have that ⊇ is compatible with E. Indeed, for all
s, s′ ∈ S such that s ⊇ s′, for all σ ∈ Σ and τ = (α, δ) ∈ T , E(s, σ )(τ ) = (s ∪ α)\δ ⊇
(s′ ∪ α)\δ = E(s′, σ )(τ ). Finally the set G = ↓{M} of goal states is closed for ⊇, and D, C
are clearly independent from S. ��

7.1.5 Symblicit algorithm

In order to apply the pseudo-antichain-based symblicit algorithm of Sect. 6 on the monotonic
MDPs derived from MSSs, Assumptions 1 and 2 must hold. Let us show that Assumption 2
is satisfied. For all s ∈ S, σ = (γ, π) ∈ Σs and τ = (α, δ) ∈ T , we clearly have an
algorithm for computing E(s, σ )(τ ) = (s ∪ α)\δ, and D(s, σ )(τ ) = π(τ). Let us now
consider Assumption 1. An algorithm for computing �Preσ,τ (↓{x})�, for all x ∈ S, σ ∈ Σ

and τ ∈ T , is given by the next proposition.

Proposition 6 Let x ∈ S, σ = (γ, π) ∈ Σ and τ = (α, δ) ∈ T . If x ∩ δ �= ∅, then
�Preσ,τ (↓{x})� = ∅, otherwise �Preσ,τ (↓{x})� = {γ ∪ (x\α)}.
Proof Suppose first that x ∩ δ = ∅.

We first prove that s = γ ∪ (x\α) ∈ Preσ,τ (↓{x}). We have to show that σ ∈ Σs and
E(s, σ )(τ ) ∈↓{x}. Recall that σ = (γ, π). We have that s = γ ∪ (x\α) ⊇ γ , showing that
σ ∈ Σs . We have that E(s, σ )(τ ) = (γ ∪(x\α)∪α)\δ = (γ ∪ x∪α)\δ ⊇ x since x∩δ = ∅.
We thus have that E(s, σ )(τ ) ∈↓{x}.

We then prove that for all s ∈ Preσ,τ (↓{x}), s ∈↓{γ ∪ (x\α)}, i.e. s ⊇ γ ∪ (x\α).
Let s ∈ Preσ,τ (↓{x}). We have that σ ∈ Σs and E(s, σ )(τ ) ∈↓{x}, that is, s ⊇ γ and
E(s, σ )(τ ) = (s ∪ α)\δ ⊇ x . By classical set properties, it follows that (s ∪ α) ⊇ x , and
then s ⊇ x\α. Finally, since s ⊇ γ , we have s ⊇ γ ∪ (x\α), as required.

Suppose now that x ∩ δ �= ∅, then Preσ,τ (↓{x}) = ∅. Indeed for all s ∈↓{x}, we have
s ∩ δ �= ∅, and by definition of E, there is no s′ such that E(s′, σ )(τ ) = s. ��

Finally, notice that for the class of monotonic MDPs derived from MSSs, the symbolic
representations described in Sect. 6.2 are compact, sinceG is closed andD, C are independent
from S (see Lemma 5). Therefore we have all the required ingredients for an efficient pseudo-
antichain-based algorithm to solve the SSP problem for MSSs. The next experiments show
its performance.

7.1.6 Experiments

We have implemented in Python and C the pseudo-antichain-based symblicit algorithm
for the SSP problem. The C language is used for all the low level operations while the
orchestration is done with Python. The binding between C and Python is realized with
the ctypes library of Python. The source code is publicly available at http://lit2.ulb.ac.be/
STRIPSSolver/, together with the two benchmarks presented in this section. We compared
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our implementation with the purely explicit strategy iteration algorithm implemented in the
development release 4.1.dev.r7712of the toolPRISM [35], since to the best of our knowledge,
there is no tool implementing an MTBDD based symblicit algorithm for the SSP problem.13

Note that this explicit implementation exists primarily to prototype new techniques and is
thus not fully optimized [40]. Note that value iteration algorithms are also implemented in
PRISM. While those algorithms are usually efficient, they only compute approximations. As
a consequence, for the sake of a fair comparison, we consider here only the performances of
strategy iteration algorithms.

