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Probabilistic ω-automata are variants of nondeterministic automata over infinite words where all choices are
resolved by probabilistic distributions. Acceptance of a run for an infinite input word can be defined using
traditional acceptance criteria for ω-automata, such as Büchi, Rabin or Streett conditions. The accepted
language of a probabilistic ω-automata is then defined by imposing a constraint on the probability measure
of the accepting runs. In this paper, we study a series of fundamental properties of probabilistic ω-automata
with three different language-semantics: (1) the probable semantics that requires positive acceptance prob-
ability, (2) the almost-sure semantics that requires acceptance with probability 1, and (3) the threshold
semantics that relies on an additional parameter λ ∈]0, 1[ that specifies a lower probability bound for the
acceptance probability. We provide a comparison of probabilistic ω-automata under these three semantics
and nondeterministic ω-automata concerning expressiveness and efficiency. Furthermore, we address closure
properties under the Boolean operators union, intersection and complementation and algorithmic aspects,
such as checking emptiness or language containment.
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1. INTRODUCTION
Automata as acceptors for infinite words play a crucial role in logic, for verification
purposes and other areas, see for example, Vardi [1994], Thomas [1997], and Grädel
et al. [2002]. Several types of automata for languages over infinite words have been
studied in the literature. They can be classified via their branching structure (deter-
ministic, nondeterministic, universal, alternating) and acceptance condition (Büchi,
Müller, Rabin, Streett, etc.).

The purpose of this article is to study probabilistic variants of ω-automata that serve
as acceptors for languages over infinite words. The essential idea is to equip nondeter-
ministic ω-automata with probabilistic distributions that resolve the nondeterministic
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choices and to define the recognition of an infinite input word by a requirement on the
measure of the set of accepting runs. While probabilistic finite automata (PFA) have
been introduced by Rabin [1963] for almost 50 years and studied extensively in the
literature, see for example, Paz [1966], Freivalds [1981], Condon [2001], Dwork and
Stockmeyer [1990], and Blondel and Canterini [2003], probabilistic automata as ac-
ceptors for infinite words have been addressed only recently. The first approach to use
probabilistic Büchi automata (PBA) for scanning infinite words has been presented by
Reisz [1999a; 1999b]. In this approach, an infinite word is accepted if it has an infinite
accepting run of positive probability. For finite-state automata, this notion of acceptance
requires that for some infinite suffix of the input string there are no proper probabilis-
tic branches, that is, the behavior is deterministic from some moment on. Thus, the
concept of PBA under the semantics of Reisz is rather close to nondeterministic Büchi
automata that are deterministic in limit [Vardi and Wolper 1986; Courcoubetis and
Yannakakis 1995]. To exert the characterstic features of randomization for the recog-
nition of infinite words, it is more natural to deal with acceptance conditions where
the probability measure of the set of accepting runs is taken into account. PBA inter-
preted as a randomized language acceptor that accepts an infinite input string if the
probability for an accepting run is positive (probable semantics), equals 1 (almost-sure
semantics) or larger than a given cutpoint λ ∈]0, 1[ (threshold semantics) have been
studied first in Baier and Grösser [2005] and Baier et al. [2008]1 and also addressed in
Chadha et al. [2009b] and Chatterjee et al. [2009]. Probabilistic finite-state monitors
[Chadha et al. 2009a] can be seen as a special instance of PBA with a single final trap
state.

The main focus of this article are basic properties of probabilistic ω-automata con-
cerning their expressiveness and efficiency to represent ω-regular languages. We con-
sider several acceptance conditions for the runs (Büchi, Streett, Rabin) and three
semantics for the language: (1) the probable semantics for which the language consists
of the set of infinite words for which the set of accepting runs has positive probability,
(2) the almost-sure semantics where the set of accepting runs must have probability
1 for a word to be accepted, and (3) the threshold semantics, where given a threshold
λ ∈ (0, 1) the probability of accepted runs must be greater than λ.

The first surprising result is that probabilistic Büchi automata under the probable
semantics (denoted PBA>0) are more powerful than nondeterministic ω-automata. This
stands in contrast to the two well-known facts: first, deterministic Büchi automata do
not have the full power of ω-regular languages contrary to their nondeterministic
counterpart and second, PFA with the acceptance criteria “the accepting runs have a
positive probability measure” can be viewed as nondeterministic finite automata, and
hence, have exactly the power of regular languages.

Regarding the efficiency, PBA>0 are not comparable with nondeterministic ω-
automata. On the one hand, there exists a family of ω-regular languages that can be
recognized by PBA>0 of linear size, while even the smallest nondeterministic Streett
automaton for them has at least #(2n/n) states.

Boolean operations on languages defined by probabilistic Büchi automata under the
probable semantics can be performed. The interesting case is the complementation of
PBA>0, for which we propose a technique that relies on the switch to an equivalent
probabilistic Rabin automaton that accepts all words either with probability 0 or 1 and
whose size is exponential in the size of the original PBA. To do this we develop an
advanced powerset construction that shares its basic ideas with Safra’s determiniza-
tion procedure [Safra 1988]. Using the duality of Rabin and Streett acceptance and
a polynomial transformation from probabilistic Streett automata to PBA this yields a

1This article is based on the material of Baier and Grösser [2005] and Baier et al. [2008].
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method for the complementation of PBA>0 with a possible exponential blow-up. The
low complexity of the transformation from PSA to PBA might be surprising, as in
the nondeterministic case the switch from Streett to Büchi acceptance can cause an
exponential blow-up [Safra and Vardi 1989].

The emptiness problem for PBA>0 turns out to be undecidable, while it is decidable for
PBA=1. We found this result surprising, since for both PBA>0 and PBA=1 the accepted
language does not only depend on its topological structure, but also on the precise
transition probabilities. The negative result stating the undecidability of the emptiness
problem for PBA>0 has many important consequences, including the undecidability of
various qualitative verification problems for probabilistic multi-agent systems. (See the
explanations in this article.) Vice-versa, the decididability of the emptiness problem for
PBA=1 is a consequence of a more general result, the decidability of partially observable
Markov decision processes under almost-sure Büchi objective.

PBA under the threshold semantics can be strictly more expressive than PBA>0,
under some conditions on the threshold value, contrary to PBA under the almost-sure
semantics (denoted PBA=1) which are strictly less expressive than ω-regular languages.
However, for the Rabin and Streett acceptance criterion the class of recognizable lan-
guages under the almost-sure semantics agrees with the class of PBA-recognizable
languages under the probable semantics.

There is a wide range of publications where probabilistic automata are used as
operational model for randomized systems and basis for verification purposes, see
for example, Vardi and Wolper [1986], van Glabbeek et al. [1990], Pnueli and Zuck
[1993], Bianco and de Alfaro [1995], Courcoubetis and Yannakakis [1995], and Segala
[1995]. These approachs are opposed to our setting as we use probabilistic automata
as a formalism for ordinary non-probabilistic languages over infinite words rather
than an operational model for systems with probabilistic behaviors. The classical task
for verifying a probabilistic automaton against a temporal logic specification relies
on a worst-case analysis where all possible decision functions that select the next
action to be performed (often called schedulers, policies or adversaries) are taken into
account. If a probabilistic automaton is used for modeling the operational behavior of
a multi-agent system then the worst-case analysis ranging over all schedulers can be
too pessimistic. Besides fairness assumptions on the schedulers that rule out certain
unrealistic interleavings of the agents’ activities, it is also often desirable to deal with
separate decision functions for the agents. These do not have perfect information on
the history, but have to make their choices on the basis of what the corresponding agent
has observed from the history (e.g., his own local states and actions). Such notions
of randomized multi-agent systems have been studied in the context of distributed
scheduling [Cheung et al. 2006; Chatzikokolakis and Palamidessi 2010] or stochastic
games with partial information [Gripon and Serre 2009; Bertrand et al. 2009;
Chatterjee et al. 2010; Chatterjee and Henzinger 2010] and have concrete applications
in security, for example, for information hiding [Andrés et al. 2010]. Randomized
multi-agent systems can be seen as multi-player variants of partially observable
Markov decision processes (POMDP), that in turn generalize PBA. POMDP have been
extensively studied, see, for example, Sondik [1971], Monahan [1982], Papadimitriou
and Tsitsiklis [1987], Kaelbling et al. [1995], Lovejoy [1991], and Burago et al. [1996],
and their verification against finite-horizon properties was applied to various areas,
such as machine maintenance, autonomous robots, or moving target search. POMDP
with “long-run” objectives (infinite-horizon properties) have more recently attracted
attention [de Alfaro 1999; Chatterjee et al. 2007; Giro and D’Argenio 2007].

Organization of the Article. Section 2 briefly recalls the basics on (non)deterministic
ω-automata and Markov decision processes. Probabilistic ω-automata are introduced
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in Section 3. Section 4 explores expressiveness and efficiency questions for probabilis-
tic Büchi automata. In Section 5, the expressiveness of probabilistic ω-automata with
other acceptance conditions is studied. Section 6 is concerned with composition oper-
ators (union, intersection and complementation) on PBA. The emptiness problem for
PBA under the probable semantics is investigated in Section 7. In Section 8, we con-
sider qualitative questions on partially observable MDP. The article ends with a brief
conclusion in Section 9.

2. PRELIMINARIES
2.1. Ordinary ω-Automata
Throughout this article, we assume some familiarity with formal languages, finite au-
tomata and ω-automata. We briefly recall the basic concepts and explain our notations
concerning nondeterministic ω-automata with the Büchi, Rabin and Streett acceptance
criteria. For further details, see, for example, Thomas [1997], Grädel et al. [2002], and
Perrin and Pin [2004].

$ will denote a nonempty finite alphabet. Letters a, b, c, . . . will be used to denote
the elements of $. $ω denotes the set of infinite words over $, while $∗ stands for the
set of finite words over $, and $+ is the set of non-empty finite words over $.

Definition 2.1 (Nondeterministic ω-automata). A nondeterministic ω-automaton is
a tuple A = (Q, $, δ, Q0, Acc), where Q is a finite nonempty set of states, $ is a finite
nonempty input alphabet, δ : Q×$ → 2Q is a transition function, Q0 ⊆ Q is a nonempty
set of initial states and Acc is an acceptance condition.

The type of the acceptance condition depends on the type of ω-automata. Within this
article, we consider the following acceptance conditions.

—Büchi acceptance condition: Acc ⊆ Q (we then write F instead of Acc)
—Rabin or Streett acceptance condition: Acc = {(H1, K1), . . . , (Hn, Kn)},

Hi, Ki ⊆ Q, 1 ≤ i ≤ n

Let T ⊆ Q be a subset of states. Given a Büchi acceptance condition F, the set T is
accepting, if T ∩ F (= ∅. Given a Rabin acceptance condition, T is accepting, if there
exists 1 ≤ i ≤ n such that T ∩ Hi = ∅ and T ∩ Ki (= ∅. Given a Streett acceptance
condition, T is accepting, if for all 1 ≤ i ≤ n it holds that T ∩ Hi (= ∅ or T ∩ Ki = ∅.
Thus, Rabin and Streett acceptance are complementary to each other.

The automaton A = (Q, $, δ, Q0, Acc) is deterministic if |Q0| = 1 and |δ(p, a)| ≤ 1 for
all p ∈ Qand a ∈ $. It is total if |δ(p, a)| ≥ 1 for all p ∈ Qand a ∈ $. We write NBA, NRA,
NSA, DBA, DRA, and DSA to denote the nondeterministic and deterministic versions of
Büchi, Rabin, or Streett automata, respectively. We write NBA, NRA, NSA, DBA, DRA,
and DSA for the class of the respective automata.

Remark 2.2. Note that any given Büchi acceptance condition F can be expressed
by the equivalent Rabin condition {(∅, F)} and also by the equivalent Streett condition
{(F, Q)}.

ω-automata serve as language acceptors for languages of infinite words over the
input alphabet as follows. A run for an infinite word w = a1a2 . . . is an infinite state
sequence π = p0, p1, . . . such that p0 ∈ Q0 and pi ∈ δ(pi−1, ai), i ∈ N≥1. We write
inf(π ) to denote the set of states that occur infinitely often in π . An infinite run π
is called accepting, if inf(π ) is accepting with respect to the acceptance condition. We
will sometimes refer to finite runs, that is, finite state sequences p0, p1, . . . pn such
that p0 ∈ Q0, pi ∈ δ(pi−1, ai), 1 ≤ i ≤ n and δ(pn, an+1) = ∅. That is, the automaton
cannot consume the input letter an+1 in state pn and rejects. The accepted language of
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a nondeterministic ω-automaton A is defined as

L(A) = {w ∈ $ω | ∃ accepting run for w in A}.
Given an automata class, for example, NBA, we denote by e.g. L(NBA) the class of
languages definable by this type of automata. It is well known (see, for example, Thomas
[1990] and Grädel et al. [2002]) that

L(DBA) ! L(NBA) = L(DRA) = L(NRA) = L(DSA) = L(NSA) = ω-reg,

where ω-reg denotes the class of ω-regular languages. We will often identify an ω-
regular language L ⊆ $ω with some ω-regular expression that describes L. For example,
(a + b)∗aω is identified with the set of infinite words over $ = {a, b} that contain only
finitely many b’s.

For acceptors of languages over finite words, we use the abbreviation PFA for proba-
bilistic finite automata, while NFA and DFA stand for nondeterministic and determin-
istic finite automata, respectively.

Notation 2.3. Throughout this article, we will sometimes use the LTL notations !
for “eventually” and " for “always”. Thus, the combination "! denotes “infinitely often”
and !" denotes “continuously from some moment on”. Given a set of states F ⊆ Q, a
run π = p0, p1, . . . is said to satisfy !F, denoted π |= !F, if there exists an index i such
that pi ∈ F. Similar definitions apply to the other operators, for example, π satisfies a
Büchi acceptance condition F (π |= "!F) or it satisfies a Streett acceptance condition
{(H1, K1), . . . , (Hn, Kn)} (π |= ∧n

i=1("!Hi ∨ !"¬Ki)).

2.2. Markov Decision Processes
To define probabilistic ω-automata, we will need the concept of Markov decision pro-
cesses (MDP). In an MDP, any state s might have several enabled actions. Each of the
actions that are enabled in state s is associated with a probability distribution that
yields the probabilities for the successor states.

A distribution on a countable set S is a function µ : S → [0, 1] such that
∑

s∈S µ(s) =
1. If µ(s) = 1 for some s ∈ S, then µ is called a Dirac distribution.

Definition 2.4 (Markov Decision Process (MDP)). A Markov decision process is a tu-
ple M = (S, Act, δ, µ), where S is a finite nonempty set of states, Act is a finite nonempty
set of actions, δ : S × Act × S → [0, 1] is a transition probability function such that for
all s ∈ S and α ∈ Act, either δ(s, α, .) is a probability distribution on S or δ(s, α, .) is the
null-function (i.e., δ(s, α, t) = 0 for all t ∈ S), and µ is a probability distribution on S
(called the initial distribution). Act(s) = {α ∈ Act | ∃t ∈ S : δ(s, α, t) > 0} denotes the
set of actions that are enabled in state s. We require for each state s ∈ S, that Act(s) is
nonempty. If Act(s) = Act for all states s ∈ S, we call the MDP total.

The intuitive operational behavior of an MDP is as follows. If s is the current state,
then first one of the actions α ∈ Act(s) is chosen nondeterministically. Afterwards, action
α is executed leading to state t with probability δ(s, α, t). By δ(s, α) = {t | δ(s, α, t) > 0}, we
denote the set of α-successors of s. Given a state set S′ ⊆ S, then δ(S′, α) = ∪s∈S′δ(s, α)
denotes the set of α-successors of S′. Moreover, given an action sequence α1 · · · αi+1, we
define inductively δ(s, α1 · · · αiαi+1) = δ(δ(s, α1 · · · αi), αi+1).

Definition 2.5 (Path and Corresponding Notation). An infinite path of an MDP is
an infinite sequence π = s0, α1, s1, α2, . . . ∈ (S×Act)ω such that αi ∈ Act(si−1) for i ∈ N≥1.
We write paths in the form

π = s0
α1−→ s1

α2−→ s2
α3−→ . . .
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first(π ) = s0 denotes the starting state of π and π↑i = s0
α1−→ . . .

αi−→ si its i-th prefix and
π↑i = si

αi+1−→ si+1
αi+2−→ . . . its i-th suffix.

Finite paths are finite prefixes of infinite paths that end in a state. We use the
notations first(π ) (respectively, last(π )) for the first (respectively, last) state of a finite
path π and |π | for the length (number of actions). πi = si denotes the (i + 1)st state
of π and Acti(π ) denotes the ith action on π . Pathfin(s) (respectively, Pathinf(s)) denotes
the set of all finite (respectively, infinite) paths of M with starting state s. Pathfin
(respectively, Pathinf) stands for the set of all finite (respectively infinite) paths in M.

If π = s0
α1−→ s1

α2−→ s2
α3−→ . . . is an infinite path, then Lim(π ) denotes the pair (T , A)

where T = inf(π ) is the set of states in π that are visited infinitely often and A : T → 2Act

is the function that assigns to any state t ∈ T the set A(t) of actions α ∈ Act such that
(si = t) ∧ (αi+1 = α) for infinitely many indices i.

A scheduler denotes an instance that resolves the nondeterminism in the states,
and thus, yields a Markov chain and a probability measure on the paths. Intuitively, a
scheduler takes as input the “history” of a computation (formalized by a finite path π )
and chooses a distribution on the actions available.

Definition 2.6 (Scheduler). Given a Markov decision process M = (S, Act, δ, µ), a
history-dependent randomized scheduler is a function

U : Pathfin → Distr(Act),

such that supp(U(π )) ⊆ Act(last(π )) for all π ∈ Pathfin.

A scheduler U is called deterministic, if U(π ) is a Dirac distribution for all π ∈ Pathfin.
U is called memoryless if U(π ) = U(last(π )) for all π ∈ Pathfin. SchedHR (respectively,
SchedHD) denotes the set of history dependent, randomized (respectively, determin-
istic) schedulers and SchedMR (respectively, SchedMD) denotes the set of memoryless
randomized (respectively, deterministic) schedulers.

Given an MDP M = (S, Act, δ, µ) and a scheduler U for M, the behavior of M under
U can be formalized by an infinite-state Markov chain MU = (PathM

fin , p, µ), where

p(π, π ′) = U(π )(α) · δ(last(π ), α, last(π ′)),

for π, π ′ ∈ PathM
fin with |π ′| = |π | + 1, π ′↑|π | = π and α is the last action on the

path π ′, that is, π ′ = π
α−→ last(π ′). As the states of MU are finite paths of M, this

notation is somewhat inconvenient. Let # = (PathMU
inf ,(MU ) and #′ = (PathM

inf ,(
M) be

the measurable spaces where (MU is the σ -algebra generated by the empty set and
the set of basic cylinders over MU and (M is the σ -algebra generated by the empty set
and the set of basic cylinders over M. As usual, a basic cylinder consists of all infinite
paths that have some fixed common prefix. We define

f : PathMU
inf → PathM

inf ,

as f(π0
α1−→ π1

α2−→ . . .) = last(π0) α1−→ last(π1) α2−→ . . . (note that the πi ’s are finite paths of
M). Then f is a measurable function and we define the following probability measure
on (M

PrM,U (A′) = PrMU (f−1(A′)), for A′ ∈ (M,

where PrMU (.) is the unique probability measure on # = (PathMU
inf ,(MU ) with

PrMU ({π | π↑k = π ′}) = µ(first(π ′)) ·
k∏

i=1

p(π ′↑i−1, π ′↑i)
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for any π ′ ∈ PathMU
fin with |π ′| = k. Then given a scheduler U for M, the probability

measure PrM,U formalizes the behavior of M under U , where we have the convenience
to talk about measures of sets of infinite paths of M. Given a state s ∈ S, we denote
by PrM,U

s the probability measure that is obtained if M is equipped with the starting
distribution µ1

s , where µ1
s (s) = 1. For more information on measure theory, see, for

example, Feller [1950].
We will also fix the following notation for convenience. Given an MDP M, a scheduler

U and a path property E, then

PrM,U (E) = PrM,U({π ∈ PathM
inf | π satisfies E

})

denotes the probability that the property E holds in M under the scheduler U .
Throughout this article, we shall use the concepts of end components [Rosier and Yen

1986; de Alfaro 1997, 1998], which can be seen as the MDP counterpart to terminal
strongly connected components in Markov chains. Intuitively, an end component of
an MDP is a nonempty strongly connected subMDP, that means an end component
consists of a nonempty state set T ⊆ S and a nonempty action set A(t) for each state
t ∈ T such that, once T is entered and only actions in A(t) are chosen, the set T will
not be left and any state of T can be reached from any other state in T .

Definition 2.7 (End Components). Let M = (S, Act, δ, µ) be an MDP. An end com-
ponent of M is a pair (T , A) where ∅ (= T ⊆ S and A : T → 2Act is a function such
that

—∅ (= A(s) ⊆ Act(s) for all states s ∈ T ,
—
∑

t∈T δ(s, α, t) = 1 for all states s ∈ T and actions α ∈ A(s),
—the underlying digraph (T , →A) of (T , A) is strongly connected.

Here, →A denotes the edge-relation induced by A, that is s →A t if and only if
δ(s, α, t) > 0 for some action α ∈ A(s).

Given an MDP M and a scheduler U it holds that in the process induced by U , almost
all path of M (following U) “end” in an end component, that is their limit Lim(.) forms
an end component. For the following lemma, see de Alfaro [1997, 1998].

LEMMA 2.8 (ALMOST-SURE END COMPONENT). For any MDP M and scheduler U ,
PrM,U ({π ∈ PathM

inf | Lim(π ) is an end component}) = 1.

3. PROBABILISTIC ω-AUTOMATA
We introduce probabilistic variants of ω-automata that serve as acceptors for languages
over infinite words. The essential idea is to equip nondeterministic ω-automata with
probabilistic distributions that resolve the nondeterministic choices and to define the
acceptance of an infinite input word by some requirement on the probability measure
of the set of accepting runs: this probability should be either positive, or equal to 1 or
greater than a given threshold λ, depending on the semantics we consider.

3.1. Definition of Probabilistic ω-Automata
In this section, we introduce probabilistic ω-automata which can be viewed as nondeter-
ministic ω-automata where the nondeterminism is resolved by a probabilistic choice.
That is, for any state p and letter a ∈ $ either p does not have any a-successor or
there is a probability distribution for the a-successors of p. We will consider various se-
mantics that pose qualitative (respectively, quantitative) conditions on the probability
measure of the accepting runs for an input word.

Note that probabilistic ω-automata have also been defined in Reisz [1999a, 1999b],
where an infinite word is accepted if and only if there exists an infinite accepting run
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for this word such that this run has a positive probability. We use here different syntax
and semantics as introduced in Baier and Grösser [2005].

Definition 3.1 (Probabilistic ω-Automata). A probabilistic ω-automaton is a tuple
P = (Q, $, δ, µ0, Acc), where

—Q is a finite nonempty set of states,
—$ is a finite nonempty input alphabet,
—δ : Q× $ × Q → [0, 1] is a transition probability function such that for all p ∈ Q and

a ∈ $, either δ(p, a, .) is a probability distribution on Q or δ(p, a, .) is the null-function
(i.e., δ(p, a, q) = 0 for all q ∈ Q),

—µ0 is a probability distribution on Q (called the initial distribution) and
—Acc is a Büchi, Rabin, or Streett acceptance condition.

As for nondeterministic automata, we write PBA, PRA, PSA to denote the proba-
bilistic version of Büchi, Rabin, or Streett automata, respectively. We write PBA, PRA
and PSA for the class of the respective automata.

Remark 3.2. Note that probability distributions are not restricted to rational coeffi-
cients. When considering algorithmic issues however, we will assume that probabilities
appearing in the distributions are always rational. Almost all what follows would hold
as well if we restricted from now on to rational values only. It however makes a crucial
difference when we investigate particularities of probabilistic ω-automata under the
threshold semantics (see Section 4.3).

Apparently, a probabilistic ω-automaton P is an MDP equipped with an acceptance
condition. We will use the notation P also to denote only the underlying MDP of the
automaton. We call the automaton total if the underlying MDP is total. The operational
behavior of P = (Q, $, δ, µ0, Acc) for a given input word w = a1a2a3 . . . ∈ $ω is as
follows. The automaton chooses at random an initial state p0 according to the initial
distribution µ0. After having consumed the first i input symbols a1, . . . , ai, P in state
pi tries to read the next input symbol a = ai+1 in state pi. If there is no outgoing
a-transition from the current state pi, that is, if a /∈ Act(pi), then P rejects. Otherwise,
P moves with probability δ(pi, a, p) to the next state p = pi+1. As for nondeterministic
automata, a resulting infinite state-sequence p0, p1, . . . is called a run for w in P. This
behavior interprets the input word as a scheduler.

Given an input word w = a1a2a3 . . . ∈ $ω we define the scheduler U(w) such that
U(w)(p0, . . . , pn−1)(an) = 1. That is, in step n, the scheduler chooses with probability
1 the letter an as the next action. Then, the operational behavior of P reading the
input word w, is formalized by the Markov chain PU(w). In contrast to nondeterministic
automata, where an input word w is accepted by the automaton if there exists an
accepting run for w, the requirement for probabilistic automata is a constraint on the
measure of the set of accepting runs for w. Throughout this article, we will identify
an input word w with its associated scheduler U(w), thus we will write PrP,w(.) instead
of PrP,U(w)(.). For the sake of convenience, we also fix the following notation for the
acceptance probability of a word w and a given probabilistic ω-automaton P:

PrP (w) = PrP,w
({

π ∈ PathP
inf

∣∣ inf(π ) is accepting
})

.

By the results of Vardi [1985] and Courcoubetis and Yannakakis [1995] the set of
accepting runs for w is measurable when dealing with Büchi, Rabin, or Streett accep-
tance. We consider three different semantics, and hence three possible definitions for
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the accepted language:

probable semantics: L>0(P) =
{
w ∈ $ω | PrP (w) > 0

}
,

almost-sure semantics: L=1(P) =
{
w ∈ $ω | PrP (w) = 1

}
,

threshold semantics: L>λ(P) =
{
w ∈ $ω | PrP (w) > λ

}
, given λ ∈]0, 1[.

Note that the accepted language of a probabilistic ω-automaton under any seman-
tics is included in the language that is accepted by the underlying nondeterministic
ω-automaton, that is, the nondeterministic ω-automaton that stems from the given
probabilistic ω-automaton by ignoring the probabilities.

Simplifying notations, we will index an automaton type (respectively, automata class)
with a certain type of semantics, that is, we write PBA>0 to denote a probabilistic Büchi
automaton equipped with the probable semantics or PRA=1 for the class of probabilistic
Rabin automata equipped with the almost-sure semantics. Given an automata class
indexed by a type of semantics, for example, PBA>0, we denote by L(PBA>0) the class
of languages definable by this class of automata under the given semantics.

Let a probabilistic ω-automaton P and an input word w be given. Given an end
component (T , A), then

PrP,w((T , A)) = PrP,w
{
π ∈ PathP

inf

∣∣ Lim(π ) = (T , A)
}

denotes the probability of all paths π such that Lim(π ) = (T , A). We call the end
component (T , A) accepting if the state set T is accepting (with respect to the acceptance
condition of P). Recall Lemma 2.8 stating that given an MDP and a scheduler, almost
all runs form an end-component in their limit. Thus, the acceptance probability Pr(w)
agrees with the probability measure of the set of runs π for w such that Lim(π ) is an
accepting end component (AEC for short). As P has only finitely many end components,
this yields the following lemma.

LEMMA 3.3 (AEC-LEMMA). For any probabilistic ω-automaton P and any input word
w, it holds that w ∈ L>0(P) if and only if PrP,w((T , A)) > 0 for some accepting end
component (T , A).

3.2. Examples of Probabilistic Büchi Automata
We now provide a few examples of probabilistic ω-automata to illustrate the defini-
tion. For simplicity, we only give examples of probabilistic ω-automata with a Büchi
acceptance condition.

Given a PBA P with the acceptance condition F, intuitively, PrP (w) denotes the
probability for the event “infinitely often F” under the scheduling policy induced by w.
Recalling our LTL notations, this means that PrP (w) = PrP,w("!F).

In the pictures of PBA, we use boxes to denote the accepting states and circles for
the non-accepting states. We might simply write a as label for a transition from p to
q if δ(p, a, q) = 1. Label a, x with x ∈]0, 1[ for a transition from p to q denotes that
δ(p, a, q) = x. An initial state will be indicated through an incoming edge, labeled with
the initial probability of the state. Again, if the probability is 1, we might omit it.

Example 3.4. Figure 1 shows a PBA P over the alphabet $ = {a, b} such that

L>0(P) = (a + b)∗aω, L=1(P) = b∗aω, L> 1
5 (P) = b∗ab∗ab∗aω

To see this, we first notice that only the words in (a + b)∗aω have an accepting run,
because the a-labeled self-loop in the accepting state p1 is the only outgoing transition
of state p1. On the other hand, Pr(aω) = 1 (as the nonaccepting run p0, p0, p0, . . . has
probability 0 while all other runs for aω are accepting). Given a word σ = c1c2 . . . c*baω
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p0 p1
a, 1

2

b, 1; a, 1
2

a, 1
1

Fig. 1. PBA P with L>0(P) = (a + b)∗aω.

p0

p1

a, 1
2

p2

b b, c c
q0

q1 q2

a, 1
2

a, 1
2

a, 1
2

P1 : P2 :

b

Fig. 2. PBA>0 for (ab + ac)∗(ab)ω and for ∅.

with ci ∈ {a, b}, the precise acceptance probability is therefore PrP (σ ) =
( 1

2

)k where
k = |{i ∈ {1, . . . , *} : ci = a}|. Together, this yields L>0(P) = (a + b)∗aω, L=1(P) = b∗aω

and L> 1
5 (P) = b∗ab∗ab∗aω.

Clearly, any DBA can be viewed as a PBA under any semantics, with δPBA(p, a, q) = 1
if δDBA(p, a) = {q} and µPBA

0 (q0) = 1. On the other hand, it is well known that the
language (a + b)∗aω cannot be recognized by a DBA, thus this example shows that
PBA>0 are strictly more expressive than DBA.

It is worth mentioning that the qualitative criteria “accepting runs have positive
probability” is different from the acceptance criteria “there is an accepting run” in
the context of languages of infinite words, while they agree for probabilistic automata
viewed as acceptors for finite words. In fact, the naı̈ve transformation from PBA to
NBA which relies on ignoring the probabilities, in general fails to yield an equivalent
NBA.

Example 3.5. Consider, for example, the automaton P1 on the left of Figure 2.
Its underlying NBA (that we obtain by ignoring the probabilities) accepts the lan-
guage ((ac)∗ab)ω whereas P1, under the probable semantics, accepts the language
(ab + ac)∗(ab)ω. The intuitive argument why any word w in (ab + ac)ω with infinitely
many c’s is rejected relies on the observation that almost all runs2 for w are finite and
end in state p1 (where the next input symbol is c and cannot be consumed in state p1).
Under the almost-sure semantics, the language accepted by P1 is (ab)ω.

Another example is the PBA P2 on the right of Figure 2. It accepts (under any
semantics) the empty language as any infinite word in (ab + ac)ω has exactly one
accepting run in P2, but its probability is 0. However, the underlying NBA accepts the
language (ab + ac)ω.

2The formulation “almost all runs have property X ” means that the probability measure of the runs where
property X does not hold is 0.
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p0 p1

a, λ

a, 1−λ

a, 1

b, 1

1

Fig. 3. PBA>0 Pλ accepts a non-ω-regular language (where 0 < λ < 1).

4. A CLOSER LOOK ON PBA
In the last section, we introduced general probabilistic ω-automata, and presented a
few simple examples of PBA. We now examine PBA a little closer.

4.1. PBA under the Probable Semantics
In this section, we report on results on the expressiveness and efficiency of PBA under
the probable semantics. We also show that the precise transition probabilities matter
for the accepted language of a PBA>0 and present a pumping lemma.

4.1.1. Expressiveness. First, we establish that the class of languages that can be ac-
cepted by a PBA>0 strictly contains the class of ω-regular languages.

THEOREM 4.1 (PBA>0 ARE STRICTLY MORE EXPRESSIVE THAN NBA).

ω-reg ! L(PBA>0)

The proof of Theorem 4.1 is split into two parts. In Lemma 4.2, we show that for any
NBA A there exists a PBA P such that L>0(P) = L(A). Then, in Lemma 4.3 we provide
an example of a PBA>0 for which the accepted language is not ω-regular.

LEMMA 4.2 (FROM NBA TO PBA>0). For any NBA A, there is a PBA P such that
L>0(P) = L(A) and |P| = O(exp(|A|)).

PROOF. Following Courcoubetis and Yannakakis [1995], we call an NBA A determin-
istic in limit if |δ(p, a)| ≤ 1 for any state p that is reachable from an accepting state
q ∈ F and any symbol a ∈ $. If we regard an NBA A that is deterministic in limit
as a PBA P (with arbitrary probability distributions to resolve the nondeterministic
choices) then L(A) = L>0(P). Courcoubetis and Yannakakis [1995] provided a transfor-
mation from a given NBA A into an equivalent NBA that is deterministic in limit and
whose size is (single) exponential in |A|. This yields the proof of the lemma.

It remains to provide an example of a PBA>0 that recognizes a language that is not
ω-regular.

LEMMA 4.3 (A PBA>0 THAT ACCEPTS A NON-ω-REGULAR LANGUAGE). The PBA>0 de-
picted in Figure 3 accepts a language that is not ω-regular.

PROOF. For each real number λ ∈]0, 1[, the PBA>0 Pλ depicted in Figure 3 recognizes
the language:

Lλ =
{

ak1bak2bak3b . . . | k1, k2, k3 . . . ∈ N≥1 s.t.
∞∏

i=1

(1 − (1 − λ)ki ) > 0

}

.

Note that L>0(Pλ) ⊆ (a+b)ω as every accepting run for an infinite word w that has only
finitely many b’s has to stay in state p0 from some point on. But such runs occur with
probability 0. Let w = ak1bak2 . . . ∈ (a+b)ω. Starting in p0 and reading the first k1 letters
a, the automaton reaches state p0 with probability (1 − λ)k1 and thus state p1 with
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probability 1− (1−λ)k1 . Reading the first b the automaton thus rejects with probability
(1 − λ)k1 and carries on to read the input word with probability 1 − (1 − λ)k1 . This shows
that the probability not to reject while reading the word w is

∞∏

i=0

(1 − (1 − λ)ki )

and moreover this agrees with the probability to visit infinitely often the final state p0.
Therefore, L>0(Pλ) = Lλ.

The following argument shows that L>0(Pλ) is not ω-regular. It is easily seen that
L>0(Pλ) is nonempty and obviously it does not contain any lasso-shaped word, that
is, a word of the form xyω, x ∈ $∗ and y ∈ $+. As any nonempty ω-regular language
contains a lasso-shaped word (since it can be described by an NBA with an accepting
cycle), it follows that L>0(Pλ) is not ω-regular.

Remark 4.4 (Nonregular Convergence). The nonregular convergence condition for
the words accepted by the PBA>0 Pλ in Figure 3 can be explained by the observation
that there are finite input words that Pλ rejects with arbitrary small probability. More
precisely, when Pλ tries to read a finite word akb in state p0 then Pλ fails to consume
the last letter b (i.e., rejects) with probability (1−λ)k. If k tends to infinity, the rejecting
probability (1 − λ)k tends to 0.

Similarly, there are PBA and infinite input words that have accepting runs in
the underlying nondeterministic automaton, while the probabilities for the run
fragments connecting two accepting states tend to zero. Such an example is described
in Section 4.2.

We showed that PBA>0 are strictly more expressive than ω-regular languages. Note
that Baier and Grösser [2005] identified a subclass of PBA>0 that corresponds to the
class of ω-regular languages. For this purpose, Baier and Grösser [2005] introduced so-
called uniform PBA>0. The uniformity condition is semantic in nature and is motivated
by the observation made in Remark 4.4 and serves to rule out PBA>0 with “non-regular
converging behaviors”, as it is the case for the PBA>0 Pλ of Figure 3. Just recently,
Chadha et al. [2009b] introduced syntactic restrictions on PBA that capture regularity,
both for the probable as well as the almost-sure semantics. The restriction considered
imposes a hierarchical structure on the PBA.

4.1.2. Efficiency. We saw in Lemma 4.2 that, for each NBA, there exists an equivalent
PBA>0 of size exponential in the size of the NBA. We now study the efficiency of PBA>0

in more detail and show that for some languages, PBA>0 can be exponentially better
than nondeterministic ω-automata.

LEMMA 4.5 (PBA>0 CAN BE EXPONENTIALLY SMALLER THAN NSA). There exists a family
(Ln)n∈N of ω-regular languages in {a, b}ω such that for every n, Ln is accepted by a PBA
under the probable semantics with 2n states, while any NSA for Ln has at least 2n

n states.

PROOF. The language Ln = {xyω : x ∈ {a, b}∗, y ∈ {a, b}n} is accepted by the PBA>0 P
shown in Figure 4. Note that all states of P are accepting and that all states except na
have a b-transition to the state 1b and all states except nb have an a-transition to the
state 1a. We assume uniform distributions: All edges except the a-edge in state na and
the b-edge in state nb are taken with probability 1

2 .
Let w = a1a2 . . . /∈ Ln. Then there are infinitely many indices i such that ai =

a ∧ ai+n = b. Since every state except the state nb has an a-transition to state 1a, the
stochastic process induced by P and the input word w will almost surely be infinitely
often in state 1a with the letter b coming up in n steps. But each time (with probability
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a,b a,b a,b a,b

a
a

a

1a 2a 3a na

a,b a,b a,b a,b
1b 2b 3b nb

b
b

b

a a

b b

b

a

a
b

Fig. 4. PBA>0 for Ln as in the proof of Lemma 4.5.
1

2n−1 ) the process will have moved to the state na while reading the upcoming n − 1
letters, thus rejecting upon reading the b. Thus, almost surely the process will reject
infinitely often with probability 1

2n−1 which shows that almost all runs are rejecting.
Thus, PrP (w) = 0 and w /∈ L>0(P). Therefore, L>0(P) ⊆ Ln.

On the other hand, given a word w ∈ Ln, we can write w as xyω with x ∈ {a, b}∗

and y ∈ {a, b}n. Then, π = 1c1 , . . . , 1ck, 1d1 is a run for xd1, where x = c1c2 . . . ck and
y = d1d2 . . . dn. (The c’s and d’s are symbols in {a, b}.) The probability for this run is
strictly greater than zero. Since from that state 1d1 on, the process will never reject
while reading the remaining suffix of w and since every infinite run is accepting,
this shows that w will be accepted with a probability greater than zero. This yields
Ln ⊆ L>0(P).

It remains to show that any NSA for Ln has at least 2n

n states. Let A be an NSA with
L(A) = Ln. Let x = c1 . . . cn, y = d1 . . . dn ∈ {a, b}n such that

c1 . . . cn (= di . . . dnd1 . . . di−1 for all i = 1, . . . , n. (+)

Then any two accepting cycles for (c1 . . . cn)ω and (d1 . . . dn)ω are disjoint, or else A would
accept some word of the form (a + b)∗(c1 . . . c jdi . . . dnd1 . . . di−1c j+1 . . . cn)ω. But such a
word is not in Ln because of (+). Thus, A has at least 2n

n disjoint accepting cycles, which
proves the claim.