Thefirst benchmark (Monkey) is obtained fromExample 6. In this benchmark, themonkey
has several items at its disposal to reach the bunch of bananas, one of them being a stick.
However, the stick is available as a set of several pieces that the monkey has to assemble.
Moreover, the monkey has multiple ways to build the stick as there are several sets of pieces
that can be put together. However, the time required to build a stick varies from a set of pieces
to another. Additionally, we add useless items in the room: there is always a set of pieces
from which the probability of getting a stick is 0. The operators of getting some items are
stochastic, as well as the operator of getting the bananas: the probability of success varies
according to the owned items (cf. Example 6). The benchmark is parameterized in the number
p of pieces required to build a stick, and in the number s of sticks that can be built. Note
that the monkey can only use one stick, and thus has no interest to build a second stick if it
already has one. Results are given in Table 1.

The second benchmark (Moats and castles) is an adaptation of a benchmark of [37] as
proposed in [9].14 The goal is to build a sand castle on the beach; a moat can be dug before
in a way to protect it. We consider up to 7 discrete depths of moat. The operator of building
the castle is stochastic: there is a strictly positive probability for the castle to be demolished
by the waves. However, the deeper the moat is, the higher the probability of success is. For
example, the first depth of moat offers a probability 1

4 of success, while with the second
depth of moat, the castle has probability 9

20 to resist to the waves. The optimal strategy for
this problem is to dig up to a given depth of moat and then repeat the action of building the
castle until it succeeds. The optimal depth of moat then depends on the cost of the operators
and the respective probability of successfully building the castle for each depth of moat. To
increase the difficulty of the problem, we consider building several castles, each one having
its own moat. The benchmark is parameterized in the number d of depths of moat that can
be dug, and the number c of castles that have to be built. Results are given in Table 2.

On those two benchmarks, we observe that the explicit implementation quickly runs out of
memory when the state space of the MDP grows. Indeed, with this method, we were not able
to solve MDPs with more than 65536 (resp. 32768) states in Table 1 (resp. Table 2). On the
other hand, the symblicit algorithm behaves well on large models: the memory consumption
never exceeds 150MB and this even for MDPs with hundreds of millions of states. For
instance, the example (5, 5) of the Monkey benchmark is an MDP of more than 17 billions
of states that is solved in <2 h with only 82 MB of memory.15

13 A comparison with an MTBDD based symblicit algorithm is done in the second application for the EMP
problem.
14 In [9], the authors study a different problem that is to maximize the probability of reaching the goal within
a given number of steps.
15 On our benchmarks, the value iteration algorithm of PRISM performs better than the strategy iteration
one w.r.t. the run time and memory consumption. However, it still consumes more memory than the pseudo-
antichain-based algorithm, and runs out of memory on several examples.
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7.2 Expected mean-payoff with LTLMP synthesis

We consider another application of the pseudo-antichain-based symblicit algorithm, but now
for the EMP problem. This application is related to the problems of LTLMP realizability
and synthesis [11,12]. Let us fix some notations and definitions. Let φ be an LTL formula
defined over the set P = I  O of signals and let ΣP = 2P , ΣO = 2O and ΣI = 2I . Let
Lit(O) = {o | o ∈ O} ∪ {¬o | o ∈ O} be the set of literals over O . Let w : Lit(O) !→ Z be
a weight function where positive numbers represent rewards.16 This function is extended to
ΣO as follows: w(σ) = Σo∈σ w(o)+Σo∈O\{σ }w(¬o) for all σ ∈ ΣO .

7.2.1 LTLMP realizability and synthesis

The problem of LTLMP realizability is best seen as a game between two players, Player O
and Player I . This game is infinite and such that at each turn k, Player O gives a subset
ok ∈ ΣO and Player I responds by giving a subset ik ∈ ΣI . The outcome of the game
is the infinite word (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω

P . A strategy for Player O is a mapping
λO : (ΣOΣI )

∗ → ΣO , while a strategy for Player I is a mapping λI : (ΣOΣI )
∗ΣO → ΣI .