Another example illustrates the efficiency of PBA>0 compared to NBA:

LEMMA 4.6 (PBA CAN BE EXPONENTIALLY SMALLER THAN NBA). Let Ln be the language
consisting of all infinite words w = a1a2a3 . . . ∈ {a, b, c}ω such that for all 0 ≤ i < n:

∞
∃ k such that akn+i = a if and only if

∞
∃ k such that akn+i = b. (++)

Then, Ln is accepted by a PBA>0 with O(n2) states, while any NBA that accepts Ln has
#(2n) states.

PROOF. Safra and Vardi [1989] proved that any NBA that accepts Ln has #(2n) states.
But there exists an NSA that accepts Ln and consists of O(n) states.

It remains to show that there is a PBA>0 of quadratic size that accepts Ln. For any
word w = a1a2 . . . ∈ Ln, we refer to the suffix arn+1arn+2 . . . such that

(1) for all 0 ≤ i < n either akn+i = c for all k ≥ r or there are infinitely many k, * with
akn+i = a and a*n+i = b and

(2) r is minimal with respect to (1)
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Fig. 5. PBA>0 with O(n2) states, while any equivalent NBA has #(2n) states.

as the legal suffix of w. A PBA>0 P with O(n2) states that accepts Ln is depicted in
Figure 5 (we assume uniform distributions). All following calculations with indices
i, j ∈ {0, 1, . . . , n − 1} are modulo n, that is, we simply write i + 1 instead of (i + 1)
mod n.

The automaton P consists of:

—a subautomaton Pinit that serves to wait until the legal suffix of w starts. It consists
of a cycle of accepting states 0, 1, . . . , n − 1 that are passed in this order.

—subautomata P(i,a) and P(i,b) that are entered from Pinit when reading the letter a
(respectively, b) in state i. The automata P(i,a) and P(i,b) consist of a cycle of nonac-
cepting states 0, 1, . . . , n − 1 that are passed in this order. They are entered in state
i + 1 (coming from state i of Pinit upon reading the letter a (respectively b)) and can
be left via an accepting state only when reading the letter b (respectively, a) in state
i.

Note that for all words w ∈ {a, b, c}ω all runs are infinite and almost all runs leave the
subautomaton Pinit if w contains infinitely many a’s or b’s. The automaton rejects if it
enters P(i,a) or P(i,b), but there is no following position kn+ i with akn+i = b or akn+i = a,
respectively.

Let w = a1a2 . . . /∈ Ln. Without loss of generality, there is some r ≥ 0 and some
i ∈ {0, 1, . . . , n − 1} such that akn+i = a for infinitely many k, but akn+i (= b for all k ≥ r.
Assume for simplicity that for all j (= i, condition (++) is fulfilled. We now consider
the stochastic process induced by P and w. As there are infinitely many such k’s, the
process will almost surely enter P(i,a) but never leave it. Hence, almost all runs for w are

Journal of the ACM, Vol. 59, No. 1, Article 1, Publication date: February 2012.



JACM5901-01 ACM-TRANSACTION February 14, 2012 16:56

Probabilistic ω-Automata 1:15

rejecting which yields w /∈ L>0(P). If (++) is violated for several indices i ∈ {0, . . . , n−1},
then the process will almost surely end up in several P(i,a) and P(i,b) and never leave
those. Hence, almost all runs for w are rejecting which yields w /∈ L>0(P).

Vice-versa, let w = a1a2 . . . ∈ Ln and arn+1, arn+2, . . . be the legal suffix of w. Then,
all runs for w that stay in Pinit for the first rn input symbols (the prefix a1 . . . arn of
w) will infinitely often be in Pinit and are therefore accepting. Hence, PrP (w) > 0 and
w ∈ L>0(P).

These examples illustrate that PBA>0 can yield much more compact representations
of ω-regular languages than nondeterministic automata. Vice-versa, Baier and Grösser
[2005] provides an example for a family of ω-regular languages with nondeterministic
Büchi automata of linear size, while all uniform PBA>0 have at most #(2n) states. It is
open whether the uniformity condition in the proof of Baier and Grösser [2005] can be
dropped.

4.1.3. The Precise Probabilities Matter under the Probable Semantics. We will show that the
precise transition probabilities of a probabilistic automaton play a role for the language
that is accepted under the probable semantics. The PBA Pλ, represented in Figure 3,
page 11, illustrates this phenomenon.

THEOREM 4.7 (THE PRECISE PROBABILITIES MATTER FOR PBA>0). For any 0 < λ < µ <
1, L>0(Pλ) (= L>0(Pµ).

PROOF. Recall that L>0(Pλ) = {ak1bak2b . . . |
∏

i≥1(1 − (1 − λ)ki ) > 0}. Assuming λ < µ,
it is easy to see that L>0(Pλ) ⊆ L>0(Pµ) since 1 − (1 − µk) > 1 − (1 − λk) for any k ∈ N.
To prove that the inclusion is strict, let us explain how to build a sequence (ki)i∈N such
that

∏

i≥1

(1 − (1 − λ)ki ) = 0and
∏

i≥1

(1 − (1 − µ)ki ) > 0.

This suffices to prove that L>0(Pλ) (= L>0(Pµ), since the infinite word ak1bak2b . . . will
then be in L>0(Pµ) \ L>0(Pλ).

In order to build such a sequence, let n, m ∈ N such that 1 − µ < n
m < 1 − λ. We

define the sequence (ki)i∈N as a nondecreasing sequence of natural numbers with 3( m
n ) j4

elements equal to j, where given a positive real number x, 3x4 denotes the integer part
of x. Observe first that

∏

i≥1

(1 − xki ) is positive if and only if the series
∑

i≥1

log(1 − xki ) converges.

Since log(1−ε) ∼ε 6→0 −ε, the latter series behaves as
∑

i≥1 xkj (i.e., either both converge,
or both diverge). For our chosen sequence (ki)i∈N, it holds that

∑

i≥1

xki =
∑

j≥1

⌊(
m
n

) j⌋
· x j ,

which converges if and only if
∑

j≥13( m
n ) j4 · x j +

∑
j≥1(( m

n ) j −3( m
n ) j4) · x j converges. (Note

that the second summand is less than 1
1−x ). Altogether,

∏

i≥1

(1 − xki ) is positive if and only if
∑

j≥1

(
m
n

) j

· x j converges,

which is equivalent to m
n · x < 1, that is, x < n

m. This shows the claim.
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Thus, given two PBA with the same underlying NBA, their accepted languages might
differ under the probable semantics.

4.1.4. A Pumping Lemma

LEMMA 4.8 (PUMPING-LEMMA FOR PBA>0). Let P = (Q, $, δ, µ, F) be a PBA. Then, for
each word ρ ∈ L>0(P) and for all i ∈ N there exist finite words u, v, w ∈ $∗ and an
infinite word x ∈ $ω such that

(1) ρ = uvwx,
(2) |u| = i, |vw| ≤ |Q| and |w| ≥ 1, and
(3) uvw*x ∈ L>0(P) for all * ∈ N.

PROOF. Let n = |Q| be the number of states in P. Given ρ = a1 a2a3 . . . ∈ L>0(P)
and i ∈ N we regard the finite prefix y = a1 a2 . . . ai . . . ai+n of ρ consisting of the first
m = i + n letters of ρ. As PrP (ρ) is positive, there is a run

σ = q0
a1−→ q1

a2−→ . . .
ai−→ qi

ai+1−→ . . .
am−→ qm

for y in P such that the probability of all accepting runs for ρ in P that start with σ
is positive. In particular, the probability for the accepting runs for the infinite suffix
am+1 am+2 am+3 . . . of ρ that start in state qm is positive. We now pick word positions j
and k such that i ≤ j < k ≤ m and qj = qk. Then,

q0
a1−→ . . .

ai−→ qi is a run for u = a1 . . . ai

qi
ai+1−→ . . .

aj−→ qj is a run for v = ai+1 . . . aj

qj
aj+1−→ . . .

ak−→ qk is a run for w= aj+1 . . . ak

qk
ak+1−→ . . .

am−→ qm is a run for z = ak+1 . . . am

Furthermore, let x = zam+1 am+2 am+3 . . . = ak+1 ak+2 ak+3 . . .. Obviously, the first two
conditions hold as we have (1) ρ = uvwx and (2) |u| = i and |vw| = k− i ≤ n. It remains
to check the pumping condition (3). Let * ∈ N. As qj = qk the above runs for u, v, w

and z can be composed to obtain a run for the finite word uvw*z that starts in q0 and
ends in state qm. Since the probability for the accepting runs for the infinite suffix
am+1am+2am+3 . . . of ρ that start in state qm is positive, we get PrP (uvw*x) > 0, and hence
uvw*x ∈ L>0(P).

As for other types of automata, the pumping lemma can be useful to establish that
a certain language is not PBA>0-recognizable. We can show the following, where ω-CF
denotes the class of ω-context free languages.

COROLLARY 4.9. ω-CF (⊆ L(PBA>0).

PROOF. For instance, there is no PBA>0 that accepts the ω-context free language
L = {anbn(a+ b)ω|n ≥ 1}. Suppose by contradiction that such a PBA>0 P exists. Let n be
the number of states in P. We now apply the pumping lemma to the word ρ = anbnaω ∈
L>0(P) and the word position i = 0, which yields the existence of finite words v,w and
an infinite word x such that ρ = vwx, w is nonempty and |vw| ≤ n and vw*x ∈ L>0(P)
for all * ≥ 0. Since |vw| ≤ n, both words v and w contain just a’s, say v = aj , w = ak

where k ≥ 1 (as w is nonempty). Then x = an− j−kbnaω and vw0x = vx = an−kbnaω /∈ L,
which is a contradiction.

4.2. PBA under the Almost-Sure Semantics
In this section, we investigate the almost-sure semantics for PBA, that is, a PBA accepts
a word if the set of accepting runs for this word has measure 1. We start our discussion
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p0

p1p2

pF

a, λ

a, 1−λb, 1

a, 1

a, λ b, 1

a, 1−λ

a, 1−λ

a, λ

Fig. 6. PBA P̃λ (0 < λ < 1) with L=1(P̃λ) non-ω-regular.

with an example that has the interesting property that each word is either accepted
with probability 0 or 1.

4.2.1. Example. Regard the PBA P̃λ shown in Figure 6. Under the almost-sure seman-
tics it accepts the following language

L̃λ =
{

ak1bak2bak3b . . . | k1, k2, k3 . . . ∈ N≥1 such that
∞∏

i=1

(1 − (1 − λ)ki ) = 0

}

.

We now check that L=1(P̃λ) is indeed L̃λ. Starting in p0 (or pF), (1−λ)ki is the probability
to be in p2 after reading the word aki . Hence, 1−(1−λ)ki represents the probability to be
in state p1 after the input word aki . As a consequence

∏
i
(
1 − (1 −λ)ki

)
is the probability

to avoid forever the final state pF . The probability to visit pF after reading the word
ak1bak2b . . . akN−1b and to avoid pF from then on is therefore

(1 − λ)kN−1 ·
∏

i≥N

(1 − (1 − λ)ki )

with the convention k0 = 0. Hence, given an input word w = ak1bak2bak3b . . ., the
probability to avoid qF from some point on is

∑

N≥1



(1 − λ)kN−1
∏

i≥N

(
1 − (1 − λ)ki

)


.

Thus, PrP̃λ (w) = 1 −
∑

N≥1((1 − λ)kN−1
∏

i≥N(1 − (1 − λ)ki )). To prove that L=1(P̃λ) = L̃λ,
we need to show that

PrP̃λ (w) = 1 −
∑

N≥1



(1 − λ)kN−1
∏

i≥N

(1 − (1 − λ)ki )



 = 1 ⇐⇒
∏

i≥1

(1 − (1 − λ)ki ) = 0.

⇐ : Suppose that
∏

i≥1(1 − (1 − λ)ki ) = 0. Then,
∏

i≥N(1 − (1 − λ)ki ) = 0 for all N ∈ N.
Hence,

∑

N≥1



(1 − λ)kN−1
∏

i≥N

(1 − (1 − λ)ki )



 = 0.

This yields PrP̃λ(w) = 1.
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⇒ : Assume now that
∏

i≥1(1 − (1 − λ)ki ) > 0. Then

∑

N≥1



(1 − λ)kN−1
∏

i≥N

(1 − (1 − λ)ki )



 > (1 − λ)k0
∏

i≥1

(1 − (1 − λ)ki ) > 0

and therefore PrP̃λ(w) < 1.

Remark 4.10. We are even able to prove that each word w ∈ {a, b}ω is either
accepted by P̃λ with probability 0 or with probability 1, that is, PrP̃λ(w) ∈ {0, 1} for all
w ∈ {a, b}ω. Thus, the automaton P̃λ is quite remarkable as it has the property that
L=1(P̃λ) = L>0(P̃λ). We call such an automaton a 0/1-automaton.

The following calculation shows the claim. Assume that
∏

i≥1(1 − (1 − λ)ki ) > 0. The
goal is to show that

∑

N≥1



(1 − λ)kN−1
∏

i≥N

(1 − (1 − λ)ki )



 = 1

.

With θi = 1 − (1 − λ)ki , we obtain:

∑

N≥1



(1 − λ)kN−1
∏

i≥N

(1 − (1 − λ)ki )



 =
∑

N



(1 − θN−1)
∏

i≥N

θi





=
∑

N




∏

i≥N

θi − θN−1
∏

i≥N

θi





=
∑

N




∏

i≥N

θi −
∏

i≥N−1

θi





= lim
N→∞

∏

i≥N

θi since θ0 = 0.

To conclude, we have to show that limN→∞
∏

i≥N θi = 1, using the assumption
c :=

∏∞
i=1 θi > 0. But this is obvious since

0 (= c =
N∏

i=1

θi ·
∞∏

i=N+1

θi.

As the left factor converges to c if N tends to infinity, the right factor has to converge
to 1 which shows the claim.

4.2.2. The Precise Probabilities Matter. The previous example shows that alike to the
setting of PBA>0, the precise transition probabilities also matter for PBA under the
almost-sure semantics.

THEOREM 4.11 (THE PRECISE PROBABILITIES MATTER FOR PBA=1). For any 0 < λ < µ <
1, L=1(P̃λ) (= L=1(P̃µ).

PROOF. The theorem follows immediately from Theorem 4.7 since L=1(P̃λ) = (a+b)ω \
L>0(Pλ).
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4.2.3. Expressiveness of PBA under the Almost-Sure Semantics. We first give examples to
show that the class of probabilistic Büchi automata under the almost-sure semantics
is not closed under complementation. We then observe that for probabilistic Büchi
automata, the switch from the probable semantics to the almost-sure semantics leads
to a loss of expressiveness. At last we show that the class of languages definable
by PBA=1 (respectively, its complement) is not comparable to the class of ω-regular
languages.

LEMMA 4.12. L(PBA=1) is not closed under complementation.

PROOF. It is evident that each DBA P can be viewed as a PBA and that LDBA(P) =
L=1(P). The language (a∗b)ω can be recognized by a DBA and hence by a PBA=1.
However, its complement (a + b)∗aω cannot be recognized by a PBA=1. Suppose by
contradiction that there is a PBA P = (Q, {a, b}, δ, µ0, F) such that L=1(P) = (a+ b)∗aω.
Without loss of generality, we may assume that all states p ∈ Q are reachable from
some initial state. Let ρp ∈ {a, b}∗ be a finite word such that p ∈ δ(qinit, ρp) where qinit
is an initial state, that is, µ0(qinit) > 0. Since the word ρpaω belongs to (a + b)∗aω, it
holds that PrP (ρpaω) = 1. But then the set of accepting runs for aω starting in p must
have probability measure 1, that is, PrPp (aω) = 1. Thus, there exists np ∈ N≥1 such that
δ(p, anp) ∩ F (= ∅. Let n = max

p∈Q
np and w̃ = (anb)ω /∈ (a + b)∗aω. For p ∈ Q, let θp be

the probability to visit at least once an accepting state q ∈ F when scanning the word
an from p. Note that θp > 0 since np ≤ n and δ(p, anp) ∩ F (= ∅. Let θ = minp∈Q θp.
Then, θ > 0 and for each k ≥ 0 and each state p ∈ δ(Qinit, (anb)k), the probability to
enter F at least once while reading an from p is at least θ . But then almost all runs
for w̃ visit F infinitely often. That is, PrP (w̃) = 1, which contradicts the assumption
that L=1(P) = (a + b)∗aω. Hence, the class of languages L(PBA=1) is not closed under
complementation.

The next theorem shows that both the class of languages that are accepted by PBA
under the almost-sure semantics as well as its complement are strictly included in the
class of languages that are accepted by PBA under the probable semantics.

THEOREM 4.13. (a) L(PBA=1) ! L(PBA>0) and (b) L(PBA=1) ! L(PBA>0).

PROOF. (a) Let P = (Q, $, δ, µ0, F) be a PBA and L = L=1(P) the language of P
under the almost-sure semantics. We will transform P into an equivalent 0/1-PBA P ′,
that is a PBA that accepts each word either with probability 0 or 1. The idea to define
P ′ is to pick at random some word position i where P could be in a state p ∈ Q \ F
and to check whether from this position i on, the probability in P for the event "¬F
is positive. If so, then the input word is rejected by P with positive probability, and
therefore, it does not belong to L. Formally, we define the PBA P ′ as (Q ′, $′, δ′, µ′

0, F ′)
where

Q ′ = 2Q ∪ Q × 2Q, F ′ = 2Q

and µ′
0(Qinit) = 1 where Qinit = {q ∈ Q : µ0(q) > 0}. The transition probabilities in P ′

are defined as follows. If R ⊆ Q and a ∈ $ then δ′(R, a, S) = 1 if S = δ(R, a) ⊆ F. For
S = δ(R, a) and S \ F (= ∅ we define

δ′(R, a, S) = 1
2 , δ′(R, a, (p, S)) = 1

2·|S\F| for all p ∈ S \ F.

For p ∈ R\ F, q ∈ Q and S = δ(R, a) we set δ′((p, R), a, (q, S)) = δ(p, a, q). For p ∈ R∩ F
and S = δ(R, a) we set δ′((p, R), a, S) = 1. In all remaining cases, we set δ′(·) = 0.
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Now assume w ∈ L=1(P), thus PrP,w("!F) = 1. This implies PrP,w↑i
t ("!F) = 1 for

all i ∈ N≥1 and all states t ∈ δ(s, w↑i−1), where µ0(s) > 0. Thus, whenever P ′ enters
its Q × 2Q part while reading w, it will afterwards reach a state (p, R) where p is
an accepting state of P with probability one. As from such states δ′(.) leads to an
accepting state of P ′ with probability 1 (in one step), this shows that PrP

′,w("!F ′) = 1,
so w ∈ L>0(P ′).

Assume w /∈ L=1(P), thus PrP,w(!"¬F) > 0. Then, there exists an i ∈ N≥1 such that
PrP,w(!=i"¬F) > 0, where !=i"¬F denotes the event that after the (i − 1)st step only
states of ¬F will be visited. Obviously

(i) PrP,w(!= j"¬F) ≥ PrP,w(!=i"¬F) > 0 for all j > i.

Let θ := PrP,w(!=i"¬F). As θ > 0, it holds that

(ii) for all j > i and all runs q′
0, q′

1, q′
2, . . . of w in P ′: q′

j |2Q ∩ ¬F (= ∅,

where q′
j |2Q = Rj if q′

j = Rj is a state in the 2Q part of P ′ and q′
j |2Q = Rj if q′

j = (rj, Rj)
is a state in the Q× 2Q part of P ′. Note that for the second statement (ii) the existence
of a single run of w in P satisfying !=i"¬F suffices as the automaton P ′ performs
a standard powerset construction on the 2Q component in all its states. Examining
the construction of P ′ shows that after reading the first i letters of w, whenever P ′

is in its accepting 2Q part, it will move with probability 1
2 to its nonaccepting Q × 2Q

part (because of (ii)) where it will stay forever with probability at least θ (because of
(i) and the fact that the nonaccepting Q × 2Q part can only be left via a state (r, R)
where r ∈ F). But this means that after the ith step (after reading w↑i), the automaton
P ′ will almost surely reach its nonaccepting part and stay there forever which shows
PrP

′,w("!F ′) = 0, thus w /∈ L>0(P ′). This shows that L>0(P ′) = L=1(P).
The strictness of the inclusion L(PBA=1) ! L(PBA>0) immediately follows from

ω-reg ⊆ L(PBA>0) and the fact that (a + b)∗aω /∈ L(PBA=1) (see proof of Lemma 4.12).
(b) Given a PBA P = (Q, $, δ, µ0, F) we can trivially construct a PBA P ′ =

(Q ′, $, δ′, µ′
0, F ′) of the same size such that L>0(P ′) = $ω \ L=1(P). We define P ′ as

indicated in the following picture (see Größer [2008]).

∈F s′P
a, p a, p

2

a, 1
2

P ′

∈F s′P
Σ , 1

{ F ′

qrej

Q ′ = Q∪{qrej}. For q2 ∈ Q, we set δ′(q1, a, q2) = δ(q1, a, q2) if q1 ∈ Q\ F and δ′(q1, a, q2) =
1
2 · δ(q1, a, q2) if q1 ∈ F. For q1 ∈ F we set δ′(q1, a, qrej) = 1

2 . Moreover δ′(qrej, a, qrej) = 1
for all a ∈ $, µ′

0(q) = µ0(q) for q ∈ Q (thus µ′
0(qrej) = 0) and F ′ = Q.

Now assume w ∈ L=1(P), hence PrP,w("!F) = 1. Thus, reading w, the automaton P ′

will almost surely reach the non-accepting state qrej and will then loop in qrej forever.
So PrP

′,w("!F ′) = 0 and w /∈ L>0(P ′).
Assume w /∈ L=1(P), thus PrP,w(!"¬F) > 0. Then there exists an i ∈ N≥1 such that

PrP,w(!=i"¬F) > 0, where !=i"¬F denotes the event that after the (i − 1)st step
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only states of ¬F will be visited. But PrP
′,w("!F ′) = PrP

′,w("F ′) ≥ PrP
′,w(!=i"F ′) ≥

( 1
2 )i · PrP,w(!=i"¬F) > 0, so w ∈ L>0(P ′). This shows that L>0(P ′) = $ω \ L=1(P).

The strictness of the inclusion L(PBA=1) ! L(PBA>0) immediately follows from
ω-reg ⊆ L(PBA>0) and the fact that (a∗b)ω /∈ L(PBA=1) as $ω \ (a∗b)ω = (a + b)∗aω /∈
L(PBA=1) (see proof of Lemma 4.12).

Note that the inclusion (b) also follows from (a) and the fact that PBA>0 are closed
under complementation (as proven later in Section 6). However, the construction in the
proof of (a) as well as the complementation yield each an exponential blow-up.

It remains to show that the class of PBA=1-recognizable languages and its complement
are not comparable to the class of ω-regular languages.

THEOREM 4.14.

(a) ω-reg " L(PBA=1),
(b) L(PBA=1) " ω-reg,
(c) ω-reg " L(PBA=1) and
(d) L(PBA=1) " ω-reg.

PROOF.

(a) The claim immediately follows from the fact that (a + b)∗aω /∈ L(PBA=1) (see
proof of Lemma 4.12).

(b) Consider the example PBA=1 P̃λ from Figure 6, page 17. It holds that L=1(P̃λ) =
(a+b)ω \L>0(Pλ), where Pλ is represented in Figure 3, page 11. Hence, L=1(P̃λ) ∪
(a+b)∗aω ∪b(a+b)ω ∪(a+b)∗bb(a+b)ω is the complement of L>0(Pλ). As L>0(Pλ) is
not ω-regular, this immediately yields that L=1(P̃λ) is a non-ω-regular language.

(c)-(d) The claims follow from (b) (respectively, (a)) and the fact that ω-regular lan-
guages are closed under complementation.

4.3. PBA under the Threshold Semantics
In this section, we focus on the expressiveness of PBA under the threshold semantics.
First, we will show that the exact threshold is of no importance for the class of accepted
languages.

4.3.1. Comparison for Different Threshold Values

LEMMA 4.15. For all λ,µ ∈]0, 1[, L(PBA>λ) = L(PBA>µ).

PROOF. Let λ (= µ be two real numbers in ]0, 1[. From a given PBA P, we construct
another PBA P ′ with L>λ(P) = L>µ(P ′). The construction depends on whether λ < µ or
λ > µ.

Assume first λ > µ. P ′ consists of a copy of P equipped with an extra rejecting sink
state qrej. In P ′, accepting states are exactly those of P, and the initial distribution µ′

0
is defined by µ′

0(p) = µ
λ
µ0(p) for states from P and µ′

0(qrej) = 1 − µ
λ
. Given a word w, it

holds that PrP
′
(w) = µ

λ
PrP (w) and thus L>µ(P ′) = L>λ(P).

Assume now λ < µ. Automaton P ′ consists of a copy of P with an extra accepting
sink state qacc. The accepting states in P ′ are those of P together with qacc, and the
initial probability distribution is defined by µ′

0(p) = 1−µ
1−λ

µ0(p) for states in P and
µ′

0(qacc) = µ−λ
1−λ

. Given a word w, it holds that PrP
′
(w) = µ−λ

1−λ
+ 1−µ

1−λ
PrP (w) and thus

L>µ(P ′) = L>λ(P).
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4.3.2. Comparison with Other Semantics. Let us now compare threshold PBA to PBA
under other semantics. The class of languages accepted by PBA under the threshold
semantics subsumes the class of languages accepted by PBA under the probable or the
almost-sure semantics.

LEMMA 4.16. For every λ ∈]0, 1[, L(PBA>0) ⊆ L(PBA>λ).

PROOF. Let P be a PBA, and λ ∈]0, 1[. The automaton P can be transformed into
P ′ such that L>0(P) = L>λ(P ′). The new PBA P ′ consists of a copy of P with an extra
accepting sink state qacc. Accepting states of P ′ are those of P together with qacc,
and the initial distribution µ′

0 is defined by: µ′
0(p) = (1 − λ)µ0(p) for states of P, and

µ′
0(qacc) = λ.

The latter lemma raises the question whether PBA with the probable semantics are
as expressive as PBA with the threshold semantics. The following theorem shows that
this is not the case.

THEOREM 4.17 (THERE EXIST THRESHOLD-LANGUAGES NOT IN L(PBA>0)). For all real
numbers λ ∈]0, 1[, it holds that L(PBA>λ) (⊆ L(PBA>0).

PROOF. Note that, because of Lemma 4.15 it is sufficient to show the existence of
a PBA P and a threshold λ ∈]0, 1[ such that L>λ(P) /∈ L(PBA>0). The proof is based
on an adaption of arguments provided by Paz [1971] for probabilistic finite automata
(PFA). We identify any real number λ ∈]0, 1[ with the infinite word a1a2a3 . . . ∈ {0, 1}ω
obtained by its binary representation

λ =
∞∑

i=1

ai2−i = 0.a1a2a3 . . .

(where we assume that ai (= 0 for infinitely many indices i). We now consider the
following languages Kλ ⊆ {0, 1}∗:

Kλ =
{

b1 . . . bn | b1, . . . , bn ∈ {0, 1} such that
n∑

i=1

bi2−i > λ

}

Paz [1971] has shown that Kλ is regular if and only if λ is rational. Rabin [1963]
provided a PFA R such that for all finite words ρ ∈ {0, 1}∗, PrR(ρ) > λ if and only if
ρ ∈ Kλ. We modify this PFA R to a PBA P over the alphabet $ = {0, 1, c} that under
the threshold semantics accepts the language

Lλ = Kλcω = {ρcω | ρ ∈ Kλ}.
when dealing with the threshold λ.

For this, we add a new accepting state qacc with a c-self-loop and no other transitions
(i.e., we set δP (qacc, c, qacc) = 1 and δP (qacc, b, ·) = 0 for b ∈ {0, 1}) and c-transitions
from each final state p in R to qacc (i.e., we set δP (p, c, qacc) = 1 for all final states p of
R). The remaining transitions are as in R. Finally the acceptance set of P is defined
as F = {qacc} and the initial distribution of P is the same as in R. It then holds for
all words ρ ∈ {0, 1}∗ that PrP (ρcω) = PrR(ρ). Furthermore, PrP (w) = 0 if w contains
infinitely many 0’s or 1’s. Thus:

L>λ(P) = {ρcω | PrR(ρ) > λ} = Kλcω = Lλ.

Now fix an arbitrary irrational number λ ∈]0, 1[. Thus, by Paz [1971], Kλ is nonreg-
ular. It remains to show that there is no PBA P ′ such that L>0(P ′) = Lλ. The intu-
itive argument will be the following. Suppose by contradiction that P ′ is a PBA with
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L>0(P ′) = Lλ ⊆ {0, 1}∗cω. Thus, each word that will be accepted with a positive prob-
ability has a suffix consisting only of c’s. But then, there is some “kind of underlying
(finite word) automaton” in P ′, that decides which of the prefixes “to accept”. Although
this is a probabilistic automaton, as the acceptance threshold in P ′ is 0, this “underly-
ing (finite word) automaton” will accept a regular language, which will contradict the
assumption that λ is irrational.

More formally, we first observe that whenever (T , A) is an accepting end component
of P ′ with PrP

′,w((T , A)) > 0 for some word w ∈ $ω then A(p) = {c} for all states p ∈ T .
(Otherwise, P ′ would accept some words that do not have a suffix consisting of c’s.) Let
T0 be the set of states p in P ′ such that p ∈ T for some accepting end component (T , A)
of P ′ with PrP

′,w((T , A)) > 0 for some word w ∈ $ω. Furthermore, let T +
0 be the set of

all states q in P ′ such that p ∈ δP ′(q, cn) for some n ≥ 0 and p ∈ T0. That is T +
0 consists

of all states from which a relevant accepting end component can be reached via a finite
sequence of c’s. Whenever ρ ∈ {0, 1}∗ such that PrP

′
(q0

ρ−→ q) > 0 for some initial state
q0 and some state q ∈ T +

0 , then

PrP
′
(ρcω) ≥ PrP

′
(q0

ρ−→ q) · PrP
′

q (q cn

−→ p) > 0

for some n ∈ N≥0, some state q ∈ T +
0 and some state p ∈ δP ′(q, cn), where p is in a

relevant accepting end component. This yields

ρcω ∈ L>0(P ′) = Lλ = Kλcω,

and therefore ρ ∈ Kλ. Vice-versa, if ρ ∈ Kλ, then ρcω ∈ Lλ = L>0(P ′). Hence, there exists
a state q ∈ T +

0 such that q ∈ δP ′(q0, ρ) for some initial state q0.
This shows that Kλ agrees with the set of finite words ρ ∈ {0, 1}∗ such that δP ′(q0, ρ)∩

T +
0 (= ∅. But then, Kλ agrees with the language of the NFA resulting from P ′ by

discarding all c-transitions, interpreting the probabilistic branches by nondeterministic
choices and declaring the states in T +

0 to be final. Thus, Kλ is regular. This contradicts
the assumption that λ is irrational in which case Kλ is not regular, as shown by Paz
[1971].

Remark 4.18 (Irrational Coefficients). Note that the PFA R used in the proof of
Theorem 4.17 only contains rational transition probabilities as well as rational initial
probabilities. So the constructed PBA P also only contains rational transition proba-
bilities as well as rational initial probabilities. It is only the irrational threshold λ that
makes the language L>λ(P) not PBA>0-recognizable.

In the transformations provided in this section (i.e., from a PBA>0 to a PBA>λ or from
a PBA>λ to a PBA>µ), it is important to notice that the transition probabilities are not
changed. Only the initial probabilities are changed and as soon as λ is irrational, the
resulting automaton might contain irrational initial probabilities (even if the original
automaton did not).

Also we can detail the relationships between L(PBA>0) and languages defined by PBA
with rational or irrational thresholds. First, on the one hand there are only countably
many languages defined by PBA under the threshold semantics and with rational
thresholds, whereas as a consequence of Theorem 4.17 there are uncountably many
languages defined by PBA under the threshold semantics with irrational thresholds.
As a consequence, irrational thresholds do enhance the expressive power of PBA under
the threshold semantics. Second, the class L(PBA>0) is closed under complementation,
as we shall prove in Section 6.2, whereas it was shown in Chadha et al. [2011] that
languages defined by PBA under the threshold semantics with rational thresholds are
not. Hence, L(PBA>0) ! L(PBA>λ) for irrational values of λ.
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5. PRA AND PSA
After the investigation of properties of PBA in the latter section, we now study other
acceptance criteria than the Büchi condition for probabilistic automata as acceptors
for infinite words. We concentrate here on Streett and Rabin acceptance since they will
play a central role for our complementation operator.

For each semantics, any PBA can be trivially seen as a PSA or PRA by replacing
the Büchi acceptance set F with the singleton Streett (respectively, Rabin) acceptance
set Acc = {(F, Q)} (respectively, {(∅, F)}). We explore here transformations from PRA>0

and PSA>0 to PBA>0, and compare the expressiveness of probable and almost-sure
semantics for PRA and PSA. In the following, in order to stress the acceptance condition
of a given probabilistic ω-automaton P, we often index Pr and L with Rabin, Streett, or
Büchi, and write, for example, PrPStreett or L>0

Rabin(P).

5.1. From GPBA>0 , PSA>0 and PRA>0 to PBA>0

We show that the transformations known for nondeterministic automata can easily be
adapted to the probabilistic setting. Moreover, even more efficient transformations can
be provided as we will see in the case of Streett acceptance.

THEOREM 5.1 (FROM GPBA>0, PRA>0 AND PSA>0 TO PBA>0).

(a) For any generalized probabilistic Büchi automaton P, there exists a PBA P ′ with
L>0(P) = L>0(P ′), L=1(P) = L=1(P ′), and |P ′| = O(m|P|) where m is the number of
acceptance sets in P .

(b) For any PRA PR, there exists a PBA P with L>0
Rabin(PR) = L>0(P) and |P| = O(m|PR|).

(c) For any PSA PS, there exists a PBA P with L>0
Streett(PS) = L>0(P) and |P| =

O(m2m|PS|).

PROOF. (a) In generalized Büchi automata, the acceptance condition consists of a
set F = {F1, . . . , Fn} where the Fi ’s are subsets of the state space Q. Acceptance of a run
requires that each of the Fi ’s is visited infinitely often. In the nondeterministic case, it
is well known that the Büchi and generalized Büchi acceptance conditions have equal
power, in the sense that any generalized NBA G can be transformed into an equivalent
NBA A. The idea behind this transformation is to work with n copies G1, . . . ,Gn of G
where the outgoing transitions from an Fi-state in the ith copy are redirected to the
(i + 1)th copy (modulo n), while outgoing transitions from other states stay in the same
copy. The Büchi acceptance condition in the so-built NBA A consists of the F1-states
in G1. The exact same technique yields a polynomial transformation from GPBA>0 to
PBA>0, and from GPBA=1 to PBA=1.

(b) Let PR = (QR, δR, µR, {(H1, K1), . . . , (Hn, Kn)}) be a PRA. Then, we define the PBA
P by extending PR by copies of the subautomata for the states not in Hi. From any
(Ki \ Hi)-state in the main automaton, we have a probabilistic choice to stay in the main
automaton or to move to the (QR \ Hi)-copy in which we try to visit infinitely often a
Ki-state and which can only be left to a rejecting sink state. Formally, P = (Q, δ, µ, F),
where Q = {qrej} ∪ QR ∪

⋃
1≤i≤n((QR \ Hi) × {i}), µ = µR and F = ∪1≤i≤n(Ki × {i}). The

transition relation δ of P is chosen in such a way that for a ∈ $:

δ(p, a, q) > 0 iff δR(p, a, q) > 0
δ(p, a, 〈q, i〉) > 0 iff δR(p, a, q) > 0 and p ∈ Ki \ Hi
δ(〈p, i〉, a, 〈q, i〉) = δR(p, a, q)
δ(〈p, i〉, a, qrej) = $q∈Hi δR(p, a, q)
δ(qrej, a, qrej) = 1.

It is straightforward to show that L>0(P) = L>0
Rabin(PR).
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(c) Let PS = (QS, δS, µS, {(H1, K1), . . . , (Hn, Kn)}) be a PSA. We first observe
that the Streett acceptance condition

∧n
i=1("!Hi ∨ !"¬Ki) is equivalent to∨

I⊆{1,...,n}
(∧

i∈I "!Hi ∧
∧

i /∈I !"¬Ki
)
. We define the PBA P by extending PS by sub-

automata PI for any subset I of {1, . . . , n}. In each state of the main automaton we
decide randomly to stay in the main automaton or to move to one of the subautomata
PI . Once PI has been entered, it can only be left to a rejecting sink state. Intuitively,
PI realizes the condition

∧
i∈I "!Hi ∧

∧
i /∈I !"¬Ki ≡

∧
i∈I "!Hi ∧ !"¬(∪i /∈I Ki). Note

that such a condition is similar to a single Rabin condition except that it enforces a
generalized Büchi condition on the Hi ’s, where i ∈ I. Thus the construction of the PI ’s is
a combination of the constructions used in (a) and (b). PI consists of copies of PS with-
out the states in

⋃
i /∈I Ki. Formally, the PBA P = (Q, δ, µ, F) is defined as follows. The

state space is Q = {qrej} ∪ QS ∪
⋃

I⊆{1,...,n} QI where Q∅ = {〈q, ∅〉 : q ∈ QS \ (∪n
i=1Ki)} and

QI =
{
〈q, I, i〉 : i ∈ I, q ∈ QS \ (∪i /∈I Ki)

}
for ∅ (= I ⊆ {1, . . . , n}. The initial distribution is

µ = µS. For states p, q ∈ QS with δS(p, a, q) > 0, we let:

—δ(p, a, q) > 0,
—δ(p, a, 〈q, ∅〉) > 0 and
—δ(p, a, 〈q, I, first(I)〉) > 0 for any nonempty subset I of {1, . . . , n}, assuming a fixed

enumeration i0, . . . , ik−1 of the elements in I and putting first(I) = i0.

The transitions inside QI are defined in a similar way as in the transformation from
GPBA to PBA:

δ(〈p, I, i*〉, a, 〈q, I, ir〉) = δS(p, a, q) if either (r = *) ∧ (p /∈ H*) or
δS(p, a, q) (r = (* + 1) mod |I|) ∧ (p ∈ H*)

δ(〈p, I, i*〉, a, qrej) = $q∈∪i /∈I Ki δS(p, a, q)
δ(〈p, ∅〉, a, 〈q, ∅〉) = δS(p, a, q)
δ(〈p, ∅〉, a, qrej) = $q∈∪n

i=1 Ki δS(p, a, q)
δ(qrej, a, qrej) = 1.

The Büchi acceptance set in P is F = Q∅ ∪
⋃

I
{
〈p, I, first(I)〉 ∈ QI : p ∈ Hfirst(I)

}

where I ranges over all nonempty subsets of {1, . . . , n}. This construction ensures
L>0(P) = L>0

Streett(PS).

As for nondeterministic automata, the transformation of a PSA>0 into an equivalent
PBA>0 is more complicated than for Rabin automata and can cause an exponential
blowup. However, we show here that a polynomial transformation can be provided.
This stands in contrast to the nondeterministic case where it is known that there
exist NSA of polynomial size, for which any equivalent NBA has exponentially many
states [Safra and Vardi 1989].