The outcome of the strategies λO and λI is the word Out(λO , λI ) = (o0 ∪ i0)(o1 ∪ i1) . . .

such that o0 = λO (ε), i0 = λI (o0) and for all k ≥ 1, ok = λO(o0i0 . . . ok−1ik−1) and
ik = λI (o0i0 . . . ok−1ik−1ok). A value Val(u) is associated with each outcome u∈Σω

P such
that

Val(u) =
{
lim infn→∞ 1

n

∑n−1
k=0 w(ok) if u |� φ

−∞ otherwise

i.e. Val(u) is the mean-payoff value of u if u satisfies φ, otherwise, it is −∞. Given an
LTL formula φ over P , a weight function w and a threshold value ν ∈ Z, the LTLMP
realizability problem asks to decide whether there exists a strategy λO for Player O such
that Val(Out(λO , λI )) ≥ ν for all strategies λI of Player I . If the answer is Yes, φ is said
MP-realizable. The LTLMP synthesis problem is then to produce such a strategy λO for Player
O .

To illustrate the problems of LTLMP realizability and synthesis, let us consider the follow-
ing specification of a server that should grant exclusive access to a resource to two clients.

Example 7 A client requests access to the resource by setting to true its request signal (r1
for client 1 and r2 for client 2), and the server grants those requests by setting to true the
respective grant signal g1 or g2. We want to synthesize a server that eventually grants any
client request, and that only grants one request at a time. Additionally, we ask client 2’s
requests to take the priority over client 1’s requests.Moreover, wewould like to keepminimal
the delay between requests and grants. This can be formalized by the LTL formula φ given
below where the signals in I = {r1, r2} are controlled by the two clients, and the signals in
O = {g1, w1, g2, w2} are controlled by the server. Moreover, we add the following weight
function w : Lit(O) → Z:

φ1 = �(r1 → X(w1Ug1))

φ2 = �(r2 → X(w2Ug2))

φ3 = �(¬g1 ∨ ¬g2)

φ = φ1 ∧ φ2 ∧ φ3

w(l) =

⎧
⎪⎨

⎪⎩

−1 if l = w1

−2 if l = w2

0 otherwise.

16 Note that in [11,12], theweight functionw ismore general since it also associates values toLit(I ). However,
for this application, we restrict w to Lit(O).
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A possible strategy for the server is to behave as follows: it grants immediately any request
of client 2 if the last ungranted request of client 1 has been emitted less than n steps in the
past, otherwise it grants the request of client 1. The mean-payoff value of this solution in the
worst-case (when the two clients always emit their respective request) is equal to −(1+ 1

n ).

7.2.2 Reduction to safety games

In [11,12], we propose an antichain-based algorithm for solving the LTLMP realizability and
synthesis problems with a reduction to a two-player turn-based safety game. We here present
this game G without explaining the underlying reasoning, see [11] formore details. The game
G = (SO , SI , E, α) is a turn-based safety game such that SO (resp. SI ) is the set of positions
of Player O (resp. Player I ), E is the set of edges labeled by o ∈ ΣO (resp. i ∈ ΣI ) when
leaving a position in SO (resp. SI ), and α ⊆ SO ∪ SI is the set of bad positions (i.e. positions
that Player O must avoid to reach). LetWinO be the set of positions in G from which Player
O can force Player I to stay in (SO ∪ SI )\α, that is the set of winning positions for Player
O . The safety game G restricted to positions WinO is a representation of a subset of the set
of all winning strategies λO for Player O that ensure a value Val(Out(λO , λI )) greater than
or equal to the given threshold ν, for all strategies λI of Player I . Those strategies are called
worst-case winning strategies.

Note that the reduction to safety games given in [11,12] allows to compute the set of all
worst-case winning strategies (instead of a subset of them). Indeed the proposed algorithm
is incremental on two parameters K = 0, 1, . . . and C = 0, 1, . . . , and works as follows.
For each value of K and C , a corresponding safety game is constructed, whose number of
states depends on K and C . Those safety games have the following nice property. If player
O has a worst-case winning strategy in the safety game for K = k and C = c, then he has
a worst-case winning strategy in all the safety games for K ≥ k and C ≥ c. The algorithm
thus stops as soon as a worst-case winning strategy is found. There exist theoretical bounds
K andC such that the set of all worst-case winning strategies can be represented by the safety
game with parameters K and C. However, K and C being huge, constructing this game is
unfeasible in practice.

7.2.3 From safety games to MDPs

We can go beyond LTLMP synthesis. Let G be a safety game as above, that represents a subset
of worst-case winning strategies. For each state s ∈WinO ∩ SO , we denote by ΣO,s ⊆ ΣO

the set of actions that are safe to play in s (i.e. actions that force Player I to stay in WinO ).
For all s ∈ WinO ∩ SO , we know that ΣO,s �= ∅ by construction of WinO . From this set
of worst-case winning strategies, we want to compute the one that behaves the best against
a stochastic opponent. Let πI : ΣI → ]0, 1] be a probability distribution on the actions of
Player I . Note that we require Supp(πI ) = ΣI so that it makes sense with the worst-case.
By replacing Player I by πI in the safety game G restricted to WinO , we derive an MDP
MG = (S,Σ, T, E, D) where:

– S =WinO ∩ SO ,
– Σ = ΣO , and for all s ∈ S, Σs = ΣO,s ,
– T = ΣI ,
– E, D and C are defined for all s ∈ S and σ ∈ Σs , such that:
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– for all τ ∈ T , E(s, σ )(τ ) = s′ such that (s, σ, s′′), (s′′, τ, s′) ∈ E ,
– for all τ ∈ T , D(s, σ )(τ ) = πI (τ ), and
– C(s, σ ) = w(σ).

Note that since ΣO,s �= ∅ for all s ∈ S, we have that M is Σ-non-blocking.
Computing the best strategy against a stochastic opponent among the worst-case winning

strategies represented by G reduces to solving the EMP problem for the MDP MG .17

Lemma 6 The MDP MG is monotonic, and functions D,C are independent from S.

Proof It is shown in [11,12] that the safety game G has properties of monotony. The set
SO ∪ SI is equipped with a partial order � such that (SO ∪ SI ,�) is a complete lattice, and
the sets SO , SI andWinO are closed for �. For the MDP MG derived from G, we thus have
that (S,�) is a (semi)lattice, and S is closed for �. Moreover, by construction of G (see
details in [11, Sec. 5.1]) and MG , we have that � is compatible with E. By construction,
D, C are independent from S. ��

7.2.4 Symblicit algorithm

In order to apply the pseudo-antichain-based symblicit algorithm of Sect. 6, Assumptions 1
and 2 must hold for MG . This is the case for Assumption 2 since E(s, σ )(τ ) can be computed
for all s ∈ S, σ ∈ Σs and τ ∈ T (see [11, Sec. 5.1]), and D is given by πI . Moreover, from
[11, Prop. 24] and Supp(πI ) = ΣI , we have an algorithm for computing �Preσ,τ (↓{x})�,
for all x ∈ S. So, Assumption 1 holds too. Notice also that for the MDP MG derived from
the safety game G, the symbolic representations described in Sect. 6.2 are compact, since D
and C are independent from S (see Lemma 6).

Therefore for this second class of MDPs, we have again an efficient pseudo-antichain-
based algorithm to solve the EMP problem, as indicated by the next experiments.

7.2.5 Experiments

We have implemented the pseudo-antichain-based symblicit algorithm for the EMP problem
and integrated it into Acacia+ (v2.2) [10]. Acacia+ is a tool written in Python and C that
provides an antichain-based version of the algorithm described above for solving the LTLMP
realizability and synthesis problems. The last version of Acacia+ is available at http://lit2.
ulb.ac.be/acaciaplus/, together with all the examples considered in this section. It can also be
used directly online via a web interface. We compared our implementation with an MTBDD
based symblicit algorithm implemented in PRISM [44]. To the best of our knowledge, only
strategy iteration algorithms are implemented for the EMPproblem. In the sequel, for the sake
of simplicity, we refer to the MTBDD based implementation as PRISM and to the pseudo-
antichain-based one as Acacia+. Notice that for Acacia+, the given execution times and
memory consumptions only correspond to the part of the execution concerning the symblicit
algorithm (and not the construction of the safety gameG and the subset ofworst-casewinning
strategies that it represents).