THEOREM 5.2 (POLYNOMIAL TRANSFORMATION FROM PSA>0 TO PBA>0). For any PSA PS,
there exists a PBA P with L>0

Streett(PS) = L>0(P) and |P| = O(n2|PS|), where n is the
number of acceptance pairs in PS.

PROOF. Let PS = (QS, $, δS, µ0
S, {(H1, K1), . . . , (Hn, Kn)}) be a PSA. For simplicity, we

may assume that Hi ∩ Ki = ∅ as otherwise Ki could be replaced with Ki \ Hi. Intuitively,
the PBAP arises fromPS by making several copies ofPS: a subautomaton Pinit in which
the process starts, a subautomaton Paccept which has to be visited infinitely often and
which is reachable with positive probability via any outgoing transition from the states
in Pinit , and subautomata Pi and Pi, j for i, j ∈ {1, . . . , n}, i (= j, that are reached from
Paccept whenever a state in Ki is visited in Paccept . Subautomaton Pi can only be left via
transitions from a Hi-state in Pi from which we move back to Paccept . Subautomaton
Pi, j behaves as Pi, but in addition it takes into account the Streett-acceptance pair
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Fig. 7. Transition probabilities of the PBA constructed in the proof of Theorem 5.2 (where i, j, k ∈ {1, . . . , n}
s.th. i (= j and j (= k (but possibly i = k)).

(Hj, Kj). When a Kj-state in Pi, j is reached, we randomly choose to stay in Pi, j or to
move to P j or one of the subautomata P j,k. Formally, the PBA P = (Q, $, δ, µ0, F) is
defined as follows. The state space is

Q = Qinit ∪ Qaccept ∪
⋃

1≤i≤n

Qi ∪
⋃

1≤i, j≤n
i (= j

Qi, j

where Q∗ = {〈q, ∗〉 : q ∈ QS}. The set of accepting states is F = Qaccept . The initial
distribution is given by µ0(〈q, init〉) = µ0

S(q) and µ0(〈q, ∗〉) = 0 for all other states
〈q, ∗〉 ∈ Q. The transition probabilities in P are shown in Figure 7 where q, p ∈ QS.
Here, i, j, k range over all indices in {1, . . . , m} with i (= j and j (= k (but possibly i = k).
In the sequel, we refer to the fragment of the Q∗-states as the P∗-subautomaton.

To explain the role of subautomata Pi, j and Pi, let us assume for simplicity that the
acceptance condition consists of two pairs {(H1, K1), (H2, K2)} such that K1 \ K2 (= ∅. Pi, j
subautomata avoid to accept paths visiting infinitely many K2 states in P1, without
taking care of visiting infinitely many H2 states as well. Let k1 ∈ K1 \ K2, k2 ∈ K2, h1 ∈
H1. Without loss of generality, assume k2 /∈ H1. Then, the nonaccepting (possible) path

k1, k2, h1, k1, k2, h1, . . .

in the Streett automaton would be lifted with positive probability to accepting paths of
the form

. . . , 〈k1, accept〉, 〈k2, 1〉, 〈h1, 1〉, 〈k1, accept〉, 〈k2, 1〉, 〈h1, 1〉, . . .
in the Büchi automaton. This kind of behavior is avoided thanks to the Pi, j subau-
tomata. However, Pi subautomata need to be added as well. Indeed, without the Pi
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subautomata, the Büchi automata could visit infinitely many K1 states while being in
Paccept moving to P1,2. If the automaton also visits infinitely many K2 states but no H1
states, the Büchi automaton will almost surely leave P1,2 and move to P2,1 which it
can leave to Paccept if it visits infinitely many H2 states. Thus, it could accept although
it might not satisfy the Streett condition {(H1, K1)}. This is shown in the following
example. Assume the previous construction without the Pi subautomata. Assume that
K1 \ K2 (= ∅, K2 \ H1 (= ∅ and H2 \ K1 (= ∅ and let k1 ∈ K1 \ K2, k2 ∈ K2 \ H1, h2 ∈ H2 \ K1.
Then, the nonaccepting (possible) path

k1, k2, h2, k1, k2, h2, . . .

in the Streett automaton would be lifted with positive probability to accepting paths of
the form

. . . , 〈k1, accept〉, 〈k2, 1, 2〉, 〈h2, 2, 1〉, 〈k1, accept〉, 〈k2, 1, 2〉, 〈h2, 2, 1〉, . . .

in the Büchi automaton. To avoid this, we need the Pi subautomata.
In the following, we will denote by AccPS

Streett =
∧

1≤ j≤n("!Kj ⇒ "!Hj) the Streett
acceptance condition of PS and by AccPS

Rabin =
∨

1≤ j≤n(!"¬Hj ∧ "!Kj) the acceptance
condition obtained from the acceptance pairs in PS by interpreting them as a Rabin
acceptance condition. We now show that L>0

Büchi(P) = L>0
Streett(PS).

⊆: Let w /∈ L>0
Streett(PS), thus PrPS,w(AccPS

Streett) = 0 and hence PrPS,w(AccPS
Rabin) = 1. Consider

a run π of PS that satisfies the Rabin condition
∨

1≤ j≤n(!"¬Hj ∧ "!Kj), thus there
exists an index j such that π |= !"¬Hj ∧ "!Kj . Consider the liftings of π in the
constructed Büchi automaton P. (By a lifting of π , we mean any run in P for w
whose projection to the QS-components agrees with π .) As the above construction
ensures that whenever a Kj-state is visited in Paccept or Pi, j for some i (= j, then with
equal positive probability one of the subautomaton P j or P j,k is entered. Hence, if
infinitely often a Kj-state is visited and the process does not stay forever in one of the
subautomata Pi (for some i (= j) or Pk,* (where it cannot accept), then almost surely
P j is entered. But P j can only be left via a Hj-state. As π |= !"¬Hj this ensures
that almost all liftings of π will eventually stay in one of the subautomata Pi or Pi,k,
hence they will almost surely not be accepting. This shows that PrPS,w(AccPS

Rabin) = 1 ⇒
PrPBüchi(w) = 0 and w /∈ L>0

Streett(PS) ⇒ w /∈ L>0
Büchi(P).

⊇: Let w ∈ L>0
Streett(PS), thus PrPS,w(

∧
1≤ j≤n("!Kj ⇒ "!Hj)) > 0. As {π | π |=

∧
1≤i≤n("!Ki ⇒ "!Hi)} =

⊔
J⊆{1,...,n}{π | π |= AccPS

Streett ∧
∧

j∈J "!Kj ∧
∧

j /∈J !"¬Kj},
there exists J ⊆ {1, . . . , n} such that

PrPS,w



AccPs
Streett ∧

∧

j∈J

"!Kj ∧
∧

j /∈J

!"¬Kj



 > 0.

Since !"¬Kj is the disjoint union of (!=*−1Kj ∧ "≥*¬Kj), for * ∈ N, and since
{ j | j /∈ J} is finite, there exists r ∈ N≥0 such that

PrPS,w



AccPs
Streett ∧

∧

j∈J

"!Kj ∧
∧

j /∈J

">r¬Kj



 > 0.

Let πS be a run in PS with πS |= AccPs
Streett ∧

∧
j∈J "!Kj ∧

∧
j /∈J ">r¬Kj . Then almost

all liftings of πS to runs for w in P that stay in Pinit for the first r input symbols and
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eventually enter Paccept are accepting. This yields

PrPBüchi(w) ≥ 1
2r+1 · PrPS,w



AccPs
Streett ∧

∧

j∈J

"!Kj ∧
∧

j /∈J

">r¬Kj



 > 0

and w ∈ L>0
Büchi(P).

5.2. From PBA>0 to 0/1-PRA
In this section, we will describe how a given PBA>0 P can be transformed into an
equivalent 0/1-PRA PR, that is a PRA such that every infinite word is either accepted
with probability 0 or 1. This result will play a crucial role in Section 5.3 and for
the complementation of PBA under the probable semantics (see Section 6.2). Before
we present the theorem let us briefly comment on this transformation which has
some similarities with Safra’s determinization algorithm for NBA and also relies on
some kind of powerset construction. However, we argue that the probabilistic setting
is slightly simpler. Instead of organizing the potential accepting runs in Safra trees,
we may deal with up to n independent sample runs (where n is the number of states in
P) that are representative for all potential accepting runs. The idea is to represent the
current states of the sample runs by tuples 〈p1, . . . , pk〉 of pairwise distinct states in P.
Whenever two sample runs meet at some point, say the next states p′

1 and p′
2 in the

first two sample runs agree, then they are merged, which requires a shift operation for
the other sample runs and yields a tuple of the form 〈p′

1, p′
3, . . . , p′

k, . . . , q, . . .〉 where p′
i

is a successor of pi in the ith sample run. Additionally, new sample runs are generated
in case the original PBA P can be in an accepting state q /∈ {p′

1, . . . , p′
k}. The Rabin

condition serves to express that at least one of the sample runs enters the set F of
accepting states in P infinitely often and is a proper run in P (i.e., is affected by the
shift operations only finitely many times). Intuitively, the automaton PR “simulates”
P and moreover each time P could be in an accepting state, PR starts a new sample
run (if necessary). Let w ∈ L(P), thus PrP (w) > 0 and with positive probability P can
be in an accepting state infinitely often. But then PR almost surely either already is
in a corresponding sample run or starts a new sample run infinitely often and from
there on accepts the remaining suffix with positive probability > c for some c > 0 (as
it “simulates” P and PrP (w) > 0). This yields that the automaton PR accepts w with
probability 1. This idea is formalized in the proof of the following theorem.

THEOREM 5.3 (FROM PBA>0 TO 0/1-PRA). For any PBA P, there exists a PRA PR with
L>0(P) = L>0

Rabin(PR) and such that for every infinite word w, PrPR(w) ∈ {0, 1}.

PROOF. Let P = (Q, δ, µ0, F) be the given PBA>0. Without loss of generality, we may
suppose that P is total. The idea for the definition of PR is to deal with states of the form
〈p1, . . . , pk, R〉 where p1, . . . , pk are pairwise distinct states that represent the current
states of “independent” runs for the given input word. The acceptance condition of PR
will then require that at least one of these runs in P is accepting. The last component
R is a subset of Q, representing the set of all potential states in which the original
automaton P could be. It will be obtained by the standard powerset construction for
finite automata.

To organize the independent runs in a finite-state automaton (rather than an infinite
tree), we abstract away from multiple occurrences of some states and merge runs that
meet at some point. This causes some technical difficulties because PR has to recover
fictitious sample runs that enter F infinitely often by combining fragments of infinitely
many runs. For this reason, we attach a bit ξ j ∈ {0, 1} for each of the states pj which
indicates whether the last step results from a proper transition in P (in which case
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ξ j = 0) or pj is the first state of a newly generated run (in which case ξ j = 1). These bits
will be used in the definition of the Rabin acceptance condition of PR which requires
that for some j, the jth run visits F infinitely often and in some infinite suffix, the
attached bits are 0.

We will structure our states in PR in such a way that we first list the states that
result from a proper transition in P (having the attached bit 0) and then we list the
states that are newly generated (because the automaton P could be in an accepting
state). The latter have attached bit 1. Thus, for each state 〈p1, ξ1, . . . , pn, ξn, R〉,

ξi = 1 ⇒ ∀i < j ≤ n, ξ j = 1 (†)
Since several sample runs could be in the same next state (with the attached bit 0),
we may need to merge them. Therefore, we define a normalization operator ν that
takes as input k states p1, . . . , pk in P augmented with bits ξ1, . . . , ξk, possibly with
multiple occurrences of some states, and returns a normalized tuple where each state
in {p1, . . . , pk} appears exactly once, with an appropriate bit. Formally, given a 2k-
tuple 〈p1, ξ1, . . . , pk, ξk〉 ∈ (Q × {0, 1})k where k ≥ 1 and the ξi ’s satisfy (†) we now
define ν(〈p1, ξ1, . . . , pk, ξk〉) to be the unique tuple 〈pi1 , ξ

′
i1 , . . . , pi* , ξ

′
i*〉 where i1, . . . , i* ∈

{1, . . . , k} are indices such that
—i1 < i2 < · · · < i* and {p1, . . . , pk} = {pi1 , . . . , pi*},
—pi1 , . . . , pi* are pairwise distinct and pih /∈ {p1, . . . , pih−1} for 1 ≤ h ≤ *,
—ξ ′

ih
= 1 if h < ih and ξ ′

ih
= ξih if h = ih.

Note that ξ ′
1, . . . , ξ

′
* satisfy (†). For example, ν(〈p, 0, q, 1, p, 1〉) = ν(〈p, 0, p, 0, q, 0〉) =

〈p, 0, q, 1〉. The idea is to identify all tuples 〈p1, ξ1, . . . , pk, ξk〉 and 〈q1, ζ1, . . . , qj, ζ j〉
such that ν(〈p1, ξ1, . . . , pk, ξk〉) = ν(〈q1, ζ1, . . . , qj, ζ j〉). The reason why the normalization
operator ν requires ξih = 1 if h < ih is that the bit 1 serves as a separation symbol in the
state sequence induced by the (2h− 1)-st component of the states in a run in PR. Given
a run π in PR such that for infinitely many states in π the bit in the 2h-th component
is 1, then the state sequence obtained by the (2h − 1)-st components of the states in
π results from the concatenation of fragments of infinitely many runs in P. Hence, it
does not necessarily represent a run in P. This will be important for the acceptance
condition in PR.

We now present the precise definition of the PRA PR. The state space of the PRA PR is

Q =
⋃

1≤k≤n

Qk

where n = |Q| and Qk is the set of all tuples 〈p1, ξ1, . . . , pk, ξk, R〉 ∈ (Q × {0, 1})k × 2Q

such that pi (= pj for 1 ≤ i < j ≤ k and that ξ1, . . . , ξk satisfy (†). Let us fix the notation
Q≥ j =

⋃
j≤k≤n Qk to denote the set of states of PR that represent at least j sample runs.

Similarly, Q< j =
⋃

1≤k< j Qk denotes the set of states of PR that represent less than j
sample runs. Intuitively, when reading letter a in state q = 〈q1, ξ1, . . . , qk, ξk, R〉 in PR,
then the possible successors are the tuples

p = 〈p1, ζ1, . . . , pk, ζk, pk+1, ζk+1, . . . , pm, ζm, S〉
where

(i) pi ∈ δ(qi, a) for 1 ≤ i ≤ k,
(ii) pk+1, . . . , pm are pairwise distinct states in P such that

{pk+1, . . . , pm} = (δ(R, a) ∩ F) \ {p1, . . . , pk},
(iii) ζ1 = · · · = ζk = 0 and ζk+1 = · · · = ζm = 1,
(iv) S = δ(R, a).
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These tuples p might be not contained in Q, but they will be turned into states of PR by
applying the ν-operator. The intuitive meaning of condition (i) is the independence of
the transitions qi

a−→ pi, i = 1, . . . , k, that serve to mimick P ’s behavior by sample runs.
Condition (ii) can be understood as the creation of new sample runs that are potential
accepting runs in P. We attach the bit 0 to the first k components to denote that the
last step of the sample runs 1, . . . , k was a proper transition in P, while the attached
bit 1 for runs k + 1, . . . , m indicate that new runs have been generated (condition (iii)).
The last condition (iv) states that the last component is obtained with the standard
powerset construction. The probability to obtain the tuple p (note that p /∈ Q is possible
as there might be multiple occurrences of states with the attached bit 0) from state
q ∈ Q by reading letter a is given by

((q, a, p) =
∏

1≤i≤k

δ(qi, a, pi),

provided that these conditions (i), (ii), (iii), and (iv) hold. For all other tuples, we set
((q, a, p) = 0.

For given states q ∈ Q and q′ ∈ Q in PR, the transition probability δPR(q, a, q′) in PR
is obtained by summing up the values ((q, a, p) where p ranges over all tuples that
are represented by state q′ in PR and satisfy conditions (i), (ii), (iii), and (iv). Formally,
given a state

q′ = 〈q′
1, ξ

′
1, . . . , q′

*, ξ
′
*, R′〉 ∈ Q,

let [[q′]] be the set of all tuples p = 〈p1, ζ1, . . . , pm, ζm, S〉 such that

ν(〈p1, ζ1, . . . , pm, ζm〉) = 〈q′
1, ξ

′
1, . . . , q′

*, ξ
′
*〉 and R′ = S.

The transition probabilities in PR are defined by:

δPR(q, a, q′) =
∑

p∈[[q′]]

((q, a, p).

The acceptance condition of the probabilistic Rabin Automaton PR consists of n
acceptance pairs (H1, K1), . . . , (Hn, Kn). Intuitively, the jth pair (Hj, Kj) formalizes the
condition stating that the state sequence obtained by the (2 j − 1)-st components of
a given run π in PR stands for an accepting run in P. This requires that F is visited
infinitely often and that from some moment on the attached bit at position 2 j is
0. Intuitively, these conditions assert that the state sequence in Q obtained by the
(2 j − 1)-st components of the states in π contains an infinite suffix which is the suffix
of an accepting run in P. Formally, the set Kj ⊆ Q consists of all states

〈p1, ξ1, . . . , pj, ξ j, . . . , pk, ξk, R〉 ∈ Q≥ j such that pj ∈ F.

The set Hj ⊆ Q consists of all states

〈p1, ξ1, . . . , pj, ξ j, . . . , pk, ξk, R〉 ∈ Q≥ j such that ξ j = 1.

The initial distribution in PR is given by

µ0(〈p, 0, Qinit〉) = µ0(p)

where Qinit is the set of initial states in P, that is, Qinit = {q ∈ Q : µ0(q) > 0}.
Given an infinite word w = a1a2a3 . . . ∈ $ω, we show the equivalence of the following

three statements:

(1) PrPR
Rabin(w) > 0 (2) PrPBüchi(w) > 0 (3) PrPR

Rabin(w) = 1.
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This equivalence yields

L>0
Rabin(PR) = L>0

Büchi(P) and PrPR
Rabin(w) ∈ {0, 1} for all w ∈ $ω.

(3) ⇒ (1) is obvious.
(1) ⇒ (2): Suppose that PrPR

Rabin(w) > 0. Then, there is some j ∈ {1, . . . , n} such that

PrPR,w(!"¬Hj ∧ "!Kj) > 0.

As the set of runs that satisfy !"¬Hj is the disjoint union of the sets of runs
satisfying !=k−1 Hj ∧ "≥k¬Hj, k = 0, 1, 2, . . ., there exists m ∈ N≥0 such that

PrPR,w("≥m¬Hj ∧ "!Kj) > 0.

Here, for every run π , π |= "≥k¬Hj if and only if π* /∈ Hj , for * ≥ k. As the set Q\ Hj
is finite, there exists a state r /∈ Hj , such that

PrPR,w
{
π | π |= !=mr ∧ "≥m¬Hj ∧ "!Kj

}
> 0,

where π |= !=mr if and only if πm = r.
It follows from the transition relation of PR that whenever there is a transition from
a state q ∈ Qi to a state p ∈ Qj , where i < j, then the jth bit in p is set to 1. Thus,
Q≥ j can only be entered from Q< j via a state in Hj and therefore a run that satisfies
"≥m¬Hj ∧ "!Q≥ j satisfies "≥m−1 Q≥ j .
As Kj ⊆ Q≥ j , the condition !=mr ∧ "≥m¬Hj ∧ "!Kj can only hold for runs

π = q0, q1, q2, . . .

in PR that have an infinite suffix qm, qm+1, qm+2, . . . consisting of states
qi = 〈p1,i, ξ1,i, . . . , pj,i, ξ j,i, . . . , Ri〉 in Q≥ j where ξ j,i = 0 for all i ≥ m. More-
over qm = r and there are infinitely many indices i such that pj,i ∈ F.
But then the projection to the (2 j − 1)-st components in qm, qm+1, qm+2, . . . yields an
infinite suffix pj,m, pj,m+1, pj,m+2, . . . of an accepting run for w in P. Furthermore,
state rj = pj,m is reachable from an initial state q0 ∈ Qinit via a run for the prefix
a1 . . . am of w, where rj denotes the (2 j − 1)st component of r. Thus,

PrP (q0
a1...am−−→ rj) > 0

in P. Hence
PrPBüchi(w) ≥ PrP (q0

a1...am−−→ rj) · PrPR,w(!=mr ∧ "≥m¬Hj ∧ "!Kj).