We compare the two implementations on a benchmark of [12] obtained from the LTLMP
specification of Example 7 extended with stochastic aspects (Stochastic shared resource
arbiter). For the stochastic opponent, we set a probability distribution such that requests of

17 More precisely, it reduces to the EMPproblemwhere the objective is tomaximize the expectedmean-payoff
(see footnotes 1 and 3).
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client 1 aremore likely to happen than requests of client 2: at each turn, client 1 has probability
3
5 to make a request, while client 2 has probability 1

5 . The probability distribution πI : ΣI →
]0, 1] is then defined as πI ({¬r1,¬r2}) = 8

25 , πI ({r1,¬r2}) = 12
25 , πI ({¬r1, r2}) = 2

25
and πI ({r1, r2}) = 3

25 . We use the backward algorithm of Acacia+ for solving the related
safety games. The benchmark is parameterized in the threshold value ν. Results are given in
Table 3. Note that the number of states in the MDPs depends on the implementation. Indeed,
for PRISM, it is the number of reachable states of the MDP, denoted |M R

G |, that is, the states
that are really taken into account by the algorithm, while for Acacia+, it is the total number
of states since unlikePRISM, our implementation does not prune unreachable states. For this
application scenario, we observe that the ratio (number of reachable states)/(total number of
states) is in general quite small.18

On this benchmark,PRISM is faster thatAcacia+ on large models, butAcacia+ is more
efficient regarding the memory consumption and this in spite of considering the whole state
space. For instance, the last MDP of Table 3 contains more than 450 millions of states and
is solved by Acacia+ in around 6.5 h with <100 Mo of memory, while for this example,
PRISM runs out ofmemory. Note that the surprisingly large amount ofmemory consumption
of both implementations on small instances is due to Python libraries loaded in memory for
Acacia+, and to the JVM and the CUDD package for PRISM [32].

To fairly compare the two implementations, let us consider Fig. 6 (resp. Fig. 7) that gives a
graphical representation of the execution times (resp. the memory consumption) ofAcacia+
and PRISM as a function of the number of states taken into account, that is, the total number
of states forAcacia+ and the number of reachable states forPRISM. For that experiment, we
consider the benchmark of examples of Table 3with four different probability distributions on
ΣI . Moreover, for each instance, we consider the twoMDPs obtained with the backward and
the forward algorithms of Acacia+ for solving safety games. The forward algorithm always
leads to smaller MDPs. On the whole benchmark, Acacia+ times out on three instances,
while PRISM runs out of memory on four of them. Note that all scales in Figs. 6 and 7 are
logarithmic.

On Fig. 6, we observe that for most of the executions, Acacia+works faster that PRISM.
We also observe that Acacia+ does not behave well for a few particular executions, and that
these executions all correspond to MDPs obtained from the forward algorithm of Acacia+.

Figure 7 shows that regarding the memory consumption, Acacia+ is more efficient than
PRISM and it can thus solve larger MDPs (the largest MDP solved by PRISM contains half
a million states while Acacia+ solves MDPs of more than 450 million states). This points
out that monotonic MDPs are better handled by pseudo-antichains, which exploit the partial
order on the state space, than by BDDs.

Finally, in the majority of experiments we performed for both the EMP and the SSP
problems, we observe that most of the execution time of the pseudo-antichain-based sym-
blicit algorithms is spent for lumping. It is also the case for the MTBDD based symblicit
algorithm [46].

7.3 Qualitative verification of probabilistic lossy channel systems

In this section, we depart from the symblicit algorithms for the EMP and SSP problems,
and move to a third application handling infinite rather than finite MPDs, and showing the
variety of applications of pseudo-antichains. We show that pseudo antichains can apply to
the qualitative verification for probabilistic lossy channel systems, based on results of [2].

18 For all the MDPs considered in Tables 1 and 2, this ratio is 1.
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Fig. 6 Execution time

Fig. 7 Memory consumption

This paper proposes an ad hoc data structure and symbolic algorithms, and reports on a
prototype applied to the verification of a simple protocol handling two-way transfers in an
unreliable setting (see Pachl’s protocol in Fig. 8). It appears that the data structure proposed
in [2] is closely related to our pseudo-antichains. We detail in this section the differences,
and explain how a simple modification of our basic algorithms on pseudo-antichains allowed
us to easily reimplement the symbolic algorithms of [2]. Our implementation allowed us to
verify a parameterized version of the example of Fig. 8, and we report the running time and
the memory consumption on that case study.
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Fig. 8 Pachl’s communication protocol

7.3.1 Lossy channel systems

Lossy channel systems are a classical model for asynchronous communication protocols over
unreliable channels.A lossy channel system (LCS) [1,25] is a tuple (Q, C, M,Δ)where Q is a
finite set of control locations,C is a finite set ofFIFO channels, M is a finitemessage alphabet,

andΔ is a finite set of transition rules. Rules can either be of the form q
c!m−→ p to sendmessage

m ∈ M along channel c ∈ C , or q
c?m−→ p to receive messagem from channel c. The semantics

of anLCS is a transition system (Conf,Δ,→), where the (infinite) set of configurationsConf
gathers all s = (q, μ1, . . . , μn) with q ∈ Q a location, and (μi )i∈C ∈ M∗ describes the
channels contents. Transitions between configurations s and s′ consist in the application
of some rule δ ∈ Δ from the LCS followed by arbitrary many message losses. The loss
of messages is formalized using the subword ordering: μ # μ′ if μ can be obtained by
removing messages from μ′, and# extends naturally to configurations. Thanks to Higman’s
Lemma [30],# is a well-quasi-order, and the transition system (Conf,Δ,→) equipped with
# is a well-structured transition system [26].

Example 8 Pachl’s protocol [38] handles two-way communications over lossy channels. It
consists of two identical processes that exchange data over lossy channels using an acknowl-
edgment mechanism based on the alternating bit protocol, and is represented in Fig. 8. The
actual contents of the data messages is abstracted away, so that we use d0,d1 to record the
alternating control bit, and a0,a1 are the corresponding acknowledgment messages. The
protocol starts in configuration (L0, R4) where the left component is the sender and the right
one is the receiver. At any time (provided its last data message has been acknowledged) the
sender may signal the end of its data sequence by sending message eod and then the two
processes swap their roles. Pachl’s protocol is naturally modeled as an LCS: building the
asynchronous product of the two processes yields an LCS with 36 locations, 2 channels and
a 5-message alphabet M = {a0,a1,d0,d1,eod}.

7.3.2 Probabilistic lossy channel systems

Modelingmessage losses bynondeterminismmaynot be realistic, so that variants ofLCSwith
probabilistic losses have been proposed.A probabilistic lossy channel system (PLCS) [3] is an
LCS equipped with a fault rate τ ∈ (0, 1) that specifies the probability that a given message
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stored in one of the channels is lost during a step. The operational semantics of an PLCS is
an infinite-state MDP (Conf,Δ, P) on the set of configurations Conf. The value P(s, δ, s′)
represents the probability (depending on τ ) that the system moves from configuration s
to configuration s′ when firing transition rule δ. The formal definition of P is technically
heavy but natural, so we omit it here. From the infinite-state MDP (Conf,Δ, P), a strategy
λ induces an infinite-state MC (Conf, Pλ) and we write P

s
λ for its measure when the initial

configuration is s. Here, we consider finite-memory, and even general (i.e. history dependent)
strategies, contrary to the previous sections. For various types of properties ϕ over paths in
the MDP (Conf,Δ, P), one can consider the following qualitative verification questions:
does there exist a strategy λ such that Ps

λ(ϕ) is> 0,= 1,< 1 or= 0? Fixpoint algorithms are
provided in [2] to compute the set of initial configurations s fromwhich such a strategy exists.
These algorithms manipulate symbolic representations of sets of configurations described by
a variant of pseudo-antichains.

7.3.3 Symbolic set of configurations

Let us briefly introduce the symbolic representations from [2] and compare themwith pseudo-
antichains. The variant of pseudo-elements to represent sets of channel contents has the
following distinctive features. First, for L ⊆ M∗, one considers the upward-closure ↑L with
respect to the subword relation#, rather than the downward-closure↓L . Next, since (M∗,#)