Hence, PrPBüchi(w) > 0, and therefore, w ∈ L(P).
(2) ⇒ (3): Let us suppose that θ = PrPBüchi(w) > 0 and show that PrPR

Rabin(w) = 1. We
pick some state p ∈ F such that PrP,w("!p) > 0. Let Ri = δ(Qinit, a1 . . . ai) for
i ≥ 0. Then, p ∈ Ri ∩ F for infinitely many i ∈ N≥1. For each such index i, let
θi = PrP{π : π is a run for ai+1ai+2ai+3 . . . starting in p such that π |= "!p

}
. Note

that θi can be written as a sum

θi =
∞∑

j=i+1

ς [i, j] · θ j

where ς [i, j] denotes the probability of the set of runs qi, qi+1, . . . , qj for the finite
subword ai+1 . . . aj of w with qi = qj = p and p /∈ {qi+1, . . . , qj−1}. As

0 ≤ ς [i, j] ≤ 1 and
∑

j>i

ς [i, j] ≤ 1,
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Fig. 8. PBA P: Example for the transformation into 0/1-PRA.

for each i ∈ N≥1 there exists some j > i with θi ≤ θ j . Hence, there exists an infinite
sequence i1 < i2 < i3 < . . . of natural numbers such that p ∈ Rih ∩ F for all h ≥ 1 and

0 < θ = θi1 ≤ θi2 ≤ θi3 ≤ . . .

We now regard the stochastic process induced by PR and the input word w. Let
I = {i1, i2, i3, . . .}. For each index i ∈ I, the process enters a state

pi = 〈p1,i, ξ1,i, . . . , pk,i, ξk,i, Ri〉 where p ∈ Ri ∩ F ⊆ {p1,i, . . . , pk,i}.
Say p = pj,i. With probability θi, the state sequence obtained by scanning the suffix
ai+1ai+2ai+3 . . . of w from p = pj,i is a run pi, pi+1, pi+2, . . . in P that visits p infinitely
often. Thus, with probability at least θi, the stochastic process induced by PR and w
will generate from position i on a run pi, pi+1, pi+2, . . . where after at most j −1 shifts
via the ν-operator an infinite suffix pi, pi+1, pi+2, . . . (with pi = p) of an accepting run
in P will be generated in the (2*−1)-st component for some * ≤ j. This holds for each
index i ∈ I. Hence, the probability for PR to generate an accepting run for w is at least

∞∑

h=1



 θih ·
∏

1≤k<h

(1 − θik)



 = lim
N→∞

N∑

h=1



 θih ·
∏

1≤k<h

(1 − θik)





= lim
N→∞



 1 −
∏

1≤k≤N

(1 − θik)





≥ lim
N→∞

(
1 − (1 − θ )N )

= 1.

This yields PrPR
Rabin(w) = 1 and shows the theorem.

Remark 5.4. We will see in Section 6 that PBA>0 are closed under complementa-
tion. Together with the previous transformation from PBA>0 to 0/1-PRA, this provides
a transformation from PBA>0 to 0/1-PSA due to the duality of Rabin and Streett ac-
ceptance conditions.

To conclude this section, we illustrate the construction of an equivalent 0/1-PRA on
a simple example of a PBA>0. Recall the automaton Pλ from Figure 3, page 11 that
has two remarkable properties. Namely, it accepts a non-ω-regular language and its
accepted language depends on the precise transition probabilities. In Figure 8 we depict
the automaton P which resembles P 3

4
, but is moreover total.

Given a word w = ak1bak2bak3b . . . ∈ L(P), PrP (w) =
∏∞

i=1(1 − ( 1
4 )ki ) > 0. Applying the

transformation described in the proof of Theorem 5.3 yields the 0/1-PRA PR depicted in
Figure 9. States in PR consist of a sequence of states of P, each with an associated bit,
and a subset of the states of P. For sake of readability the associated bit is subscripted
in Figure 9, for example, 〈u0, p1, {p, u}〉 stands for 〈u, 0, p, 1, {p, u}〉. The crucial parts
of the automaton PR are two very similar subautomata that we denote by Pleft and
Pright. Pleft consists of the states in the left dashed rectangular box and the left dotted
parallelogram and Pright consists of the states in the right dashed rectangular box
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Fig. 9. The resulting 0/1-PRA PR.

and the right dotted parallelogram. Both Pleft and Pright simulate P, the two states
in the corresponding dashed box simulate the state q of P and the two states in the
corresponding dotted parallelogram simulate the state p. Note that the automaton P
basically rejects if it reads the letter b in state p. This is simulated in PR as follows. If
two consecutive b’s are read then PR moves with the first b from the dashed box to the
lower state of the dotted parallelogram. With the second b, it moves to state 〈u0, {u}〉
from which it can never accept. If a word akb is read, then P ’s behavior is simulated,
but instead of rejecting with probability ( 1

4 )k, PR moves to the state 〈u0, p1, {p, u}〉 from
where the process of P is simulated in the subautomaton Pleft for the remaining suffix
of the input word. Note that for an input word akj bakj+1b . . ., the probability that the b’s
are not read in the parallelogram but rather in the box is

∏∞
i= j(1 − ( 1

4 )ki ). This quantity
is greater than

∏∞
i=1(1 − ( 1

4 )ki ) and thus positive if ak1bak2b . . . ∈ L>0(P). Hence, with
positive probability (bounded from below), the process stays in one of the subautomata
Pleft or Pright where it accepts (in the second component for the automaton Pleft and in
the first component for the automaton Pright). This ensures that it accepts the words in
L>0(P) with probability 1.

Note that a word with only finitely many b’s will not be accepted as almost all runs
are not accepting. If the automaton enters a dashed box (after reading the last b), it
will almost surely reject, as it will visit both states in the box almost surely. But such a
run does not satisfy the Rabin acceptance condition as there is only an accepting state
of P (namely p) in the third component, but one of the states in the box has the p in the
third component associated with the bit 1. If the input word contains no b, the same
reasoning applies to the two states in the oval.

5.3. Probable and Almost-Sure Semantics
While the threshold semantics is more powerful for PBA than the probable semantics,
the almost-sure acceptance criterion is too strong for PBA and even fails to cover the
full class of ω-regular languages. In constrast to this constellation for PBA, we prove
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in the remainder of this subsection that for Streett and Rabin acceptance conditions,
probable and almost-sure semantics are equally expressive.

PROPOSITION 5.5. L(PSA>0) = L(PSA=1) = L(PRA=1) = L(PRA>0).

PROOF. The proposition follows from the duality of the Streett and Rabin acceptance
conditions, the results presented in Sections 5.1 and 5.2 and the fact that PBA>0 are
closed under complementation (see Section 6.2). More precisely, we show a ring of
inclusions

L(PSA>0)
(i)
⊆ L(PSA=1)

(ii)
⊆ L(PRA=1)

(iii)
⊆ L(PRA>0)

(iv)
⊆ L(PSA>0).

For the sake of clarity we may index Pr or L by Rabin, Streett, or Büchi to stress that
the automaton is of such a kind.

(i) Let PS be a PSA. By Theorem 5.2, there exists a PBA PB such that L>0(PS) =
L>0(PB). Theorem 6.3 from next section implies the existence of a PBA PB such
that L>0(PB) = $ω \ L>0(PB). This PBA can be transformed into an equivalent
PRA PR (see Remark 2.2, page 4). Thus,

L>0
Streett(PS) = L>0

Büchi(PB) = $ω \ L>0
Büchi(PB) = $ω \ L>0

Rabin(PR) = L=1
Streett(PR).

Note that $ω \L>0
Rabin(P) = L=1

Streett(P) holds for any probabilistic ω-automaton P since
for every w ∈ $ω, PrPRabin(w) = 1 − PrPStreett(w).

(ii) Let PS be a PSA. Then, L=1
Streett(PS) = $ω \ L>0

Rabin(PS). Interpreting PS as a Rabin
automaton, thanks to the second item in Theorem 5.1, page 24, there exists an
equivalent PBA>0 PB. PB can then be complemented into PB (see Theorem 6.3).
Theorem 5.3 yields then an equivalent 0/1-PRA PR. Hence:

L=1
Streett(PS) = $ω \ L>0

Rabin(PS) = $ω \ L>0
Büchi(PB)

= L>0
Büchi(PB) = L>0

Rabin(PR) = L=1
Rabin(PR).

Note that the last equality holds, because PR is a 0/1-automaton, that is, each
input word is either accepted with probability 0 or 1.

(iii) Let PR be a PRA. Then L=1
Rabin(PR) = $ω \ L>0

Streett(PR). Interpreting PR as a Streett
automaton, thanks to Theorem 5.2 (or third item in Theorem 5.1) there exists
an equivalent Büchi automaton PB which can be complemented into PB (see
Theorem 6.3 in next section). PBA PB can be seen as a PRA>0 P ′

R (see Remark 2.2)
yielding

L=1
Rabin(PR) = $ω \ L>0

Streett(PR) = $ω \ L>0
Büchi(PB) = L>0

Büchi(PB) = L>0
Rabin(P ′

R).
(iv) Let PR be a PRA>0. Using the second item in Theorem 5.1 PR can be transformed

into an equivalent Büchi automaton PB under probable semantics that itself can
be seen as a PSA>0 PS (see Remark 2.2). This yields

L>0
Rabin(PR) = L>0

Büchi(PB) = L>0
Streett(PS).

Remark 5.6. Note how the following series of equalities/containments:

L(PSA>0) = L(PSA=1) = L(PRA=1) = L(PRA>0) = L(PBA>0) # L(PBA=1).

compares to the nonprobabilistic setting of deterministic and nondeterministic ω-
automata where

L(NSA) = L(DSA) = L(DRA) = L(NRA) = L(NBA) # L(DBA).

This correspondence between nondeterminism and probable semantics as well as de-
terminism and almost-sure semantics is further reflected in the results of Section 6
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IL(DBA)

IL(ω-reg)

IL(PBA>λ )

IL(DBA) IL(PBA=1)

Fig. 10. Overview of expressiveness of variants of probabilistic ω-automata.

and Lemma 4.12, where it is shown that L(PBA>0) is closed under union, intersection
and complementation (just as L(NBA)) whereas L(PBA=1) is closed under union and
intersection but not under complementation (just as L(DBA)). It is also strengthened
by several results of Chadha et al. [2009b], where it is shown that every language
in L(PBA>0) is a Boolean combination of languages in L(PBA=1) (like every language
in L(NBA) is a Boolean combination of languages in L(DBA)). Moreover Chadha et al.
[2009b] shows that the ω-regular part of L(PBA=1) is exactly the class of languages that
can be accepted by a DBA, that is,

L(PBA>0) ∩ ω-reg = L(NBA) and L(PBA=1) ∩ ω-reg = L(DBA).

An overview of the expressiveness results of variants of probabilistic ω-automata is
depicted in Figure 10.

6. COMPOSITION OPERATORS
After the general discussion on PBA in Section 4, we will now present composition
operators for PBA under the probable as well as the almost-sure semantics. As we
saw in Lemma 4.12, the class L(PBA=1) is not closed under complementation. Thus,
we first present operators for union and intersection for PBA under the probable and
the almost-sure semantics. We then show that the class L(PBA>0) is also closed under
complementation.

6.1. Union and Intersection of PBA under the Probable
as Well as the Almost-Sure Semantics

LEMMA 6.1. L(PBA>0) and L(PBA=1) are closed under union and intersection.

PROOF. Let P1 = (Q1, $, δ1, µ
1
0, F1) and P2 = (Q2, $, δ2, µ

2
0, F2) be two PBA over the

same alphabet.

Union. The union of P1 and P2 is realized (similar to the case of DBA) through
a parallel composition P1 >? P2. Formally, the state space of P1 >? P2 is the carte-
sian product Q1 × Q2. The transition probabilities in the product are given by
δ((p1, p2), a, (q1, q2)) = δ1(p1, a, q1) · δ2(p2, a, q2). The initial distribution in P1 >? P2 is
defined by µ0((p1, p2)) = µ1

0(p1) ·µ2
0(p2). The set of accepting states is F1 × Q2 ∪ Q1 × F2.
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This parallel composition yields a PBA satisfying for every w ∈ $ω:

PrP1>?P2 (w) = PrP1>?P2,w("!F1 × Q2 ∨ "!Q1 × F2)

= PrP1 (w) + (1 − PrP1 (w)) · PrP2 (w)

= PrP1 (w) + PrP2 (w) − PrP1 (w) · PrP2 (w).

As a consequence, L>0(P1 >? P2) = L>0(P1) ∪ L>0(P2) and L=1(P1 >? P2) = L=1(P1) ∪
L=1(P2).

Intersection. For the intersection operator, we use the same trick as for NBA (re-
spectively, DBA) and construct a generalized PBA (GPBA) P1 >?G P2. Recall that a
generalized Büchi automaton is equipped with several acceptance sets and runs have
to visit each of the acceptance sets infinitely often in order to be accepting. The GPBA
P1 >?GP2 can then be turned into an equivalent PBA (see Theorem 5.1(a)). Formally, the
state space of P1 >?G P2 is the cartesian product Q1 × Q2. The transition probabilities
in the product are given by δ((p1, p2), a, (q1, q2)) = δ1(p1, a, q1) · δ2(p2, a, q2). The initial
distribution in P1 >?G P2 is defined by µ0((p1, p2)) = µ1

0(p1) · µ2
0(p2). P1 >?G P2 has two

acceptance sets, namely F1 × Q2 and Q1 × F2. Then, for every word w ∈ $ω,

PrP1>?GP2 (w) = PrP1>?GP2,w("!F1 × Q2 ∧ "!Q1 × F2)

= PrP1 (w) · PrP2 (w).

As a consequence, L>0
GPBA(P1 >?G P2) = L>0(P1) ∩ L>0(P2) and L=1

GPBA(P1 >?G P2) =
L=1(P1) ∩ L=1(P2). Thanks to Theorem 5.1(a), the GPBA P1 >?G P2 can be transformed
into an equivalent PBA (under both semantics).

Note that closure under union and intersection of L(PBA=1) has also been showed
in Chadha et al. [2009b] using a “partial” complementation via finite probabilistic
monitors.

Remark 6.2. The union of two probable PBA as well as the intersection of two
almost-sure PBA can also be obtained by a very simple construction similar to the
one used for the union of NBA. Given two PBA P1 = (Q1, $, δ1, µ

1
0, F1) and P2 =

(Q2, $, δ2, µ
2
0, F2) over the same alphabet, we define the PBA P as 1

2P1 + 1
2P2. Formally,

P has the state space Q1
·
∪ Q2, equipped with the same transitions than P1 and P2,

with the set of accepting states F1 ∪ F2 and with the initial distribution µ0 defined
by µ0(q) = 1

2µi
0(q) for every state q ∈ Qi. Intuitively, P simulates both P1 and P2 with

probability 1
2 . Clearly PrP (w) = 1

2 PrP1 (w)+ 1
2 PrP2 (w), and thusL>0(P) = L>0(P1)∪L>0(P2)

and L=1(P) = L=1(P1) ∩ L=1(P2).

6.2. Complementation of PBA under the Probable Semantics
The question of whether the class of languages recognizable by PBA>0 is closed under
complementation was left open in Baier and Grösser [2005]. In Baier et al. [2008], we
showed that, for each PBA>0 P, there exists a PBA>0 that accepts the complement of
L>0(P). The construction relies on the transformation of a given PBA>0 P into an equiv-
alent PRA PR that accepts each word with probability 0 or 1 (thanks to Theorem 5.3).
This PRA can easily be turned into a PSA for the complement language, which will at
last be transformed into an equivalent PBA>0 (due to Theorem 5.2).

THEOREM 6.3 (L(PBA>0) IS CLOSED UNDER COMPLEMENTATION). For each PBA P, there
exists a PBA P ′ of size O(exp(|P|)) such that L>0(P ′) = $ω \L>0(P). Moreover, P ′ can be
effectively constructed from P.
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PROOF. The idea for the complementation of a given PBA>0 P is to provide the
following series of transformations:

PBA P (1)=⇒ 0/1-PRA PR with L>0(PR) = L=1(PR) = L>0(P)
(2)=⇒ 0/1-PSA PS with L>0(PS) = $ω \ L(PR)
(3)=⇒ PBA P ′ with L>0(P ′) = L>0(PS),

where 0/1-PRA denotes a PRA with PrPR(w) ∈ {0, 1} for each word w ∈ $ω. The trans-
formation of step (1) uses Theorem 5.3, we will explain step (2) right now and refer to
Theorem 5.2 for step (3).

Let P = (Q, $, δ, µ0, F) be a PBA>0. Applying Theorem 5.3, we construct an equiva-
lent 0/1 PRA PR such that

L>0(P) = L>0(PR) = L=1(PR).

For the sake of clarity we may index Pr or L by Rabin, Streett, or Büchi to stress that the
automaton is of such a kind. Using the duality between the Rabin acceptance condition∨

1≤ j≤n(!"¬Hj ∧"!Kj) and the Streett acceptance condition
∧

1≤ j≤n("!Kj → "!Hj),
we note that

$ω \ L>0
Rabin(PR) = L=1

Streett(PR) = L>0
Streett(PR)

since PrPR
Rabin(w) = 1 − PrPR

Streett(w) and PR is a 0/1 automaton. Thus, we view the automata
PR as a PSA PS and apply Theorem 5.2 to transform the PSA PS into an equivalent
PBA>0 P ′, which yields

L>0
Büchi(P ′) = L>0

Streett(PS) = $ω \ L>0
Rabin(PR) = $ω \ L>0

Büchi(P).

Let n be the number of states in the original PBA P. The construction presented in
the proof of Theorem 5.3 implies that the number of states in PR = PS is bounded by
2O(n log n), while the number of acceptance pairs in PR = PS is n. Therefore, the size of
the PBA>0 P ′ generated from PS by Theorem 5.2 is bounded by n2 · 2O(n log n). P ′ is thus
at most exponentially larger than P.

7. EMPTINESS CHECKING FOR PBA>0 AND RELATED PROBLEMS
For finite probabilistic automata (PFA), it has been shown that the emptiness problem
is undecidable. Recall that a PFA Pfin is equipped with a threshold 0 < λ < 1 and that
the accepted language L>λ(Pfin) consists of all input words for which the set of runs that
end in an accepting state has a probability greater than λ. From this, it easily follows
that the emptiness problem for PBA under the threshold semantics (see Section 4.3) is
undecidable. Indeed, any given PFA Pfin over the alphabet $ can be transformed into a
PBA P such that, for each finite word ρ ∈ $∗, it holds that PrPfin(ρ) = PrP (ρcω), where c
is an additional letter which is not in $. Moreover, the automaton P can only produce
(Büchi) accepting runs for input words that are of the form ρcω, where ρ is in $∗ (for
each accepting state of the PFA Pfin, add a c-transition with probability one to a new
state qacc which then is the only accepting state of the PBA P and has a c-loop attached
to it with probability one).

Any probabilistic finite automata with threshold λ = 0 accepts the same language as
its underlying nondeterministic finite automaton, and therefore, the emptiness prob-
lem for this restricted class is decidable. In contrast, we will show that the emptiness
problem for PBA>0 is undecidable. We also discuss immediate consequences of this
result.
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7.1. Emptiness Problem for PBA>0

The proof for the undecidability of the emptiness problem for PBA under the probable
semantics relies on a reduction from a variant of the emptiness problem for PFA, using
the fact that modifying the transition probabilities can affect the accepted language of
a PBA>0 (Theorem 4.7). The emptiness problem for PFA is known to be undecidable
[Paz 1971]. Here we use the following variant of this result, due to Madani et al. [2003].