is a well-quasi-order, all antichains are finite [30], yet (M∗,#) is not a semilattice: the least
upper bound of two configurations may be an antichain rather than a unique element. For
instance, for M = {a, b}, ab � ba = {aba, bab}. This difference requires the adaptation
of Proposition 2, especially (see third item) the computation of α1 � α2 = {a1 � a2 | a1 ∈
α1, a2 ∈ α2} for two antichains α1, α2 ⊆ M∗, and can easily be done. A third difference
lies in the notion of prefixed closure σ↑x for x ∈ M∗ and σ ∈ M ∪ {ε} a message or the
empty word, which allows to speak about the first message in a channel. We symbolically
represent the prefixed closure σ ↑ x by σ∧x . The variant of x (symbolically representing
↑x) is thus σ∧x (symbolically representing σ↑x), and propagates to variants of antichains,
and pseudo-elements, as summarized in the table below. As an example, for M = {a, b},
the variant of pseudo-element (a∧ab, {ε∧b, b∧aa}) represents the set of channel contents
a↑ab\(↑b ∪ b↑aa).

Classical Variant

Element x σ∧x
Antichain α = {xi | i ∈ I } {σ∧i xi | i ∈ I }
Pseudo-element (x, α) θ = (σ∧x, {σ∧i xi | i ∈ I })

Assuming an LCS with n channels, the symbolic representations of subsets of configura-
tions as proposed in [2] is as follows. A simple symbolic set is of the form (q, θ1, . . . , θn)

where q ∈ Q is a location, and each θi is a variant of pseudo-element as explained before.
A symbolic set is a finite union of such simple symbolic elements. Any set of configurations
represented by a symbolic set is called a region. For instance, for M = {a, b} and n = 1,
the simple symbolic set (q, (a∧ab, {ε∧b, b∧aa})) represents the region {(q, μ) | μ ∈ a↑
ab\(↑b ∪ b↑aa)}. Adapting the algorithms we gave for pseudo-antichains, one can show
that regions are closed under Boolean operations, as detailed in [2].
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7.3.4 Qualitative verification of PLCSs

The qualitative verification of PLCSs relies on fixpoints algorithms on sets of configurations,
using intersection, union, negation, and two predecessor operators. For L ⊆ Conf a set of
configurations, Pre(L) denotes the set of one-step predecessors of L , i.e. Pre(L) = {s |
∃s

δ−→ s′ with s′ ∈ L}, and Pre∗(L) is the set of predecessors of L , easily defined as a least
fixpoint using Pre. The one-step constrained predecessors of L , for some T ⊆ Conf, is

defined as cPreT (L) = {s | ∃δ : s
δ−→ s′ with s′ ∈ L , and ∀s

δ−→ s′, s′ ∈ T }. In words, s
belongs to cPreT (L) if some rule δ may take from s to L while ensuring not to leave T . As for
Pre, cPre∗T (L) is the least fixpoint of all constrained predecessors. Regions are closed under
these predecessors operators, and from a symbolic representation for a region L , one can
compute symbolic representations for Pre(L), Pre∗(L), cPreT (L), and cPre∗T (L) [2]. The
termination of the iterative computation of least fixpoints is guaranteed because (Conf,#)

is a well-quasi-order, and applies as well to other well-structured transition systems [6].
Symbolic algorithms are proposed in [2] to compute the set of configurations s from

which there exists a strategy λ such that P
s
λ(ϕ) is > 0,= 1, < 1 or= 0, for properties ϕ such

as reachability (♦L), invariant (�L), repeated reachability (�♦L), persistence (♦�L), and
Streett formulas (

∧
1≤i≤n(�♦Li → �♦L ′i )). All these algorithms reduce to the symbolic

computation of fixpoints using the predecessor operators Pre(L) and cPreT (L), as well as
Boolean connectors. For most properties, only the existence of a finite-memory strategy can
be decided since the problem is undecidable when ranging over the full class of strategies.
More details can be found in [2, Section 4].

7.3.5 Experiments

As explained before, although very different, the verification of PLCSs relies on fixpoints
algorithms on (variants of) pseudo-antichains, and therefore shares similarities with the res-
olution of the stochastic shortest path problem on STRIPSs (Sect. 7.1) and the expected
mean-payoff with LTLMP synthesis (Sect. 7.2). The algorithms for antichains and pseudo-
antichains were easily adapted to regions in Acacia+, together with the basic algorithms for
the predecessor operators Pre(L) and cPreT (L). All fixpoint terms given in [2, Section 4] for
verifying various types of qualitative safety and liveness properties on PLCSs have also been
implemented. The source code is publicly available at http://lit2.ulb.ac.be/PLCS/, together
with the benchmark presented in this section.