THEOREM 7.1 (UNDECIDABILITY RESULT FOR PFA [MADANI ET AL. 2003]). The following
problem is undecidable: Given a constant 0 < ε < 1 and a PFA that either accepts
some string with probability at least 1 − ε or accepts all strings with probability at most
ε, decide which is the case.

THEOREM 7.2 (UNDECIDABILITY OF THE EMPTINESS PROBLEM FOR PBA>0). Checking emp-
tiness is undecidable for PBA under the probable semantics.

PROOF. To provide an undecidability proof of the emptiness problem for PBA>0,
we reduce the variant of the emptiness problem for PFA recalled in Theorem 7.1 to
the intersection problem for PBA>0, which takes as input two PBA P1 and P2 and
asks whether L>0(P1) ∩ L>0(P2) is empty. As PBA are closed under intersection (see
Section 6.1), this will complete the proof for Theorem 7.2.

Let R be a PFA over some alphabet $ and 0 < ε < 1
2 as in Theorem 7.1, that is, such

that either there exists some word ρ accepted by R with probability strictly greater
than 1 − ε, or all words are accepted with probability less than ε. For ρ ∈ $∗, let PrR(ρ)
denote the probability that the word ρ is accepted by R. From the PFA R and the
constant ε we construct two PBA P1 and P2 such that

L>ε(R) = ∅ if and only if L>0(P1) ∩ L>0(P2) = ∅,

where L>ε(R) = {ρ ∈ $∗ | PrR(ρ) > ε}. The alphabet for both P1 and P2 arise from the
alphabet $ of R by adding two new symbols 2 and $, that is, P1 and P2 are PBA over
the alphabet $′ = $ ∪ {2, $}. The rough idea is to use the somehow complementary
acceptance behavior of the automata Pλ and P̃λ (see Figure 3 on page 11, and
Figure 6 on page 17). The automata P1 and P2 are designed to read words of the form
ρ1

12ρ1
22 . . . ρ1

k1
$$ρ2

12ρ2
22 . . . ρ2

k2
$$ . . . where ρ

j
i ∈ $∗ and ki ≥ 2. Roughly speaking, P1 will

mimick the automaton Pλ and P2 will mimick P̃λ, where reading a word ρ
j
i 2 in P1

(respectively, P2) corresponds to reading a single letter a in Pλ (respectively, P̃λ). Recall
that Pλ and P̃λ accept infinite words of the form ak1bak2b . . . (depending on the ki). The
two consecutive $-symbols serve as a separator for P1 and P2, just like the letter b
does for Pλ and P̃λ. Thus, the number of 2-symbols between the ( j − 1)st and the jth
occurence of $$ (and therefore the number of words ρ

j
i ) corresponds to the value of kj .

Automaton P1 evolves from the automaton Pλ by replacing each of its two states p0, p1
by a copy of the PFA R. The transitions for the 2-symbol will be defined, such that
after reading a word ρ

j
i 2 in the copy of R that corresponds to the state p0 (recall that

this corresponds to reading a single letter a in state p0 of in Pλ) the automaton P1 is
still in this copy of R with probability 1 − PrR(ρ j

i ) and has moved to the other copy with
probability PrR(ρ j

i ), similar to the behavior of automaton Pλ upon reading the letter a
in state p0 (it stays in p0 with probability 1 − λ and moves to p1 with probability λ).
The structure of P1 and P2 is shown in Figures 11 and 12, respectively.

The PBA P1 is composed of two copies of the PFA R (represented in dashed lines)
augmented with new edges using the additional symbols 2 and $. The initial states of
P1 are the initial states of the first copy of R according to the initial distribution of R.
Reading the symbol 2 in any final state of the first copy of R, the PBA P1 proceeds to the
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F
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0
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#, µR
0

#, µR
0

$, 1 $, 1
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0

Fig. 11. PBA P1.

p′2

p′1p′0

F ′

#, ε

$, 1 $, 1

a ∈ Σ , 1
#, 1−ε

u′
1 u′

2

$, 1 $, 1

a ∈ Σ , 1
#, 1

a ∈ Σ , 1
a ∈ Σ , 1

#,1-ε

#,1-ε
#,ε

#,ε

Fig. 12. PBA P2.

initial state of R in the second copy according to the initial distribution of R. Reading
the symbol 2 in any nonfinal state of the first copy of R, the PBA P1 proceeds to the ini-
tial state of R in the first copy according to the initial distribution of R. Consuming the
symbol $ in some (final or nonfinal) state of the second copy of R, P1 moves with prob-
ability 1 to the special state F, which is the unique accepting state of P1. Reading the
second $ symbol, P1 proceeds on to an initial state according to the initial distribution
of R. As justified at the end of this proof, the accepted language of this PBA>0 is:

L1 = L>0(P1) =
{
ρ1

12ρ1
22 . . . ρ1

k1
$$ ρ2

12ρ2
22 . . . ρ2

k2
$$ . . . | ρ

j
i ∈ $∗, ki ≥ 2

and
∏

j≥1



1 −




kj−1∏

i=1

(
1 − PrR

(
ρ

j
i
))






 > 0




 .

The PBA P2 does not depend on the structure of the given PFA R, but only on ε and
the alphabet $. As the automaton P2 is only a slight variant of the automaton P̃λ from
Example 4.2.1, we derive from the expression for L>0(P̃λ) the language accepted by P2
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under the probable semantics:

L2 = L>0(P2) =
{
v1$$ v2$$ . . . | vi ∈ ($ ∪ {2})∗, |vi|2 ≥ 1

and
∏

i≥1

(1 − (1 − ε)|vi |2 ) = 0
}
,

where |v|2 is the number of 2 symbols in the word v ∈ ($ ∪ {2})∗.
We now show that the language L>ε(R) accepted by R for the threshold ε is empty

if and only if L1 ∩ L2 = ∅.

“=⇒”: Assume that L>ε(R) is empty, that is, for every finite word ρ ∈ $∗ it holds that
PrR(ρ) ≤ ε. Let w ∈ L2. The goal is to prove that w /∈ L1. Since w ∈ L2, w can be
written as w = v1$$ v2$$ . . . with vi ∈ ($ ∪{2})∗, |vi|2 ≥ 1 and

∏
i(1− (1−ε)|vi |2) = 0.

The subwords vi can be decomposed according to the occurrences of the symbol 2.
That is,

w = ρ1
12ρ1

22 . . . ρ1
k1

$$ ρ2
12ρ2

22 . . . ρ2
k2

$$ . . . with ρi
j ∈ $∗ and ki = |vi|2 + 1.

Hence w ∈ L2 implies
∏

i(1 − (1 − ε)ki−1) = 0. However:

∏

j≥1



1 −
kj−1∏

i=1

(
1 − PrR

(
ρ

j
i
))


 ≤
∏

j≥1



1 −
kj−1∏

i=1

(1 − ε)



 since L>ε(R) = ∅

=
∏

j≥1

(1 − (1 − ε)kj−1)

= 0 since w ∈ L2.

Hence, w /∈ L1. Since this holds for every w ∈ L2, we conclude that L1 ∩ L2 = ∅.
“⇐=”: Assume now that L>ε(R) (= ∅. By assumption on the PFA R, this means that

there exists a finite word ρ ∈ $∗ such that PrR(ρ) ≥ 1 − ε. For every sequence
(kj) j∈N of natural numbers, we define:

wk1,k2,... = (ρ2)k1ρ$$ (ρ2)k2ρ$$ . . .,

and prove that there exists a sequence (kj), such that wk1,k2,... ∈ L1 ∩ L2. The
acceptance probability of wk1,k2,... in P1 is

∏

j≥1



1 −
kj∏

i=1

(1 − PrR(ρ))



 =
∏

j≥1

(1 − (1 − PrR(ρ))kj )

≥
∏

j≥1

(1 − (1 − (1 − ε))kj ) =
∏

j≥1

(1 − εkj ).

On the other hand, the word wk1,k2,... can be written as v1$$v2$$ . . . with
vi ∈ ($ ∪ {2})∗ and |vi|2 = ki. Hence, the acceptance probability of wk1,k2,... in P2 is:

∏

i≥1

(1 − (1 − ε)|vi |2 ) =
∏

i≥1

(1 − (1 − ε)ki ).

We finally apply Theorem 4.7 which yields the existence of a sequence (k′
i)i≥1 that

will ensure at the same time
∏

j≥1(1 − εk′
j ) > 0 and

∏
i≥1(1 − (1 − ε)k′

i ) = 0. Hence,
wk′

1,k′
2,... ∈ L1 ∩ L2 and L(P1) ∩ L(P2) (= ∅.
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Let us now come back to the justification for the language accepted by P1 under the
probable semantics.We claimed that

L>0(P1) =
{
ρ1

12ρ1
22 . . . ρ1

k1
$$ ρ2

12ρ2
22 . . . ρ2

k2
$$ . . . | ρ

j
i ∈ $∗, ki ≥ 2

and
∏

j≥1



1 −




kj−1∏

i=1

(
1 − PrR

(
ρ

j
i
))






 > 0




 .

Indeed, starting in the first copy of R, 1 − PrR(ρ) is the probability for reading the word
ρ and ending in some non-final state p. Hence,

∏kj−1
i=1 (1 − PrP(ρ j

i )) represents the prob-
ability to stay in the first copy of R after having read the finite word ρ

j
12ρ

j
22 . . . ρ

j
kj−12.

The complement of this probability is then exactly the probability to jump to the
second copy at some point before reading ρ

j
kj

. This corresponds to the probability to be
able to read the symbol $ after the prefix ρ

j
12ρ

j
22 . . . ρ

j
kj−12ρ

j
kj

. Thus, the infinite product

∏
j



1 −




kj−1∏

i=1

(
1 − PrR

(
ρ

j
i
))








is the probability to be able to read the two consecutive $-symbols each time they
appear in the input word. This agrees with the probability to visit infinitely often the
final state F. This shows that the given expression for L>0(P1) is correct and completes
the proof of Theorem 7.2.

Remark 7.3. An alternative proof for Theorem 7.2 is based on a recent result by
Gimbert and Oualhadj: the undecidability of the value 1 problem for probabilistic
finite automata [Gimbert and Oualhadj 2010]. The latter problem asks, given a prob-
abilistic finite automaton (PFA), whether there are words accepted with probability
arbitrarily close to 1. Their proof is short, elegant, and only relies on the undecidability
of emptiness for PFA with threshold 0 < λ < 1. Let us know show to derive Theo-
rem 7.2 from their result. Take a PFA P and turn it into a PBA>0 P ′ by adding a new
transition from every final state to every initial state labelled with a new symbol 2 and
with probability 1. This simple construction ensures that P has value 1 if and only
if L>0(P ′) (= ∅. Indeed, if P has value 1, a sequence (wn)n∈N of words such that wn is
accepted with probability say greater than 1 − 1/n2 can be used to derived an infinite
word, namely w12w22 . . ., accepted with positive probability in the PBA>0 P ′. Assuming
now that the value of P is strictly less than 1, there exists ε > 0 such that for all finite
words the acceptance probability in P is bounded by 1 − ε. Hence, the concatenation
of any sequence of finite words, alternated with 2 symbols can never yield an infinite
word accepted with positive probability in P ′.

7.2. Immediate Consequences of the Undecidability of the Emptiness Problem
Since complementation is effective for PBA>0, the undecidability of the emptiness prob-
lem yields immediately that many other interesting algorithmic problems for PBA>0

are undecidable too.
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COROLLARY 7.4 (OTHER UNDECIDABILITY RESULTS FOR PBA). Given two PBA P1 and P2,
the following problems are undecidable.

universality: L>0(P1) = $ω?
equivalence: L>0(P1) = L>0(P2)?

language containment: L>0(P1) ⊆ L>0(P2)?

Remark 7.5. Chadha et al. [2009b] shows that the emptiness, universality (re-
spectively, language containment) problem for PBA>0 with rational coefficients is
$0

2-complete, where $0
2 is on the second level of the arithmetical hierarchy.

Another immediate consequence of Theorem 7.2 is that the verification problem for
finite nondeterministic transition systems T and PBA-specifications is undecidable.
Here we assume that the states in T are labeled with sets of atomic propositions of
some finite set AP and consider the traces of the paths in T that arise by the projection
to the labels of the states. Furthermore, we assume that the given PBA has the alphabet
2AP.

COROLLARY 7.6 (VERIFICATION AGAINST PBA-SPECIFICATIONS (I)). The following prob-
lems are undecidable.

(a) Given a finite transition system T and a PBA P, is there a path in T whose trace is
in L>0(P)?

(b) Given a finite transition system T and a PBA P, do the traces of all paths in T
belong to L>0(P)?

PROOF. Consider a transition system T such that each infinite word over the alphabet
of P is a trace of T and vice-versa. Then, the emptiness problem for PBA reduces
to (a) and the universality problem for PBA reduces to (b). We define T as follows.
Given a PBA with the alphabet $ = 2AP = {a1, . . . , an}, we define the state set of
T to be S = {s1, . . . , sn} and the set of actions to be Act = {α1, . . . , αn}. Each state si
is labeled with the set of atomic propositions ai. There is a transition from each si
to each sj , 1 ≤ i, j ≤ n via action α j and every state is an initial state of T . Thus
$ω = {trace(π ) | π is an infinite path in T }.

As transition systems are special instances of state-labeled Markov decision pro-
cesses, the following four cases of the qualitative verification problem for finite state-
labeled Markov decision processes M and PBA-specifications P are undecidable too.

COROLLARY 7.7 (VERIFICATION AGAINST PBA-SPECIFICATIONS (II)). Given a finite state-
labeled Markov decision process M and a PBA-specification P, the problems whether
there is a scheduler U for M such that:

(i) PrM,U (L>0(P)) > 0? (ii) PrM,U (L>0(P)) = 1?
(iii) PrM,U (L>0(P)) < 1? (iv) PrM,U (L>0(P)) = 0?

are undecidable.

PROOF. Indeed, problem (a) of Corollary 7.6 reduces to (i) and problem (b) reduces to
(iii) when T is viewed as an MDP MT , where we assume the initial distribution to be
uniform over the initial states of T . Similarly, problem (a) of Corollary 7.6 reduces to
(ii) and problem (b) to (iv).

Remark 7.8. Note that owing to the effective constructions given in Section 5 and
owing to Proposition 5.5 all the undecidability results from this section also hold for
probabilistic Rabin and Streett automata under the probable and the almost-sure
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semantics. However, in the next section, we will show that the emptiness problem is
decidable for PBA=1.

8. POMDP
Partially obserable Markov decision processes (POMDP) have been deeply investigated
in the literature. Most of the publications on POMDP focus on finite-horizon proper-
ties, and provide algorithms to solve them. More recently, infinite-horizon objectives
have been studied in the verification community. On the one hand probabilistic Büchi
automata form a very specific instance of POMDP, but on the other hand, they seem
to contain the core problems for partial observation. As a consequence, combining PBA
specificities with standard MDP techniques can yield new results for POMDP.

Definition 8.1 (Partially Observable MDP). A partially observable MDP (POMDP)
is a pair (M, ∼) consisting of an MDP and an equivalence relation ∼ ⊆ S × S over the
states of M such that for all states s, t ∈ S, if s ∼ t then the sets of actions enabled
in s and t are equal. Given a POMDP (M, ∼), an observation-based scheduler U is a
scheduler for the underlying MDP M that is consistent with ∼, that is, which satisfies
U(s0s1 . . . sn) = U(t0t1 . . . tm) if n = m and si ∼ ti for 0 ≤ i ≤ m. The set of observation-
based schedulers is denoted by Sched(M,∼).

Note that probabilistic ω-automata can be seen as particular instances of POMDP.
Indeed given a total PBA (respectively, PRA, PSA)P and the trivial equivalence relation
over states ∼ = Q × Q, the pair (P, ∼) forms a POMDP, where an observation-based
deterministic scheduler represents an input word for P.

8.1. Undecidability Results
Since PBA are a special case of partially observable Markov decision processes, our
negative results from Section 7 immediately imply undecidability results for POMDP
and qualitative properties. In the literature, some undecidability results for POMDP
(or similar models) and quantitative properties (e.g., expected rewards, approximation
of the maximal reachability problem) can be found [Madani et al. 2003; Giro and
D’Argenio 2007]. However, as far as we know, the undecidability of qualitative ω-regular
properties for POMDP is a new result. As POMDP are 1 1

2 -player games, the following
results also apply to the setting of stochastic multi-player games with incomplete
information.

COROLLARY 8.2 (UNDECIDABILITY RESULTS FOR POMDP). The following problems are
undecidable:

(a) Given (M, ∼) a finite POMDP and F a set of states in M, is there a deterministic
observation-based scheduler U for (M, ∼) such that PrM,U ("!F) > 0?

(b) Given (M, ∼) a finite POMDP and F a set of states in M, is there a deterministic
observation-based scheduler U for (M, ∼) such that PrM,U (!"F) = 1?

PROOF. Given a total PBA P (i.e., a PBA that has transitions for each pair of a state
and input letter) we define the equivalence relation ∼ = Q× Q. Note that each PBA can
be trivially transformed into an equivalent total PBA. The pair (P, ∼) forms a POMDP
with the action set $ where a deterministic observation-based scheduler U represents
an input word wU for the PBA P (and vice-versa). Consider F to be the set of accepting
states of P.

The undecidability of (a) is an immediate consequence of the undecidability of the
emptiness problem for PBA>0 as PrP,U ("!F) = PrP (wU ).

The undecidability of (b) follows from the undecidability of the universality problem
for PBA>0. Indeed letting P = M with the set of accepting states Q \ F, the answer to
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∈F s′M
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2

M′

∈F s′M
Act, 1

Fig. 13. Transformation from M to M′.

(b) is “yes” is and only if L>0(P) (= $ω since:

PrP (wU ) = PrP,U ("!(Q \ F)) = 1 − PrP,U (!"F).

As the universality problem for PBA>0 is undecidable, this shows the claim.

8.2. Decidability Results
Before we show any decidability results for POMDP, we first prove that almost-sure
repeated reachability and almost-sure reachability are interreducible for POMDP.

LEMMA 8.3. The two following problems are reducible to each other:

(1) Given a POMDP (M, ∼) and a set of states F, is there an observation-based scheduler
U with PrM,U ("!F) = 1?

(2) Given a POMPD (M, ∼) and a set of states F, is there an observation-based scheduler
U with PrM,U (!F) = 1?

PROOF.
“⇐” Problem (2) reduces to (1) in a straightforward manner: Given an instance for (2)

we transform it into an instance for (1) by making all F-states absorbing, that is, by
removing all outgoing edges from states in F, and adding self loops for all actions
with probability one (to the states of F).

“⇒” We now show that problem (1) is reducible to problem (2). Let (M, ∼), F be an
instance for (1). We define M′ as follows: M′ consists of a copy of M and some
additional state sacc. All transitions (s, α, s′) in M with s /∈ F are left unchanged.
The transitions (s, α, s′) in M with s ∈ F are kept, but their probabilities are divided
by 2 in M′. Moreover, for all s ∈ F and α ∈ Act, we add a new transition (s, α, sacc)
with probability 1

2 . Finally, we add a self-loop with probability 1 to state sacc for all
action α ∈ Act. The transformation is depicted in Figure 13. The equivalence relation
∼′ on S

.
∪ {sacc} agrees with ∼ on S and {sacc} forms its own equivalence class, i.e.,

[s]∼′ = [s]∼ for s ∈ S and [sacc]∼′ = {sacc}. With F ′ = {sacc}, (M′, ∼′), F ′ is an instance
for problem (2) satisfying the equivalence:

∃U ∈ Sched(M,∼).PrM,U ("!F) = 1 ⇔ ∃U ′ ∈ Sched(M′,∼′).PrM
′,U ′

(!F ′) = 1.

Indeed, if F is visited almost surely infinitely often in M under the scheduler U , F ′

will be almost surely visited in M′ under the scheduler U ′ that mimics U . That is,
U ′(π ′) = U(π ′), if π ′ is not only a finite path in M′ but also in M and U(π ′) = α if
last(π ′) = sacc (where α ∈ Act is arbitrary). Note that all other cases (π ′ does not end
in sacc and is not a path in M) are irrelevant.
Conversely, given U ′ ∈ Sched(M′,∼′) with PrM

′,U ′
(!F ′) = 1, we define U ∈ Sched(M,∼) to

be the restriction of U ′ on the set of path of M, that is, U(π ) = U ′(π ) for all π ∈ PathM
fin .

Then, PrM,U ("!F) = 1, since PrM,U (!"¬F) > 0 implies PrM
′,U ′

("¬F ′) > 0. The last

Journal of the ACM, Vol. 59, No. 1, Article 1, Publication date: February 2012.



JACM5901-01 ACM-TRANSACTION February 14, 2012 16:56

Probabilistic ω-Automata 1:45

claim is easy to see. We denote by [(F)= j(¬F)> j] the set of infinite paths π such that
π j ∈ F and πk /∈ F, k > j. But then it holds that

PrM
′,U ′

("¬F ′) ≥ 1
2 · PrM

′,U ′
([(F)= j(¬F)> j]) ≥ 1

2 j+1 · PrM,U ([(F)= j(¬F)> j]).

As {π | π |= !"¬F} =
.
∪ j≥−1 [(F)= j(¬F)> j], assuming PrM,U (!"¬F) > 0 yields the

existence of an index k, such that PrM,U ([(F)=k(¬F)>k]) > 0 which, together with the
above chain of inequalities (for j = k), shows the claim.
Note, that U and U ′ are of the same type, that is, U is deterministic (respectively,
memoryless) if and only if U ′ is.

Remark 8.4. Note that the construction in Figure 13 also ensures that

∀U ∈ Sched(M,∼).PrM,U ("!F) = 1 ⇔ ∀U ′ ∈ Sched(M′,∼′).PrM
′,U ′

(!F ′) = 1.

Indeed, let us assume that there exists an observation-based schedulerU ofM such that
PrM,U ("!F) < 1. By Lemma 2.8, it follows that there exists an end component (T , A) of
Mwith T ∩F = ∅ such that PrM,U ({π ∈ PathM

inf | Lim(π ) = (T , A)}) > 0. This immediately
shows that PrM

′,U ′
({π ∈ PathM′

inf | Lim(π ) = (T , A)}) > 0 and therefore PrM
′,U ′

(!F ′) < 1.
Here, U ′ is the scheduler of M′ that mimics U (as in the proof of Lemma 8.3). On the
other hand, assume that there exists an observation-based scheduler U ′ of M′ such
that PrM

′,U ′
(!F ′) < 1. Note that for each end component (T , A) of M′, either T = F ′ or

T ∩ F = ∅. By Lemma 2.8, it follows that there exists an end component (T , A) of M′

with F ′ (= T and T ∩ F = ∅ such that PrM
′,U ′

({π ∈ PathM′

inf | Lim(π ) = (T , A)}) > 0. Thus,
for the restriction U of U ′ to M, we derive that PrM,U ({π ∈ PathM

inf | Lim(π ) = (T , A)}) >

PrM
′,U ′

({π ∈ PathM′

inf | Lim(π ) = (T , A)}) > 0 and therefore PrM,U ("!F) < 1, which was
to show.

By Lemma 8.3, we can reduce the almost-sure repeated reachability problem for
POMDP to the almost-sure reachability problem for POMDP for which we now show
decidability (see Alur et al. [1995] and Littman [1996] for related results).

THEOREM 8.5 (ALMOST-SURE REACHABILITY PROBLEM FOR POMDP). Let a POMDP
(M, ∼) and a state set F ⊆ S be given. It is decidable, whether there exists an
observation-based scheduler U ∈ Sched(M,∼) such that PrM,U (!F) = 1.

PROOF. We reduce the almost-sure reachability problem for POMDP to the almost-
sure reachability problem for (fully observable) MDPs, which is known to be solvable by
means of graph-algorithms. Let M = ((S, Act, δ, µ), ∼) be a (without loss of generality,
total) POMDP and F ⊆ S. Without loss of generality, we assume that the states in F
are absorbing, that is, for all states q ∈ F, δ(q, α, q) = 1 for all α ∈ Act. We define an
MDP M′ = (S′, Act, δ′, µ′) as follows. The set of states S′ of M consists of pairs (r, R)
with r ∈ R ⊆ [r]∼ and an extra state qF that has a self-loop with probability one for all
α ∈ Act. Given α ∈ Act and R ⊆ S, let R′ = δ(R\F, α).

If δ(r, α) ∩ F = ∅, then δ′((r, R), α, (r′, R′ ∩ [r′]∼) = δ(r, α, r′) for each r′ ∈ S.
If δ(r, α) ∩ F (= ∅, then δ′((r, R), α, (r′, R′ ∩ [r′]∼)) = 1

2·|R′\F| for all r′ ∈ R′ \ F and
δ′((r, R), α, qF ) = 1

2 (in case R′ \F = ∅, δ′((r, R), α, qF ) = 1).
Moreover µ′(q, [q]∼) = µ(q) for all q (∈ F and µ′(qF) = $r∈Fµ(r). We set F ′ = {qF}.
Before we show that this construction ensures that there exists an observation-based

scheduler U of M with PrM,U (!F) = 1 if and only if there exists a scheduler U ′ of M′

such that PrM
′,U ′

(!F ′) = 1, we fix some notation. For each action α we define the set of
pre-final states of M′ as F ′

pre(α) = {(r, R) | δ(r, α) ∩ F (= ∅}. So F ′
pre(α) is the set of states
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( (= qF) from which M′ reaches its accepting state via the action α. Given a position in
some path π we denote by NextAct the action that occurs after this position in π . So
PrM

′,U ′
("!(∨α(F ′

pre(α) ∧ NextAct = α))) denotes the probability under the scheduler U ′ of
the set of paths in which infinitely often a pre-final state for some action α appears and
is followed by the action α, that is, it denotes the value

PrM
′,U ′({π ′ |

∞
∃ i : ∨α(π ′

i ∈ F ′
pre(α) ∧ Acti+1(π ′) = α)}

)
.

Similarly, PrM
′,U ′

(!"(∧α(¬F ′
pre(α) ∨ NextAct (= α))) denotes the probability under the

scheduler U ′ of the set of paths for which from some point it holds that, whenever a
pre-final state for some action α appears, then the following action is not α.

Now assume that there exists an observation-based scheduler U ∈ Sched(M,∼) such
that PrM,U (!F) = 1. We define U ′ ∈ SchedM′ as follows:

U ′((r0, R0) α1−→ (r1, R1) . . .
αn−→ (rn, Rn)) = U([r0]∼

α1−→ [r1]∼ . . .
αn−→ [rn]∼)

We claim that PrM
′,U ′

("!(∨α(F ′
pre(α) ∧ NextAct = α)) ∨ !"qF ) = 1. Assume the contrary.

So PrM
′,U ′

(!"(∧α(¬F ′
pre(α) ∨ NextAct (= α)) ∧ "!¬qF ) > 0. As qF is absorbing, this

implies PrM
′,U ′

(!"(∧α(¬F ′
pre(α) ∨ NextAct (= α)) ∧ "¬qF ) > 0. Since M′ is a finite state

system, there exists a finite path π̃ ′ = (r0, R0), (r1, R1), . . . , (rn, Rn) of M′ such that

PrM
′,U ′

({π ′ | π ′↑n = π̃ ′ ∧ π ′ |= !=n"(∧α(¬F ′
pre(α) ∨ NextAct (= α)) ∧ "¬qF}) > 0.

Then,

Pr
M′,U ′

π̃ ′
(rn,Rn) ("(∧α(¬F ′

pre(α) ∨ NextAct (= α)) ∧ "¬qF) > 0,

where U ′
π̃ ′ (π̂ ′) = U ′(π̃ ′π̂ ′) for all finite paths π̂ ′ with first(π̂ ′) = last(π̃ ′). For all other paths

π̂ ′ with first(π̂ ′) (= last(π̃ ′), let U ′
π̃ ′(π̂ ′) be defined arbitrarily. Note that

PrM,Uπ̃

rn
("¬F) ≥ Pr

M′,U ′
π̃ ′

(rn,Rn) ("(∧α(¬F ′
pre(α) ∨ NextAct (= α)) ∧ "¬qF) > 0 (+),

where π̃ is the state-wise projection of π̃ ′ to its first component, that is, π̃ = r0, r1, . . . , rn.
This implies

PrM,U ("¬F) ≥ PrM,U ({π | π↑n = π̃})︸ ︷︷ ︸
>0

· PrM,Uπ̃

rn
("¬F)

︸ ︷︷ ︸
>0

> 0,

which is a contradiction as we assumed PrM,U (!F) = 1. This shows our claim that
PrM

′,U ′
("!(∨α(F ′

pre(α) ∧ NextAct = α)) ∨ !"qF) = 1. Inspecting the construction of M′

it easily follows that PrM
′,U ′

(!"qF) = 1, so PrM
′,U ′

(!qF) = 1, which we wanted to show.
It remains to show (+), that is

PrM,Uπ̃

rn
("¬F) ≥ Pr

M′,U ′
π̃ ′

(rn,Rn) ("(∧α(¬F ′
pre(α) ∨ NextAct (= α)) ∧ "¬qF ).

Indeed, consider the infinite Markov chains M′
U ′

π̃ ′
and MUπ̃

that evolve when applying
the scheduler U ′

π̃ ′ to M′ and the scheduler Uπ̃ to M. Then, the state-wise projection
on the first component of each path π ′ of M′

U ′
π̃ ′

is also a path of MUπ̃
. Moreover, the

construction of M′ ensures that if π ′ satisfies "(∧α(¬F ′
pre(α) ∨ NextAct (= α)) ∧ "¬qF

3,

3Note that the states of M′
U ′

π̃ ′
are finite paths of M′. A state x1, x2, . . . , xn of M′

U ′
π̃ ′

is said to satisfy a property,

if the last M′-state of its sequence, namely xn, satisfies the property.
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then the transition probabilities of π ′ in M′
U ′

π̃ ′
agree with the transition probabilities of

its projection in MUπ̃
. As the projection of each such path satisfies "¬F, this shows (+).

We now show the other direction. So we assume that there exists a scheduler U ′ of
M′ such that PrM

′,U ′
(!F ′) = 1. We have to construct an observation-based scheduler

U ∈ Sched(M,∼) such that PrM,U (!F) = 1. Note that given a standard MDP M̃ and a
state set F̃, the existence of a scheduler under which M̃ reaches F̃ almost surely also
ensures the existence of a memoryless deterministic scheduler under which M̃ reaches
F̃ almost surely Hart et al. [1983] and Bianco and de Alfaro [1995]. So, without loss of
generality, we assume that U ′ is memoryless and deterministic.

Let S = S1
.
∪ . . .

.
∪ Sn be the partition of the state set of M with respect to ∼, that

is, for all p ∈ Si it holds that [p]∼ = Si. For each equivalence class Si and each set
R ⊆ Si, we define a representative pR

i ∈ Si such that the state (pR
i , R) is reachable

in M′ (if possible). If no such state exists, the representative is undefined (R is then
of no importance with respect to, to the equivalence class Si). First, we define a new
scheduler U ′′ of M′ that makes the same decision for states ofM′ that have a state of the
same equivalence class in their first component and have the same second component.
That is,

U ′′((p, R)) := U ′((pR
i , R)),

where the index i is such that p ∈ Si. Note that R ⊆ [p]∼ = [pR
i ]∼ and that the

scheduler U ′′ is memoryless and deterministic. The construction of M′ ensures that
PrM

′,U ′′
(!F ′) = 1. Now we define a scheduler U for M for all finite paths p0

α1−→ p1
α2−→

. . .
αn−→ pn of M with p1, . . . , pn /∈ F (recall that the states in F are absorbing). For such

a path, there is a unique corresponding run

(p0, [p0]∼) α1−→ (p1, R1) α2−→ . . .
αn−→ (pn, Rn)

in M′. We define the scheduler U of M as

U(p0
α1−→ p1

α2−→ . . .
αn−→ pn) := U ′′((pn, Rn)).

Note that U is not only an observation-based scheduler, but also PrM,U (!F) = 1. This
can be seen as follows. Any infinite path of M that never visits the set F has a
corresponding path in M′. As PrM

′,U ′′
(!F ′) = 1, such a path almost surely satisfies the

condition that under the scheduler U ′′ at infinitely many indices, the next action had the
state qF as a successor (since PrM

′,U ′′(
"!

(
∨α(F ′

pre(α) ∧ NextAct = α)
)

∨ !"qF
)

= 1). But
this means that the original path in M (which never visits F) almost surely satisfies
the condition that under the scheduler U at infinitely many indices the next action had
a successor in F. Since M is finite, all the transition probabilities are bounded by some
ε > 0. This then ensures that the set of infinite paths never visiting F has measure
zero under the scheduler U .

Our algorithm uses a powerset construction and hence runs in time exponential in the
size of the given POMDP. However, given the EXPTIME-hardness results established
by Reif [1984] and by Chatterjee et al. [2006] for 2-player games with incomplete infor-
mation and by de Alfaro [1999] for POMDP, we do not expect more efficient algorithms.

Remark 8.6. Inspecting the proof of Theorem 8.5, we see that given a POMDP
(M′, ∼′) and a state set F ′, the existence of a scheduler under which M′ reaches F ′

almost surely also ensures the existence of a finite-memory deterministic scheduler
under which M′ reaches F ′ almost surely. But then the construction used in the proof
of Lemma 8.3 ensures that given a POMDP (M′′, ∼′′) and a state set F ′′, the existence
of a scheduler under which M′′ repeatedly reaches F ′′ almost surely also ensures
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the existence of a finite-memory deterministic scheduler under which M′′ repeatedly
reaches F ′′ almost surely.

THEOREM 8.7 (DECIDABILITY RESULTS FOR POMDP). Let a POMDP (M, ∼) and a state
set F ⊆ S be given. It is decidable,

(a) whether there exists an observation-based scheduler U for (M, ∼) such that
PrM,U ("!F) = 1.

(b) whether there exists an observation-based scheduler U for (M, ∼) such that
PrM,U (!"F) > 0.

PROOF.

(a) The claim follows immediately from Lemma 8.3 together with Theorem 8.5.
(b) It holds that

∃U ∈ Sched(M,∼) such that PrM,U (!"F) > 0 ⇔
¬
(
∀U ∈ Sched(M,∼). PrM,U (!"F) = 0

)
⇔

¬
(
∀U ∈ Sched(M,∼). PrM,U ("!¬F) = 1

) (see Remark 8.4)⇔

¬
(
∀U ′ ∈ Sched(M′,∼′). PrM

′,U ′
(!F ′) = 1

)
⇔

∃U ′ ∈ Sched(M′,∼′) such that PrM
′,U ′

(!F ′) < 1 ⇔

∃U ′ ∈ Sched(M′,∼′) such that PrM
′,U ′

("¬F ′) > 0.

The latter problem (confinement with positive probability: PrU ("F) > 0) has been
proven to be EXPTIME-complete by de Alfaro [1999].

As PBA are a special case of POMDP, we can now show

THEOREM 8.8 (DECIDABILITY OF THE EMPTINESS PROBLEM FOR PBA=1). Checking empti-
ness is decidable for PBA under the almost-sure semantics.

PROOF. As PBA are a special case of POMDP, the claim is an immediate consequence
of Theorem 8.7 and Remark 8.6 (since each deterministic scheduler can be seen as an
input word).

Remark 8.9. The decidability of the emptiness problem for PBA under the almost-
sure semantics might be surprising at a first glance, since we proved earlier (see
Theorem 4.11, page 18) that the language of a PBA (under the almost-sure semantics)
depends on the exact probability distributions. However, whether the language is empty
or not does not depend on the precise values of probability distributions. Indeed solving
the almost-sure reachability problem for standard MDPs is done by means of graph
algorithms [Hart et al. 1983; Vardi 1985; Courcoubetis and Yannakakis 1995] that do
not take into account the precise transition probabilities (just whether they are (= 0).
It shows that the almost-sure repeated reachability problem for POMDP and therefore
the emptiness problem for PBA under the almost-sure semantics do not depend on the
precise transition probabilities. For each PBA P ′ that evolves from P by altering the
transition probabilities in a legal way, that is, δ(s, α, t) > 0 if and only if δ′(s, α, t) > 0, if
L=1(P) (= ∅, then there exists a word in L=1(P) that is contained in L=1(P ′) for all such
PBA P ′, that is,

if L=1(P) (= ∅, then
⋂
P ′

L=1(P ′) (= ∅,

where P ′ ranges over all PBA evolving from P by legally altering the transition
probabilities. This follows immediately from Remark 8.6, as L=1(P) (= ∅ ensures the
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existence of a finite-memory word w, such that PrP (w) = 1. The behavior of P under this
finite-memory word can be described by a finite Markov chain Pw and the almost-sure
acceptance of the word in P is equivalent to the almost-sure repeated reachability of a
set F ′ in Pw. As the latter does not depend on the exact transition probabilities of Pw,
but only on its underlying graph [Hart et al. 1983], this shows the claim.

Remark 8.10. Note that Chadha et al. [2009b] shows that the emptiness (respec-
tively, universality) problem for PBA=1 with rational coefficients is PSPACE-complete.
However it is also shown that the language containment problem for PBA=1 with
rational coefficients is $0

2-complete. It is moreover shown that given a PBA P with
L=1(P) (= ∅ (respectively, L=1(P) (= $ω), then L=1(P) (respectively, $ω \ L=1(P)) con-
tains a lasso-shaped word (called ultimately periodic in Chadha et al. [2009b]), that is,
a word of the type uvω with u, v ∈ $∗, |v| ≥ 1.

9. CONCLUSION
We introduced and studied probabilistic ω-automata with Büchi, Rabin, and Streett
acceptance conditions under several acceptance semantics, namely positive acceptance,
almost-sure acceptance and threshold acceptance. An overview of the expressiveness
of the different classes is depicted in Figure 10, page 35. In this context we established
a couple of remarkable results. First, under the probable semantics PBA are more
expressive than NBA. The analogue result is known for PFA and NFA, but PFA are
equipped with a threshold λ ∈]0, 1[ for the acceptance probability. Second, PBA can
be exponentially more efficient than nondeterministic Streett automata. We are not
aware of such a result for finite automata. As far as we know, the best known result
to illustrate the efficiency of PFA in contrast to (non-probabilistic) finite automata has
been established by Ambainis [1996] who proved the existence of a PFA with O(n)
states while any equivalent DFA has #

(
2n/ log n) states. Surprisingly, there is a polyno-

mial transformation from probabilistic Streett to probabilistic Büchi automata, both
under the probable semantics, which is impossible in the nondeterministic case [Safra
and Vardi 1989]. As for nondeterministic ω-automata, complementation of PBA is diffi-
cult. We proposed a complementation operator that has some similarities with Safra’s
algorithm for the generation of an equivalent DRA for a given NBA [Safra 1988], but
is simpler since the probabilistic setting permits to argue by means of sample runs
that avoid the organization of the potential accepting runs in Safra-trees. However,
the asymptotic bound is the same as in the nondeterministic case. The undecidability
of the emptiness problem for PBA>0 has many important consequences, including un-
decidability results for stochastic games under incomplete information and ω-regular
winning objectives and the undecidability of the model-checking problem for transition
systems and (possiby non-ω-regular) linear time properties specified by PBA. In the
introduction we mentioned several potential application areas, for example, security
in multi-agent systems, where the model of PBA appears to be natural and could play
a central role.
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