In order to demonstrate the scalability of our approach, the benchmark is a parameter-
ized version of Example 8, where the number of states varies with the parameter n. The
parameterized version of the left process is depicted in Fig. 9.

As a first experiment, we have conducted a safety analysis on the parameterized version of
Pachl’s protocol: it has been checked that deadlock configurations cannot be reached from the
initial configuration ((L ′0, R4), ε, ε). The approach is the following one. The set of deadlock
configurations is defined as Dead = Conf\Pre(Conf), the set of unsafe configurations is
equal to Unsafe = Pre∗(Dead), and the set of initial configurations with unsafe channel
contents is the intersection Unsafe ∩ ((L ′0, R4),↑ε,↑ε). The computation of all these sets
can be performed symbolically at the level of pseudo-antichains. This allowed us to check
that the initial configuration ((L ′0, R4), ε, ε) does not belong toUnsafe, ans thus cannot lead
to a deadlock configuration. In Table 4 (column Safety), we report the running time and the
memory consumption for increasing values of the parameter n.
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Fig. 9 Left process in the parameterized version of Pachl’s protocol

Table 4 Safety and liveness
analysis of the parameterized
version of Pachl’s protocol

The column n gives the
parameter of the instance and
size is the number of control
states of the resulting product
LCS. For both properties, time is
the execution time in seconds,
and mem is the memory
consumption in megabytes

n size Safety Liveness

time mem time mem

10 196 0.36 6.5 1.09 6.08

20 576 1.93 9.75 4.81 8.02

50 2916 28.88 31.48 150.06 20.03

100 10,816 447.61 107.29 2695.32 66.27

150 23,716 3288.77 236.39 17,453.49 133.62

170 30,276 5000.06 303.61 28,871.63 182.08

200 41,616 8039.76 435.25 TO

The second experiment is a liveness analysis of the parameterized protocol: it has been
checked that there always exists a strategy ensuring to visit almost-surely infinitely often
both (L ′0, R4) and (L4, R′0). This liveness property expresses that the two parties of Pachl’s
protocol alternatively play the role of sender and receiver. More precisely we have symbol-
ically computed the set of configurations s from which there exists a strategy λ such that
P

s
λ(�♦X ∧ �♦X ′) = 1, with X = ((L ′0, R4),↑ε,↑ε) and X ′ = ((L4, R′0),↑ε,↑ε). Then,

we have checked that the initial configuration ((L ′0, R4), ε, ε) belongs to the set of these
configurations s. In Table 4 (column Liveness), we report the running time and the memory
consumption for increasing values of the parameter n.

This benchmark shows that our implementation could perform the safety and liveness
analysis of infinite systems generated by PLCSs with thousands of control states. The size
of the models is much smaller than the ones handled in the two previous case studies (sto-
chastic shortest path and expected mean-payoff), but the properties have to be checked on
the generated infinite-state MDP (whereas this MDP is finite for the SSP et EMP problems),
and the fixpoint computation for PLCSs runs in non-primitive recursive time in the size of
the model [3].
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8 Conclusion

In this paper, we have presented the interesting class of monotonic MDPs, and the new data
structure of pseudo-antichains. We have shown how monotonic MDPs can be exploited by
symblicit algorithms using pseudo-antichains (instead of MTBDDs) for two quantitative set-
tings: the expected mean-payoff and the stochastic shortest path. Those algorithms have been
implemented, andwe have reported promising experimental results for two applications com-
ing from automated planning and LTLMP synthesis.We have also proposed a third application
dealing with infiniteMDPs in the context of PLCSs.We are convinced that pseudo-antichains
can be used in the design of efficient algorithms in other contexts like for instance model-
checking or synthesis of non-stochastic models, as soon as a natural partial order can be
exploited. It could be interesting to have additional applications of pseudo-antichains in a
way to better understand their performance with respect to the time and memory consump-
tion, and how the compactness of the representations by pseudo-antichains influences the
efficiency of the algorithms.
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